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Abstract 

Why are some groups of bacteria more diverse than others? We hypothesize that the metabolic energy av aila b le to a bacterial func- 
tional group (a biogeochemical group or ‘guild’) has a role in such a group’s taxonomic diversity. We tested this hypothesis by looking 
at the metacommunity diversity of functional groups in multiple biomes. We observed a positive correlation between estimates of 
a functional group’s diversity and their metabolic energy yield. Moreover, the slope of that relationship was similar in all biomes. 
These findings could imply the existence of a universal mechanism controlling the diversity of all functional groups in all biomes 
in the same way. We consider a variety of possible explanations from the classical (environmental variation) to the ‘non-Darwinian’ 
(a drift barrier effect). Unfortunately, these explanations are not mutually exclusive, and a deeper understanding of the ultimate 
cause(s) of bacterial di v ersity will r equir e us to determine if and how the key parameters in population genetics (effecti v e population 

size , mutation r ate , and selective gr adients) v ar y between functional gr oups and with envir onmental conditions: this is a difficult 
task. 

Ke yw ords: di v ersity, meta bolic, energy, bacteria 
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Introduction 

Universal patterns of diversity have played a strategically impor- 
tant role in classical ecology (Rosenzweig 1995 ), and microbial 
ecologists have sought, with vary degrees of success, to observe 
such patterns in microbial communities (Bell et al. 2005 , Horner- 
Devine et al. 2004 ). We report a ubiquitous pattern in the diversity 
of bacterial functional groups. 

A functional group (also called a guild or biogeochemical group) 
is a collection of bacteria that exploit the same redox couples. For 
example, ammonia and o xygen (ammonia-o xidizing bacteria) or 
glucose and sulphate (sulphate-reducing bacteria). We hypothe- 
size that the energetic yield of a particular redox couple, directly 
or indir ectl y, contr ols the genetic div ersity of or ganisms belonging 
to the corresponding functional group. 

Ther e ar e m ultiple r easons to suspect that ener getic yield (as 
opposed to the energy impinging on an environment) plays a role 
in differences in diversity (Curtis et al. 2008 ). Not only is energy 
one of the few concepts to have gen uine predicti ve po w er in mi- 
cr obial ecology (Br oda 1977 , Br own 2000 , Ettwig et al. 2010 , Harte 
and Newman 2014 , Harte et al. 2008 , Jetten et al. 1998 ), it is also 
held to underlie man y macr oecological patterns in classical ecol- 
ogy (Brown 2000 , Harte and Newman 2014 , Harte et al. 2008 ) and 

local diversity in hot springs (Dick and Shock 2013 ). Evolution 

is implicitly about the processing of information (Kimura 1961 ),
and there is a link between energy and information in biology 
(Wolpert 2016 , Kempes et al. 2017 ). Energy has also been hypo- 
thetically linked to the evolution of higher organisms (Lane and 

Martin 2010 ), though that reasoning has been challenged (Lynch 

and Marinov 2016 ). 
Recei v ed 2 November 2022; revised 3 April 2023; accepted 15 May 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which
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To test this hypothesis, we must estimate three things: the
etabolic ener gy av ailable to a member of a given functional

roup, the extent of bacterial diversity, and the assignment of taxa
o functional groups. 

The first, the energetic yield of a cell, can be r oughl y modelled
rom first principles (Rittmann and McCarty 2001 ). For any given
unctional group, the catabolic energy available to the cell ( �G cat )
s calculated from the free energies of the redox couples exploited.
ome of this energy is required for anabolism ( �G ana kJ/mole
iomass formed) (m uc h mor e if carbon is fixed), some for cellular
aintenance, and some dissipated ( �G dis ) during biomass synthe-

