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Abstract—The urban signalized road network, characterized
by its dynamic and complex nature due to frequent signal
control adjustments and unpredictable demand fluctuations,
presents significant challenges for predicting lane-level traffic
flow. This study introduces the innovative MGCN-TAMA model,
which addresses these challenges by integrating multi-graph
convolutional networks with a temporal-aware multi-head
attention mechanism. The proposed model employs three types
of adjacency matrices—a geographical matrix, a signal matrix,
and an attention matrix—to capture the complex spatial
dependencies among various traffic approaches. Additionally,
the model utilizes temporal-aware multi-head attention to
discern the non-linear correlations in traffic variations over time.
Tested on a real-world dataset from Tongxiang City, the
MGCN-TAMA model significantly outperforms traditional
models. Notably, in the first 30-minute prediction interval, our
model achieves the lowest Mean Absolute Error, with 2.5649
vehicles per S5-minute span. These results underscore the
effectiveness of combining graph-based methods with advanced
attention mechanisms to enhance the accuracy of predicting
lane-level traffic volumes in urban networks.

I. INTRODUCTION

Accurate traffic volume prediction (TFP) is essential for
managing congestion, optimizing traffic operations, and
enhancing urban mobility. Urban transportation systems are
becoming more complex due to rapid urbanization and
increased vehicle ownership, necessitating advanced TFP
technologies based on new data source.

The recent surge in interest for data-driven TFP on
networks can be classified into three distinct levels [1].
Initially, the regional level examines entire urban areas,
delving into overarching traffic patterns and behaviors [2].
Moving to the road level, this approach primarily utilizes
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traffic sensor data, such as from the PEMS dataset, to analyze
the traffic flow dynamics through specific road segments and
intersections [3], [4]. The third, the station level, targets
transportation hubs like subway stations, bus stops, and
parking lots, focusing on the micro-dynamics of individual
nodes within the transport network [5].

With the increasing coverage of loop detectors and the
development of automatic vehicle identification (AVI) or
connected vehicles, achieving higher accuracy of TFP with
finer granularity in urban areas becomes more applicable.
Regarding the road level TFP at signalized intersections within
urban road networks, this study field involves predictions on
traffic flow [6], movement [7], [8], and queue length [9], [10],
which is characterized by higher data intensity. most current
studies concentrate on isolated intersections, with only a few
considering the temporal and spatial correlations among
multiple intersections. Even more scarce are studies that have
attempted network-wide traffic flow predictions at the lane
level.

The emergence of this research gap is due to dynamic,
complicated and fluctuating characteristics _typical of
interrupted flow within signalized networks. Meanwhile, the
impact of signal indication and stochastic demand poses
significant challenges for TFP modeling in urban areas. To
address this issue, this study proposes a hybrid deep learning
model based on multi-graph convolutional neural networks
and temporal aware multi-head attention mechanism, named
as MGCN-TAMA.

Firstly, the traffic flow graph is established by using the
historical lane level traffic volume data and three type of
adjacency matrices. Secondly, graph convolutional neural
networks is used to extract dynamic and discontinuous spatial
dependencies from multiple subgraphs and then apply gated
linear unit to fuse them. Thirdly, an enhanced multi-head
attention mechanism, specifically tailored for time series
analysis, is proposed to capture the fluctuation of traffic flow
across time dimensions. Finally, a comparison experiment
with existing models is conducted using the AVI data from a
real-world network in Tongxiang, Zhejiang. In addition, an
ablation experiment is designed to demonstrate the effect of
multi-graph convolutional neural networks and temporal
aware multi-head attention modules. The contributions which
make our work different from others are as follows:

Firstly, a comprehensive network-wide, lane-level traffic
flow graph has been developed. By constructing the traffic
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graph with approach as vertices, the model not only simplifies
spatial structures but also accommodates the varied lane
configurations of each approach.

