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Abstract

The Radar Resource Management (RRM) problem in a multi-sensor multi-target scenario
is considered. The problem is defined as a constrained optimization problem in which the
predicted error covariance is minimized subject to resource budget constraints. By apply-
ing Lagrangian Relaxation (LR) the problem is decoupled into multiple sub-optimization
problems.
The problem is modeled according to a Partially Observable Markov Decision Process
(POMDP). Using a stochastic optimization framework called policy rollout, the POMDP
is solved non-myopically by looking ahead into the expected future.
Two novel implementations, namely a centralized and distributed implementation are pre-
sented as viable approaches for solving this problem for a multi-sensor case.
The centralized implementation, defined as the approximately optimal solution, utilizes a
global policy per task. As such, the policy rollout for a single target needs to explore the
actions of multiple sensors.
The distributed implementation is considered as a practical alternative to improve on the
computational complexity of the policy rollout of the centralized implementation. Now per
sensor and per task a policy rollout is computed. To maintain a similar performance as the
centralized implementation, at the beginning of each policy rollout the last known actions
of the other sensors are shared.
An additional third independent implementation is considered. The independent imple-
mentation uses no communication during the optimization process and is considered to be
the implementation with the lowest performance with respect to the cost.
All implementations have been applied to multiple two-dimensional simulated radar track-
ing scenarios. A comparison is made between the centralized, distributed and independent
implementation based on the average cost and runtime. Results indicate that both the
centralized and distributed implementation outperform the independent implementation
with respect to the cost by a factor two. Subsequently, the distributed solution converges
to similar results as the centralized implementation while requiring significantly less com-
putational resources.
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Chapter 1

Introduction

The development of sensor technologies and software over the last couple of decades has
led to a significant increase in the amount of controllable parameters in sensing devices.
Sampling rates, bandwidths, center frequencies and more have become addressable on the
fly[1]. Controlling each of these parameters to fulfill certain operational constraints and
objectives is what is defined as Sensor Resource Management (SRM). More specifically
SRM is related to defining a policy such that a certain objective is optimized to ensure
that the sensor operates at its maximum operational capacity. In general, the SRM prob-
lem is often considered to be a scheduling problem[1].

For the particular topic of radar system design, resource management has become in-
creasingly more important. Radar was traditionally mainly focused on a single application
or task such as target tracking, surveillance or detection. The introduction of phased array
radar, actively electronically scanned array technology, digital beamforming and waveform
generation caused a paradigm shift from specialized systems focussing on a single task
towards so-called Multi-function radar (MFR) systems. Systems capable of performing
multiple tasks jointly[2].

The increased capabilities of MFR systems offer the possibility of instantaneous and au-
tomatic adjustment of transmission properties in time and frequency for optimal perfor-
mance. Which is achieved based on information from previous measurements. This auto-
matic adaptation is often referred to as Radar Resource Management (RRM) and is often
considered in the framework of cognitive radar[3, 4, 5, 6].

One of the major challenges that MFR systems face is the limited amount of resources
available. During operation MFR systems will often operate at their resource limit. In-
creasing the budget allocated to a single task will have effect on the available budget for
the other tasks. Consequently, budget allocation requires careful consideration to ensure
the best possible performance of the radar system.

In some cases, the radar system is extended to a sensor network consisting of multiple
MFR systems capable of communicating with each other to exchange new information.
By allowing communication between MFR systems, information from multiple connected
MFR systems can be combined to improve on the performance of the network (e.g. the
accuracy, resolution, coverage or robustness). Increasing the performance of the sensor
network limits the amount of wasted resources and inevitably will improve the situational
awareness of MFR systems.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Definition
Consider a sensor network consisting of M sensor nodes where each node in the sensor net-
work is capable of communicating with all other nodes in the sensor network. Per sensor,
a limited resource budget is available which can be allocated to certain tasks or functions
to improve the performance of the sensor itself but also the performance of the sensor
network.
For a standalone sensor, there are already existing approaches that try to allocate the re-
sources over multiple tasks in an approximately optimal manner such that the uncertainty
of the environment is as low as possible. For a multi-sensor scenario however, there is little
to no literature available up to this point for this specific topic. By combining the infor-
mation of multiple connected radar sensors placed at different locations, the resolution,
overall coverage and accuracy of the sensor network can be improved even further.
This thesis aims at extending the solution for resource allocation in a single sensor to a
multi-sensor scenario. The problem here is focused on how each sensor should allocate its
limited budget over a set of tasks while taking into account the other sensors in the sensor
network.
Also, what information should be shared to improve the performance of the budget allo-
cation algorithm? How can sensors with overlapping fields of view be optimally managed?
Can the algorithm be implemented in a decentralized fashion while still managing to at-
tain good performance? What is the best way to combine information (e.g. estimates or
measurements) from several sensors to solve SRM problems?

1.2 Thesis Outline
Chapter 2 covers some fundamental information related to the working of a radar system.
Chapter 3 provides an overview of the relevant solutions that already exist in literature
related to the topic of SRM in sensor networks. The novel algorithms for solving the RRM
problem in sensor networks are presented in Chapter 4. In Chapter 5 the novel algorithms
are applied to several simulated scenarios to verify their validity and performance. Finally
in Chapter 6 a conclusion and some final remarks are given.



Chapter 2

General Radar Background

The concept of radar resource management in MFR requires some fundamental background
on the workings and configurations of radar systems in general. This section aims at
providing general radar information and radar concepts required for resource management
in MFR systems. The material presented in this chapter is loosely based on the work
presented in [7] and [8].

Basic Single Antenna Radar

A basic radar system is comprised of a transmitter, receiver, some logic to switch between
transmit and receive and a single antenna used for both the reception and transmission of
signals (see Fig. 2.1a).
The transmitter is a system capable of transmitting electromagnetic (EM) waves at high
power levels (i.e., in the range of kilo- or even megawatts) into a desired direction. If the
propagating waves encounter an object (e.g. an airplane) then part of the signal is reflected
and propagated back to the radar system. The time t between transmit and receive can
be used to calculate the range of the object with respect to the radar according to,

R = c · t
2 (2.1)

with c the speed of light, which is the speed at which the EM waves propagate through the
medium (approximately 3.0× 108 m/s). As t in this case represents the round trip time
of the EM wave, the product between the speed of light and round trip time needs to be
divided by two.
The velocity of a target can be measured by exploiting the phase of frequency shift between
the transmitted and received pulse which is induced due to the movement of the target.
This difference in observed and transmitted frequency is defined as the Doppler frequency.
The Doppler frequency fd can be computed using the wavelength and the relative velocity
of the target with respect to the radar vtarget according to,

fd = vtarget · λ
2 = ftransmitted − freceived (2.2)

with ftransmitted and freceived the transmitted and received frequencies respectively. Where
it is assumed that Vtarget << c.
Since only a small fraction of the transmitted EM signal will reflect back to the radar
system, the receiver needs to be able to measure low power EM waves (i.e milli- up to
nanowatts).

3



4 CHAPTER 2. GENERAL RADAR BACKGROUND

(a)

(b)

Figure 2.1. block diagrams of a basic monostatic radar configurations. (a) is a monostatic config-
uration and (b) a bistatic configuration[7].

Radar Equation

The elementary equation used for all radar systems is called the radar range equation.
The radar range equation describes mathematically the physical dependencies between
parameters involved in the transmit and receive process of the radar system including the
transmit power, wave propagation and power of the received signal.
Consider the radar system depicted in Fig. 2.2. During operation, the radar system
transmits EM waves towards a certain target at range R. As the incident EM wave hits the
target, time-varying currents are induced on the target, making it a source of emanating
radio waves from which a part will propagate back to the radar system. The corresponding
power related to the reflected wave is defined as a combination of the transmitted power
and the Radar Cross Section (RCS). Where the RCS, denoted with σ, is a measure of the
ratio of the backscattered power towards the radar over the total power intercepted by the
target, i.e., it is a measure of how the radar system perceives the size of the target[9]. It
depends on the size and shape of the target and the materials from which the target is
made. The reflected power is given by,

Prefl = PtGtσ

4πR2 (2.3)

with Pt, the transmitted power and Gt the gain of the transmit antenna. The reflected
signal propagates back towards the radar system over a range R such that the power density
at the receiver (Qr) is given by,

Qr = Prefl
4πR2 (2.4)

The received power at the antenna from a target at range R is computed by taking the
product of the power density and the effective area Ae. The effective area is a measure of
how effective the antenna is at receiving power (i.e., for an ideal antenna the effective area
is equal to its physical size),

Pr = QrAe = PtGtAeσ

(4π)2R4 (2.5)
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Figure 2.2. Depiction of the transmit and receive process of a radar system. The radar (left) emits
EM waves towards a target at range R (right). Part of the reflected signal is propagated back to
the radar to be measured [7].

The effective area can be expressed in terms of received antenna gain and the wavelength
λ,

Gr = 4πAe
λ2 (2.6)

Substituting 2.6 into 2.5 results in,

Pr = PtGtGrλ
2σ

(4π)3R4 (2.7)

Equation 2.7 is an expression for the radar range equation.

Phased Array radar

The radar system under consideration in this thesis is a pulsed phase array tracking radar.
The reasoning behind this comes from the fact that pulsed radar system are well suited for
tracking targets, while the phased array opens up many degrees of freedom from a scanning
point of view. This section will briefly explain both concepts separately.
A pulse radar in general is a radar which emits short and powerful pulses of EM waves,
these EM waves propagate through a medium and reflect from potential targets. The
portion of the reflected signal that is bounced back towards the radar can consequently be
measured by the pulse radar in the silent period, which is the period in which the radar
does not transmit pulses.
Relevant parameters of a pulsed radar system are the dwell time and revisit time. The
dwell time, denoted by τ , is defined as the length of each pulse being transmitted and
the revisit time, denoted by T, is defined as the time duration between each consecutive
measurement. Note that the dwell time is in general smaller than the revisit time.
Phased array radar systems are an essential part of the topic at hand. The basic form
of a phased array system is depicted in Fig. 2.3. The phased array radar is a collection
of antenna elements assembled in some configuration in such a way that the radiation
pattern of each individual element is combined with the radiation pattern of surrounding
elements to form a radiation pattern called the main lobe. By allowing phase shifts for
every individual element determined by a controller C, the main lobe can be steered in any
desired direction.
For example, if it is assumed that the direction of the main lobe (ψ) is oriented within
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Figure 2.3. Diagram of an elementary phased array system. The controller (C) determines the
phase shifts between the antenna elements to determine the direction of the main lobe[10].

±90 deg then the phase difference β between the elements must be adjusted such that the
following holds,

ψ = kdcos(θ) + β (2.8)

with k, the wavenumber given by k = 2π
λ , d is the distance between elements, θ is the

steering angle and β is a phase shift. The big advantage of using such a system is related
to the high beam agility and the possibility of changing the beam direction in a fast manner.

Multi-Function Radar

The possibilities introduced with the phased array radar led to the development of the
Multi-Function Radar (MFR). The MFR system exploits the operational benefits of the
phased array radar to support numerous and potentially conflicting tasks. The MFR sys-
tem is capable of simultaneously generating independent beams which can be utilized for
different tasks. Fig. 2.4 shows an example of an MFR system mounted on a ship.
In this specific example, multiple transmit beams are generated to support missile guid-
ance, target tracking, target classification, target confirmation but also for surveillance
purposes. A certain amount of resource budget i.e., time or energy must be allocated by
the system for each individual task of the system. With an increasing number of tasks, the
amount of energy or time spent on each task must be considered carefully. Hence, effective
resource management is required for reaching maximum performance. The MFR system
distinguishes itself from a standard phased array radar system by automatically managing
and configuring the available resources[11].
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Figure 2.4. A ship mounted MFR system[12].



Chapter 3

Existing Solutions

The goal of this chapter is to provide a review of the main concepts related to SRM with
a focus on RRM in a sensor network. First, section 3.1 will cover the RRM topic and
the theory required to solve a RRM problem for a single sensor. Section 3.2 will aim to
highlight the relevant background of sensor networks to lay the foundation for expanding
the RRM problem to a multi-sensor scenario.

3.1 Sensor Resource Management
In general, the SRM problem for a single sensor refers to the problem of searching for an
(optimal) set of actions that the sensor should take based on a given task that maximizes
or minimizes a certain performance. For example, finding the best possible actions based
on the (uncertain) knowledge of the state of a system (e.g. the state of a moving target).
Instead of searching for the actions of a single task, the interest lies in jointly searching for
the actions of multiple tasks.
The sensors considered in SRM problems (e.g. a MFR) often operate at their resource
limit. Hence, the budget distribution over all tasks needs to be taken into account instead
of analyzing the budget allocation for each task individually. If the budget is reduced for
one task, the sensor can simultaneously increase the budget for other tasks. As such, the
allocated budgets are mutually dependent.
Section 3.1.1 provides a description of the theoretical framework of optimization theory
such as the method of Lagrange multipliers and the subgradient method but also the rea-
soning behind the cost function selection. Section 3.1.2 provides the stochastic optimization
framework and a method called policy rollout. In Section 3.1.3 a full solution will be given
for the RRM problem in a single sensor.

