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Abstract

Why are some groups of bacteria more diverse than others? We hypothesize that the metabolic energy available to a bacterial func-
tional group (a biogeochemical group or ‘guild’) has a role in such a group’s taxonomic diversity. We tested this hypothesis by looking
at the metacommunity diversity of functional groups in multiple biomes. We observed a positive correlation between estimates of
a functional group’s diversity and their metabolic energy yield. Moreover, the slope of that relationship was similar in all biomes.
These findings could imply the existence of a universal mechanism controlling the diversity of all functional groups in all biomes
in the same way. We consider a variety of possible explanations from the classical (environmental variation) to the ‘non-Darwinian’
(a drift barrier effect). Unfortunately, these explanations are not mutually exclusive, and a deeper understanding of the ultimate
cause(s) of bacterial diversity will require us to determine if and how the key parameters in population genetics (effective population
size, mutation rate, and selective gradients) vary between functional groups and with environmental conditions: this is a difficult

task.
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Introduction

Universal patterns of diversity have played a strategically impor-
tant role in classical ecology (Rosenzweig 1995), and microbial
ecologists have sought, with vary degrees of success, to observe
such patterns in microbial communities (Bell et al. 2005, Horner-
Devine et al. 2004). We report a ubiquitous pattern in the diversity
of bacterial functional groups.

A functional group (also called a guild or biogeochemical group)
is a collection of bacteria that exploit the same redox couples. For
example, ammonia and oxygen (ammonia-oxidizing bacteria) or
glucose and sulphate (sulphate-reducing bacteria). We hypothe-
size that the energetic yield of a particular redox couple, directly
or indirectly, controls the genetic diversity of organisms belonging
to the corresponding functional group.

There are multiple reasons to suspect that energetic yield (as
opposed to the energy impinging on an environment) plays a role
in differences in diversity (Curtis et al. 2008). Not only is energy
one of the few concepts to have genuine predictive power in mi-
crobial ecology (Broda 1977, Brown 2000, Ettwig et al. 2010, Harte
and Newman 2014, Harte et al. 2008, Jetten et al. 1998), it is also
held to underlie many macroecological patterns in classical ecol-
ogy (Brown 2000, Harte and Newman 2014, Harte et al. 2008) and
local diversity in hot springs (Dick and Shock 2013). Evolution
is implicitly about the processing of information (Kimura 1961),
and there is a link between energy and information in biology
(Wolpert 2016, Kempes et al. 2017). Energy has also been hypo-
thetically linked to the evolution of higher organisms (Lane and
Martin 2010), though that reasoning has been challenged (Lynch
and Marinov 2016).

To test this hypothesis, we must estimate three things: the
metabolic energy available to a member of a given functional
group, the extent of bacterial diversity, and the assignment of taxa
to functional groups.

The first, the energetic yield of a cell, can be roughly modelled
from first principles (Rittmann and McCarty 2001). For any given
functional group, the catabolic energy available to the cell (AGcat)
is calculated from the free energies of the redox couples exploited.
Some of this energy is required for anabolism (AGana kJ/mole
biomass formed) (much more if carbon is fixed), some for cellular
maintenance, and some dissipated (AGg;s) during biomass synthe-
sis. The maximum growth yield is a function of catabolism, an-
abolism, and dissipation (Maximum Yield = AGeat/(AGana+ AGys)
(Kleerebezem and Van Loosdrecht 2010) (Table 1). This is only
an approximation because: (1) we must assume a single electron
donor, (2) the actual energy depends on the environmental condi-
tions (pH, solute concentration, temperature, and pressure), and
(3) we neglect maintenance energy. However, we posit that this ap-
proximation is ‘good enough’ to test our hypothesis because we
are looking at the differences over nearly 3 orders of magnitude
(Table 1). Thus, though many factors could impinge on this rela-
tionship, they are unlikely to obscure a strong and consistent cor-
relation, should it exist. For example, differences in environmental
conditions will impact on free energy from any given redox cou-
ple. However, the effects are linear (driven by temperature and the
natural log of the ratio of the reactants and products) and mod-
est when compared to the very large differences between redox
couples. Likewise, most monomeric sugars or amino acids would
have similar (but lower) free energies to one we have assumed.
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Table 1. The metabolic energies used to calculate the energetic or growth yield.