Secondly, multiple adjacency matrices are introduced to
represent the spatial dependencies of the network. This
approach addresses the discontinuities and dynamic
characteristics of urban traffic flow influenced by traffic signal
controls. Additionally, enhancements to the multi-head
attention mechanism allow for a more effective capture of the
temporal dependencies inherent in time series data.

Finally, to evaluate our model’s predictive accuracy, the
performance of our model is rigorously tested and compared
with other advanced methods based on real-world data from
urban road networks and traffic signal systems.

II. RELATED WORKS

Over the last few decades, numerous TFP methods have
been proposed. Traditional statistical approaches like ARIMA
and its variants, as well as machine learning techniques, have
been applied in this field [11], [12]. With the advent of deep
learning, several scholars have turned to recurrent neural
networks for analyzing time series data, achieving notable
success. A significant advancement came when [13]
introduced a deep learning framework designed to extract
spatiotemporal features, applying it specifically to highway
traffic prediction. Following this, the use of Graph Neural
Networks (GNN) emerged as a vital technique for analyzing
road traffic flow. The innovative graph-convolutional
encoder-decoder structure proposed in [14] integrates Graph
Convolutional Networks (GCN) and Long Short-Term
Memory (LSTM) networks to capture spatiotemporal features
effectively. This structure includes a recurrent decoder that
projects traffic flow predictions several steps into the future.
Capturing the complex spatiotemporal dependencies of traffic
flows using a static geographic structure has proven
challenging. To address this, [15] introduced a dynamic graph
model based on an attention mechanism to more accurately
reflect dynamic spatial correlations. However, the correlations
of real-time traffic states in urban signal-controlled networks
remain underexplored.

More recently, some scholars have already attempted to
tackle the TFP issue in signal-controlled road networks. Lee
developed a deep learning model for predicting real-time lane-
based traffic volumes at three consecutive intersections[7]. In
a separate study, [l6]exploited traffic volume data from
upstream and downstream intersections to model
spatiotemporal relationships and predict straight and left-turn
movements at a corridor level. Additionally, the introduction
of a novel graph-augmented neural model, the Graph-
Augmented Neural Network Spatio-Temporal Reasoner
(GANNSTER), aims to optimize traffic light systems by
forecasting traffic throughput at signalized intersections [4].
Another innovative approach, ScCR-DTG, proposed by [15], is
a deep learning-based dynamic traffic graph model
specifically designed to precisely predict movement-based
traffic flow on a cycle-to-cycle basis. However, this model
employs a simplified assumption, positing a constant upper
limit for the passing flow. This assumption represents an
unrealistic constraint that may limit the model's applicability
in varying traffic conditions.

Figure 1.

Diagram of the urban road network traffic graph

In conclusion, while deep learning-based methods have
shown exceptional performance on highways, research into
lane flow prediction in urban networks is still nascent. Urban
road networks present uniquely complex and dynamic
spatiotemporal traffic characteristics, which are influenced by
signal control and stochastic demand generation. This
complexity underscores a significant gap in current research.
There is a pressing need for further investigation to develop
and refine predictive models that are tailored to the intricate
and fluctuating conditions of urban traffic systems.

III. METHODOLOGY

A. Preliminary

Graph-based theory is used to model the road network
topology to predict the traffic volume of lanes in each
approach. The traffic graph consists of vertexes, edges and
adjacency matrices, denoted as G = {V, E, A}, where V is the
set of vertexes, each of which has a feature vector representing
the traffic characteristics (e.g., traffic volume, speed, etc.), and
E is the set of edges, and A is the adjacency matrix, which
represents the connections between vertexes, and it defines
how the traffic flow propagates through the graph. Since
treating the intersection as a vertex directly will ignore the
connection between each inlet lane within the intersection,
while treating each lane as a vertex will complicate the road
network topology. Considering the research objectives, we
treat each approach as a vertex and is represented by x (Fig.1).
Each approach consists of left-turn, right-turn, and straight
lanes, and therefore can be regarded as a vector x = [ly,
L, ... ...,lm]elRM where [; is the traffic volume of the
lane i, and M denotes the number of lanes in the approach.
The whole urban road network can be represented as X = [x4,
X2, wees Xjy ey Xn JERM*N | where N denotes the number of
approaches. The T historical flow is denoted as X;_r,1.; =
[Xe-rs1r Xerio s Xeog, X JER™ T,