is . T he maxim um gr owth yield is a function of catabolism, an-
bolism, and dissipation (Maximum Yield = �G cat /( �G ana + �G dis )
Kleerebezem and Van Loosdrecht 2010 ) (Table 1 ). This is only
n a ppr oximation because: (1) we must assume a single electron
onor, (2) the actual energy depends on the environmental condi-
ions (pH, solute concentr ation, temper atur e, and pr essur e), and
3) we neglect maintenance energy. Ho w ever, w e posit that this ap-
roximation is ‘good enough’ to test our hypothesis because we
re looking at the differences over nearly 3 orders of magnitude
Table 1 ). T hus , though man y factors could impinge on this r ela-
ionship, they are unlikely to obscure a strong and consistent cor-
elation, should it exist. For example, differences in environmental 
onditions will impact on free energy from any given redox cou-
le. Ho w e v er, the effects ar e linear (driv en by temper atur e and the
atural log of the ratio of the reactants and products) and mod-
st when compared to the very large differences between redox
ouples . Likewise , most monomeric sugars or amino acids would
ave similar (but lo w er) free energies to one we have assumed.
 is an Open Access article distributed under the terms of the Cr eati v e 
 permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. The metabolic energies used to calculate the energetic or growth yield. 

Metabolism DG cat (kJmol −1 ) DG anab (kJmol −1 ) DG dis (kJmol −1 ) Growth yield 

AN AMO X − 363 − 43 3500 0 .10 
Acetoclastic methanogen − 31 30 432 0 .07 
Aer obic heter otr oph − 2841 − 24 236 13 .42 
Ammonia oxidizer − 283 274 3500 0 .07 
Methylotrophic methanogen − 79 − 33 651 0 .13 
Iron III reducer − 809 30 1088 0 .72 
Fermenting heter otr oph − 204 − 29 236 0 .99 
Hydrogen oxidizing 
methanogen 

− 34 − 25 1088 0 .03 

Hydrogen oxidizer − 237 − 25 1088 0 .22 
Methanotroph − 813 46 986 1 .26 
Methylotroph (methanol) − 689 − 216 986 0 .89 
Nitrite oxidizer − 79 313 3500 0 .02 
Sulphur oxidizer − 797 55 1088 0 .70 
Sulphate reducer (complete 
ox) 

− 100 26 377 0 .25 

Sulphate reducer (H 2 ) − 38 − 25 1088 0 .04 
Sulphate reducer (partial ox 
to acetate) 

− 14 26 377 0 .03 

The values obtained depend on the stoichiometries emplo y ed, which are sho wn in the supplementary methods. �G cat is 
the ener gy r eleased by the r edox couple expr essed per mole of electr on donor. �G anab is the anabolic energy required to 
generate a mole of biomass from re presentati ve substrates for a given metabolism and may endergonic or exergonic. �G dis 
r epr esents the energy dissipated in anabolism and catabolism. 
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aintenance ener gy, whic h we hav e neglected, is of the order of
–10 kJ/mole biomass and has a negligible (median < 1%) impact
n the calculated yield in cultured heterotrophs. Maintenance en-
rgy is more important in organism lo w er energy redox couples,
ut maintenance energy ‘in the wild’ is thought to 3–6 orders of
agnitude lo w er than the classical Tijhuis data. 
The second, the diversity of a bacterial community, is usually

etermined from the variation and proportional abundance of a
biquitous and conserved molecular marker, typically the gene

or the 16S RNA molecule. Bacterial diversity is often thought of
s having se v er al dimensions: the two most pr ominent being the
bsolute number and distribution (‘e v enness’) of the taxa. The
ractical and theoretical barriers to determining the absolute
iversity or the true distribution are formidable. Consequently,
icrobial ecologists use a wide range of imperfect indices and

stimators instead. We have chosen a robust estimator that is
heor eticall y suited to the hypothesis we ar e addr essing. In pr ac-
ice, div ersity measur es ar e typicall y highl y corr elated (Walters
nd Martiny 2020 ). 

