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Abstract—The urban signalized road network, characterized 

by its dynamic and complex nature due to frequent signal 

control adjustments and unpredictable demand fluctuations, 

presents significant challenges for predicting lane-level traffic 

flow. This study introduces the innovative MGCN-TAMA model, 

which addresses these challenges by integrating multi-graph 

convolutional networks with a temporal-aware multi-head 

attention mechanism. The proposed model employs three types 

of adjacency matrices—a geographical matrix, a signal matrix, 

and an attention matrix—to capture the complex spatial 

dependencies among various traffic approaches. Additionally, 

the model utilizes temporal-aware multi-head attention to 

discern the non-linear correlations in traffic variations over time. 

Tested on a real-world dataset from Tongxiang City, the 

MGCN-TAMA model significantly outperforms traditional 

models. Notably, in the first 30-minute prediction interval, our 

model achieves the lowest Mean Absolute Error, with 2.5649 

vehicles per 5-minute span. These results underscore the 

effectiveness of combining graph-based methods with advanced 

attention mechanisms to enhance the accuracy of predicting 

lane-level traffic volumes in urban networks. 

I. INTRODUCTION 

Accurate traffic volume prediction (TFP) is essential for 
managing congestion, optimizing traffic operations, and 
enhancing urban mobility. Urban transportation systems are 
becoming more complex due to rapid urbanization and 
increased vehicle ownership, necessitating advanced TFP 
technologies based on new data source.  

The recent surge in interest for data-driven TFP on 
networks can be classified into three distinct levels [1]. 
Initially, the regional level examines entire urban areas, 
delving into overarching traffic patterns and behaviors [2]. 
Moving to the road level, this approach primarily utilizes 

 
 

traffic sensor data, such as from the PEMS dataset, to analyze 
the traffic flow dynamics through specific road segments and 
intersections [3], [4]. The third, the station level, targets 
transportation hubs like subway stations, bus stops, and 
parking lots, focusing on the micro-dynamics of individual 
nodes within the transport network [5].  

With the increasing coverage of loop detectors and the 
development of automatic vehicle identification (AVI) or 
connected vehicles, achieving higher accuracy of TFP with 
finer granularity in urban areas becomes more applicable. 
Regarding the road level TFP at signalized intersections within 
urban road networks, this study field involves predictions on 
traffic flow [6], movement [7], [8], and queue length [9], [10], 
which is characterized by higher data intensity. most current 
studies concentrate on isolated intersections, with only a few 
considering the temporal and spatial correlations among 
multiple intersections. Even more scarce are studies that have 
attempted network-wide traffic flow predictions at the lane 
level. 

The emergence of this research gap is due to dynamic, 
complicated and fluctuating characteristics typical of 
interrupted flow within signalized networks. Meanwhile, the 
impact of signal indication and stochastic demand poses 
significant challenges for TFP modeling in urban areas. To 
address this issue, this study proposes a hybrid deep learning 
model based on multi-graph convolutional neural networks 
and temporal aware multi-head attention mechanism, named 
as MGCN-TAMA. 

Firstly, the traffic flow graph is established by using the 
historical lane level traffic volume data and three type of 
adjacency matrices. Secondly, graph convolutional neural 
networks is used to extract dynamic and discontinuous spatial 
dependencies from multiple subgraphs and then apply gated 
linear unit to fuse them. Thirdly, an enhanced multi-head 
attention mechanism, specifically tailored for time series 
analysis, is proposed to capture the fluctuation of traffic flow 
across time dimensions. Finally, a comparison experiment 
with existing models is conducted using the AVI data from a 
real-world network in Tongxiang, Zhejiang. In addition, an 
ablation experiment is designed to demonstrate the effect of 
multi-graph convolutional neural networks and temporal 
aware multi-head attention modules. The contributions which 
make our work different from others are as follows: 

Firstly, a comprehensive network-wide, lane-level traffic 
flow graph has been developed. By constructing the traffic 
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graph with approach as vertices, the model not only simplifies 
spatial structures but also accommodates the varied lane 
configurations of each approach. 