Metabolism DGcat (kJmol~1) DGanap (kJmol-1) DGy;s (kJmol-1) Growth yield
ANAMOX —363 —43 3500 0.10
Acetoclastic methanogen -31 30 432 0.07
Aerobic heterotroph —2841 —24 236 13.42
Ammonia oxidizer —283 274 3500 0.07
Methylotrophic methanogen -79 -33 651 0.13
Iron I1I reducer — 809 30 1088 0.72
Fermenting heterotroph —204 -29 236 0.99
Hydrogen oxidizing —34 -25 1088 0.03
methanogen

Hydrogen oxidizer —237 —25 1088 0.22
Methanotroph —813 46 986 1.26
Methylotroph (methanol) —689 —216 986 0.89
Nitrite oxidizer -79 313 3500 0.02
Sulphur oxidizer -797 55 1088 0.70
Sulphate reducer (complete —100 26 377 0.25
0x)

Sulphate reducer (Hj) —38 —25 1088 0.04
Sulphate reducer (partial ox —14 26 377 0.03

to acetate)

The values obtained depend on the stoichiometries employed, which are shown in the supplementary methods. AGcy is
the energy released by the redox couple expressed per mole of electron donor. AG,y,p, is the anabolic energy required to
generate a mole of biomass from representative substrates for a given metabolism and may endergonic or exergonic. AGgis
represents the energy dissipated in anabolism and catabolism.

Maintenance energy, which we have neglected, is of the order of
1-10kJ/mole biomass and has a negligible (median <1%) impact
on the calculated yield in cultured heterotrophs. Maintenance en-
ergy is more important in organism lower energy redox couples,
but maintenance energy ‘in the wild’ is thought to 3-6 orders of
magnitude lower than the classical Tijhuis data.

The second, the diversity of a bacterial community, is usually
determined from the variation and proportional abundance of a
ubiquitous and conserved molecular marker, typically the gene
for the 16S RNA molecule. Bacterial diversity is often thought of
as having several dimensions: the two most prominent being the
absolute number and distribution (‘evenness’) of the taxa. The
practical and theoretical barriers to determining the absolute
diversity or the true distribution are formidable. Consequently,
microbial ecologists use a wide range of imperfect indices and
estimators instead. We have chosen a robust estimator that is
theoretically suited to the hypothesis we are addressing. In prac-
tice, diversity measures are typically highly correlated (Walters
and Martiny 2020).

The third thing we must infer, which taxa belong to which func-
tional group, is the most problematic. The basic concept is simple
one must compare the taxa—in our case, the genus—observed in
an environment with a database [such as KEGG (Kanehisa et al.
2023)] of organisms of known function. There are a number of
tools for doing this (Wemheuer et al. 2020). Errors will occur, for
example, if the databases are imperfect (which is inevitable, all
databases are biased towards cultured organisms) or the taxon
observed has no known function (this is also inevitable, especially
for less well-studied functions). Furthermore, some judgement is
required when using a database like KEGG to infer function. For
example, KEGG reports that the canonical ammonia oxidizer Ni-
trosomonas europaea has genes for dissimilatory sulphate reduc-
tion. The best results are probably best obtained when the refer-
ence database is calibrated for a given environment, but this may
not be appropriate when, as in this study, multiple environments
are considered. We therefore elected to categorize our genera ‘by
hand’ using Bergey’'s manual (Whitman et al. 2015).

Obviously, the effect of an error in any one of these three ar-
eas would be to obscure the hypothesized relationship between
metabolic energy and bacterial diversity. Thus, if we are able to
discern an energy-diversity relationship, that relationship is prob-
ably a robust one.

We tested the hypothesized energy-diversity relationship us-
ing classical methods to determine energetics, the 16S RNA gene
to evaluate diversity, and a simple classification method to infer
function.

Methods

Assignment to functional groups
Functional group assignments were determined initially by ref-
erence to Bergey’s Manual of Systematic Bacteriology (Whitman
et al. 2015), followed by multiple rounds of manual curation. All
members of a genus are assigned the same metabolism, and those
for which a single classification would be unrealistic have been re-
moved from the analysis. In all 964 genera were classified, and
the classifications can be inspected on the Github page (https:
//github.com/beadyallen/EnergyEvoRate) in the ‘Intro’ file.
Facultatively, aerobic fermenters have, for the purposes of this
study, been grouped along with aerobic heterotrophs. We recog-
nize that in doing so, there is a danger of undue weighting of clas-
sifications in favour of higher energies, which would affect the bal-
ance between aerobic heterotrophs (over-representation) and fer-
menters (under-representation). Furthermore, we have elected to
exclude the large prokaryotic group of organisms capable of pho-
totrophic growth, on the grounds that the energy model employed
does not readily extend to photosynthesis. We envisage that ex-
tensions to this work would include more detailed classification of
a taxa's metabolic category through reference to metabolic path-
way databases.

Energetics

Free energies of anabolism and catabolism were calculated
(for pH, 298.15K, 1M, and 1 bar) using the methods described
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previously (Gonzalez-Cabaleiro et al. 2015). The Python code and
values used are online (https://github.com/beadyallen/EnergyEv
oRate under the metabolics tab). The value of AGe,: is given by
the change in free energy between reactants and products in the
relevant complete catabolic reaction, per mole of electron donor.
Aerobic heterotrophs are assumed to process a complete glycol-
ysis to tricarboxylic acid cycle conversion to CO, and H,O, while
anaerobic fermenters are assumed to use glucose as the primary
substrate in a mixed acid fermentation pathway with acetate and
H, being produced in stoichiometric quantities. We have also de-
termined the yields for homolactic, heterolactic, and Stickland-
type fermentations and found all values to be similar. While an
alternative choice of fermentation pathway for a particular taxon
would lead to slightly different results, we do not believe the over-
all results of this study will be altered. Given the difficulty in re-
liably assigning a single functional group at the genus level, we
maintain our approach is a ‘good enough’ approximation.