The third thing we m ust infer, whic h taxa belong to which func-
ional group, is the most problematic. The basic concept is simple
ne must compare the taxa—in our case, the genus—observed in
n environment with a database [such as KEGG (Kanehisa et al.
023 )] of organisms of known function. There are a number of
ools for doing this (Wemheuer et al. 2020 ). Errors will occur, for
xample, if the databases are imperfect (which is inevitable, all
atabases are biased to w ar ds cultured organisms) or the taxon
bserved has no known function (this is also inevitable, especially
or less well-studied functions). Furthermore, some judgement is
 equir ed when using a database like KEGG to infer function. For
xample, KEGG reports that the canonical ammonia oxidizer Ni-
rosomonas europaea has genes for dissimilatory sulphate reduc-
ion. The best results are probably best obtained when the refer-
nce database is calibrated for a given environment, but this may
ot be a ppr opriate when, as in this study, multiple environments
r e consider ed. We ther efor e elected to categorize our genera ‘by
and’ using Bergey’s manual (Whitman et al. 2015 ). 
Ob viousl y, the effect of an error in any one of these three ar-
as would be to obscure the hypothesized relationship between
etabolic energy and bacterial diversity. T hus , if we are able to

iscern an ener gy-div ersity r elationship, that r elationship is pr ob-
bly a robust one. 

We tested the hypothesized ener gy-div ersity r elationship us-
ng classical methods to determine energetics, the 16S RNA gene
o e v aluate div ersity, and a simple classification method to infer
unction. 

ethods 

ssignment to functional groups 

unctional group assignments were determined initially by ref-
r ence to Ber ge y’s Man ual of Systematic Bacteriology (Whitman
t al. 2015 ), follo w ed b y m ultiple r ounds of manual cur ation. All
embers of a genus are assigned the same metabolism, and those

or which a single classification would be unrealistic have been re-
ov ed fr om the anal ysis. In all 964 gener a wer e classified, and

he classifications can be inspected on the Github page ( https:
/ github.com/beadyallen/ EnergyEvoRate ) in the ‘Intro’ file. 

Facultativ el y, aer obic fermenters ha ve , for the purposes of this
tudy, been grouped along with aerobic heterotrophs. We recog-
ize that in doing so, there is a danger of undue weighting of clas-
ifications in favour of higher ener gies, whic h would affect the bal-
nce between aerobic heterotrophs (over-representation) and fer-
enters (under-r epr esentation). Furthermor e , we ha ve elected to

xclude the lar ge pr okaryotic gr oup of or ganisms ca pable of pho-
otr ophic gr owth, on the gr ounds that the ener gy model emplo y ed
oes not r eadil y extend to photosynthesis . We en visage that ex-
ensions to this work would include more detailed classification of
 taxa’s metabolic category through reference to metabolic path-
a y databases . 

nergetics 

r ee ener gies of anabolism and catabolism wer e calculated
for pH, 298.15 K, 1 M, and 1 bar) using the methods described

https://github.com/beadyallen/EnergyEvoRate
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pr e viousl y (Gonzalez-Cabaleir o et al. 2015 ). The Python code and 

v alues used ar e online ( https:// github.com/beadyallen/ EnergyEv 
oRate under the metabolics tab). The value of �G cat is given by 
the change in free energy between reactants and products in the 
r ele v ant complete catabolic reaction, per mole of electron donor.
Aer obic heter otr ophs ar e assumed to pr ocess a complete gl ycol- 
ysis to tricarboxylic acid cycle conversion to CO 2 and H 2 O, while 
anaerobic fermenters are assumed to use glucose as the primary 
substrate in a mixed acid fermentation pathway with acetate and 

H 2 being produced in stoichiometric quantities . We ha ve also de- 
termined the yields for homolactic , heterolactic , and Stickland- 
type fermentations and found all values to be similar. While an 

alternativ e c hoice of fermentation pathway for a particular taxon 

would lead to slightly different results, we do not believe the over- 
all results of this study will be alter ed. Giv en the difficulty in re- 
liably assigning a single functional group at the genus le v el, we 
maintain our a ppr oac h is a ‘good enough’ a ppr oximation. 