Secondly, multiple adjacency matrices are introduced to 
represent the spatial dependencies of the network. This 
approach addresses the discontinuities and dynamic 
characteristics of urban traffic flow influenced by traffic signal 
controls. Additionally, enhancements to the multi-head 
attention mechanism allow for a more effective capture of the 
temporal dependencies inherent in time series data. 

Finally, to evaluate our model’s predictive accuracy, the 
performance of our model is rigorously tested and compared 
with other advanced methods based on real-world data from 
urban road networks and traffic signal systems.  

II. RELATED WORKS 

Over the last few decades, numerous TFP methods have 
been proposed. Traditional statistical approaches like ARIMA 
and its variants, as well as machine learning techniques, have 
been applied in this field [11], [12]. With the advent of deep 
learning, several scholars have turned to recurrent neural 
networks for analyzing time series data, achieving notable 
success. A significant advancement came when [13] 
introduced a deep learning framework designed to extract 
spatiotemporal features, applying it specifically to highway 
traffic prediction. Following this, the use of Graph Neural 
Networks (GNN) emerged as a vital technique for analyzing 
road traffic flow. The innovative graph-convolutional 
encoder-decoder structure proposed in [14] integrates Graph 
Convolutional Networks (GCN) and Long Short-Term 
Memory (LSTM) networks to capture spatiotemporal features 
effectively. This structure includes a recurrent decoder that 
projects traffic flow predictions several steps into the future. 
Capturing the complex spatiotemporal dependencies of traffic 
flows using a static geographic structure has proven 
challenging. To address this, [15] introduced a dynamic graph 
model based on an attention mechanism to more accurately 
reflect dynamic spatial correlations. However, the correlations 
of real-time traffic states in urban signal-controlled networks 
remain underexplored. 

More recently, some scholars have already attempted to 
tackle the TFP issue in signal-controlled road networks. Lee 
developed a deep learning model for predicting real-time lane-
based traffic volumes at three consecutive intersections[7]. In 
a separate study, [16]exploited traffic volume data from 
upstream and downstream intersections to model 
spatiotemporal relationships and predict straight and left-turn 
movements at a corridor level. Additionally, the introduction 
of a novel graph-augmented neural model, the Graph-
Augmented Neural Network Spatio-Temporal Reasoner 
(GANNSTER), aims to optimize traffic light systems by 
forecasting traffic throughput at signalized intersections [4]. 
Another innovative approach, ScR-DTG, proposed by [15], is 
a deep learning-based dynamic traffic graph model 
specifically designed to precisely predict movement-based 
traffic flow on a cycle-to-cycle basis. However, this model 
employs a simplified assumption, positing a constant upper 
limit for the passing flow. This assumption represents an 
unrealistic constraint that may limit the model's applicability 
in varying traffic conditions. 

In conclusion, while deep learning-based methods have 
shown exceptional performance on highways, research into 
lane flow prediction in urban networks is still nascent. Urban 
road networks present uniquely complex and dynamic 
spatiotemporal traffic characteristics, which are influenced by 
signal control and stochastic demand generation. This 
complexity underscores a significant gap in current research. 
There is a pressing need for further investigation to develop 
and refine predictive models that are tailored to the intricate 
and fluctuating conditions of urban traffic systems. 

III. METHODOLOGY 

A. Preliminary 

Graph-based theory is used to model the road network 
topology to predict the traffic volume of lanes in each 
approach. The traffic graph consists of vertexes, edges and 
adjacency matrices, denoted as 𝒢 = {𝑉, 𝐸, 𝐴}, where 𝑉 is the 
set of vertexes, each of which has a feature vector representing 
the traffic characteristics (e.g., traffic volume, speed, etc.), and 
𝐸 is the set of edges, and 𝐴 is the adjacency matrix, which 
represents the connections between vertexes, and it defines 
how the traffic flow propagates through the graph. Since 
treating the intersection as a vertex directly will ignore the 
connection between each inlet lane within the intersection, 
while treating each lane as a vertex will complicate the road 
network topology. Considering the research objectives, we 
treat each approach as a vertex and is represented by 𝑥 (Fig.1). 
Each approach consists of left-turn, right-turn, and straight 
lanes, and therefore can be regarded as a vector 𝑥 = [𝑙1,
𝑙2, … , 𝑙𝑖 , … , 𝑙𝑚]𝜖ℝ𝑀  where 𝑙𝑖  is the traffic volume of the 
lane 𝑖, and 𝑀 denotes the number of lanes in the approach. 
The whole urban road network can be represented as 𝑋 = [𝑥1,
𝑥2, … , 𝑥𝑗 , … , 𝑥𝑛]𝜖ℝ𝑀×𝑁 , where 𝑁 denotes the number of 