Anabolism is calculated as a combination of both ‘true’ an-
abolic free energy (per mole of new biomass), AGana, and AGgs—
the energy dissipated to the surroundings. For the calculation of
AGana, the unit of biomass is taken to be CH; O sNp» (Roels 1983).
AGyjs is calculated using the Gibbs Dissipation Method (Heijnen et
al. 1992).

The maximum energetic was calculated and expressed as a
ratio.

. . AG
Maximum energetic yield = ————<
AGana + AGg;s

Our approach is necessarily simplified and idealized for two
reasons. Firstly, standard physiological conditions will not neces-
sarily represent the conditions in nature either now or over evolu-
tionary time, and secondly, a single representative organic carbon
source (glucose) was used in place of the unknown and unknow-
able range of organic matter bacteria may consume.

To partially validate our estimates of yield, the modelled yield
for aerobic heterotrophs (13.1 j/j) was compared with the empiri-
cal yields reported by DeLong et al. (2010).

De-Long et al. (2010) recorded the maximum specific growth
rate in reciprocal time (d~'), wet mass (g), and metabolic rate (W)
for 33 cultured bacterial species growing on glucose. We calcu-
lated the specific substrate uptake rate by dividing the active (as
opposed to basal) metabolic rate of the cell Watts (Js™*) by the
mass (g) and converting the time unit from seconds to days. On
this basis, we could determine the energetic yield (gJ=*) by divid-
ing the maximum specific growth rate by the specific substrate
rate. De-Long made an identical calculation and used the term ef-
ficiency of biomass production for energetic yield. To convert the
yield from g per joule to joules per joule, we multiplied by 0.2 (to
allow for dry weight) (Makarieva et al. 2005) and assumed 22 523
joules per gramme of dry weight (Prochazk et al. 1970) (originally
5383 cal/g). The yields are lognormally distributed, and the geo-
metric mean value of 13.47 j/j of the De-Long data are very close
to the theoretical value (13.1j/j) for yield on glucose (Supplemen-
tary Fig. S1).

Data sources

The projects were selected from source biomes in the European
Bioinformatics Institute MGnify (https://www.ebi.ac.uk/metage
nomics/), Operational Taxonomic Unit tables were downloaded
and extracted using a Python script (https://github.com/beadyal
len/EnergyEvoRate). At the time of retrieval, all EBI projects were
generated by version 2 of the EBI metagenomics portal. Local sam-
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ple collections were processed through a standard QIIME pipeline
(1.9.1) with open reference OTU picking according to 97% simi-
larity with the Green Genes database (13.5) and classified against
a database derived from Bergey’s manual, the database is to be
found here: (https://github.com/beadyallen/EnergyEvoRate).

The sources for the biomes were as follows. For humans:
a citizen science survey of the human microbiome (American
gut ERP012803) (McDonald et al. 2018) and from malnourished
Malawian children (Malawian children ERP005437) (Kau et al.
2015). For marine: a latitudinal transect of the Atlantic Ocean
with a depth range from 20 to 200 m (Atlantic, ERP012887) (Milici
et al. 2016) and Baltic Sea Microcosms from the Leibniz Institute
for Baltic Sea Research BIOACID programme (Marine ERP013553)
(Bergen et al. 2016). For freshwater: 386 Canadian Freshwater Bod-
ies [Canada Water ERP012927 (Nifio-Garcia et al. 2016)] and wa-
ter troughs on duck farms (DuckWater ERP012631) (Schenk et al.
2016). For wastewater: anaerobic digesters in England and Scot-
land (Donna_sludge ERP123489) and biomass from the biological
stage of seventeen activated sludge wastewater treatment plants
in the Severn Trent region, in the UK (Severn_Trent ERP123488)
(DNA extracted using the MPBIO fast kit (MP Biomedicals, UK) and
analysed using amplicon-sequencing of evolutionary-conserved
16 TRNA gene fragments on the MiSeq [llumina platform, (Capo-
raso et al. 2011). For soils: irrigated soils in Mexico (Mexican Soil
SRP037963 (Broszat et al. 2014) and from Ny Alesund in Svalbard
(Lise Soils ERP123490) (DNA was isolated from 0.5g of soil sam-
ples using the BIO101 FastDNA Spin Kit (for soil; Q-Biogene, MP
Biomedicals, UK), and 1 ul was taken and amplified as described
by Quince et al. (2009), but with only 23 cycles in the PCR. The
PCR amplicons (tags), were pooled and sequenced by 454 pyrose-
quencing on a Roche GSFLX system Quince et al. (2009). Volcanic:
from Favara Grande in the Mediterranean (Volcanic ERP010094)
(Gagliano et al. 2016) and hydrothermal vents from the subsur-
face of the Indian Ocean (Hydrothermal ERP011826) (Han et al.
2018). The joining of a hydrothermal vent and a volcanic soil was
a mistake (see no ‘cherry picking’ below’). The Tara Ocean Survey
(Tara ERP001736) (Pesant et al. 2015) was used as an independent
sample.