3.1.1 Optimization
Due to the nature of resource management problems, optimization is a field often utilized
for solving the RRM problem. The field of optimization is rather broad and contains many
theories. However, for this thesis specific, a subset of theories and literature are selected
that are deemed relevant.

Cost function Selection

A fundamental aspect in RRM problems revolves around the selection of a proper objec-
tive function that needs to be evaluated. Although the topic of RRM has been widely
studied from different perspectives, the selection of the objective function is still under
investigation and there has not yet been an optimal solution. Selection of the cost function
heavily depends on the type of approach used for solving the RRM problem. A compre-

8
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hensive overview of different approaches has been given by Katsilieris[13]. He divides the
approaches into the following four categories,

• Heuristic

• Task-Based

• Information-driven

• Risk-Based

The heuristic or rule based approach refers to a set of rules that determine the behaviour
of the resource management problem. For example setting a threshold on the track uncer-
tainty such that the maximum revisit time is not exceeded. Other examples can be found
in e.g. [14] or [15]. The approach in general is rather basic to implement and it can simplify
complex problems. However, the behavior of this approach can become unpredictable,the
computational complexity can be significant due to e.g. many nested rules and in addition
to that the approach is not very flexible. In addition to this, RRM will perform best if the
resources are assigned based on mission objectives rather than rules, making the heuristic
approach not the most usable[16].
Task based resource management focuses on optimizing quantities related to the sensing
tasks and the operational goal of the system. Some potential cost functions mentioned by
[13] in task based resource management are,

• Expected probability of existence of a target

• Expected Signal to Noise Ratio (SNR)

• Expected uncertainty in the position estimate of a target

For tracking a target, an often used approach is to express the uncertainty of the position of
a target in terms of the error covariance. More specifically, the trace of the error covariance
is an often used cost due its simple form and intuitive implementation. Downside of this
approach is the fact that it does not explicitly take into account what the users needs are.
The information driven approach utilizes information theoretic measures of uncertainty.
Some example cost functions are the Shannon Entropy or the Kullback-Leibler Divergence.
Disadvantage of this approach is the fact that it is less intuitive to apply to different
operational contexts.
The risk based approach is an approach that takes into account the operational goal of the
system. However, the approach does not try to directly optimize the uncertainty in the
problem. It could however be included into the risk or threat definition for example.
Apart from the heuristic approach all categories are suitable and can be applied in different
ways. Since the measures used are mainly task based, the task based approach appears to
be the most straightforward to utilize for resource management.
Besides [13], the topic related to cost function selection for sensor management has also
been covered by e.g. [17].

Lagrangian Relaxation

Consider a constrained optimization problem,

min
x

f(x)

subject to gi(x) = ci, ∀i ∈ N
hj ≥ dj , ∀j ∈ M.

(3.1)

With N equality constraints and M inequality constraints. Lagrangian Relaxation (LR)
can be used to relax the constrained problem into an unconstrained problem. Thereby
reducing the complexity of the problem.
The idea in the method of Lagrange multipliers is to take into account the constraints by
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adding them to the objective function f(x) as a weighted sum of the constraint functions.
Define a weight vector associated to inequality constraints as λ and µ as a weight vector
related to equality constraints respectively. The Lagrangian L of problem 3.1 is given by,

L(x, λ, µ) = f(x) +
N∑
i=0

λigi +
M∑
j=0

µjhj (3.2)

Note that a generalized form of the method of Lagrange multipliers is assumed here. Mean-
ing that the Karush-Kuhn-Tucker (KKT) conditions are satisfied. This allows both inequal-
ity and equality constraints to be taken into account. See [18] on convex optimization for
further details on this theorem.
The Lagrangian dual function can now be defined as,

d(λ, µ) = inf L(x, λ, µ) = inf
[
f(x) +

N∑
i=0

λigi +
M∑
j=0

µjhj
]

(3.3)

The optimal values between the primal (3.1) and the dual (3.3) are not necessarily the
same. Define the optimal value of the primal problem as p∗. Then for any λ > 0 and any
µ the following holds,

d(λ, µ) ≤ p∗ (3.4)

Related papers that utilize LR for resource management are for example [19] and [20].

Subgradient Method

Searching for optimal values of a given optimization problem can be achieved with many
different approaches. One of these approaches is the subgradient method as stated in
Algorithm 1.

Algorithm 1: Subgradient Descent
Input: N ∈ Z>0, x0, gi, γ, ε
Output: x∗ ∈ R

1 i = 0
2 while gi < ε do
3 xi+1 = xi − γ ∗ gi
4 i = i+ 1
5 end
6 x∗ = xN
7 return x∗

Where gk ∈ δf(xi) is any subgradient of f(x), N is the amount of derivative evalua-
tions, x0 is the initial guess, γ the step size with γ > 0 and ε a value used as stopping
criterion. The stopping criterion in this case is reached if the gradient converges to some
small value (i.e., gi << 1). Note that a stopping criteria could also be based on a norm of
the difference in optimum points or a duration. When the appropriate step size and initial
guess are selected convergence is ensured[18].
The main advantage of using the subgradient method is the fact that the objective func-
tion does not necessarily need to be differentiable. An additional advantage of using the
subgradient method is that in some case it can be combined with LR to develop a simple
distributed algorithm for a given problem[21].

ADMM

The combination of LR and the subgradient method offers the possibility to relax an
optimization problem into multiple smaller problems that can be solved in parallel. As an
alternative to this approach, the Alternating Direction Method of Multipliers could also
be applied.
Similarly as with LR, ADMM can split an optimization problem into multiple parts. This
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is achieved by decomposing the optimization variable x into two variables x and z. Where
the objective function is separable among this decomposition i.e.„

min
x

f(x) + g(z)

subject to Ax+Bz = c

hj ≥ dj , ∀j ∈ M.

(3.5)

Consequently, instead of applying LR, the augmented Lagrangian is formulated according
to,

L(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) + ρ

2 ||Ax+Bz − c||22 (3.6)

with ρ, the augmented Lagrangian parameter. Using an iterative update scheme, the op-
timal values for x and z are computed[22].
ADMM is well suited for solving optimization problems with a large number of parameters.
Some literature related to solving optimization problems in sensor networks using ADMM
is provided by [23, 24, 25, 26, 27].
ADMM offers a generalized framework that requires the loss function to be not differen-
tiable and it is simple to implement. However, the convergence rate of ADMM is poor. In
addition to that, for any particular problem it is likely that other methods will perform
better compared to ADMM[22].

3.1.2 Stochastic Optimization
The Sensor Resource Management problem can be classified as a stochastic optimization
problem, which is a term used for methods that perform decision making under uncertainty.
Stochastic optimization is not one single field but rather a loose collection of many different
approaches in many different applications[28].
The objective in stochastic optimization is to search for a policy that utilizes the available
information on random variables to find an optimal action[29].
Although the focus of this thesis is not so much on the subject of stochastic optimization,
it is a frequently used element to solve the radar resource management problem. Hence,
a comprehensive description will be provided. More specifically, this section describes a
stochastic optimization framework and a corresponding stochastic optimization technique
called policy rollout. The theory presented in this section is loosely based on the material
presented in [28] and [29].

General Problem Components

A stochastic optimization problem generally can be defined by several components. These
include,

• State Space, a description of all possible states that the system can reach. This can
be modelled with a random state vector sk at time step k. The realisation of a system
state is denoted by sk ∈ S where S is the system state space.

• Actions and Action space, these variables constitute the action or actions that can
be taken at a time step k. The transition from one state to the next is influenced by
the selection of the respective action. Decisions can be binary, discrete, continuous
and categorical. The notation used in this thesis for the realisation of an action is
ak ∈ A where A is the action space.

• Exogenous Information, any new information that becomes known at some decision
step can be defined as exogenous information. Another term often used instead of
exogenous information is the observation space. This information can be modeled by
a vector Zk. The realisation of any exogenous information is denoted with zk.

• State Transition Function F, Describes the evolution of a state from one time step
to the next.
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• The Cost Function C, represents the cost or reward at each respective time step. In
general this is a value that can depend on external or internal variables (e.g. system
state and actions) and needs to be optimized.

• Discount factor γ ∈ [0,1]. Discounts future time steps.

The notation of each of the components is defined in discrete time. Unless specified other-
wise, the time will be regarded as discrete for the remainder of this thesis.
A relevant control framework that can be described using these elements is the Markov
Decision Process (MDP). The MDP has been used successfully in stochastic environments.
At each time step k, the process is in some state sk. A controller chooses an action ak
causing the state to transition to a random new state sk+1. A corresponding cost is then
returned to the controller.
A prerequisite of utilizing the MDP is that the system state should be completely observ-
able. Meaning in this case that the radar system which functions as an agent should be
able to describe the state of the environment with full certainty. The radar system used
however is not able to fully describe the system state as a result of noisy measurements.
To overcome this, the MDP can be relaxed into a Partially Observable Markov Decision
Process (POMDP).

Partially Observable Markov Decision Process

Consider Fig. 3.1, showing a schematic representation of a POMDP. The POMDP system
is comprised of an environment and an agent, responsible for sensing the environment. The
environment is represented by a set of states. The agent can select from a set of decision
variables an action to influence the system state. However, in this thesis it is assumed that
the actions cannot change the system state but rather the knowledge about it.
At each time step k, the agent takes an action in a state causing the environment to
transition to the next state via the state transition function. Consequently, an observation
is made of the state and a corresponding cost is computed. The cost and observation are
received by the agent.

Figure 3.1. Schematic depiction of a POMDP process. The agent chooses an action a, causing a
state transition. An observation z and reward r are returned to the agent[30].

The difference between using a POMDP over an MDP has to do with what the agent
receives. Where a fully observable MDP observes the next state, the POMDP only receives
an observation z of the next state. Define an observation z ∈ Ω, where Ω represents the
set of all possible observations that the agent can receive. This observation, combined
with the action is then used to compute a belief state which is expressed as a probability
distribution indicating the likelihood of the current state of the environment[31].
The goal of the agent is to choose the best possible actions that minimize the expected
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future cost starting at time step k over a time horizon H. Define the cost, VH , over the
time horizon as,

VH =
k0+H∑
k=k0

C(sk,ak) (3.7)

The expected cost given the belief state is expressed as,

CB(bk,ak) =
∑
s∈S

bkC(sk,ak) (3.8)

The cost can now be expressed as a value function VH(bk) representing the expected future
cost,

VH(bk0) = E[
k0+H∑
k=k0

CB(bk,ak)|bk0 ] (3.9)

Using Bellman’s equation as defined in [32] the optimal value function for belief state b0
and action a0 is expressed as,

V ∗H(b0) = min
a0∈A

(CB(b0,a0) + γ · E[V ∗H−1(b1|b0,a0)] (3.10)

The optimal policy is then given by the set of values of b0 for which the value function is
minimized,

π∗0(b0) = arg min
a0∈A

(CB(b0,a0) + γ · E[V ∗H−1(b1|b0,a0)] (3.11)

Define the Q-function as,

QH−k(bk,ak) = (CB(bk,ak) + γ · E[V ∗H−k−1(b1|b0,a0)] (3.12)

The optimal policy can now be expressed as,

π∗k(bk) = arg min
ak∈A

(QH−k(bk,ak)) (3.13)

Finding the optimal policy requires the calculation of the Q-values, which is in general
infeasible[33].

Policy Rollout for POMDP’s

Policy rollout can be used for POMDP’s in certain scenarios. The technique itself is based
on taking Monte Carlo samples of the expected future. For each action a ∈ A a rollout is
evaluated starting from initial belief state b0 up until horizon H. During each rollout, the
process starts off with an initial belief state b0 and a to be evaluated action a0. Inside the
policy rollout observations and belief states are generated based on the initial belief state
and action. Specifically in policy rollout, a base policy is applied after the initial belief
state until the time horizon is reached. This base policy is arbitrary and can take on many
different forms depending on the type of scenario at hand. Selection of the base policy will
discussed in Chapter 5.
The expected cost at each time step is summed together similarly as in 3.9. The action
corresponding to the lowest cost is chosen to be the best possible action for the next time
step. To obtain better results, the policy rollout for each action can be repeated multiple
times. Summing all of the outcomes together and taking the average value would in result
in the final cost[33].
The Q-value of the policy rollout can now be expressed as,

Qπbase

H−k (bk,ak) = (CB(bk,ak) + γ · E[V πbase

H−k−1(bk+1|bk,ak)] (3.14)

The best possible policy is found by minimizing this expression i.e.,

πk(bk) = arg min
ak∈A

(Qπbase

H−k (bk,ak)) (3.15)
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The policy rollout considered is a one step look ahead minimization. In [34] several reasons
are mentioned for using policy rollout over other approaches. One reason for using policy
rollout is that the policy will be at least as good as the base policy, and in most cases
will perform better than the base policy. A second reason is the fact that it can be used
online, since they only need to solve a fraction of the POMDP instead of the computing the
cost of each possible state. The online property allows the rollout to adapt to variations
of the problem. A disadvantage of using policy rollout is when the action space is very large.