approaches. The 𝑇 historical flow is denoted as 𝑋𝑡−𝑇+1:𝑡 =
[𝑋𝑡−𝑇+1, 𝑋𝑡−𝑇+2, … , 𝑋𝑡−1, 𝑋𝑡]𝜖ℝ𝑚×𝑛×𝑇.  

As in Equation (1), our problem is predicting future 

network-wide traffic volumes 𝑌̂  for the next 𝐻  time 

 
Figure 1.  Diagram of the urban road network traffic graph 
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Edge（e）
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lane2
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intervals, based on historical 𝑇 time intervals 𝑋𝑡−𝑇+1:𝑡 and 
the traffic graph 𝒢: 

𝑌̂ = {𝑦1, 𝑦2, … , 𝑦ℎ} = 𝑓(𝒢, 𝑋𝑡−𝑇+1:𝑡) (1) 

B. Overview of proposed hybrid model 

To address the above problems, a hybrid deep learning 
model combined multi-graph convolution networks with 
temporal aware multi-head attention (MGCN-TAMA) is 
proposed (see Fig.2). The overall architecture of the model 
includes two parts: encoder and decoder. The structure offers 
an efficient framework for modeling and predicting time-
series data. In this framework, the encoder processes the input 
sequence and produces a context vector, while the decoder 
utilizes this vector along with preceding prediction outcomes 
to generate the output sequence. By predicting multi-step 
outputs, the model can capture long-term trends and cyclical 
variations effectively. This approach ensures the continuity of 
results and mitigates the accumulation of errors over time, 
thereby enhancing prediction accuracy. 

C. Spatial dependence of urban road network 

1) Geographical matrix 
The geographic adjacency matrix is first established based 

on the geometric connectivity of the road network. The 
geographical connection of the road network usually does not 
change in the short term. According to the approach 𝑖 and 𝑗 
are direct upstream and downstream, the geographic adjacency 
matrix 𝐴𝑖𝑗

𝑔𝑒𝑜  takes the value of 1 or 0, where 0 indicates that 

approach 𝑖 is not adjacent to approach 𝑗, and 1 indicates that 
approach 𝑖 is adjacent to approach 𝑗. Taking the intersection 
in Figure 1 as an example, approach 3 is connected to approach 
6, so the value of position (3, 6) in the geographic matrix is 1. 

2) Signal matrix  

Different signal control schemes such as green split and 

phase sequence have a great impact on the capacity of 

intersections. In practice, each intersection has a unique signal 

timing scheme that adjusts dynamically based on the traffic 

flow at different times of the day to improve accessibility. The 

green split is one of the most important key parameters in 

traffic signal timing design, that is, the effective green time of 

a signal phase in a signal cycle. This is also crucial for short-

term TVP based on flow direction in urban road networks. 

However, previous studies related to TVP have neglected the 

significance of signal control in urban road network scenarios. 

Although a large number of studies have achieved better 

prediction performance in highway scenarios using static 

geographic matrix to describe the spatial structure of roads, 

this paper proposes to extract the green split in urban road 

scenarios (𝑔𝑖𝑗) characterizing the dynamic spatial connection 

between upstream and downstream lane, and the signal matrix 

is denoted as in Equation (2): 

 

𝐴𝑖𝑗
𝑠𝑖𝑔 = 𝑔𝑖𝑗 =

𝑔𝑟𝑒𝑒𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒𝑖𝑗

𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
 (2) 

As shown in Figure 3, when the signal light of approach 7 
turning left into approach 2 is green, the vehicle can pass. The 
signal matrix with green split as the element represents the 
passing power between the two approaches. 