To avoid ‘cherry picking’, an EBI 16S dataset, once chosen, could
not be withdrawn from the study. However, an attempt to use the
GreenGenes database (DeSantis et al. 2006) to evaluate the phy-
logenetic diversity has been recorded in supplementary methods
(Supplementary Figs. S3 and S4). We are not relying on this data to
support our argument because an informal reviewer pointed out
the database was out of date, and we (subsequently) realized that
such databases are biased towards cultured organism so are not
random samples of the diversity of all functional groups.

Diversity estimation

All data analysis was performed using R (v3.3.1), and detailed
scripts are available for download at (https://github.com/beadyal
len/EnergyEvoRate). Briefly, alpha diversity (inverse Simpson’s In-
dex) was determined using the estimate richness function in the
vegan package. Metacommunity diversity (¢) was used as a proxy
for gamma diversity across metabolic groups and determined for
each metabolic group using NMGS code (Harris et al. 2017) (ht
tps://github.com/beadyallen/EnergyEvoRate). This method calcu-
lates the size of the metacommunity that would be required to ex-
plain the diversity observed locally. The ¢ is a compound param-
eter and is (theoretically) equal to the number of individuals in
the metacommunity multiplied by 2 times the speciation rate. We
do not assume that communities are neutrally assembled. Other
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Table 2. The slopes (and associated statistics) for the relationship
between metacommunity diversity and energetic yield.

Biome Slope Pisiope) Intercept Piiny

Freshwater 0.75 2.19E-04 3.16 1.98E-08
Human 1.06 9.24E-03 2.79 5.35E-04
Marine 0.61 2.88E-04 3.14 1.50E-11
Soil 1.01 2.40E-06 2.54 7.68E-09
Volcanic 0.42 8.86E-02 2.83 1.67E-04
WWT 0.94 4.28E-04 3.67 9.65E-08

The median value for the significant slopes is 0.95.

diversity measures can be chosen using this software and give
comparable results. The complete GreenGenes 13.5 annotated
OTU tree was pruned using functions from the ape package to in-
clude only genera relevant to our analysis, leaving 189743 tips.
Phylogenetic diversity was determined as the sum of branch
lengths within each metabolic group. The data for phylogenetic
distance (in the GreenGenes dataset), yield, and catabolism were
subject to Box-Cox transformations, and a natural log transforma-
tion was selected. The energetic yield data used with the Green-
Genes data was slightly better supported by a X~%° transforma-
tion, but the natural log transformation was preferred for simplic-
ity and clarity and still gave normally distributed residuals after
regression against phylogenetic distance.

Results

The catabolic, anabolic, and dissipated energies were determined
for each redox couple (under standard physiological conditions)
and used to calculate the energetic yield (Table 1). Catabolic en-
ergy accounts for most of the differences in energetic yield be-
tween functional groups. The model is necessarily a generaliza-
tion that neglects many important metabolic details. Moreover,
the relative importance of these other factors will increase as the
energy available to the cell decreases. But the comparison with
the Delong data (S1) sets suggests we have correctly estimated
the median yields and that the other factors are incorporated into
the normally distributed noise.

The diversity of individual metabolic groups in each biome was
calculated using both the Inverse Simpson’s diversity index and
metacommunity diversity (¢), with rankings of diversity across
metabolic groups being consistent across biome types (Friedman’s
test P=9.3 x 107°).

We initially examined the relationship between the estimated
energetic yield and metacommunity diversity in wastewater
treatment plants (Fig. 1). Intrigued by the relationship we found,
we sought to compare this finding with other biomes to see if it
was observed more widely; it was.

There was a good relationship (Fig. 2) between the estimated
energetic yield and metacommunity diversity in all biomes (slope
0.73,P < 0.001; adjusted R? = 40%), with residuals being normally
distributed.

The energy-diversity relationship was significant for all the in-
dividual biomes with the exception of the volcanic dataset, where
we had accidentally mixed a deep-sea hydrothermal vent with a
soil (Table 2). The range of slopes was a relatively narrow (~0.6-1).

Analogous results can be found by comparing the different di-
versity measures with the catabolic energy (AGeat) (Supplemen-
tary Fig. S2). Moreover, though metacommunity diversity was cho-
sen as the most appropriate measure of diversity, other measures
of ‘richness’ can be examined using the software.

We considered that some, or all, of the observed energy-
diversity relationship could prosaically be attributed to the
greater metabolic versatility of functional groups guilds with a
range of complex substrates (aerobic heterotrophs, fermenting or-
ganisms, sulphate reducers, and iron reducers).