Anabolism is calculated as a combination of both ‘true’ an- 
abolic free energy (per mole of new biomass), �G ana , and �G dis —
the energy dissipated to the surroundings. For the calculation of 
�G ana , the unit of biomass is taken to be CH 1.8 O 0.5 N 0.2 (Roels 1983 ).
�G dis is calculated using the Gibbs Dissipation Method (Heijnen et 
al. 1992 ). 

The maximum energetic was calculated and expressed as a 
ratio. 

Maximum energetic yield = 

�G cat 

�G ana + �G dis 

Our a ppr oac h is necessaril y simplified and idealized for two 
r easons. Firstl y, standard physiological conditions will not neces- 
saril y r epr esent the conditions in nature either now or over evolu- 
tionary time, and secondly, a single r epr esentativ e or ganic carbon 

source (glucose) was used in place of the unknown and unknow- 
able range of organic matter bacteria may consume. 

To partiall y v alidate our estimates of yield, the modelled yield 

for aerobic heterotrophs (13.1 j/j) was compared with the empiri- 
cal yields reported by DeLong et al. ( 2010 ). 

De-Long et al. ( 2010 ) recorded the maximum specific growth 

r ate in r ecipr ocal time (d 

−1 ), wet mass (g), and metabolic rate (W) 
for 33 cultured bacterial species growing on glucose. We calcu- 
lated the specific substrate uptake rate by dividing the active (as 
opposed to basal) metabolic rate of the cell Watts (Js −1 ) by the 
mass (g) and converting the time unit from seconds to da ys . On 

this basis, we could determine the energetic yield (gJ −1 ) by divid- 
ing the maximum specific growth rate by the specific substrate 
rate. De-Long made an identical calculation and used the term ef- 
ficiency of biomass production for energetic yield. To convert the 
yield from g per joule to joules per joule, we multiplied by 0.2 (to 
allow for dry weight) (Makarie v a et al. 2005 ) and assumed 22 523 
joules per gramme of dry weight (Pr oc hazk et al. 1970 ) (originally 
5383 cal/g). The yields are lognormally distributed, and the geo- 
metric mean value of 13.47 j/j of the De-Long data are very close 
to the theoretical value (13.1 j/j) for yield on glucose (Supplemen- 
tary Fig. S1). 

Data sources 

The pr ojects wer e selected fr om source biomes in the European 

Bioinformatics Institute MGnify ( https:// www.ebi.ac.uk/ metage 
nomics/), Operational Taxonomic Unit tables were downloaded 

and extracted using a Python script ( https://github.com/beadyal 
len/EnergyEvoRate ). At the time of r etrie v al, all EBI pr ojects wer e 
generated by version 2 of the EBI metagenomics portal. Local sam- 
le collections were processed through a standard QIIME pipeline 
1.9.1) with open r efer ence OTU pic king according to 97% simi-
arity with the Green Genes database (13.5) and classified against
 database derived from Berge y’s man ual, the database is to be
ound here: ( https:// github.com/beadyallen/ EnergyEvoRate ). 

The sources for the biomes were as follows. For humans:
 citizen science survey of the human microbiome (American 

ut ERP012803) (McDonald et al. 2018 ) and from malnourished
alawian c hildr en (Malawian c hildr en ERP005437) (Kau et al.