3) Attention matrix   
In addition to the geographical and signal correlation 

between directly connected upstream and downstream roads, 
there can also be global semantic correlation between distant 
roads. To capture the relationship between the more distant 
roads in the network, this paper adopts an attention mechanism 
to adaptively assign different weights to the global vertexes to 
represent the global dynamic relationship between the roads as 
in Equation (3): 

𝐴𝑖𝑗
𝑎𝑡𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖𝑗  (3) 

D. Multi-graph convolution networks 

GCN was first proposed in 2017[17]. GCN learn higher-
order feature representations by combining the graph's 
adjacency matrix with vertex feature and performing 
convolution operations directly on the graph. This allows each 
vertex to aggregate information from its neighbors, making 
GCN especially suitable for handling data with complex 
spatial dependencies, such as in traffic flow prediction for road 
networks. The formula for GCN is as in Equation (4)-(6):  

𝑋𝑙+1 = 𝑓(𝑋𝑙,  𝐴) = 𝜎(𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝑋(𝑙)𝑊(𝑙)) (4) 

𝐴̃ = 𝐴 + 𝐼 (5) 

𝐷̃𝑖𝑖 = ∑ 𝐴̃𝑖𝑗

𝑗

 (6) 

where 𝑋𝑙  is the network feature matrix of the 𝑙 layer, and 𝑋0 

is the initial network feature matrix; 𝑊(𝑙)  is the trainable 
weight matrix of the 𝑙 layer; 𝜎  is a nonlinear activation 

 
Figure 2.  Overview of the proposed model 
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Figure 3.  Three types of spatial dependence of urban road network 

1880

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2025 at 14:05:54 UTC from IEEE Xplore.  Restrictions apply. 



  

function such as ReLU. 𝐴  is the adjacency matrix of the 
graph, and  𝐼 is the unit matrix, which is used to add self-

connections to enhance the representation of the model; 𝐷̃ is 

the degree matrix of 𝐴̃. 

The urban road network has multiple and complex spatial 
dependencies, this paper comprehensively considers three 
adjacency matrices represent various sub-graphs and use GCN 
to extract spatial features of each sub-graph then fuse them. To 
improve the learning efficiency of the network, this paper use 
a gating mechanism to help the model to pass useful 
information, Gated Linear Unit (GLU) is a simplified gating 
mechanism [18], which controls whether the information 
should pass through these layers or not. The formula is shown 
in Equation (7)-(8) 

𝑋𝑙+1 = 𝑓(𝑋𝑙, 𝐴𝐺𝑒𝑜  ) ⊕ 𝑓(𝑋𝑙, 𝐴𝑆𝑖𝑔 ) ⊕ 𝑓(𝑋𝑙 , 𝐴𝐴𝑡𝑡  ) (7) 

where ⊕ denotes the vector concatenate operation.  

𝑋𝑙+1 = (𝑋𝑙+1 ∗ 𝑊 + 𝑏) ⊗ 𝜎(𝑋𝑙+1 ∗ 𝑉 + 𝑐) (8) 
where 𝑊 , 𝑉 , 𝑏 , 𝑐  are learning parameters and 𝜎  is the 
activation function, and ⊗  is the corresponding element-
wise product.  

E. Temporal aware multi-head attention 

When dealing with sequence data, the multi-head attention 
mechanism is used to simultaneously consider the temporal 
relationships between different time steps. The output of a 
head's attention ℎ𝑒𝑎𝑑𝑖 can be expressed as in Equation (9):  

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (9) 

where 𝑄 , 𝐾 , 𝑉  denote the query vector, key vector and 

value vector, respectively. 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾  and 𝑊𝑖

𝑉 are the linear 

transformation matrices of the head 𝑖 , and Attention is the 
attention computation function. In multi-head attention, the 
Self-Attention mechanism is generally used to compute the 
attention. The formula for Self-Attention is as in Equation (10):  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 
(10) 

where 𝑑𝑘 is the dimension of the key vector K. The softmax 
similarity is normalized and the weight of each key vector is 
calculated, then the weight is multiplied by the value vector 
and finally the weighted sum is performed to get the attention 
output.  