We therefore analysed the relationship between energy and
diversity, examining those functional groups purported to have
simple (typically a single) substrates. A new dataset was cho-
sen (the EBI-Tara Oceans) (Sunagawa et al. 2015). The relation-
ship between energetic yield and the metacommunity diversity
of functional groups with simple substrates was not statistically
significant (Supplementary Fig. 3A). However, a credible (P = 0.02,
R? = 76%) relationship was found between catabolic energy and
metacommunity diversity (Fig. 3B).

Methylotrophs were an obvious outlier. Our analysis distin-
guishes between the true methanotrophs (genera that, as a first
step, oxidize methane to methanol) and methylotrophs (those
deriving energy from extracellular methyl compounds such as
methanol). It could be argued that combining into a single guild
makes the most sense. However, since post-hoc removal of methy-
lotrophs from the analysis could be construed as ‘P-hacking’, we
have elected to retain a separate methylotroph classification.

Discussion

We conclude that there are universal and systematic differences
in the diversity of functional groups (on the basis of the consistent
rankingin diversity) and that these differences are directly or indi-
rectly linked to the metabolic energy of the cell (on the basis of the
observed correlations between energetic yield and diversity). This
energy-diversity relationship is, potentially at least, analogous to
the patterns in diversity and space seen in classical ecology. Such
ubiquitous patterns are imbued with significance because they
tell ‘us that diversity is a predictable variable susceptible to sci-
entific analysis’ (Rosenzweig 1995).

We have considered the alternative interpretation: that the pu-
tative energy relationship was simply attributable to the elevated
diversity of the heterotrophs and variation in the diversity of the
low-energy taxa is just noise. The apparent persistence of our pro-
posed pattern in a separate ‘single resource’ marine data set (from
the TARA study) suggests there is an energy pattern in the non-
heterotrophic taxa. Finally, we attach particular significance to the
repeatability of the overall pattern across biomes and data sets
and the relative consistency of the energy-diversity slopes within
biomes.

We note that this pattern was discerned even though our
methodology had many imperfections. Our study was potentially
limited by: the number of functional groups for which we can pro-
pose a redox couple, the approximations of free energies, and dif-
ficulties in the attribution of function and the estimation diversity
(Pielou 1977) (Suzuki and Giovannoni 1996). We hope that subse-
quent studies, with improved methodologies, could yield an even
better picture of the relationship between metabolic energy and
diversity.

However, the true benefit of a finding a consistent patternin na-
ture comes not from identifying the pattern, but from the search
for, and discovery of the underlying mechanism or mechanisms.
Consequently, it would seem sensible to ask what mechanisms
might underlie the apparently ubiquitous relationship between
metabolic energy and bacterial diversity.

Classical ecological theory suggests that environmental vari-
ation plays a central role in the generation (Levins 1968) and
maintenance of diversity (Tilman 1982). Microbial ecologists typi-
cally concur (Cohan 2017). If environmental variation explains our
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Figure 1. The relationship between the estimated metacommunity diversity and the energetic yield in wastewater treatment plants in the United
Kingdom. P-value of slope = 0.0004, R? = 0.443.
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Figure 3. The relationship between the meta-community diversity of functional groups in the EBI-Tara dataset thought to have simple substrates and:
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findings, then there is an energetic limit on the amount of envi-
ronmental variation and thus the number of ecotypes or niches.
This is easy to conceive for functional groups using organic
matter as an electron donor (aerobic heterotrophs, fermenter,
iron-reducing bacteria, and sulphate-reducing bacteria), where
the breadth of viable organic electron donors and end products
(GrofZkopf and Soyer 2016), and thus the range of ecotypes, could
be dictated by the redox value of the electron acceptor. For exam-
ple, some substrates are only energetically viable in the presence
of oxygen. For bacteria with single substrates the energy could
still affect the range of ecotypes by placing constraints on the
range of energetically demanding environments that are viable
(Oren 2011).

If variation did scale with energy, there could be a signal in the
mutation rates of the bacteria. A number of theoreticians (using a
variety of simplifying assumptions) have proposed that the rate of
mutation will come into balance with the rate of selection or en-
vironmental variation (Dawson 1998, Gillespie 1981, Kimura 1967,
Leigh 1970, Orr 2000, Sturtevant 1937). Though there is only cir-
cumstantial evidence for this proposal (Drake et al. 1998). But if
the theories were correct and environmental variation did under-
lie our observations, we would expect mutation rates to scale pos-
itively with metabolic energy.

We think itisinstructive to at least consider other explanations.
Not least because attempts to experimentally demonstrate a rela-
tionship between bacterial diversity and environmental variation
have previously failed in both communities (Pholchan et al. 2010)
and experimental bacterial populations (Jasmin and Kassen 2007).

A very simple explanation is that the number of generations
controls diversity, and generation times could be affected by
metabolic energy. However, the actual number of generations will
depend on the amount of redox donor and acceptor available (all
of which can vary between biomes) and the age of the lineage
(some of the oldest lineages are the least diverse). More generally,
generation time does not appear to be the universal and consis-
tent mechanism required to explain our observations (Gibson and
Eyre-Walker 2019).