015 ). For marine: a latitudinal transect of the Atlantic Ocean
ith a depth range from 20 to 200 m (Atlantic, ERP012887) (Milici

t al. 2016 ) and Baltic Sea Microcosms from the Leibniz Institute
or Baltic Sea Research BIO A CID programme (Marine ERP013553)
Bergen et al. 2016 ). For freshwater: 386 Canadian Freshwater Bod-
es [Canada Water ERP012927 (Niño-García et al. 2016 )] and wa-
er troughs on duck farms (DuckWater ERP012631) (Schenk et al.
016 ). For w astew ater: anaerobic digesters in England and Scot-
and (Donna_sludge ERP123489) and biomass from the biological 
ta ge of se v enteen activ ated sludge waste water tr eatment plants
n the Se v ern Tr ent r egion, in the UK (Se v ern_Tr ent ERP123488)
DNA extracted using the MPBIO fast kit (MP Biomedicals, UK) and
nalysed using amplicon-sequencing of evolutionary-conserved 

6 rRNA gene fr a gments on the MiSeq Illumina platform, (Capo-
aso et al. 2011 ). For soils: irrigated soils in Mexico (Mexican Soil
RP037963 (Broszat et al. 2014 ) and from Ny Alesund in Svalbard
Lise Soils ERP123490) (DN A w as isolated from 0.5 g of soil sam-
les using the BIO101 FastDNA Spin Kit (for soil; Q-Biogene, MP
iomedicals, UK), and 1 μl was taken and amplified as described
y Quince et al. ( 2009 ), but with only 23 cycles in the PCR. The
CR amplicons (ta gs), wer e pooled and sequenced b y 454 p yrose-
uencing on a Roche GSFLX system Quince et al. ( 2009 ). Volcanic:
r om Fav ar a Gr ande in the Mediterr anean (Volcanic ERP010094)
Gagliano et al. 2016 ) and hydrothermal vents from the subsur-
ace of the Indian Ocean (Hydrothermal ERP011826) (Han et al.
018 ). The joining of a hydrothermal vent and a volcanic soil was
 mistake (see no ‘cherry picking’ below’). The Tara Ocean Survey
Tara ERP001736) (Pesant et al. 2015 ) was used as an independent
ample. 

To avoid ‘cherry picking’, an EBI 16S dataset, once chosen, could
ot be withdr awn fr om the study. Ho w e v er, an attempt to use the
reenGenes database (DeSantis et al. 2006 ) to e v aluate the phy-

ogenetic diversity has been recorded in supplementary methods 
Supplementary Figs. S3 and S4). We are not relying on this data to
upport our argument because an informal r e vie wer pointed out
he database was out of date, and we (subsequentl y) r ealized that
uc h databases ar e biased to w ar ds cultur ed or ganism so ar e not
andom samples of the diversity of all functional groups. 

i v ersity estimation 

ll data analysis was performed using R (v3.3.1), and detailed
cripts are available for download at ( https://github.com/beadyal 
en/EnergyEvoRate ). Briefly, alpha diversity (inverse Simpson’s In- 
ex) was determined using the estimate richness function in the
 egan pac ka ge. Metacomm unity div ersity ( θ ) was used as a proxy
or gamma diversity across metabolic groups and determined for 
ach metabolic group using NMGS code (Harris et al. 2017 ) ( ht
ps:// github.com/beadyallen/ EnergyEvoRate ). This method calcu- 
ates the size of the metacommunity that would be required to ex-
lain the diversity observed locally. The θ is a compound param-
ter and is (theor eticall y) equal to the number of individuals in
he metacommunity multiplied by 2 times the speciation rate. We
o not assume that communities are neutrally assembled. Other 

https://github.com/beadyallen/EnergyEvoRate
https://www.ebi.ac.uk/metagenomics/
https://github.com/beadyallen/EnergyEvoRate
https://github.com/beadyallen/EnergyEvoRate
https://github.com/beadyallen/EnergyEvoRate
https://github.com/beadyallen/EnergyEvoRate
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Table 2. The slopes (and associated statistics) for the relationship 

between metacommunity diversity and energetic yield. 