3.1.3 Radar Resource Management for a Single Sensor
The Radar Resource Management problem for a single sensor in a multi-target tracking
scenario has been considered before. The material provided by Schöpe in [35] and [33]
models each target according to the earlier described POMDP and solves the single sensor
scenario using a dynamic budget balancing algorithm by exploiting Lagrangian Relaxation
and Policy Rollout. This section aims at briefly defining the full existing solution for the
single sensor case defined by [33] as the Approximately Optimal Dynamic Budget Balanc-
ing (AODB) algorithm.

AODB Algorithm

It is assumed that there are N targets to be tracked in the environment. At time step k,
the budget needs to be distributed over the targets in such a way that a certain cost C is
minimized while at the same time making sure that total available budget is not exceeded.
The RRM problem can be defined as an optimization problem,

min
ak

∑N
n=1 C(ank , snk )

s.t.
∑N
n=1 Bk(ank ) ≤ bmax

(3.16)

With Bk(ank ) the budget assigned to each target and bmax, the total available budget. The
budget assigned to each target in this case is related to a selected action. The cost function
has been selected to be the position elements of the error-covariance of the Extended
Kalman Filter (EKF).
By applying Lagrangian relaxation to problem 3.16, the problem can be decoupled into a
sub-optimization problem for each target. The Lagrangian dual is defined as,

ZD = max
λ

[
min

ak

( N∑
n=1

C(ank , snk ) + λ ·Bk(ank )
)
− λ ·Bmax

]
(3.17)

with λ ∈ R the Lagrangian Multiplier related to the budget constraint. The formulation
of 3.17 allows the problem now to be solved for each target in parallel. After each bud-
get allocation the Lagrangian multiplier is updated using the subgradient method. The
subgradient gk to update the Lagrange multiplier λ is defined as,

gk = d

dλ

[
λ · (

N∑
n=1

τn
Tn
−Bmax)

]
=

N∑
n=1

τn
Tn
−Bmax (3.18)

The Lagrange multiplier is then updated according to,

λk+1 = max{0, λk + γ · gk} (3.19)

The budget allocation for each target is based on a stochastic optimization framework.
The system is modelled according to a POMDP (see Section 3.1.2) and solved using the
policy rollout technique. The POMDP can be solved for finite and infinite horizons. In
this case, to reduce the computational complexity a finite horizon is selected. The length
of the horizon in this case represents the number of considered measurement time steps
into the future.
A summary of the AODB algorithm is represented by Fig. 3.2
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Figure 3.2. Block scheme of the AODB algorithm[33].

3.2 Data Fusion for Sensor Networks
The RRM problem considered in this thesis involves a sensor network of multiple connected
radar sensors at different locations. Instead of optimizing each sensor individually, it would
be beneficial to optimize the resources jointly for all sensors to obtain some global solution.
This can be achieved by for example data fusion. Because there is little literature available
on the RRM problem related to sensor networks, this section will mainly focus on data
fusion and a tracking filter to which fusion techniques can be applied. Some additional
information on alternative but closely related problems (e.g. sensor selection) in sensor
networks will be given as well, due to the overlap with the RRM problem defined for this
thesis.

3.2.1 Bayes’ Theorem
Bayes theorem forms an essential part of all fusion methods. Using Bayes’ theorem one can
make certain assumptions on an object or environment which is described by a state x, given
observations z. Assuming there is a dependency between x and z, the joint probability is
denoted as P(x,z). Using the chain rule for conditional probabilities, the joint probability
is related to the conditional probabilities according to the following relationship,

P (x, z) = P (x|z)P (z) = P (z|x)P (x) (3.20)

with P(x) and P(z) the prior probabilities of the state and observations respectively. P(z|x)
models the probability that an observation is made given the state. Bayes’ Theorem
follows by rearranging the terms slightly resulting in an expression for the state x, given
observations z,

P (x|z) = P (z|x)P (x)
P (z) (3.21)

where P(z) is a normalization factor for the posterior probability.
In the case of a tracking process, the interest lies mainly in a filtering process. A filtering
process tries to maintain a probabilistic model for a state that is evolving over time and
which is periodically observed by a sensor.
In a probabilistic form, the goal is to find the posterior density P(xk|zk, x0). With xk the
observations made up until time step k and x0 the initial system state.
By exploiting Bayes rule one can define the posterior density as,

P (xk|zk,x0) = P (zk|xk)P (xk|zk−1,x0)
P (zk|zk−1) (3.22)
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with P(xk|zk−1, x0) the predicted probability density of the system based on observations
up to time step k− 1. This term can be rewritten in terms of a state transition model and
the joint posterior from k − 1,

P (xk|zk−1,x0) =
∫
P (xk|xk−1)× P (xk|zk−1,x0)dxk−1 (3.23)

This equality implies that the dependency of the future state solely depends on the current
state and the control input at that specific time[36, 37].

3.2.2 The (Extended) Kalman Filter
This thesis focuses on tracking scenarios. Hence, a tracking filter needs to be applied. In
general any filter that calculates the posterior density can be applied. For linear systems
this can be a Kalman Filter (KF), while the Extended Kalman Filter (EKF) or particle
filter are applicable methods for non-linear systems. For the sake of simplicity only the KF
and the EKF will be covered here.
The Kalman filter is an optimal linear filter which calculates an estimate of a system state
that is evolving over time based on periodic observations made. The filter uses for both
the system state xk and the observations zk a statistical model.
The Kalman filter is often used in a sensor network due to the explicit description of the
system process and observations combined with the fact that an uncertainty measure is
consistently used to measure the impact of each sensor.
The standard state-space model for estimating the system state is given by,

xk = Fkxk−1 + wk (3.24)

With Fk the state transition model, and wk the process noise assumed to be zero mean
white Gaussian noise with covariance Qk, i.e., N (0, Qk).
The observation model is defined similarly as,

zk = Hkxk + vk (3.25)

with Hk a matrix describing the effect of the state on the observation and vsk the observation
noise assumed to be independent and distributed according to N (0, Rk). Where Rk is
the covariance of the observation noise. Also, the process noise and observation noise are
assumed to be uncorrelated.
The Kalman filter can now be defined as a prediction step given by,

xk|k−1 = Fkxk−1|k−1 (3.26)

Pk|k−1 = FkPk−1|k−1FTk + Qk (3.27)
With P the error covariance and Q the covariance of the process noise. Followed by an
update step defined as follows,

Sk = HkPk|k−1HT
k + Rk (3.28)

Kk = Pk|k−1HT
k S−1

k (3.29)
Pk|k = (I −KkHk)Pk|k−1 (3.30)

xk|k = xk|k−1 + Kk(zk −Hkxk|k−1) (3.31)
Note that for the Kalman filter to be valid, both the state transition model and observation
model need to be linear. If these models are non-linear a special form of the Kalman
filter can be used called the EKF. The main differences between the EKF compared with
the standard Kalman filter is the additional step of the linearization of the process and
observation model using the Jacobian. The state prediction for the EKF is defined as,

xk|k−1 = f(xk−1|k−1,wk) (3.32)
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Where f provides a non-linear mapping of the estimated system state and process noise.
Fk and Hk are replaced according to,

Fk = ∇fx Hk = ∇hx (3.33)

Where∇ the nabla operator indicates the computation of the Jacobian. Finally, the update
step of the system state for EKF is defined as,

xk|k = xk|k−1 + Kk(zk − h(xk|k−1)) (3.34)

In this research the Kalman filter will be utilized to tackle the radar resource management
problem. In literature however, one often also refers to the information filter instead of the
Kalman filter[38].
The information filter introduces two additional parameters called the information state
variable yk and information state matrix Yk. The relation of the additional two parameters
with the system state and error covariance is defined by,

yi|j = P−1
i|j xi|j (3.35)

Yi|j = P−1
i|j (3.36)

The reason for using the information filter is the simple update step for a multi-sensor case.
However, the prediction and update steps for the information filter are mathematically
exactly the same as for the Kalman filter[39].

3.2.3 Sensor fusion
A sensor network consists of sensor and processing nodes, possibly co-located. The sensors
are capable of observing the environment and consequently take measurements of this
environment which are transmitted to a processor node to compute an estimate based on
the received information.
It is assumed that each processing node is capable of broadcasting some of its information.
Exploiting this system can be done either using a centralized or distributed architecture.
In a centralized architecture, local processor nodes communicate information to a global
processor to compute an estimate. Although this architecture provides the best possible
estimate it does require more communication and has a single point of failure.
The distributed architecture uses multiple processing nodes that are capable of computing
estimates offering more robustness compared to the centralized architecture[40].
The information to be communicated can be either the measurements or the corresponding
state estimates resulting in measurement fusion or state estimate fusion respectively.
This section will present both measurement fusion and state estimate fusion in their most
general form. For a full overview of different fusion approaches for measurement and state
estimate fusion one can refer to e.g. [40, 41]. [42] focuses specifically on fusion architectures
in a distributed setting.

Fusion Using State Estimates

The theory and derivations given here are loosely based on the material discussed by Kim
in [43] and Bar-Shalom in [44]. Given a scenario in which M sensors need to track a single
target n with corresponding state xk at time step k. At each sensor m, estimates x̂mk|k of
the state of the target are maintained. Where it is assumed that the state estimates of
all sensors in this case correspond to the same target. Which can be deduced for example
based on some kind of hypothesis testing[44].
The optimal state estimate fusion is then defined as the conditional mean, given the track
estimates in each sensor and the corresponding covariances,

x̂fk|k = E
[
xk|x̂m,Pm,m = 1, 2, ...M

]
(3.37)
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An expression of x̂fk|k and Pf in terms of the individual state estimates and covariances in
each sensor is obtained as follows. The posterior density f(x—xm) is proportional to the
joint density function,

f(x− x̂1,x− x̂2, ...,x− x̂M ) (3.38)
which can be expressed as the likelihood function,

f ∝ exp
[
− 1

2(x− x̂1,x− x̂2, ...,x− x̂M )TΣ−1(x− x̂1,x− x̂2, ...,x− x̂M )
]

(3.39)

Under the assumption that the prior, f(x) is uniformly distributed and the posterior density
is assumed to be Gaussian distributed.
Define e = [I,I,...,I]T , Σ = E

[
(x−x̂i)(x−x̂j)T

]
for ∀i, j ∈M and µ = (x−x̂1,x−x̂2, ...,x−

x̂M )T . Then the joint density function f can be rewritten into matrix form according to,

f(µ− ex) ∝ exp[−1
2(µ− ex)TΣ−1(µ− ex)] (3.40)

A maximum likelihood estimate is obtained by maximizing the likelihood function resulting
in,

d

dx

(
− 1

2(µ− ex)TΣ−1(µ− ex)
)

= −2eTΣ−1(µ− ex) = 0 (3.41)

Solving this expression for the system state x gives,

x̂f = (eTΣ−1e)−1(eTΣ−1µ) (3.42)

and a corresponding fused covariance of,

Pf = (eTΣ−1e)−1 (3.43)

Note that 3.42 and 3.43 can be used both for a centralized and distributed architecture.

Fusion Using Measurements

The second approach could be to fuse the measurements instead of the state estimates.
If it is assumed that each sensor can broadcast their measurements to other sensor nodes
then measurement fusion can be defined as a recursive update scheme. If it is assumed that
the measurements of all sensors are available at the same time instant, fused estimates of
the state and covariance are computed according to Algorithm 2. With H an observation

Algorithm 2: State and covariance measurement update scheme
Input: Pfn

k|k−1 ∈ R4x4, sfn

k|k−1 ∈ R4x1 R, H, h
Output: Pfn

k|k ∈ R4x4, sfn

k|k ∈ R4x1

1 Pn = Pfn

k|k−1

2 sn = sfn

k|k−1
3 m = 1
4 while m < M do
5 Pn = updatecovariance(Rm,Hm,Pn)
6 sn = updatestate(Rm,Hm, zm,hm,Pn, sn)
7 m = m+ 1
8 end
9 Pfn

k|k = P
10 sfn

k|k = sn
11 return Pfn

k|k, s
fn

k|k

matrix, h a measurement transformation function and R the covariance of the observation
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noise. The superscript fn indicates the fused data related to target n. Each iteration,
the state estimate of target n is updated based on an observation zm made by sensor m
and a corresponding estimated error covariance is computed. The resulting estimate is the
optimal estimate given all the measurements at the node received up to that time[40].
The fused estimates are then used to compute a prediction of the error covariance.
This form of fusion is less complex to implement compared to state estimate fusion due the
fact that measurement fusion does not have to cope with dependent estimation errors[45].