Others have previously conjectured that mutational load
(which has an absolute as opposed to relative effect on growth
rate) would be felt more acutely by bacteria with less available
energy (Curtis et al. 2008). However, in classical population genet-
ics, the mutational load is dictated by the rate of mutation and
not the deleterious effect of the mutations per se (Haldane 1937).
Though dynamic models of the evolution of mutation have found
that the deleterious effect of a mutation can influence mutation
rate, the effect is very modest and only apparent at certain param-
eter values (Andre and Godelle 2006, Johnson 1999). In any case,
diversity reflects the fixation of mutations, not simply the rate at
which they are generated.

The small but unavoidable energetic cost of the loss of entropy
that information storage entails could be responsible for the dif-
ferences in diversity we have observed. In principle, the costs of
entropy do place an absolute upper limit on the rate of informa-
tion processing in a cell and a microbiome (Wolpert 2016, Kempes
et al. 2017). In practice, the costs—though not well understood—
appear to be very small indeed, and so we, for the time being, dis-
count this mechanism.

A simple and testable explanation is also offered by the drift
barrier: only alleles with a selection coefficient greater than the
power of drift (~1/N,) where N, is the effective population size)
are subject to selection and thus fixation (Lynch 2012, Lynch et
al. 2016, Sung et al. 2012). If the metabolic energy affected either
the effective population size or the relative impact of selection
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on fitness, this could lead to a relationship between diversity and
energy.

It is difficult to distinguish between these explanations. The
proposed mechanisms are not mutually exclusive. The generation
of bacterial diversity is perhaps subject to a hierarchy of controls.
For example, environmental variation (~niches) but could be im-
portant in generating diversity, but within a limit set by the drift
barrier. To gain a deeper understanding, we need to determine
how the fundamentals of population genetics (effective popula-
tion size, mutation rates, and selection coefficients) vary between
functional groups and with environmental conditions. Determin-
ing these fundamentals will not be easy, but the quantitative de-
scription of determinants of, and limits to, natural selection in
microorganisms is a worthwhile endeavour (Gould and Lewontin
1979).

Acknowledgements

We thank Tom Williams, Tom Kirkwood, and Jack Scannell for
helpful comments and advice and Joana Baptista and Mathew
Brown for help in gathering preliminary data.

Supplementary data
Supplementary data is available at FEMSLE online.

Conflict of interest statement. The authors declare no competing in-
terests.

Funding

We gratefully acknowledge funding from an EPSRC Dream fel-
lowship (EP/J005320/1) and Frontiers Programme (EPK0390831/1,;
EP/K038885/1) and the BBSRC (BB/RO15031/1).

Data availability

All the data are in publicly available databases and the code may
be accessed through the Github using the link embedded in the
methods.

References

Andre JB, Godelle B. The evolution of mutation rate in finite asexual
populations. Genetics 2006;172:611-26.

Bell T, Ager D, SongJI et al. Larger islands house more bacterial taxa.
Science 2005;308:1884.

Bergen B, Endres S, Engel A et al. Acidification and warming affect
prominent bacteria in two seasonal phytoplankton bloom meso-
cosms. Environ Microbiol 2016:18:4579-95.

Broda E. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol
1977;17:491-3.

Broszat M, Nacke H, Blasi R et al. Wastewater irrigation increases
the abundance of potentially harmful gammaproteobacteria in
soils in Mezquital Valley, Mexico. Appl Environ Microbiol 2014;80:
5282-91.

Brown JH. Macroecology. Chicago: University of Chicago Press, 2000.

Caporaso JG, Lauber CL, Walters WA et al. Global patterns of 16S TRNA
diversity at a depth of millions of sequences per sample. Proc Natl
Acad Sci 2011;108:4516-22.

Cohan FM. Transmission in the origins of bacterial diversity, from
ecotypes to phyla. Microbiol Spectr 2017;5:26.

Curtis TP, Wallbridge NC, Sloan WT. Theory, community assembly,
diversity and evolution in the microbial world. In: Butlin R, Bridle J

€20 dUN( B UO JoSN }9d NBYSIOAIUN SYOSIUYOD] Aq LG/GIL L/EHOPEUY/BISWSYEE0 L 0L/I0p/SoIe/a]SWaY/W0d dno olwapese//:sdny wouj papeojumoq


https://academic.oup.com/femsle/article-lookup/doi/10.1093/femsle/fnad043#supplementary-data

8 | FEMS Microbiology Letters, 2023, Vol. 370

(eds.), Speciation and Patterns of Diversity volume The British Ecological
Society Symposium Series. Cambridge: Cambridge University Press,
2008.

Dawson KJ. Evolutionarily stable mutation rates. J Theor Biol
1998;194:143-57.