As in Equation (1), our problem is predicting future
network-wide traffic volumes Y for the next H time
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Figure 2. Overview of the proposed model

intervals, based on historical T time intervals X;_r,4.. and
the traffic graph G:

Y= o Y2s Y} = FG Xeors1:t) (M

B.  Overview of proposed hybrid model

To address the above problems, a hybrid deep learning
model combined multi-graph convolution networks with
temporal aware multi-head attention (MGCN-TAMA) is
proposed (see Fig.2). The overall architecture of the model
includes two parts: encoder and decoder. The structure offers
an efficient framework for modeling and predicting time-
series data. In this framework, the encoder processes the input
sequence and produces a context vector, while the decoder
utilizes this vector along with preceding prediction outcomes
to generate the output sequence. By predicting multi-step
outputs, the model can capture long-term trends and cyclical
variations effectively. This approach ensures the continuity of
results and mitigates the accumulation of errors over time,
thereby enhancing prediction accuracy.

C. Spatial dependence of urban road network

1) Geographical matrix

The geographic adjacency matrix is first established based
on the geometric connectivity of the road network. The
geographical connection of the road network usually does not
change in the short term. According to the approach i and j
are direct upstream and downstream, the geographic adjacency
matrix A;;9% takes the value of 1 or 0, where 0 indicates that
approach i is not adjacent to approach j, and 1 indicates that
approach i is adjacent to approach j. Taking the intersection
in Figure 1 as an example, approach 3 is connected to approach
6, so the value of position (3, 6) in the geographic matrix is 1.

2) Signal matrix

Different signal control schemes such as green split and
phase sequence have a great impact on the capacity of
intersections. In practice, each intersection has a unique signal
timing scheme that adjusts dynamically based on the traffic
flow at different times of the day to improve accessibility. The

Geographical matrix Signal matrix Attention matrix

Figure 3. Three types of spatial dependence of urban road network

green split is one of the most important key parameters in
traffic signal timing design, that is, the effective green time of
a signal phase in a signal cycle. This is also crucial for short-
term TVP based on flow direction in urban road networks.
However, previous studies related to TVP have neglected the
significance of signal control in urban road network scenarios.
Although a large number of studies have achieved better
prediction performance in highway scenarios using static
geographic matrix to describe the spatial structure of roads,
this paper proposes to extract the green split in urban road
scenarios (g;;) characterizing the dynamic spatial connection
between upstream and downstream lane, and the signal matrix
is denoted as in Equation (2):

Aszlg — gy = green time of phase;; 2
cycle time

As shown in Figure 3, when the signal light of approach 7

turning left into approach 2 is green, the vehicle can pass. The

signal matrix with green split as the element represents the

passing power between the two approaches.

3) Attention matrix

In addition to the geographical and signal correlation
between directly connected upstream and downstream roads,
there can also be global semantic correlation between distant
roads. To capture the relationship between the more distant
roads in the network, this paper adopts an attention mechanism
to adaptively assign different weights to the global vertexes to
represent the global dynamic relationship between the roads as
in Equation (3):

Aijatt = Attentionij (3)

D. Multi-graph convolution networks

GCN was first proposed in 2017[17]. GCN learn higher-
order feature representations by combining the graph's
adjacency matrix with vertex feature and performing
convolution operations directly on the graph. This allows each
vertex to aggregate information from its neighbors, making
GCN especially suitable for handling data with complex
spatial dependencies, such as in traffic flow prediction for road
networks. The formula for GCN is as in Equation (4)-(6):

41— f(xl A = (B3 AD-3x O ® 4)
X fX', A) =a(D2ZAD2XOWW)

A=A+1 (5)

D; = A~ij (6)

i
where X! is the network feature matrix of the [ layer, and X°
is the initial network feature matrix; W® is the trainable
weight matrix of the [ layer; o is a nonlinear activation
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function such as ReLU. A is the adjacency matrix of the
graph, and [ is the unit matrix, which is used to add self-
connections to enhance the representation of the model; D is
the degree matrix of A.