3.2.4 Closely Related Problems
Many previous approaches related to resource management in sensor networks focus on
the topic of sensor selection. More specifically, the problem focuses on selecting a sensor
or a subset of sensors such that a certain cost is minimized subject to some constraint
(e.g. communication or energy constraint) in both myopic and non-myopic settings. For
example in [46], the sensor selection problem is formulated as an optimization problem in
which the state estimation Mean Square Error (MSE) is minimized.
In [38] optimal sensor activations are searched for by minimizing the trace of the fisher
information matrix subject to energy constraints. Some other related literature on the
topic of sensor selection can be found in e.g. [47], [48] and [49].
The problem formulation of sensor selection is closely related to the topic of this thesis
and potentially some material of a sensor selection solution can be utilized for the resource
management problem. However, the final goal of sensor selection and resource management
are fundamentally different. The sensor selection problem aims at finding optimal (binary)
sensor activations whereas SRM in a sensor network searches for maximum operational
capacity of the entire sensor network and can be used with continuous actions.
Some alternative solutions to RRM in sensor networks can be found in for example [50]
and [51].
In [50] a myopic RRM solution for single target tracking problems using sensor networks is
proposed. Another RRM problem approach to a network scenario has been presented by
[51] which aims at decreasing the sensing time of the individual sensors while keeping the
sensing performance at a desired level.

3.3 Preliminary Conclusions
Based on the given material in this chapter several conclusions can be made regarding the
existing approaches for solving the RRM problem in a multi-sensor network.
First of all, the problems in general are considered to be optimization problems that op-
timize some objective function. Up until this point the selection of cost function is still
under investigation. Either the task-based, information-driven or the risk-based approach
are suitable. However, since the measures are mainly task based, the task based approach
appears to be the most straightforward to implement.
Parallelization is desired to reduce the complexity of the optimization problem. Paral-
lelization of the problem into multiple sub-optimization problems and solving it can be
achieved using multiple procedures. Two possible approaches were mentioned in this the-
sis. The first approach utilizes LR to decouple the problem and generates a solution using
the subgradient method. The second approach is to use ADMM instead. ADMM offers a
general framework and is relatively simple to implement. However, the convergence rate
is poor compared to LR. Making the combination of LR and the subgradient method the
more desired approach.

Solving the problem using ADMM or with the subgradient method solves the problem
in a myopic fashion. By using stochastic optimization the problem can be solved non-
myopically by looking into the expected future instead of looking a single time step ahead.
Although there are multiple ways of stochastic optimization techniques, the choice has
been made to use policy rollout mainly due its simple implementation.
To extend the RRM problem to a multi-sensor network, data fusion can be applied. Either
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state estimate or measurement fusion can be applied. Measurement fusion is less prone
to dependent estimation errors, making it the preferred fusion method over state estimate
fusion.



Chapter 4

Algorithms for Radar Resource
Management in a Sensor
Network

This chapter aims at introducing the newly developed algorithms for a RRM problem in
a sensor network for performing multiple tasks jointly. This chapter deals with the opti-
mization of the sensing resources, and the use of the term measurement refers solely to the
internal simulation of the expected future in the POMDP.

Section 4.1 will provide a detailed problem description. Implementations to solve the
problem will be considered in Section 4.2. Finally, to indicate the relevance and appli-
cability of the developed algorithm an alternative use case will be presented in Section
4.3.

4.1 Detailed Problem Description

Define a sensor network consisting of M sensors where each sensor m ∈ M in the sensor
network behaves according to a MFR system. Every sensor in the sensor network has
a maximum resource budget bmax available. Portions of the total sensor budget can be
allocated to a task n ∈ N , where N is the total number of tasks that need to be executed.
Define the portion of the total sensor budget bm,n allocated to task n by sensor m as a
function of the actions am,nk taken at time instant k.

For the sensors under consideration, the resource budget is often not sufficient to sup-
port all tasks that need to be executed. Consequently, the sensors often operate at their
resource limit i.e., the total number of tasks per sensor requires more sensor budget than
available. The SRM problem in general is considered as a scheduling problem, where the
goal is to allocate the budget over the different tasks.

More specifically, the scheduling problem can be modeled according to a constrained op-
timization framework in which the optimal actions need to be found such that a certain
cost C is minimized while at the same time the maximum resource budget bMax

m of each
sensor is not exceeded.

21
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At time instant k, the optimization problem for N tasks and M sensors is formulated as,

min
A

1TC

s.t.


b11 b12 · · · b1N
b21 b22
... . . .

bM1 bMN


︸ ︷︷ ︸

B(A)

·


1
1
...
1

 ≤

bmax1
bmax2

...
bmaxM


︸ ︷︷ ︸

bmax

(4.1)

Where,
C =

[
C1 C2 · · · CN

]T (4.2)

represents the cost related to all tasks, 1 ∈ Rp×1 a vector of all ones and bm,n is a
representation of the budget spend by sensor m on task n. The individual budgets bm,n
inside the resource budget matrix B(A) represent a percentage of the maximum budget
bmax available to each sensor. The optimization variable A = [a1,n, · · · ,aM,n] is a stacked
vector representing the actions of all sensors.
In [35] and [33] a method was proposed for solving the RRM problem for a single sensor.
This thesis aims at extending the solution to a multi-sensor case. Hence, in the remainder
of this thesis, the focus will be on solving a RRM problem.

RRM problem definition

In a RRM problem specifically, each task n is considered to be a target that moves around
in some environment and is being tracked by M MFR systems using a tracking filter such
as the Kalman filter. In a two-dimensional scenario, every target n can be modelled by a
state that describes the current position and velocity in a Cartesian coordinate system at
time step k,

snk = [xn, yn, ẋn, ẏn] (4.3)

with ẋn and ẏn the velocities in x and y direction respectively. The state of target n at
time step k + 1 can be expressed in terms of the state at time step k according to,

snk+1 = fk+1(snk ,wn
k ) (4.4)

with wn
k the process noise and fk+1 some state transition function.

Each sensor takes a measurement of the state at every discrete time step k. For time step
k an observation related to target n and sensor m can be characterized as,

zm,nk = h(snk ,v
m,n
k ,am,nk ) (4.5)

with h a measurement function that depends on the state, measurement noise vk and the
sensor action am,nk .

For the remainder of the thesis, the tracking process is based on the sensing informa-
tion of all sensors. It is assumed that all sensors produce independent measurements which
are fused to a global estimate per target using Algorithm 2. This chapter deals with the
optimization of the sensing resources, and the use of the term measurement here solely
refers to the internal simulation of the expected future of the POMDP.

4.2 Proposed Solutions for the RRM Problem
This section aims at deriving different approaches to tackle the problem described in Sec-
tion 4.1. The focus here is on describing what happens during the optimization process.
The quantitative analysis will be done in chapter 5.
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Three different implementations will be considered. These are an independent implemen-
tations (4.2.3), a centralized implementations (4.2.4) and a distributed implementation
(4.2.5). Prior to the description of the three implementations, two relevant frameworks
will be given related to LR and Policy Rollout.

4.2.1 Distribution of Sensor Budgets Using Lagrangian Relaxation
LR is used to include the constraints of problem 4.1 into the cost function similarly as with
problem 3.16. This allows the original optimization problem to be decoupled into multiple
problems that can be solved in parallel. Define the Lagrangian Dual Problem (LDP) of
problem 4.1 as,

ZD = max
λ

[
min

A

N∑
n=1

(
Cn +

M∑
m=1

λm · bm,n
)
− λT · bmax

]
(4.6)

with λ ∈ RM×1, the Lagrangian multiplier related to the inequality constraint. Due to the
summation in the LDP, the problem can be solved myopically in parallel during each LR
iteration. The separate sub-problems are connected through the Lagrangian multiplier,
which is updated using the subgradient method,

λk+1 = max{0,λk + γ · gk} (4.7)

It is assumed that the cost is based on a one step ahead minimization, hence the solution
to this problem would be myopic. In the next section, the policy rollout technique will be
used to indicate how the problem can be solved non-myopically.

4.2.2 Finding Approximately Optimal Actions Using Policy Roll-
out

The system under consideration is modeled according to a POMDP. Inside the POMDP,
the tracking process as described in Section 3.2.2 is simulated. As mentioned in Section
3.1.2, the POMDP describes a Markov Decision Process (MDP) in which the state can-
not be observed directly, instead an observation is generated that computes a probability
distribution over the possible states called the belief state b. Using the belief state and
underlying knowledge of the MDP, the POMDP allows the problem to be solved non-
myopically by taking into account the expected future.

Similarly as in Section 3.1.3, the actions for each sensor are found using policy rollout
for POMDP’s. For each action a ∈ A , a rollout is evaluated starting from initial belief
state b0 up until horizon H.

4.2.3 Independent Implementation
The most straightforward implementation to the RRM problem in a sensor network is
achieved by assuming that each sensor operates independently during the optimization
process i.e., the independent implementation applies multi-sensor tracking as explained in
section 3.2.3, but is applying the RRM algorithm from [33, 35] as explained in section 3.1.3
for each sensor individually.

Since each sensor operates independently, the cost Cn related to task n can be decom-
posed into a summation of costs from multiple sensors,

Cn = C1,n + C2,n + · · ·+ CM,n (4.8)

Where the individual cost related to sensor m and task n is defined as a function of the
action am,nk and state snk ,

Cm,n = (am,nk , snk ) (4.9)
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Applying LR to problem 4.1 using this definition of the cost results in the following LDP,

ZD = max
λ

[
min

A

( M∑
m=1

N∑
n=1

Cm,n + λm · bm,n
)
− λT · bmax

]
(4.10)

The problem can be decomposed into a sub-optimization per task per sensor. Per task and
sensor a policy rollout is evaluated to search for the best possible actions. Since each sensor

Figure 4.1. Block diagram of a Multi-sensor RRM solution when there is no communication
between sensors. Each sensor computes an independent solution based on the AODB algorithm.

operates independently, the AODB algorithm as presented in Section 3.1.3 can be applied
to each sensor individually. The outputs of each AODB block are summed together to
compute the total cost of the algorithm. A block diagram of this implementation is given
in Fig. 4.1.

The independent implementation of AODB to a multi-sensor case is valid. It is not nec-
essarily the optimal way of solving this problem because the information sharing property
of sensors is not taken into account. Hence, further improvement can be made to the
multi-sensor solution.

4.2.4 Centralized Implementation
The proposed solution is based on a centralized fusion approach, which is considered as
the most optimal way of utilizing measurement fusion. A central processing node is used
for allocating budgets over the sensors. Consequently, the representation of the cost Cn

related to task n needs to incorporate the actions of multiple sensors i.e.,

Cn = C(a1,n
k ,a2,n

k , · · · ,aM,n
k , snk ) (4.11)

Applying LR to problem 4.1 using this definition of the cost function results in the following
LDP,

ZD = max
λ

[
min

A

( N∑
n=1

C(a1,n
k ,a2,n

k , · · · ,aM,n
k , snk )+

N∑
n=1

M∑
m=1

λm ·bm,n
)
−λT ·bmax

]
(4.12)

The problem can be decomposed into N parallel sub-optimization problems and the opti-
mal actions for M sensors related to the n’th task are computed in the central processing
node using a global policy rollout.
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The centralized implementation utilizes a global policy per task to explore the actions
of multiple sensors. For each evaluation of a global policy rollout tracking updates are
computed using the EKF.
The choice has been made to use a form of measurement fusion instead of state estimate
fusion since it is straightforward to implement and does not have to deal with dependent
estimation errors[45]. Hence, Algorithm 2 as described in Section 3.2.3 is utilized.
Since the global policy rollout explores the actions of multiple sensors, the action space
will be g × an, where g has a length of dML with d, the number of actions each indi-
vidual sensor can take related to target n, L the number of optimization variables per
sensor and an = [a1,n, · · · ,aM,n] the optimization variables for each sensor (see Table
I). Hence, increasing the number of sensors will result in an exponential increase of the
action space. Because the central processing node has access to all required information

TABLE I. Action space required for the centralized implementation for target n. M is the number
of sensors, L is the number of optimization variables per sensor (assumed to be 1 here).

Actions Sensor 1 Sensor 2 · · · Sensor M
g(1) a1,n(1) a2,n(1) · · · aM,n(1)
g(2) a1,n(2) a2,n(1) · · · aM,n(1)
...

...
...

...
...

g(d1) a1,n(d) a2,n(1) · · · aM,n(1)
g(d1 + 1) a1,n(1) a2,n(2) · · · aM,n(1)
...

...
...

...
...

g(d2·1) a1,n(1) a2,n(d) · · · aM,n(1)
g(d2·1 + 1) a1,n(1) a2,n(1) · · · aM,n(2)
...

...
...

...
...

g(dM ·1) a1,n(1) a2,n(1) · · · aM,n(d)

(e.g. measurements) the solution to this problem is regarded optimal, but becomes ap-
proximately optimal by applying the policy rollout. Also, for a single sensor, the approach
given here will reduce to the independent implementation since no measurements can be
fused together.