DeLong JP, Okie JG, Moses ME et al. Shifts in metabolic scaling, pro-
duction, and efficiency across major evolutionary transitions of
life. Proc Natl Acad Sci 2010;107:12941-5.

DeSantis TZ, Hugenholtz P, Larsen N et al. Greengenes, a chimera-
checked 16S rRNA gene database and workbench compatible
with ARB. Appl Environ Microbiol 2006;72:5069-72.

Dick JM, Shock EL. A metastable equilibrium model for the relative
abundances of microbial phyla in a hot spring. PLoS One 2013;8:15.

Drake JW, Charlesworth B, Charlesworth D et al. Rates of sponta-
neous mutation. Genetics 1998;148:1667-86.

Ettwig KF, Butler MK, Le Paslier D et al. Nitrite-driven anaerobic
methane oxidation by oxygenic bacteria. Nature 2010;464:543-8.

Gagliano AL, Tagliavia M, D’Alessandro W et al. So close, so different:
geothermal flux shapes divergent soil microbial communities at
neighbouring sites. Geobiology 2016;14:150-62.

Gibson B, Eyre-Walker A. Investigating evolutionary rate variation in
bacteria. ] Mol Evol 2019;87:317-26.

Gillespie JH. Mutation modification in a random environment. Evolu-
tion 1981;35:468-76.

Gonzalez-Cabaleiro R, Ofiteru ID, Lema JM et al. Microbial catabolic
activities are naturally selected by metabolic energy harvest rate.
ISME ] 2015;9:2630-41.

Gould §J, Lewontin RC. Spandrels Of san-marco and the panglossian
paradigm—a critique of the adaptationist program. Proc R Soc Lond
B Biol Sci 1979;205:581-98.

Grofskopf T, Soyer OS. Microbial diversity arising from thermody-
namic constraints. ISME ] 2016;10:2725-33.

Haldane JBS. The Effect of Variation on Fitness. Am Nat 1937;71:
337-49

Han Y, Gonnella G, Adam N et al. Hydrothermal chimneys host
habitat-specific microbial communities: analogues for studying
the possible impact of mining seafloor massive sulfide deposits.
Sci Rep 2018;8:10386.

Harris K, Parsons TL, [jaz UZ et al. Linking statistical and ecological
theory: hubbell’s unified neutral theory of biodiversity as a hier-
archical dirichlet process. Proc IEEE 2017;105:516-29.

Harte J, Newman EA. Maximum information entropy: a foundation
for ecological theory. Trends Ecol Evol 2014;29:384-9.

Harte ], Zillio T, Conlisk E et al. Maximum entropy and the state vari-
able approach to macroecology. Ecology 2008;89:2700-11.

Heijnen JJ, Van Loosdrecht MCM, Black-Box TLA. Mathematical-
model to calculate autotrophic and heterotrophic biomass yields
based on gibbs energy-dissipation. Biotechnol Biceng 1992;40:
1139-54.

Horner-Devine MC, Lage M, Hughes JB et al. A taxa—area relationship
for bacteria. Nature 2004;432:750-3.

Jasmin JN, Kassen R. Evolution of a single niche specialist in variable
environments. Proc R Soc B Biol Sci 2007;274:2761-7.

Jetten MSM, Strous M, van de Pas-Schoonen KT et al. The anaerobic
oxidation of ammonium. FEMS Microbiol Rev 1998;22:421-37.

Johnson T. The approach to mutation-selection balance in an infinite
asexual population, and the evolution of mutation rates. Proc R
Soc Lond B Biol Sci 1999;266:2389-97.

Kanehisa M, Furumichi M, Sato Y et al. KEGG for taxonomy-
based analysis of pathways and genomes. Nucleic Acids Res
2023;51:D587-D92.

Kau AL, Planer JD, Liu J et al. Functional characterization of IgA-
targeted bacterial taxa from undernourished Malawian chil-

dren that produce diet-dependent enteropathy. Sci Transl Med
2015;7:276ra24.

Kempes CP, Wolpert D, Cohen Z et al. The thermodynamic efficiency
of computations made in cells across the range of life. Philos Trans
A Math Phys Eng Sci 2017;375:20160343.

Kimura M. Natural selection as the process of accumulating genetic
information in adaptive evolution. Genet Res 1961;2:127-40.

Kimura M. On the evolutionary adjustment of spontaneous mutation
rates. Genet Res 1967;9:23-34.

Kleerebezem R, Van Loosdrecht MCM. A generalized method for ther-
modynamic state analysis of environmental systems. Crit Rev En-
viron Sci Technol 2010;40:1-54.

Lane N, Martin W. The energetics of genome complexity. Nature
2010;467:929-34.

Leigh EG. Natural selection and mutability. Am Nat 1970;104:301-5.

Levins R. Evolution in Changing Environments. Princeton, New Jersey:
Princeton University Press, 1968. https://doi.org/10.1515/978069
1209418.