Biome Slope P (slope) Intercept P (int) 

F reshw ater 0 .75 2.19E-04 3 .16 1.98E-08 
Human 1 .06 9.24E-03 2 .79 5.35E-04 
Marine 0 .61 2.88E-04 3 .14 1.50E-11 
Soil 1 .01 2.40E-06 2 .54 7.68E-09 
Volcanic 0 .42 8.86E-02 2 .83 1.67E-04 
WWT 0 .94 4.28E-04 3 .67 9.65E-08 

The median value for the significant slopes is 0.95. 
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iv ersity measur es can be c hosen using this softwar e and giv e
ompar able r esults . T he complete GreenGenes 13.5 annotated
TU tree was pruned using functions from the ape package to in-
lude onl y gener a r ele v ant to our anal ysis , lea ving 189 743 tips .
hylogenetic diversity was determined as the sum of br anc h
engths within each metabolic group. The data for phylogenetic
istance (in the GreenGenes dataset), yield, and catabolism were
ubject to Bo x-Co x tr ansformations, and a natur al log tr ansforma-
ion was selected. The energetic yield data used with the Green-
enes data was slightly better supported by a X 

−0.5 transforma-
ion, but the natural log transformation was preferred for simplic-
ty and clarity and still gav e normall y distributed r esiduals after
 egr ession a gainst phylogenetic distance. 

esults 

 he catabolic , anabolic , and dissipated ener gies wer e determined
or eac h r edox couple (under standard physiological conditions)
nd used to calculate the energetic yield (Table 1 ). Catabolic en-
rgy accounts for most of the differences in energetic yield be-
ween functional groups . T he model is necessarily a generaliza-
ion that neglects many important metabolic details . Moreo ver,
he r elativ e importance of these other factors will increase as the
ner gy av ailable to the cell decr eases. But the comparison with
he DeLong data (S1) sets suggests we have correctly estimated
he median yields and that the other factors are incorporated into
he normally distributed noise. 

The diversity of individual metabolic groups in each biome was
alculated using both the Inverse Simpson’s diversity index and
etacomm unity div ersity ( θ ), with r ankings of div ersity acr oss
etabolic groups being consistent across biome types (Friedman’s

est P = 9.3 × 10 −5 ). 
We initially examined the relationship between the estimated

nergetic yield and metacommunity diversity in w astew ater
reatment plants (Fig. 1 ). Intrigued by the relationship we found,
e sought to compare this finding with other biomes to see if it
as observed more widely; it was. 
There was a good relationship (Fig. 2 ) between the estimated

nergetic yield and metacommunity diversity in all biomes (slope
.73, P < 0.001; adjusted R 

2 = 40%), with residuals being normally
istributed. 

The ener gy-div ersity r elationship was significant for all the in-
ividual biomes with the exception of the volcanic dataset, where
e had accidentally mixed a deep-sea hydrothermal vent with a

oil (Table 2 ). The range of slopes was a r elativ el y narr ow ( ∼0.6–1).
Analogous results can be found by comparing the different di-

 ersity measur es with the catabolic ener gy ( �G cat ) (Supplemen-
ary Fig. S2). Mor eov er, though metacomm unity div ersity was c ho-
en as the most a ppr opriate measur e of diversity, other measures
f ‘richness’ can be examined using the software. 
We considered that some, or all, of the observed energy-
iv ersity r elationship could pr osaicall y be attributed to the
reater metabolic versatility of functional groups guilds with a
ange of complex substrates (aerobic heterotrophs, fermenting or-
anisms , sulphate reducers , and iron reducers). 

We ther efor e anal ysed the r elationship between ener gy and
iversity, examining those functional groups purported to have
imple (typically a single) substr ates. A ne w dataset was cho-
en (the EBI-Tara Oceans) (Sunagawa et al. 2015 ). The relation-
hip between energetic yield and the metacommunity diversity
f functional groups with simple substrates was not statistically
ignificant (Supplementary Fig. 3A). Ho w e v er, a cr edible ( P = 0.02,
 