4.2.5 Distributed Implementation

The centralized approach for solving the multi-sensor scenario introduces a heavy compu-
tational load on the policy rollout due to the exponential increase of the action space. As
a result of this, a practical distributed alternative is proposed in which the information of
each sensor is shared amongst the sensors instead of transmitting it to a central node.
Now per sensor and per task a policy rollout is computed. Hence, each individual policy
rollout only needs to explore the action space related to a single task and a single sensor.
Now each sensor functions as a processing node to compute fused estimates and to find the
best possible actions related to that specific sensor.
Each local processor is responsible for computing budget allocations related to the corre-
sponding sensor. Hence, the cost Cn related to task n can be decomposed into a summation
of costs from multiple sensors,

Cn = C1,n + C2,n + · · ·+ CM,n (4.13)

Where the individual cost related to sensor m and task n is defined as,

Cm,n = (am,nk , I, snk ) (4.14)
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Where I is a representation of the information received from all other sensors. Applying
LR to problem 4.1 using the cost as defined above results in the following LDP,

ZD = max
λ

[
min

A

( M∑
m=1

N∑
n=1

Cm,n + λm · bm,n
)
− λT · bmax

]
(4.15)

The problem is decomposed into a sub-optimization problem per task per sensor similarly
as with the independent implementation while at the same time in each sub-problem the
information of the other sensors is shared. By doing so, each individual policy rollout only
needs to explore the action space related to a single task and a single sensor similarly as
with the independent extension while at the same time the information sharing ability is
maintained.

As the policy rollout is making predictions of the expected future for a single sensor,
it does not have access to the optimized actions of all other sensors during the resource
allocation calculation using LR. To maintain a similar performance as the centralized im-
plementation, at the beginning of each policy rollout for a sensor, the last known actions
of the other sensors are used as input. Hence, the information term I is defined as the last
known actions of the other sensors.
Thus, during a policy rollout, the actions of a single sensor and a single task are explored
while the other sensors are assumed to execute the same action. Giving the sensor access
to its own generated measurements measurements related.

A disadvantage of sharing the information between sensors is the additional communi-
cation overhead. However, one would expect that the required computational resources
for the additional communication are significantly less compared to the computational re-
sources required for computing a global policy rollout in the centralized implementation.
Hence, the expectation is that the distributed implementation is considered the best possi-
ble implementation compared to the other two implementations. It should obtain a similar
cost as the centralized implementation using significantly less computational resources.
The distributed fusion implementation can be combined with the AODB algorithm. Fig.

Figure 4.2. Block scheme of the distributed implementation for a scenario with five sensors using
the AODB algorithm.

4.2 shows an example involving five tasks. An initial λ is selected and the task set is given
as input for all sensors. For each sensor the AODB algorithm is computed resulting in
an action for the respective sensor. Consequently, the resulting actions from each policy
rollout are communicated to all other sensors. The policy rollout during the next time step
refines the action of the sensor by incorporating the actions of the other sensor.
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4.3 Alternative Use Case
To indicate the general applicability of the proposed solutions an additional example is
introduced related to a power distribution network. The goal here is to give a high level
approach of the distributed implementation in a field other then radar systems. For this a
smart grid is considered (see Fig. 4.3), a distributed network that connects several energy
hubs (e.g. solar or wind energy) to a power grid that provides customers such as homes and
businesses with electricity. In a smart grid, it is assumed that each energy hub is capable
of exchanging information with the other hubs. The ability to exchange information in this
case potentially improves the efficiency and reliability regarding the power distribution.
Each energy hub in the network has a certain amount of power available which it needs to
allocate over the customers as efficiently and reliable as possible, while at the same time
overloads should be prevented.
In theory, this system can be modeled into an optimization problem that is similar to
problem 4.1. For example, a cost function C could be designed that takes into account
the users needs while taking the maximum energy per power hub into account. By looking
ahead into the expected future an optimal policy can be found.
Via smart sensors, the network takes measurements at the customer which are used to
update the energy allocated by each energy hub.
Hence, this problem could be solved by using either the centralized or distributed imple-
mentation as discussed in the previous section.

Figure 4.3. Schematic of a smart grid connecting industrial and renewable energies with homes
and other businesses to show how the proposed solution can be applied to networks other than
radar system networks[52].



Chapter 5

Analysis

In Chapter 4, three implementations to the RRM problem were introduced. This chapter
aims at showing the functioning of all three implementations and to verify the distributed
implementation as the best possible approach. Multiple two-dimensional radar tracking
scenarios will be considered in an environment with multiple targets and stationary sensors.
Unless specified otherwise, in the following simulations it is assumed that the revisit time T
i.e., the time between consecutive measurements is fixed at one second and the optimization
problem focuses only on the dwell time τ i.e., time spent on each target, with τ ∈ [0,1].
Section 5.1 will introduce the assumptions made on the radar scenarios. A set of general
simulation parameter will be given in Section 5.2. Finally, in Section 5.3 results of different
simulation scenarios will be provided.

5.1 Modelling
Since the analysis of the algorithms is done in a two dimensional tracking scenario, several
assumptions need to be made on the radar system and dynamics of the targets.

Target Dynamical Model

It is assumed that each target moves according to a constant velocity model. Using 4.4,
the transition from state k to k+1 can now be described according to,

snk+1 = Fsnk + wn
k (5.1)

with wn
k defined as the process noise and state transition model F given by,

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (5.2)

The corresponding maneuverability noise covariance Qw,n for target n is in this case defined
as,

Qw,k =


T 2

2 0
0 T 2

2
T 0
0 T


[
T 2

2 0 T 0
0 T 2

2 0 T

]
· σ2

w,k =


T 4

2 0 T 3

2 0
0 T 4

2 0 T 3

2
T 3

2 0 T 2

2 0
0 T 3

2 0 T 2

2

 · σ2
w,k (5.3)

with σ2
w,k the maneuverability noise variance of a single target.

28
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Observation model

The sensor generates an observation that describes the range and angle with respect to
the target. Due to the non-linear relationship between measurements and states, the EKF
(see Section 3.2.2) is used to compute the system state.
The tracking of targets during the simulation is realized in cartesian coordinates. Using a
measurement transformation function h, measurements are generated in range and angle.
The observation z received at each sensor is given by,

zm,nk = hm,nk (snk ) + vm,nk (5.4)

with vm,nk , the measurement noise for target n. Note that the noise related to range and
angle are assumed to be independent of each other, i.e.,

vm,nk = [vm,nr , vm,nθ ]T (5.5)

with corresponding variances σ2
r and σ2

θ . where hm,nk (snk ) represents the measurement trans-
formation function which transforms the Cartesian measurements into polar measurements
defined as,

hm,nk (snk ) =
[√

(xnk − x′m)2 + (ynk − y′m)2

atan2(ynk − y′m, xnk − x′m)

]
(5.6)

with x′m and y′m the location of sensor m in Cartesian coordinates respectively.
The observation model Hm,n

k ∈ R2x4 for target n and sensor m is defined as the Jacobian
of the measurement transformation function h evaluated at the current state of target n,

Hm,n
k = δhm

δs

∣∣∣
sn

k

(5.7)

SNR Model

Computation of the Signal-to-Noise Ratio (SNR) is done according to 5.8, which is based
on the theory provided by Koch in [53].

SNRk = SNR0 ·
σn
σ0
· τn
τ0
·
(rn
r0

)4 · exp(−2∆α) (5.8)

with SNR0, the SNR for a reference target, σn the Radar Cross Section (RCS) of target
n, τn the dwell time of target n and rn the actual range of target n at time step k. The
values in the denominator are corresponding to a RCS, dwell time and range of a reference
target. The term in the exponential is called the relative beam positioning error, which is
defined in this case according to,

∆α = (θm,n − θ̂m,n)2

Γ2 (5.9)

with θm,n the real target angle with respect to sensor m, θ̂m,n the predicted target angle
in azimuth and Γ, the one sided beam-width in azimuth. In the rest of this section it is
assumed that there is no beam positioning error i.e., ∆α = 0
The variance in range and angle related to the measurement noise can now be defined as,

(σm,nr/θ )2 =
(σm,0r/θ )2

SNRk
(5.10)

The corresponding measurement covariance matrix is, due to the independent measure-
ments, defined as the following diagonal matrix,

Rm,nk =
[
(σm,nr )2 0

0 (σm,nθ )2

]
(5.11)

σ2
r and σ2

θ are computed based on a SNR value and measurement noise variances(σ2
r,0,σ2

θ,0)
that are related to a reference target with parameters defined according to Table I.
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TABLE I. Parameters of reference measurement

Parameter Value
Reference SNR (SNR0) 1
Reference RCS (ζ0) 10 m2

Reference dwell time (τ0) 1 s
Reference range (r0) 50 km

5.2 Assumed Radar Scenario
This section describes the prerequisites for evaluating different radar tracking scenarios. A
set of general parameters are given followed by a set of parameters related to the system
and the target. Prior to this a small note will be made on how the optimization problem
is evaluated and on the initialization of the algorithms. Unless specified otherwise, the
parameters described here are the parameters used throughout all different scenarios.

Cost function & Constraint

In both the centralized and distributed approach the cost (Cn), related to target n is based
on the predicted error covariance at time step k + 1. Define the current predicted error
covariance at time step k as,

P∗k+1|k = FP∗k|kFT + Qk (5.12)

The * indicates that the error covariance can be either the fused predicted error covariance
computed in the central processing node or the predicted error covariance computed locally
in sensor m depending on the chosen approach.
The cost is defined to be the trace of the positional elements of the error covariance,

Cn =
[
1 1 0 0

]
· diag(P∗k+1|k) (5.13)

The formulation of the cost for the independent, centralized and distributed approach are
formulated slightly differently. A normalization factor of 1

N is added for the centralized
approach since this approach already takes into account the number of sensors in the cost
Cn. Similarly, for the independent and distributed approach a normalization term of 1

MN
is added.

The individual budgets bm,n are defined to a be a ratio of the dwell time over the re-
visit time per sensor per target,

bm,n = τm,n
T

(5.14)

Since the revisit time is fixed at one second and the revisit time can take one values between
0 and 1 second, the individual budget bm,n represents a percentage of the total budget used
by the sensor.

Initialization

Prior to computing budget allocations an initialization process is defined. During this
initialization step the error covariance is initialized as a square diagonal matrix P∗k+1|k =
diag(100, 100, 100, 100). The targets are tracked using the EKF using Algorithm 2 over
multiple simulation steps during which the predicted state and error covariance are updated
to guarantee reasonable initial values of the error covariance as soon as the budget allocation
algorithm process has started.
Note that the initial error covariances of the centralized and distributed approach are set
to be the same.
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General Simulation parameters

Table II shows the general simulation parameters used for the simulations. The maximum
budget for each sensor is set to be 1. The budget allocation is recalculated every 20 seconds,
and there is a total of 10 budget updates. In between budget updates, measurements are
taken using the current allocated budgets.
As discussed in Section 3.1.2, the policy rollout uses a belief state which is used after the
initial belief state until the time horizon is reached. For simplicity, the applied base policy
is defined as the evaluated action at each step in the policy rollout (πbase = ak). The
policy rollout has a horizon length of 15 time steps. For each policy selection four possible
rollouts are computed and the result is defined as the average of those four outcomes.
The action to be optimized is defined to be the dwell time (τ). The actions are selected
from a one dimensional discrete actions space A . The discretization for the dwell time
(∆τ) is defined to be 0.01 seconds. The revisit time T is fixed at 1 second.

TABLE II. General Simulation Parameters

Parameter Value
Maximum budget Bmax 1
Budget update tB 20 s
Number of budget updates 10
Beam positional error ∆α 0
Probability of detection 1
Step size subgradient γ 100

Parameter Value
Action discretization A = [∆τ ] 0.01 s
Revisit time T 1 s
Precision of Lagrangian relaxation ε 0.05
Number of rollouts 4
Horizon length H 15

Assumed Radar System

Each radar system in the sensor network generates independent measurements in range
and angle. The corresponding variances in range and angle are described using a two-
dimensional square matrix R with the variances placed on the diagonal.
Measurements in range and angle are picked from normal distributions N (r, σ2

r) and
N (θ, σ2

θ) respectively. Variances σ2
r and σ2

θ are computed based on a Signal-to-Noise
Ratio (SNR) value (see 5.8) and measurement noise variances (σ2

r,0, σ2
θ,0) that are related

to a reference target. Table III shows the system parameters of the assumed radar systems
with respect to the reference measurement.

TABLE III. General system parameters of the assumed radar systems with respect to the reference
measurement

Parameter Value
Noise variance in range (σ2

r,0) 25 m2

Noise variance in angle (σ2
θ,0) 4e−4 rad2

General Target Parameters

The standard scenario under consideration consists of six targets and two sensors. Each
target has a certain RCS (ζ) and observation noise variance (σ2

w). The received RCS at
the sensors per target differ, due to the dependency of frequency on the RCS. For each
target, the RCS and observation noise are picked according to Table IV. Since the focus is
not on what the specific values of the RCS and observation noise are, the values are picked
arbitrary.
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TABLE IV. General target parameters

Parameter Target 1 Target 2 Target 3 Target 4 Target 5 Target 6
ζ1 (m2) 12.5 5 22.5 20 5 25
ζ2 (m2) 50 20 90 80 20 100
σ2
w 13 23.6 15.2 22.2 16.9 11.45

5.3 Simulation Results
The performance of the algorithm is investigated via simulated results in Matlab. Several
scenarios will be considered to try to understand the working of the algorithm. To show the
performance difference between the distributed implementation and the other two imple-
mentations both a static scenario (Section 5.3.1) and a dynamic scenario (Section 5.3.2) will
be considered. Section 5.3.3 will provide some additional special cases of the distributed
implementation. All results will be analyzed based on the budget allocation, runtime and
primal (ZP = 1TC) and dual (ZD) cost. The primal (1TC) and dual (ZD) cost refer to
the original and relaxed optimization problem respectively.