Ultimately, the calculation of multi-head attention can be 
expressed as in Equation (11):  

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)  = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (11) 

where ℎ  denotes the number of heads, and ℎ𝑒𝑎𝑑𝑖  denotes 
the output of the 𝑖𝑡ℎ  head, and 𝑊𝑂  is the output 
transformation matrix for projecting the result of multi-head 
attention to the desired dimension.  

Although the multi-head attention mechanism has seen 
success in traffic flow prediction, it often struggles with time 
series data, particularly in capturing long-term temporal 
dependencies. This limitation can lead to the underestimation 
of the time dimension's significance. To address this, this 
paper proposes a Temporal-aware Multi-head Attention 
mechanism. By integrating Temporal Convolutional Neural 

Network (TCN) to process the inputs Q and K, our approach 
enhances the model's ability to capture both local and global 
temporal features in the data. 

The input query and key are first temporally convolved to 
capture the temporal features in the sequence data. Specifically, 
we can use the TCN [19] to transform the query Q and key K 
to obtain new query and key representations. Assume that the 
outputs of TCN are 𝑄′ and 𝐾′, whose dimensions are the same 
as the original inputs. Then, the transformed 𝑄′ and 𝐾′ are 
inputted into the multi-head attention mechanism, respectively, 
and the attention score matrix of each head is computed. For 
the first𝑖 head, its attention is calculated as follows in Equation 
(12):  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄′𝐾′𝑇

√𝑑𝐾′

)𝑉 
(12) 

The final step involves splicing or calculating the weighted 
sum of the results obtained from all attention heads to generate 
the ultimate output of temporal aware multi-head attention. By 
introducing TCN, temporal aware multi-head attention is able 
to better capture the temporal features in the sequence data, 
thus improving the prediction performance of the model.  

F. Residual connection  

Residual connections are crucial in deep learning models. 
These connections enhance the model by directly adding 
inputs to outputs, which helps preserve information from the 
initial inputs throughout the network. This is particularly 
beneficial in traffic flow prediction, where residual 
connections aid in capturing long-term trends and cyclical 
changes, thereby improving the model’s accuracy and fit. The 
basic operation of a residual connection involves combining 

the input 𝑋𝑙 with its corresponding output 𝑓(𝑋𝑙), resulting 
in the final output 𝑦 as in Equation (13). 

𝑦 = 𝑋𝑙 +  𝑓(𝑋𝑙) (13) 

where 𝑦 denotes the final prediction result.  

Residual connections enhance model training by allowing 
direct learning from input changes. These connections add 
input data directly to outputs, simplifying the learning of 
residual differences and accelerating training convergence. 
Additionally, skip connections help prevent gradient vanishing 
and explosion, boosting model stability and generalization. 
This approach significantly improves the performance of 
graph neural network-based models in capturing long-term 
trends and cyclical changes in traffic flow data, enhancing 
prediction accuracy. 

IV. NUMERICAL EXPERIMENT 

A. Data description and preparation 

The proposed model was applied to a real-world urban 
road network in Tongxiang City, Zhejiang, China. This 
network, depicted in Fig.4, consists of a 4×4 grid with 16 
intersections and 64 approaches. Each intersection is equipped 
with AVI to monitor vehicle entries per lane, and signal timing 
data were collected concurrently. Data collection spanned 
from September 20, 2020, to September 29, 2020, covering a 
total of ten days. Observations recorded between 0:00 and 5:00 
a.m. were excluded from the analysis due to their extremely 
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low traffic volume. The whole data set is divided into periods 
at 5-minute intervals, and the traffic volume of the lane is 
calculated by the total number of vehicles passing the stop line 
every 5 minutes, and the signal timing data corresponding to 
the lane in each period is processed. After preprocessing, the 
AVI data yielded a dataset comprising 2,280 time-series 
entries for further analysis. 