The urban road network has multiple and complex spatial
dependencies, this paper comprehensively considers three
adjacency matrices represent various sub-graphs and use GCN
to extract spatial features of each sub-graph then fuse them. To
improve the learning efficiency of the network, this paper use
a gating mechanism to help the model to pass useful
information, Gated Linear Unit (GLU) is a simplified gating
mechanism [18], which controls whether the information
should pass through these layers or not. The formula is shown
in Equation (7)-(8)

Xt zf(leAGeo ) ®f(Xl'ASig ) @f(Xl'AAtt) )

where @ denotes the vector concatenate operation.

X=X W+b) Q@ a(XH1 xV +¢) ®)
where W, V, b, ¢ are learning parameters and o is the
activation function, and @ is the corresponding element-
wise product.

E. Temporal aware multi-head attention

When dealing with sequence data, the multi-head attention
mechanism is used to simultaneously consider the temporal
relationships between different time steps. The output of a
head's attention head; can be expressed as in Equation (9):

head; = Attention(QW,°, KWK, vw}) ©)

where Q, K, V denote the query vector, key vector and
value vector, respectively. WiQ, WX and WY are the linear
transformation matrices of the head i, and Attention is the
attention computation function. In multi-head attention, the
Self-Attention mechanism is generally used to compute the

attention. The formula for Self-Attention is as in Equation (10):

QKT)V (10)
d

Attention(Q,K,V) = softmax(

where dj, is the dimension of the key vector K. The softmax
similarity is normalized and the weight of each key vector is
calculated, then the weight is multiplied by the value vector
and finally the weighted sum is performed to get the attention
output.

Ultimately, the calculation of multi-head attention can be
expressed as in Equation (11):

MultiHead(Q,K,V) = Concat(heady, ..., head)W° (11)

where h denotes the number of heads, and head; denotes
the output of the i, head, and W©° is the output
transformation matrix for projecting the result of multi-head
attention to the desired dimension.

Although the multi-head attention mechanism has seen
success in traffic flow prediction, it often struggles with time
series data, particularly in capturing long-term temporal
dependencies. This limitation can lead to the underestimation
of the time dimension's significance. To address this, this
paper proposes a Temporal-aware Multi-head Attention
mechanism. By integrating Temporal Convolutional Neural

Network (TCN) to process the inputs Q and K, our approach
enhances the model's ability to capture both local and global
temporal features in the data.

The input query and key are first temporally convolved to
capture the temporal features in the sequence data. Specifically,
we can use the TCN [19] to transform the query Q and key K
to obtain new query and key representations. Assume that the
outputs of TCN are Q' and K', whose dimensions are the same
as the original inputs. Then, the transformed Q' and K' are
inputted into the multi-head attention mechanism, respectively,
and the attention score matrix of each head is computed. For
the firsti head, its attention is calculated as follows in Equation
(12):

11T

(12)
Attention(Q,K,V) = softmax(

W

Kr

The final step involves splicing or calculating the weighted
sum of the results obtained from all attention heads to generate
the ultimate output of temporal aware multi-head attention. By
introducing TCN, temporal aware multi-head attention is able
to better capture the temporal features in the sequence data,
thus improving the prediction performance of the model.

F. Residual connection

Residual connections are crucial in deep learning models.
These connections enhance the model by directly adding
inputs to outputs, which helps preserve information from the
initial inputs throughout the network. This is particularly
beneficial in traffic flow prediction, where residual
connections aid in capturing long-term trends and cyclical
changes, thereby improving the model’s accuracy and fit. The
basic operation of a residual connection involves combining
the input X! with its corresponding output f(X!), resulting
in the final output y as in Equation (13).

y=X'+ f(xH (13)

where y denotes the final prediction result.