5.3.1 Static Scenario
The first scenario under consideration is a static scenario involving 2 stationary sensors
and 6 stationary targets. The targets and sensors are located in a two dimensional grid
according to Fig. 5.1. At time t = t0 all three algorithmic solutions are applied to this

Figure 5.1. Visualization of stationary tracking scenario. Triangles indicate sensors and crosses
indicate targets.

scenario using the simulation parameters described in Section 5.2. The results will be eval-
uated for each of the three solutions based on the cost and resulting dwell times.

Independent implementation

The simulation results of the independent implementation for the multi sensor scenario
can be found in Fig. 5.2 and Fig. 5.3 showing the cost after the first budget allocation
step and after multiple simulation steps. Fig. 5.2 shows the convergence during a single
policy rollout. Note that the number of iterations required is quite large. This is mainly
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TABLE V. Overview of resulting budget allocations over target one till six by sensor 1 and 2 of
the Independent implementation

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 12% 38% 12% 15% 9% 14% 100
2 26% 9% 26% 11% 23% 1% 96%

due to the initial pick of the Lagrangian multipliers and the selected step size. Also, the
primal function remains constant during the policy rollout because it is independent of
the optimization parameter τ . Fig. 5.3 shows the primal and dual cost over multiple
simulation steps. Both the primal and dual cost converge to their respective optimal
values over multiple simulation steps. The primal cost now also decreases in value due to
the dependency on the dwell time during budget updates in between the budget allocation
algorithm. The resulting budget allocation for each target per sensor (i.e., bn,m = τn,m

T )

Figure 5.2. Evolution of the primal and
dual cost of the independent implemen-
tation during the first budget allocation
update process.

Figure 5.3. Evolution of the cost of the
independent implementation over mul-
tiple simulation steps.

after the algorithm has converged over multiple simulation steps can be found in Table V.
The sum of the budgets for both sensors are close to their maximum resource allocation.
Due to the predefined error margin (ε) of five percent, the algorithm is allowed to stop as
soon as the budget is within 5% of the maximum resource budget. This is the reason why
the sum of the budgets for sensor 2 is 96% instead of 100%.

Centralized implementation

The simulation results of the centralized implementation are presented in Fig. 5.4 and Fig.
5.5 showing the cost after the first budget allocation step and after multiple simulation
steps. Fig. 5.4 shows the convergence of the primal and dual cost during the first policy
rollout. Note how the algorithm now requires significantly less iteration steps compared to
the independent implementations. The evolution of the primal and dual cost over multiple
simulation steps is given in Fig. 5.5. As can be seen from the figure, both the primal and
dual cost remains more or less constant over the entire simulation. Indicating that the
approximately optimal values are reached during the first budget allocation process. The
resulting budget allocations for each target per sensor after the last simulation step can be
found in Table VI. Since the centralized implementation takes the communication factor
into account, the allocations are different compared to the independent implementation.
For example, the budget allocation for target 3 is mainly covered by sensor 1 with 46% of
its total budget whereas sensor 2 only spends 1% of its budget on target 3. As a result of
this, sensor 2 can spend more budget on other relevant targets (e.g. target 6).
The reasoning behind the individual budget allocations is quite difficult due to the depen-
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Figure 5.4. Evolution of the primal and
dual cost of the centralized implementa-
tion during the first budget allocation up-
date process.

Figure 5.5. Evolution of the cost of the
centralized implementation over multiple
simulation steps.

dency on multiple factors (e.g. range, RCS or process noise), however according to the cost
function they are approximately optimal.
Again, due to the predefined error margin both sensors do not exactly reach their maximum
resource allocation.

TABLE VI. Overview of resulting budget allocations over target one till six by sensor 1 and 2 of
the centralized implementation

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 17% 18% 46% 8% 9% 1% 99%
2 35% 13% 1% 13% 24% 11% 97%

Distributed implementation

The simulation results of the distributed implementation are shown in Fig. 5.6 and Fig.
5.7 showing the convergence of the cost during the first budget allocation step and the
evolution of the cost over multiple simulation steps.
Fig. 5.6 indicates that more iteration steps are required to reach convergence during the
first budget allocation step due to different initial starting values. Based on the evolution
of both the primal and dual cost over multiple simulation steps one can conclude that the
distributed implementation converges to a value that is similar to the centralized imple-
mentation. The dwell times at the end of the simulation are given in Table VII. The budget
allocations are approximately equal compared to the dwell times of the centralized imple-
mentation. Note how the total budget for sensor 2 exceeds 100%. Hence, the constraint
as defined in problem 4.1 is not met. This can occur due to the fact that the predefined
error margin (ε) is set to 5%. As soon as the sum of the budget allocations is within 5%
of the maximum resource budget, the algorithm will stop even if the sum of the budgets is
above 100%.
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Figure 5.6. Evolution of the primal and
dual cost of the distributed implementa-
tion during the first budget allocation up-
date process.

Figure 5.7. Evolution of the primal and
dual cost of the distributed implementa-
tion over multiple simulation steps.

TABLE VII. Overview of resulting budget allocations over target one till six by sensor 1 and 2 of
the distributed implementation

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 16% 18% 44% 8% 9% 1% 96%
2 37% 14% 1% 14% 25% 11% 102%

Comparison

To compare the three implementations four static scenarios are defined. Each scenario
comprises of two sensors and six arbitrarily placed targets around the sensors (see Ap-
pendix A.1). All three implementations are applied to the four different scenarios and are
allowed to converge in 10 simulation steps. For the sake of better comparison each scenario
is averaged over 10 consecutive runs.

Fig. 5.8 and Table VIII show the resulting averaged primal and dual cost and the av-
erage runtime for all three approaches at the end of each run. Both the centralized and
distributed implementations outperform the independent implementation with respect to
the primal and dual cost by a factor two to three. As expected, due to the exponential

TABLE VIII. Runtime comparison between the independent, centralized and distributed imple-
mentation averaged over multiple static scenarios.

Approach Runtime in seconds
Independent 90
Distributed 34
Centralized 812

increase of the action space for an increasing number of sensors, the average runtime of the
centralized implementation is significantly larger with respect to the other two implemen-
tations. The average runtime of the distributed implementation is more then 20 times less
compared to the centralized implementation.
Interestingly, the average runtime of the distributed implementation is smaller than the
independent implementation. This is probably due to the initial pick of the Lagrangian
Multiplier.
Note that the costs of the centralized and distributed implementation are approximately
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Figure 5.8. Cost comparison between the independent, centralized and distributed extension
averaged over multiple static scenarios. The results are compared based on the average primal
cost (left) and average dual cost (right)

equal. This implies that both implementations computed more or less the same budget
allocations. To verify this, the percentage difference in average budget allocation is com-
puted for each considered target in one of the comparison scenarios (see Fig. 5.9).
The maximum time difference in budget allocation is roughly 2.1% which is well within
the previously defined error margin (ε) of 5%. From this, one can conclude that indeed the
centralized and distributed implementations are approximately equal and over time both
implementations will converge to more or less the same results in a static scenario.

Figure 5.9. Percentage difference in average budget allocation between the centralized and dis-
tributed implementations over 24 arbitrarily placed targets for sensor 1 (top) and sensor 2 (bot-
tom).
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5.3.2 Dynamic Scenario
To further explore the workings of the derived algorithms, a dynamic scenario is considered.
For this scenario, the same number of sensors (two) and targets (six) are used. However,
for this scenario it is assumed that the targets move according to a linear motion model as
described in Section 5.1.
The simulation consists of ten simulation steps, in which ten consecutive policy rollouts
are applied during which the optimal budget are computed. To reduce the computational
complexity, the action space consists of the dwell time alone. The revisit time is fixed at
1 second for all sensors. A visualization of the dynamic tracking scenario is shown in Fig.
5.10. The initial velocities of targets one till six are given in Table IX.

Figure 5.10. Visualization of dynamic tracking scenario

TABLE IX. Target velocities

Target Vx(m/s) Vy(m/s)
1 9 -15
2 -30 15
3 45 30
4 -35 0
5 -20 -25
6 -30 0

Independent implementation

The simulation results of the independent implementation are shown in Fig. 5.11 and Fig.
5.12 showing the convergence of the primal and dual cost during the first budget allocation
step and the budget allocation over multiple simulation steps. Note how the cost converges
within approximately 900 iterations. Again, the initial pick of the Lagrangian multipliers
cause the algorithm to converge relatively slow.
Ideally, sensor 1 would spend significantly more budget on target 3 compared to sensor 2
due to the placement of target 3. However, due to the lack of communication, both sensor
1 and sensor 2 spend allocate a large portion of their budget to target 3. The resulting
budget allocations of the independent implementation are given in Table X. Again the total
budget of a sensor is exceeded here due to the way the error margin is defined.
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Figure 5.11. Evolution of the primal and
dual cost of the Independent implemen-
tation during the first budget allocation
update process

Figure 5.12. Budget allocation of the In-
dependent implementation over multiple
simulation steps

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 6% 23% 34% 9% 9% 22% 103%
2 27% 5% 40% 6% 16% 1% 95%

TABLE X. Overview of resulting budget allocations over target one till six by sensor 1 and 2 of
the Independent implementation in a dynamic scenario at the end of the simulation

Centralized implementation

The simulation results of the centralized implementation are shown in Fig. 5.13 and Fig.
5.14 showing the convergence of the primal and dual cost during the first budget allocation
step and the budget allocation over multiple simulation steps. The policy rollout now
converges in significantly less iterations.
The budget allocations indicate that sensor 1 spends the biggest portion of its budget
on target 3, while sensor 2 allocates its resource over the other targets. Purely based on
the placement of the targets one would expect such a behaviour. The resulting budget
allocations at the end of the simulation are given in Table XI

TABLE XI. Overview of resulting budget allocations of the centralized implementation to target
one till six by sensor 1 and 2

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 9% 9% 76% 4% 4% 1% 103%
2 38% 16% 1% 11% 24% 10% 100%
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Figure 5.13. Evolution of the primal and
dual cost of the centralized implementa-
tion during the first budget allocation up-
date process

Figure 5.14. Evolution of the primal and
dual cost of the centralized implementa-
tion over multiple simulation steps in a
dynamic scenario

Distributed implementation

The simulation results of the distributed implementation are given in Fig. 5.15, showing
the evolution of the primal and dual cost during the first budget allocation step and Fig.
5.16 showing the budget allocation over multiple time steps. Note that the number of
iterations required for the cost to converge is approximately 36. Which is about twice as
much compared to the centralized implementation. Indeed, due to the sharing of the last
known dwell times, the initial starting values for each policy rollout are different. As a
result of this, more iteration steps are required to reach convergence for the first budget
allocation process. The resulting cost value however, is close to the converged cost of the
centralized implementation.
The budget allocation over multiple time steps show a similar results as with the central-

Figure 5.15. Evolution of the primal and
dual cost of the distributed implementa-
tion during the first budget allocation up-
date process.

Figure 5.16. Budget allocation using the
distributed implementation over multiple
simulation steps in a dynamic scenario.

ized implementation. This is also verified by looking at Table XII showing the resulting
budget allocations at the end of the simulation.
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TABLE XII. Overview of resulting budget allocations of the distributed implementation to target
one till six by sensor 1 and 2

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 9% 9% 77% 4% 4% 1% 104%
2 38% 16% 1% 11% 24% 10% 100%

Comparison

A comparison is made between the three implementations in a dynamic setting. Four
dynamic scenarios are considered consisting of 6 dynamic targets with arbitrary starting
locations and 2 stationary sensors (see Appendix B.1). All three implementations are
applied to the four different scenarios and are allowed to converge in 10 simulation steps.
Each scenario is again averaged over 10 consecutive runs.
Fig. 5.17 and Table XIII show the average primal and dual cost and the average runtime
over the entire simulation for the three implementations. Note how the relative differences
between the primal and dual cost are more or less equal to the static case indicating that the
distributed implementation has the best overall performance. The cost of the distributed
implementation is more or less equal to the centralized implementation and the average
runtime is approximately ten times as less with respect to the centralized implementation.

Figure 5.17. Cost comparison between the independent, centralized and distributed extension
averaged over multiple dynamic scenarios. The results are compared based on the average primal
cost (left) and average dual cost (right)

To verify whether the distributed implementation has more or less the same budget
allocations, the percentage difference in average budget is compared between each of the
dynamic targets considered in one of the scenarios. Since the targets will be displaced in
between budget allocation updates, the last known dwell times will not exactly correspond
to the desired dwell times of the centralized implementation. Hence, one would expect to
see a larger percentage difference in average dwell times compared to the static case. The
resulting percentage difference in dwell times are plotted in Fig. 5.18.
Note how the percentage difference is larger compared to the static case, however the
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TABLE XIII. Runtime comparison between the independent, centralized and distributed extension
averaged over multiple dynamic scenarios.