B. Experimental setting   

70% of the dataset is divided into a training set, 10% into 
a validation set, and 20% into a test set. The data in the training 
set is randomly disrupted. Taking into account that the traffic 
flow in urban road networks is influenced by approximately 
one hour of historical data, we utilize one hour's worth of 
traffic flow records (segmented into 12 five-minute intervals) 
as input for our model to forecast the traffic conditions for the 
subsequent hour (similarly segmented into 12 five-minute 
intervals). The model is optimized using the Adam optimizer 
and utilizes Mean Squared Error (MSE) as the loss function.  
The evaluation indexes include Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE) and Mean Absolute 
Percentage Error (MAPE). The above indexes are calculated 
as shown in Equation (14)-(17) 

𝑀𝑆𝐸 =
1

𝐻 ∗ 𝑁 ∗ 𝑀
∑ ∑ ∑ (𝑦𝑡𝑛𝑚 − 𝑦̂𝑡𝑛𝑚)2

𝑀

𝑚=1

𝑁

𝑛=1

𝐻

𝑡=1

 (14) 

𝑀𝐴𝐸 =
1

𝐻 ∗ 𝑁 ∗ 𝑀
∑ ∑ ∑ (𝑦𝑡𝑛𝑚 − 𝑦̂𝑡𝑛𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

𝐻

𝑡=1

 (15) 

𝑅𝑀𝑆𝐸 = √
1

𝐻 ∗ 𝑁 ∗ 𝑀
∑ ∑ ∑ (𝑦𝑡𝑛𝑚 − 𝑦̂𝑡𝑛𝑚)2

𝑀

𝑚=1

𝑁

𝑛=1

𝐻

𝑡=1

 (16) 

𝑀𝐴𝑃𝐸 =
1

𝐻 ∗ 𝑁 ∗ 𝑀
∑ ∑ ∑ |

(𝑦𝑡𝑛𝑚 − 𝑦̂𝑡𝑛𝑚)

𝑦𝑡𝑛𝑚

|

𝑀

𝑚=1

𝑁

𝑛=1

𝐻

𝑡=1

 (17) 

Additionally, several state-of-the-art models are utilized as 
baseline models to evaluate and compare the performance of 
the proposed models in this study. 

• HA: The method is based on the assumption that 
future traffic flows are similar to past average flows. 
It provides a basic baseline for forecasting that can be 
used to compare and evaluate against more 
sophisticated models.  

• Seq2seq [20] : The encoder processes the historical 
traffic data sequences using LSTM, and the decoder 
also uses LSTM to receive the hidden states of the 
encoder as initial states and gradually generates a 
sequence of traffic flow predictions for a future period 
of time.  

• DISTN [7] : A structure called Deep Intersection 
Spatial-Temporal Network. The model takes into 
account spatial and temporal features by combining 
CNN and LSTM, respectively.  

• GCN-LSTM [14]: A proposed data-driven approach 
based on a deep learning architecture combining GCN 
and LSTM, to predict hourly traffic flow at the 
intersection level with multiple time-steps.  

• ScR-DTG [15]: A proposed deep learning-based 
signal control refined dynamic traffic graph model 
that introduces GCN, LSTM and temporal attention. 

C. Performance comparison 

Table 1 demonstrates the prediction performance of the 
proposed model compared to baseline models over the ensuing 
hour. Our model registers a MAE of 2.5649, a RMSE of 
3.9156, and a MAPE of 0.2262, marking enhancements of 
0.824, 1.5515, and 6.64% respectively over the HA. In the 
prediction task over the next hour (including 12 periods), the 
proposed model had the best overall performance. The results 
show that the hybrid model of multi-graph convolutional 
networks and temporal aware multi-head attention can better 
extract complex and dynamic spatio-temporal features to 
improve the accuracy of lane level traffic prediction. 
Furthermore, the performance of the GCN-LSTM model 
shows an improvement over CNN-LSTM, demonstrating that 
GCNs are more adept at extracting spatial features from road 
networks than CNN.  