Residual connections enhance model training by allowing
direct learning from input changes. These connections add
input data directly to outputs, simplifying the learning of
residual differences and accelerating training convergence.
Additionally, skip connections help prevent gradient vanishing
and explosion, boosting model stability and generalization.
This approach significantly improves the performance of
graph neural network-based models in capturing long-term
trends and cyclical changes in traffic flow data, enhancing
prediction accuracy.

IV. NUMERICAL EXPERIMENT

A. Data description and preparation

The proposed model was applied to a real-world urban
road network in Tongxiang City, Zhejiang, China. This
network, depicted in Fig.4, consists of a 4x4 grid with 16
intersections and 64 approaches. Each intersection is equipped
with AVI to monitor vehicle entries per lane, and signal timing
data were collected concurrently. Data collection spanned
from September 20, 2020, to September 29, 2020, covering a
total of ten days. Observations recorded between 0:00 and 5:00
a.m. were excluded from the analysis due to their extremely
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Figure 4. Urban road network experiment scene

TABLE L. PREDICTION PERFORMANCE OF THE MODELS
Models MAE RMSE MAPE

HA 3.3889 54671 0.2926
Seq2seq [20] 2.7777 4.207 0.2395
DISTN [7] 2.7745 4.1377 0.2369
GCN-LSTM [14] 2.7377 4.1846 0.2237
ScR-DTG [15] 2.7325 3.9728 0.2274
MGCN-TAMA 2.5649 3.9156 0.2262

low traffic volume. The whole data set is divided into periods
at 5-minute intervals, and the traffic volume of the lane is
calculated by the total number of vehicles passing the stop line
every 5 minutes, and the signal timing data corresponding to
the lane in each period is processed. After preprocessing, the
AVI data yielded a dataset comprising 2,280 time-series
entries for further analysis.

B. Experimental setting

70% of the dataset is divided into a training set, 10% into
a validation set, and 20% into a test set. The data in the training
set is randomly disrupted. Taking into account that the traffic
flow in urban road networks is influenced by approximately
one hour of historical data, we utilize one hour's worth of
traffic flow records (segmented into 12 five-minute intervals)
as input for our model to forecast the traffic conditions for the
subsequent hour (similarly segmented into 12 five-minute
intervals). The model is optimized using the Adam optimizer
and utilizes Mean Squared Error (MSE) as the loss function.
The evaluation indexes include Mean Absolute Error (MAE),
Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE). The above indexes are calculated
as shown in Equation (14)-(17)

H N M

MSE H % N MZZ Z(ytnm ytnm)

1n=1m=1

1 H M
MAE:H*N*MZZ .

t=1n=1

1 H N M
RMSE = mZZ Z(ytnm Penm)?  (16)

(14)

(ytnm _ytnm) (15)

1

(J’tnm Vinm)

Ytnm

(7)

MAPE = 7 N*MZZZ

t=1n=1m=

Additionally, several state-of-the-art models are utilized as
baseline models to evaluate and compare the performance of
the proposed models in this study.

e HA: The method is based on the assumption that
future traffic flows are similar to past average flows.
It provides a basic baseline for forecasting that can be
used to compare and evaluate against more
sophisticated models.

e Seq2seq [20] : The encoder processes the historical
traffic data sequences using LSTM, and the decoder
also uses LSTM to receive the hidden states of the
encoder as initial states and gradually generates a
sequence of traffic flow predictions for a future period
of time.

e DISTN [7] : A structure called Deep Intersection
Spatial-Temporal Network. The model takes into
account spatial and temporal features by combining
CNN and LSTM, respectively.

e GCN-LSTM [14]: A proposed data-driven approach
based on a deep learning architecture combining GCN
and LSTM, to predict hourly traffic flow at the
intersection level with multiple time-steps.

e ScR-DTG [15]: A proposed deep learning-based
signal control refined dynamic traffic graph model
that introduces GCN, LSTM and temporal attention.