Approach Runtime in seconds
Independent 158
Distributed 113
Centralized 1187

difference are still well within the predefined error margin of 5%.

Figure 5.18. Percentage difference in dwell times for 24 randomly placed targets between the
centralized and distributed implementation in a dynamic scenario.
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5.3.3 Special Cases

Based on the results of the static and dynamic scenarios, the conclusion can be made that
the overall performance i.e., resulting cost and runtime, of the distributed implementation
is better compared to the centralized and independent implementation. Hence, the rest of
this section the distributed implementation will only be considered.
There is a vast amount of other possible scenarios that can be considered. Most scenarios
however will not produce significantly alternative results compared to the results obtained
in sections 5.3.1 and 5.3.2. This section shows several cases in which the distributed fusion
implementation might perform sub-optimal or does not work at all.
The simulation parameters for all special cases are equal to the ones used in the previous
section unless specified otherwise. Each simulation is repeated 10 times and averaged.

Targets at the Same Location

The first special case under consideration is one where the targets are overlapping with
each other. The scenario consists of 5 stationary targets and 2 stationary sensors placed
according to Fig. 5.19.
Although the targets have different properties with respect to RCS and observation noise
the algorithm might still struggle with allocating budget over the targets in an efficient
manner in this scenario. The resulting budget allocations for sensor 1 and sensor 2 are

Figure 5.19. Tracking scenario with overlapping targets.

presented in Fig. 5.20 and Fig. 5.21 respectively.
Both figures indicate a fluctuation for target 5 from simulation step to simulation step. It
appears as if the sensors do not have a single optimal solution in this case. This is due to
the placement of target 5 with respect to the sensors.
The resulting dwell times after the last simulation step are given in Table XIV.

TABLE XIV. Dwell times allocated at the end of the simulation for a scenario with overlapping
targets

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Total Budget
1 17% 28% 14% 16% 21% 96%
2 12% 19% 10% 11% 45% 97%
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Figure 5.20. Budget allocation for sensor
1 in a scenario with overlapping targets.

Figure 5.21. Budget allocation for sensor
2 in a scenario with overlapping targets.

Sensors at the Same Location

The second case to consider is a case where the sensors are overlapping with each other.
The scenario consists of 6 stationary targets and 2 overlapping stationary sensors placed
according to Fig. 5.22. The only distinction in this scenario that can be made between

Figure 5.22. Tracking scenario with overlapping sensors

both sensors is the operating frequency since the range and process noise will be equal.
Consequently, the main difference in tracking parameters is the RCS. Since the other
parameters in both targets are the same convergence might be more difficult to reach. Fig.
5.23 and Fig. 5.24 show the budget allocations for sensor 1 and sensor 2 over multiple
simulation steps. Note how the budget allocation for both sensors fluctuates in between
simulation steps.
For sensor 1 this results in either a high budget allocation to target 2 and low budget
allocation to the other sensors or a more balanced budget allocation between all targets.
A similar effect can be seen with the budget allocation of sensor 2.
A possible argument for this to be happening is due to the placement of target 2. Target
2 is located the farthest away from the sensors and the observation noise and RCS are
considerable. Consequently, both sensors want to spend a significant amount of budget on
target 2. After the first iteration, this is indeed what can be observed, target 2 receives
from both sensors the largest budget. After the first iteration the information between
both sensors is shared, which allows both sensors to perceive that the other sensor already
allocated a large amount of budget to target 2. Then both sensors reduce the budget
allocation with respect to target 2 which in turn results in the opposite effect.
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Figure 5.23. Budget allocation for sensor
1 in a scenario with overlapping sensors.

Figure 5.24. Budget allocation for sensor
2 in a scenario with overlapping sensors.

To verify whether this is a recurring issue, target 2 was removed from the simulation (see
Appendix C.1). Results indicated that even when target 2 is removed, the fluctuating of
budgets between simulation steps remains. The resulting dwell times at the end of the
simulation are shown in Table XV.

TABLE XV. Dwell times at the end of the simulation for a scenario with overlapping sensors

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 21% 1% 18% 21% 18% 16% 95%
2 15% 22% 14% 18% 10% 17% 96%

Dropping Targets

The third scenario under consideration is one where one of the sensors drops several tar-
gets during the simulation. For this example, seven dynamic targets and two sensors are
considered (see Fig. 5.25). In this example specifically, sensor 2 is not able to track target
6 and 7 after simulation step 10 while sensor 1 is able to track all targets. Fig. 5.26 and

Figure 5.25. Tracking scenario where sensor 2 is not able to track targets 6 and 7 after simulation
step 10.

Fig. 5.27 show the budget allocations for sensor 1 and sensor 2 over 40 simulation steps.
At simulation step 10 a clear transition is visible. As soon as sensor 2 drops target 6 and
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7, a compensation is made by sensor 1 by allocating a significant amount of its budget
on target 6 and 7 indicating a form of robustness of the algorithm to cope with sudden
changes in the tracking process. Sensor 2 on the other hand redistributes its resources over
the other targets. Also, since the last known dwell times are shared with the other sensors,
it takes an additional simulation step for sensor 1 to make the adjustment of the dwell
times. The dwell times at the end of the simulation are given in Table XVI.

Figure 5.26. Budget allocation for sensor
1.

Figure 5.27. Budget allocation for sensor
2. At time k = 10, sensor 2 is not able to
track targets 6 and 7 anymore.

TABLE XVI. Dwell times at the end of the simulation in a scenario where sensor 2 can track a
limited a limited amount of targets

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Total
1 1% 9% 1% 1% 1 34% 54% 101%
2 40% 21% 11% 8% 24% 0% 0 104%

Varying Budgets

Figure 5.28. Tracking scenario where the sensors have a limited amount of budget available

Both sensors do not necessarily have the same amount of budget at their disposal. To
simulate this effect a scenario is considered where the maximum budget of one of the sen-
sors changes during the simulation. More specifically, the maximum budget of sensor 1 is



46 CHAPTER 5. ANALYSIS

set to 70% after simulation step 10 whereas sensor 2 keeps the maximum budget of 100%.
The considered scenario is given in Fig. 5.28.

Fig. 5.29 and Fig. 5.30 show the budget allocations for sensor 1 and sensor 2 over 20
simulation steps. The budget allocated over time shows clearly how the algorithm is capa-
ble of adjusting its dwell times based on the change in maximum resources available. The

Figure 5.29. Budget allocation for sensor
1. At time k = 10, the maximum budget
is reduced to 0.7

Figure 5.30. Budget allocation for sensor
2.

dwell times at the end of the simulation are given in Table XVII. Both sensors allocated
their budget such that they both operate at their respective resource limit.

TABLE XVII. Dwell times at the end of the simulation in a scenario where sensor 2 has less
available resources compared to sensor 1.

Sensor Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Budget
1 19% 39% 5% 9% 1% 1% 74%
2 33% 36% 1% 5% 19% 9% 103%

Big Scenario

To verify whether the algorithm works in a scenario with more than two sensor, a scenario
is considered with four sensors and ten stationary targets. The resulting budget allocations
and cost can be found in Appendix C.2. Both the cost and budget allocations converge
similarly as with the scenario involving two sensors.
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Conclusion

An approximately optimal solution to the RRM problem in a multi-sensor network has
been presented. The RRM problem was formulated as a multi-sensor constrained opti-
mization problem in which the optimal actions need to be found for multiple tasks. The
cost, defined as the predicted error covariance, needs to be minimized while at the same
time the maximum resource budget of each sensor is not exceeded.

A novel framework was developed for solving the RRM problem in a sensor network. The
proposed framework exploits an already existing solution for RRM in a single sensor. The
different tasks are modeled as a POMDP and the problem is solved non-myopically using a
combination of Lagrangian relaxation and policy rollout. The multi-sensor implementation
is achieved by exploiting communication between sensors.

Two novel multi-sensor implementations, namely a centralized and distributed implemen-
tation have been developed to control the actions of the sensors at an affordable com-
putational cost. The centralized implementation, defined as the approximately optimal
solution, utilizes a global policy per task. As such, the policy rollout for a single target
needs to explore the actions of multiple sensors. For each global policy rollout significant
computational resources are required.
As a practical alternative to the centralized implementation, the distributed implemen-
tation has been developed to reduce the computational complexity. Now per sensor and
per task a policy rollout is computed. Hence, each individual policy rollout only needs
to explore the action space related to a single target and a single sensor. To maintain
a similar performance as the centralized implementation, at the beginning of each policy
rollout the last known actions of the other sensors are shared. Resulting in an increase
of computational resources required due to the added communication overhead. However,
this is assumed to be negligible compared to the overall reduction in computation time for
the distributed implementation.
An additional third independent implementation is considered. The independent imple-
mentation uses no communication during the optimization process and is considered to be
the implementation with the lowest performance with respect to the cost.

Using two-dimensional simulated radar tracking scenarios all implementations were ver-
ified. The targets were assumed to move according to a linear model based on the EKF.
The EKF should be capable of dealing with non-linear movement of targets. However, this
has not been taken into account in this thesis.

The results of the three implementations were verified by analyzing the convergence of
the cost and the resulting budget allocations. By comparing the budget allocation of mul-
tiple randomly placed targets in static and dynamic scenarios it has been shown that over
time the distributed implementation converges to approximately similar results as the cen-
tralized implementation.

47
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Both the novel centralized and distributed implementation have been compared to the
independent implementation. The simulations show that the centralized and distributed
implementation outperform the independent implementation with respect to the average
cost. The independent implementation has a cost that is more than twice as large as the
other two implementations. The cost of the centralized and distributed implementation
converged to approximately equal values.

To indicate the difference in computational resources required for the centralized and dis-
tributed implementation, the average runtime has been compared. It has been shown that
the centralized implementation requires a computational load that is more than ten times
as big as the distributed implementation for both a static and dynamic scenario. This is
mainly due to the modelling of the policy rollout. Because the centralized implementation,
defined as the approximately optimal solution, utilizes a global policy per task to explore
the actions for multiple sensors, the action space will be significantly larger compared to
the policy rollout used for the distributed implementation. For an increasing number of
sensors the action space of the centralized implementation will grow exponentially, whereas
a policy rollout for the distributed implementation remains unchanged for an increasing
number of sensors.

Several additional special cases have been provided to show the validity of the distributed
implementation under more extreme conditions. In general these results indicated that
there is still room for improvement on the algorithm. For example, when stacking sensors
on top of each other, the budget allocations might fluctuate heavily for both sensors be-
tween fixed values. This behaviour is undesired since it implies a kind of indecisiveness of
the algorithm.
On the other hand, when the budget is changed during optimization or when a sensor drops
some of the targets the algorithm showed that it can deal with those sudden changes. In
addition to that it has been shown that the algorithm still performs as desired when in-
creasing the number of sensors.

The novel centralized implementation results in the approximately optimal solution for
the RRM but requires a heavy computational load making it not a desired solution. The
alternative distributed implementation shows promising results since it converges to similar
results as the centralized implementation using significantly less computational resources.

Because the results are based on simulations, the question arises what the performance
of the algorithm will be in a real life scenario. Hence, in future work, it would be in-
teresting to look into real-world scenarios to test the derived algorithm. Furthermore, it
would be interesting to take into account different revisit times or to optimize it jointly or
even to include other aspects such as searching and classification. Also, in this thesis no
communication constraints were defined for the communication between sensors. It would
be interesting to look at problems that do include those constraints. Finally, the selection
of the cost function and the method of comparing needs to be investigated further.
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Appendix A

Static Scenarios

A.1 Comparison Scenarios

Figure A.1. Static Comparison scenario 1
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Figure A.2. Static Comparison scenario 2

Figure A.3. Static Comparison scenario 3



56 APPENDIX A. STATIC SCENARIOS

Figure A.4. Static Comparison scenario 4



Appendix B

Dynamic Scenarios

B.1 Comparison Scenarios

Figure B.1. Dynamic comparison scenario 1

57
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Figure B.2. Dynamic comparison scenario 2

Figure B.3. Dynamic comparison scenario 3
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Figure B.4. Dynamic comparison scenario 4



Appendix C

Limiting Cases

C.1 Sensors at the Same Location

Figure C.1. Tracking scenario with overlapping sensors where target 2 is removed.

60



C.2. BIG SCENARIO 61

Figure C.2. Resulting budget allocation with overlapping sensors. Even when target 2 is removed
a similar fluctuation between simulation steps can be observed.

C.2 Big Scenario

TABLE I. Overview of resulting budget allocations for targets one till five

Sensor Target 1 Target 2 Target 3 Target 4 Target 5
1 10% 1% 9% 1% 27%
2 1% 39% 1% 29% 1%
3 1% 21% 13% 9% 1%
4 26% 1% 1% 1% 29%

TABLE II. Overview of resulting budget allocations for targets six till ten plus the total budget
allocation per sensor

Sensor sensor 6 Target 7 Target 8 Target 9 Target 10 Total Budget
1 1% 47% 1% 1% 1% 99%
2 15% 1 % 1% 1% 13% 102%
3 1% 1% 45% 6% 1% 99%
4 10% 3% 1% 1% 1% 101%
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Figure C.3. Tracking scenario with a scenario involving four sensors and 10 targets.