Further analysis of the detailed evaluation results for the 
next 5min-60min, as illustrated in Fig.5-6, reveals that the 
proposed MGCN-TAMA demonstrates a clear advantage in 
predicting traffic flow volume within the first 30 minutes, 
achieving the lowest MAE, RMSE and MAPE. Conversely, 
the ScR-DTG, GCN-LSTM model exhibits superior predictive 
performance in the 30-60minute interval. This disparity arises 
because the model proposed here incorporates a time 
convolution method for extracting temporal features, which 
offers enhanced performance in local temporal extraction and 
greater computational efficiency. In contrast, LSTM models 
excel in capturing longer-term dependencies within the time 
series. Consequently, the model presented in this study is 

 
Figure 4.  Urban road network experiment scene 

TABLE I.  PREDICTION PERFORMANCE OF THE MODELS  

Models MAE RMSE MAPE 

HA 3.3889 5.4671 0.2926 

Seq2seq [20] 2.7777 4.207 0.2395 

DISTN [7] 2.7745 4.1377 0.2369 

GCN-LSTM [14] 2.7377 4.1846 0.2237 

ScR-DTG [15] 2.7325 3.9728 0.2274 

MGCN-TAMA 2.5649 3.9156 0.2262 
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significantly more efficient and accurate for real-time and 
rapid prediction of road network traffic conditions. 

Prediction results of west approach of NO.15 intersection 
are depicted in Fig.7-9, which features three designated lanes 
for left, straight, and right turns. These figures compare the 
actual traffic values of these lanes with the predicted values for 
the next 5, 30, and 60 minutes. Each of the three turning lanes 
experiences different levels of traffic: the straight lane is the 
busiest, while the right-turn lane sees the least traffic. The 
results indicate that the model proposed in this study makes 
accurate predictions across lanes with varying traffic volumes, 
successfully forecasting both peak and off-peak traffic flows 
up to one hour in advance.  

D. Ablation result 

To demonstrate the individual contribution of each 
component in our proposed method, we conducted ablation 
experiments, the results of which are depicted in Fig.10-11. 
Each bar in the figure represents the performance of the model 
after the removal of a specific component. The findings 
indicate that the temporal-aware improved attention module 
exerts the most significant impact on the model's performance. 
Additionally, both the signal matrix and the attention matrix, 
which represent dynamic spatial information, contribute 
similarly to the model. Notably, the signal matrix demonstrates 
superior performance over the attention matrix in the 15-
minute prediction evaluations. Our analysis suggests that, 
within the 15-minute time frame, traffic flow evolution is still 
largely confined to a smaller geographical area. Here, the 
signal matrix, which dynamically controls the propagation of 
upstream and downstream traffic flow and leverages 

theoretical traffic flow knowledge, provides more reliable 
support in this scenario. 

CONCLUSION 

This study proposed a hybrid model that integrates multi-
graph convolutional networks with a temporal-aware multi-
head attention mechanism, aimed at enhancing lane-level 
traffic flow prediction in signalized network. The proposed 
model seeks to effectively capture the complex spatiotemporal 
dependencies characteristic of urban traffic, potentially 
improving prediction accuracy and computational efficiency. 
Notably, experimental results show that our model achieves a 
significant improvement in forecasting traffic flow within the 
first 30 minutes, with the lowest MAE recorded at 2.5649 
vehicle in each 5 minutes interval. This performance 

 
Figure 5.  MAE prediction evaluation results in the next 1 hour 

 
Figure 6.  RMSE prediction evaluation results in the next 1 hour 

 
Figure 7.  Comparison of predicted results in the left lane 

 

Figure 8.  Comparison of predicted results in the straight lane  

 
Figure 9.  Comparison of predicted results in the right lane 
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demonstrates a substantial enhancement compared to 
traditional methods. 

The incorporation of multiple graphs representing different 
spatial relationships, along with the innovative use of temporal 
convolution methods to extract temporal features, plays a 
crucial role in these results. While the findings are promising, 
ongoing efforts to refine the model’s adaptability to real-time 
traffic changes remain crucial. Future research could include 
integrating real-time data inputs from a variety of sources such 
as IoT devices and vehicle sensors, aiming to refine the 
model's accuracy under dynamic traffic conditions. Such 
advancements would further enable the model to adjust 
predictions effectively in real-time, enhancing its utility for 
intelligent transportation systems. 
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Figure 10.  MAE of ablation experiment results 

 
Figure 11.  RMSE of ablation experiment results 
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