Lynch M, Ackerman MS, Gout JF et al. Genetic drift, selection and the
evolution of the mutation rate. Nat Rev Genet 2016;17:704-14.
Lynch M, Marinov GK. Mitochondria do not boost the bioenergetic
capacity of eukaryotic cells. Proc Nat Acad Sci USA 2016;113:

E667-ES.

Lynch M. Evolutionary layering and the limits to cellular perfection.
Proc Natl Acad Sci 2012;109:18851-6.

Makarieva AM, Gorshkov VG, Li BL. Energetics of the smallest: do
bacteria breathe at the same rate as whales? Proc R Soc B: Biol Sci
2005;272:2219-24.

McDonald D, Hyde E, Debelius JW et al. American gut: an open
platform for citizen science microbiome research. mSystems
2018;3:e00031-18.

Milici M, Tomasch ], Wos-Oxley ML et al. Low diversity of planktonic
bacteria in the tropical ocean. Sci Rep 2016;6:19054.

Niflo-Garcia JP, Ruiz-Gonzalez C, Del Giorgio PA. Interactions be-
tween hydrology and water chemistry shape bacterioplank-
ton biogeography across boreal freshwater networks. ISME ]
2016;10:1755-66.

Oren A. Thermodynamic limits to microbial life at high salt concen-
trations. Environ Microbiol 2011;13:1908-23.

Orr HA. The rate of adaptation in asexuals. Genetics 2000;155:961-8.

Pesant S, Not F, Picheral M et al. Open science resources for the dis-
covery and analysis of Tara Oceans data. Sci Data 2015;2:150023.

Pholchan MK, JdC B, Davenport R] et al. Systematic study of the ef-
fect of operating variables on reactor performance and microbial
diversity in laboratory-scale activated sludge reactors. Water Res
2010;44:1341-52.

Pielou EC. Mathematical Ecology. New York: Wiley, 1977.

Prochazk G, Payne WJ, Mayberry WR. Calorific content of certain bac-
teria and fungi. J Bacteriol 1970;104:646-9.

Quince C, Lanzen A, Curtis TP et al. Accurate determination of
microbial diversity from 454 pyrosequencing data. Nat Methods
2009;6:639-41.

Rittmann BE, McCarty PL. Environmental Biotechnology, Principles and
Applications. New York: McGraw-Hill Inc, 2001.

Roels JA. Energetics and Kinetics in Biotechnology. Amsterdam: Elsevier,
1983.

Rosenzweig ML. Species Diversity in Space and Time. Cambridge: Cam-
bridge University Press, 1995. https://doi.org/10.1017/CB0O97805
11623387.

Schenk A, Porter AL, Alenciks E et al. Increased water contamina-
tion and grow-out Pekin duck mortality when raised with wa-
ter troughs compared to pin-metered water lines using a United
States management system. Poult Sci 2016;95:736-48.

€20 dUN( B UO JoSN }9d NBYSIOAIUN SYOSIUYOD] Aq LG/GIL L/EHOPEUY/BISWSYEE0 L 0L/I0p/SoIe/a]SWaY/W0d dno olwapese//:sdny wouj papeojumoq


https://doi.org/10.1515/9780691209418
https://doi.org/10.1017/CBO9780511623387

Sturtevant AH. Essays on evolution. I. on the effects of selection on
mutation rate. Q Rev Biol 1937;12:464-7.

Sunagawa S, Coelho LP, Chaffron S et al. Structure and function of
the global ocean microbiome. Science 2015;348:9.
Sung W, Ackerman MS, Miller SF et al. Drift-barrier hypothesis and
mutation-rate evolution. Proc Natl Acad Sci 2012;109:18488-92.
Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the
amplification of mixtures of 16S rRNA genes by PCR. Appl Environ
Microbiol 1996;62:625-30.

Tilman D. Resource Competition and Community Structure. Princeton:
Princeton University Press, 1982.

Allenetal. | 9

Walters KE, Martiny JBH. Alpha-, beta-, and gamma-diversity of bac-
teria varies across habitats. PLoS One 2020;15:0233872.

Wembheuer F, Taylor JA, Daniel R et al. Tax4Fun2: prediction
of habitat-specific functional profiles and functional redun-
dancy based on 16S rRNA gene sequences. Environ Microbiome
2020;15:11.

Whitman WB, DeVos P, Dedysh S. et al. Bergey’s Manual of Systematics
of Archaea and Bacteria. Hoboken, New Jersey: John Wiley & Sons,
2015.

Wolpert DH. The free energy requirements of biological organisms;
implications for evolution. Entropy 2016;18:29.

Received 2 November 2022; revised 3 April 2023; accepted 15 May 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of FEMS. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original

work is properly cited.

€20 dUN( B UO JoSN }9d NBYSIOAIUN SYOSIUYOD] Aq LG/GIL L/EHOPEUY/BISWSYEE0 L 0L/I0p/SoIe/a]SWaY/W0d dno olwapese//:sdny wouj papeojumoq


http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	Supplementary data
	Funding
	Data availability
	References