2 = 76%) relationship was found between catabolic energy and
etacomm unity div ersity (Fig. 3 B). 
Methylotr ophs wer e an ob vious outlier. Our anal ysis distin-

uishes between the true methanotr ophs (gener a that, as a first
te p, o xidize methane to methanol) and methylotrophs (those
eriving ener gy fr om extr acellular methyl compounds suc h as
ethanol). It could be argued that combining into a single guild
akes the most sense. Ho w e v er, since post - hoc r emov al of methy-

otr ophs fr om the anal ysis could be construed as ‘ P -hac king’, we
ave elected to retain a separate methylotroph classification. 

iscussion 

e conclude that there are universal and systematic differences
n the diversity of functional groups (on the basis of the consistent
 anking in div ersity) and that these differ ences ar e dir ectl y or indi-
 ectl y linked to the metabolic energy of the cell (on the basis of the
bserv ed corr elations between ener getic yield and diversity). This
ner gy-div ersity r elationship is, potentiall y at least, analogous to
he patterns in diversity and space seen in classical ecology. Such
biquitous patterns are imbued with significance because they
ell ‘us that diversity is a predictable variable susceptible to sci-
ntific analysis’ (Rosenzweig 1995 ). 

We have considered the alternative interpretation: that the pu-
ativ e ener gy r elationship was simpl y attributable to the ele v ated
iversity of the heterotrophs and variation in the diversity of the

ow-energy taxa is just noise . T he apparent persistence of our pro-
osed pattern in a separate ‘single resource’ marine data set (from
he TARA study) suggests there is an energy pattern in the non-
eter otr ophic taxa. Finall y, we attac h particular significance to the
epeatability of the overall pattern across biomes and data sets
nd the r elativ e consistency of the ener gy-div ersity slopes within
iomes. 

We note that this pattern was discerned e v en though our
ethodology had many imperfections. Our study was potentially

imited by: the number of functional groups for which we can pro-
ose a redox couple, the approximations of free energies, and dif-
culties in the attribution of function and the estimation diversity

Pielou 1977 ) (Suzuki and Giovannoni 1996 ). We hope that subse-
uent studies, with impr ov ed methodologies, could yield an e v en
etter picture of the relationship between metabolic energy and
iversity. 

Ho w e v er, the true benefit of a finding a consistent pattern in na-
ure comes not from identifying the pattern, but from the search
or, and discovery of the underlying mechanism or mechanisms.
onsequently, it would seem sensible to ask what mechanisms
ight underlie the a ppar entl y ubiquitous r elationship between
etabolic energy and bacterial diversity. 
Classical ecological theory suggests that environmental vari-

tion plays a central role in the generation (Levins 1968 ) and
aintenance of diversity (Tilman 1982 ). Microbial ecologists typi-

ally concur (Cohan 2017 ). If environmental variation explains our
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Figur e 1. T he relationship between the estimated metacommunity diversity and the energetic yield in w astew ater treatment plants in the United 
Kingdom. P -value of slope = 0.0004, R 2 = 0.443. 

Figur e 2. T he relationship between the estimated metacommunity diversity in all biomes and the energetic yield. The ov er all slope is significant 
(slope = 0.73, P slope < 0.001; adjusted R 2 = 40%). Values for individual biomes are given in Table 2 . 
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Figur e 3. T he relationship between the meta-community diversity of functional groups in the EBI-Tara dataset thought to have simple substrates and: 
(A) energetic yield (not significant) (B) catabolic energy a ( P = 0.02, R 2 = 79%). 
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findings, then there is an energetic limit on the amount of envi- 
r onmental v ariation and thus the number of ecotypes or niches.
This is easy to conceive for functional groups using organic 
matter as an electron donor (aerobic heterotrophs, fermenter, 
ir on-r educing bacteria, and sulphate-r educing bacteria), wher e 
the breadth of viable organic electron donors and end products 
(Gr oßk opf and So y er 2016 ), and thus the range of ecotypes, could 

be dictated by the redox value of the electron acceptor. For exam- 
ple, some substr ates ar e onl y ener geticall y viable in the presence 
of oxygen. For bacteria with single substrates the energy could 

still affect the range of ecotypes by placing constraints on the 
r ange of ener geticall y demanding envir onments that ar e viable 
(Oren 2011 ). 