C. Performance comparison

Table 1 demonstrates the prediction performance of the
proposed model compared to baseline models over the ensuing
hour. Our model registers a MAE of 2.5649, a RMSE of
3.9156, and a MAPE of 0.2262, marking enhancements of
0.824, 1.5515, and 6.64% respectively over the HA. In the
prediction task over the next hour (including 12 periods), the
proposed model had the best overall performance. The results
show that the hybrid model of multi-graph convolutional
networks and temporal aware multi-head attention can better
extract complex and dynamic spatio-temporal features to
improve the accuracy of lane level traffic prediction.
Furthermore, the performance of the GCN-LSTM model
shows an improvement over CNN-LSTM, demonstrating that
GCNs are more adept at extracting spatial features from road
networks than CNN.

Further analysis of the detailed evaluation results for the
next Smin-60min, as illustrated in Fig.5-6, reveals that the
proposed MGCN-TAMA demonstrates a clear advantage in
predicting traffic flow volume within the first 30 minutes,
achieving the lowest MAE, RMSE and MAPE. Conversely,
the SCR-DTG, GCN-LSTM model exhibits superior predictive
performance in the 30-60minute interval. This disparity arises
because the model proposed here incorporates a time
convolution method for extracting temporal features, which
offers enhanced performance in local temporal extraction and
greater computational efficiency. In contrast, LSTM models
excel in capturing longer-term dependencies within the time
series. Consequently, the model presented in this study is
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significantly more efficient and accurate for real-time and
rapid prediction of road network traffic conditions.

Prediction results of west approach of NO.15 intersection
are depicted in Fig.7-9, which features three designated lanes
for left, straight, and right turns. These figures compare the
actual traffic values of these lanes with the predicted values for
the next 5, 30, and 60 minutes. Each of the three turning lanes
experiences different levels of traffic: the straight lane is the
busiest, while the right-turn lane sees the least traffic. The
results indicate that the model proposed in this study makes
accurate predictions across lanes with varying traffic volumes,
successfully forecasting both peak and off-peak traffic flows
up to one hour in advance.

D. Ablation result

To demonstrate the individual contribution of each
component in our proposed method, we conducted ablation
experiments, the results of which are depicted in Fig.10-11.
Each bar in the figure represents the performance of the model
after the removal of a specific component. The findings
indicate that the temporal-aware improved attention module
exerts the most significant impact on the model's performance.
Additionally, both the signal matrix and the attention matrix,
which represent dynamic spatial information, contribute
similarly to the model. Notably, the signal matrix demonstrates
superior performance over the attention matrix in the 15-
minute prediction evaluations. Our analysis suggests that,
within the 15-minute time frame, traffic flow evolution is still
largely confined to a smaller geographical area. Here, the
signal matrix, which dynamically controls the propagation of
upstream and downstream traffic flow and leverages
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Figure 7. Comparison of predicted results in the left lane
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theoretical traffic flow knowledge, provides more reliable
support in this scenario.

CONCLUSION

This study proposed a hybrid model that integrates multi-
graph convolutional networks with a temporal-aware multi-
head attention mechanism, aimed at enhancing lane-level
traffic flow prediction in signalized network. The proposed
model seeks to effectively capture the complex spatiotemporal
dependencies characteristic of urban traffic, potentially
improving prediction accuracy and computational efficiency.
Notably, experimental results show that our model achieves a
significant improvement in forecasting traffic flow within the
first 30 minutes, with the lowest MAE recorded at 2.5649
vehicle in each 5 minutes interval. This performance
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demonstrates a substantial
traditional methods.

enhancement compared to

The incorporation of multiple graphs representing different
spatial relationships, along with the innovative use of temporal
convolution methods to extract temporal features, plays a
crucial role in these results. While the findings are promising,
ongoing efforts to refine the model’s adaptability to real-time
traffic changes remain crucial. Future research could include
integrating real-time data inputs from a variety of sources such
as IoT devices and vehicle sensors, aiming to refine the
model's accuracy under dynamic traffic conditions. Such
advancements would further enable the model to adjust
predictions effectively in real-time, enhancing its utility for
intelligent transportation systems.
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