If variation did scale with ener gy, ther e could be a signal in the 
m utation r ates of the bacteria. A number of theor eticians (using a 
variety of simplifying assumptions) have proposed that the rate of 
mutation will come into balance with the rate of selection or en- 
vir onmental v ariation (Dawson 1998 , Gillespie 1981 , Kim ur a 1967 ,
Leigh 1970 , Orr 2000 , Sturte v ant 1937 ). Though there is only cir- 
cumstantial evidence for this proposal (Drake et al. 1998 ). But if 
the theories were correct and environmental variation did under- 
lie our observations, we would expect mutation rates to scale pos- 
itiv el y with metabolic energy. 

We think it is instructive to at least consider other explanations.
Not least because attempts to experimentall y demonstr ate a rela- 
tionship between bacterial diversity and envir onmental v ariation 

hav e pr e viousl y failed in both comm unities (Pholc han et al. 2010 ) 
and experimental bacterial populations (Jasmin and Kassen 2007 ).

A very simple explanation is that the number of generations 
contr ols div ersity, and gener ation times could be affected by 
metabolic energy. Ho w ever, the actual number of generations will 
depend on the amount of redox donor and acceptor available (all 
of which can vary between biomes) and the age of the lineage 
(some of the oldest lineages are the least diverse). More generally,
generation time does not appear to be the universal and consis- 
tent mec hanism r equir ed to explain our observ ations (Gibson and 

Eyre-Walker 2019 ). 
Others hav e pr e viousl y conjectur ed that m utational load 

(which has an absolute as opposed to relative effect on growth 

rate) would be felt more acutely by bacteria with less available 
energy (Curtis et al. 2008 ). Ho w ever, in classical population genet- 
ics, the mutational load is dictated by the rate of mutation and 

not the deleterious effect of the mutations per se (Haldane 1937 ).
Though dynamic models of the evolution of mutation have found 

that the deleterious effect of a mutation can influence mutation 

rate, the effect is very modest and only apparent at certain param- 
eter v alues (Andr e and Godelle 2006 , Johnson 1999 ). In any case,
div ersity r eflects the fixation of m utations, not simpl y the r ate at 
which they are generated. 

The small but unavoidable energetic cost of the loss of entropy 
that information stor a ge entails could be responsible for the dif- 
ferences in diversity we have observed. In principle, the costs of 
entropy do place an absolute upper limit on the rate of informa- 
tion processing in a cell and a microbiome (Wolpert 2016 , Kempes 
et al. 2017 ). In practice, the costs—though not well understood—
appear to be very small indeed, and so we, for the time being, dis- 
count this mechanism. 

A simple and testable explanation is also offered by the drift 
barrier: only alleles with a selection coefficient greater than the 
po w er of drift ( ∼1/N e ) where N e is the effective population size) 
are subject to selection and thus fixation (L ynch 2012 , L ynch et 
al. 2016 , Sung et al. 2012 ). If the metabolic energy affected either 
the effective population size or the r elativ e impact of selection 
n fitness, this could lead to a relationship between diversity and
nergy. 

It is difficult to distinguish between these explanations . T he
r oposed mec hanisms ar e not m utuall y exclusiv e . T he generation
f bacterial diversity is perhaps subject to a hierarchy of controls.
or example , en vir onmental v ariation ( ∼nic hes) but could be im-
ortant in generating diversity, but within a limit set by the drift
arrier. To gain a deeper understanding, we need to determine
ow the fundamentals of population genetics (effective popula- 
ion size, mutation rates, and selection coefficients) vary between 

unctional groups and with environmental conditions. Determin- 
ng these fundamentals will not be easy, but the quantitative de-
cription of determinants of, and limits to, natural selection in
icr oor ganisms is a w orthwhile endeav our (Gould and Lewontin

979 ). 
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