Figure C.4. Resulting budget allocation for sensor 1.
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Figure C.5. Resulting budget allocation for sensor 2.

Figure C.6. Resulting budget allocation for sensor 3.

Figure C.7. Resulting budget allocation for sensor 4.
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Figure C.8. Resulting cost of the bigger scenario.



Appendix D

Matlab Code

D.1 Main

1 function [runtime ,T_out , tau_out ] = Main_comparison (M,N,
plotting )

2 % Setup
3 freqs = [12e9 , 3e9];

%
Frequencies of radar systems [X band; S band]

4 lambda = 3e8./ freqs;
5 RCS = ([500; 200; 900; 800; 200; 1000;400]./ lambda ) ’;

% Radar Cross Sections (m2)
6 var_w = [12.9803 23.6233 15.1691 22.1923 16.9110

11.4533 9.2228]; % Process Noise
7

8 sensor_location = [14 e3 30e3 32e3 3000;...
9 15e3 20e3 16e3 20e3]; % Sensor Locations

10 sensor_location = sensor_location (: ,1:M);
11 % Simulation parameters
12 Sim_length = 40;
13 Budget_Update = 5;
14 [l_roll , n_roll ] = deal (15 ,4);

% policy
rollout params

15 [B, precision , step , lambda ] = deal ([1 ,1] , 0.05 , 40, 1e2*ones
(1,M)); % subgradient params

16 [T,tau , lambda_end , state] = deal(cell(Sim_length ,1));
17

18

19

20 K = 10;
21 [f,f_dual , runtime ] = deal(zeros(K ,1));
22 [f_res_save , f_res_dual_save ] = deal(zeros(Sim_length ,K));
23 [˜, ˜, F, ˜] = handler_functionsV3 ();
24 tau_prior = 1/N;
25 T_prior = 1;
26 for k = 1:10
27 k
28 lambda = 1e2*ones (1,M);
29 cov_pred (1:M ,1:N) = {eye (4) *100};
30 [ state_prior , tmp_pred ] = set_stateV2 (N);

65
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31 state_pred (1:M) = { tmp_pred };
32 for it = 1:50
33 for n = 1:N
34 % True location of target w.r.t. sensor
35 state_prior (:,n) = F( T_prior )* state_prior (:,n);
36 for m = 1:M
37 [angle , range , ˜] = sensor_state ( state_prior

(:,n), sensor_location (:,m));
38 [meas{m,n}, R{m,n}] = input_kalman (RCS(m,n),

tau_prior , range , angle);
39

40 end
41 for m = 1:M
42 [ cov_pred {m,n}, state_pred {m}(:,n)] = ...
43 Ext_Kalman (R(:,n), meas (:,n), var_w(n),

cov_pred {m,n}, state_pred {m}(:,n),
sensor_location , T_prior );

44 end
45 end
46 end
47 state {1} = state_prior ;
48 tau_in = tau_prior .* ones(M,N);
49 %% Main Algorithm
50 % Note that f_res_dual is the sum of the individual cost

of each sensor
51 [f_res_dual , f_res] = deal(zeros(Sim_length ,1));
52 time = zeros (1, Sim_length );
53 for Q = 1: Sim_length
54 tic
55

56 [T{Q}, tau{Q}, f_res_dual (Q), f_res(Q), lambda ,
Primal_cost {Q}, Dual_cost {Q}] = ...

57 Budget_allocation (cov_pred , state_pred , tau_in ,
sensor_location , var_w , RCS , lambda , l_roll ,
n_roll , step , B, precision , R, plotting );

58 time(Q) = toc;
59 tau_in = tau{Q};
60 lambda_end {Q} = lambda ;
61

62

63 % Limited Budget
64 if Q == 10
65 B = [0.8 1];
66 % Limited Angle
67 elseif Q > 25
68 if size( state_pred {2} ,2) > 5
69 state_pred {2}(: ,6:7) = [];
70 cov_pred (2 ,6:7) = {[]};
71 tau{Q}(2 ,6:7) = 0;
72 end
73 % Update tracks
74 for n = 1:N
75 meas = [];
76 if n > 5 % Hard coded for

simplicity
77 M = 1;
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78 else
79 M = 2;
80 end
81 % Share info each x seconds .
82 P = 1;
83 while 1*P < Budget_Update
84 state{Q}(:,n) = F(T{Q}(1,n))*state{Q}(:,n)

; % -> only works if T’s are equal
85 for m = 1:M
86 [angle , range , ˜] = sensor_state (state

{Q}(:,n), sensor_location (:,m));
87 [meas{m}(:,P), R{m,n,P}] =

input_kalman (RCS(m,n), tau{Q}(m,n),
range , angle);

88 end
89 P = P+1;
90 end
91

92 % Measurement fusion
93 if M == 2
94 for m = 1:M
95 [ cov_pred {m,n}, state_pred {m}(:,n)] =

...
96 Ext_Kalman ( squeeze (R(:,n ,:)), meas

, var_w(n), cov_pred {m,n},
state_pred {m}(:,n),
sensor_location , 1);

97 end
98 else
99 [ cov_pred {m,n}, state_pred {m}(:,n)] = ...

100 Ext_Kalman ( squeeze (R(1,n ,:))’, meas ,
var_w(n), cov_pred {m,n}, state_pred
{m}(:,n), sensor_location (: ,1) , 1);

101 end
102 M = 2;
103 end
104 else
105 % Update tracks
106 for n = 1:N
107 meas = cell (1,M);
108 % Share info each x seconds .
109

110 P = 1;
111 while T{Q}(1,n)*P < Budget_Update
112 state{Q}(:,n) = F(T{Q}(1,n))*state{Q}(:,n)

; % -> only works iif T’s are equal
113 for m = 1:M
114 [angle , range , ˜] = sensor_state (state

{Q}(:,n), sensor_location (:,m));
115 [meas{m}(:,P), R{m,n,P}] =

input_kalman (RCS(m,n), tau{Q}(m,n),
range , angle);

116 end
117 P = P+1;
118 end
119



68 APPENDIX D. MATLAB CODE

120 % Measurement fusion
121 for m = 1:M
122 [ cov_pred {m,n}, state_pred {m}(:,n)] = ...
123 Ext_Kalman ( squeeze (R(:,n ,:)), meas

, var_w(n), cov_pred {m,n},
state_pred {m}(:,n),
sensor_location , T{Q}(m,n));

124 end
125 end
126 end
127

128 state{Q+1} = state{Q};
129 end
130 tau_out {k} = tau;
131 f_res_save (:,k) = f_res;
132 f_res_dual_save (:,k) = f_res_dual ;
133 f(k) = f_res(end);
134 f_dual (k) = f_res_dual (end);
135 Primal_cost_save {k} = Primal_cost ;
136 Dual_cost_save {k} = Dual_cost ;
137 runtime (k) = sum(time);
138 end
139 runtime_ave = sum( runtime )/K;
140

141 %% Save Relevant Values
142

143 % Set T in budget allocation as well
144 T_out = T{end };
145

146 %% Plotting
147 if plotting == 1
148 close all
149 figure (1)
150 p1 = plot(round(f_res *100) /100 , ’linewidth ’ ,1.5); hold on;
151 p2 = plot(round( f_res_dual *100) /100 , ’linewidth ’ ,1.5); hold

on;
152 xlabel (’Cost ’);
153 title(’Function value(dual)’);
154 xlim ([1 Sim_length ])
155 legend ([p1 p2], ’Primal ’, ’Dual ’);
156

157

158

159 tmp = cell2mat ( lambda_end );
160 figure (2)
161 for m = 1:M
162 plot(tmp (:,m),’linewidth ’ ,1.2);hold on;
163 end
164 title(’Evaluation of Lambda ’)
165 xlabel (’Simulation step ’);
166 xlim ([1 Sim_length ]);
167 legend ( arrayfun (@( lambda ) sprintf (’Lambda %d’, lambda ), 1:

M, ’UniformOutput ’, false))
168

169

170
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171 tmp = cell2mat (tau);
172 figure (3)
173 for n = 1:N
174 for m = 1:M
175 tau_in = tmp(m:M:end ,n);
176 subplot (M,1,m)
177 p(n) = plot(tau_in , ’linewidth ’ ,4); hold on;
178 set(gca ,’FontSize ’ ,20)
179 title ([’Sensor ’,num2str (m)],’FontSize ’, 34);
180 xlabel (’Simulation Step ’,’FontSize ’, 34);
181 ylabel (’Budget ’,’FontSize ’, 34);
182 xlim ([1 Sim_length ]);
183 ylim ([0 .7])
184 end
185 end
186 subplot (2 ,1 ,1)
187 xline (10,’--’); hold on
188 xline (26,’--’); hold on
189 subplot (2 ,1 ,2)
190 xline (10,’--’); hold on
191 xline (26,’--’); hold on
192 h = legend ( arrayfun (@( target ) sprintf (’Target %d’, target )

, 1:N, ’UniformOutput ’, false),’Position ’ ,[0.946 0.6
0.015 0.3]);

193 legend (’Orientation ’,’Vertical ’)
194 hl = findobj (h,’type ’,’line ’);
195 legend (’boxon ’)
196 set(h,’FontSize ’ ,26);
197 set(hl ,’LineWidth ’ ,2.5);
198

199

200

201

202

203

204 state_in = cell2mat (state);
205 state_x = state_in (1:4: end ,:);
206 state_y = state_in (2:4: end ,:);
207

208 figure (4)
209 for n = 1:N
210 % p(n) = plot( state_x (:,n)/1000 , state_y (:,n)/1000 , ’x

’,’linewidth ’,5,’ MarkerSize ’,2); hold on
211 start = [ state_x (1,n)/1000 , state_y (2,n) /1000];
212 ending = [ state_x (end ,n)/1000 , state_y (end ,n) /1000];
213 diff = ending -start;
214 h(n) = quiver (start (1) ,start (2) ,diff (1) ,diff (2) ,0,’

MaxHeadSize ’ ,2.25/ norm(diff),’linewidth ’,2,’
MarkerSize ’ ,20); hold on

215 if(h(n).UData < 0)
216 textString = sprintf (’(%.f ,%.f)’, state_x (1,n)

/1000 , state_y (1,n) /1000) ;
217 text( state_x (1,n)/1000+0.2 , state_y (1,n)/1000 -1 ,

textString , ’FontSize ’, 25);
218 else
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219 textString = sprintf (’(%.f ,%.f)’, state_x (1,n)
/1000 , state_y (1,n) /1000) ;

220 text( state_x (1,n)/1000 -3 , state_y (1,n)/1000+1.2 ,
textString , ’FontSize ’, 25);

221 end
222 end
223 for m = 1:M
224 p(N+m) = plot( sensor_location (1,m)./1000 ,

sensor_location (2,m)./1000 , ’kˆ’,’linewidth ’,4,’
MarkerSize ’ ,23); hold on;

225 textString = sprintf (’(%.f, %.f)’, sensor_location (1,m)
./1000 , sensor_location (2,m) ./1000) ;

226 text( sensor_location (1,m) ./1000+0.55 , sensor_location
(2,m)./1000 -1.2 , textString , ’FontSize ’, 25);hold on
;

227 textString = sprintf (’%d’, m);
228 text( sensor_location (1,m) ./1000+0.55 , sensor_location

(2,m) ./1000+1.2 , textString , ’FontSize ’, 28);hold on
;

229 end
230 xlim ([0 45]);
231 ylim ([0 45]);
232 xticks ([0 5 10 15 20 25 30 35 40 45])
233 yticks ([0 5 10 15 20 25 30 35 40 45])
234

235

236 xlabel (’x-axis[km]’, ’FontSize ’, 50);
237 ylabel (’y-axis[km]’, ’FontSize ’, 50);
238 set(gcf , ’Position ’, get (0, ’Screensize ’));
239 legendstrings = cell (1, N+1);
240 for target = 1:N
241 legendstrings { target } = sprintf (’Target %d’, target );
242 end
243 for sensor = N+1:N+1
244 legendstrings { sensor } = sprintf (’Sensors ’);
245 end
246 h = legend ( legendstrings );
247 set(h,’FontSize ’ ,30);
248 % title(’ Sensor Locations & Tracks ’);
249

250 end
251

252

253 end
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D.2 Budget allocation algorithm

1 function [T_out , tau_out , f_res_dual_out ,f_res_out , lam ,
Primal_cost , Dual_cost ] = ...

2 Budget_allocation (cov_pred , state_pred ,
tau_old , s_loc , var_w , RCS , lam , l_roll
, n_roll , step , B, precision ,R,
plotting )

3

4 [N,M] = deal(size(cov_pred ,2) , size(lam ,2));
5 [info_line , f_res_old ] = deal ([] ,0);
6 C = zeros(M,N);
7 y = size( state_pred {2} ,2);
8 iter = 1;
9 while 1

10 for m = 1:M
11 for n = 1: size( state_pred {m},2)
12 if n > y
13 state_in = state_pred {1}(: ,n);
14 RCS2 = [];
15 s_loc2 = [];
16 tau2 = [];
17 M = 1;
18 else
19 state_in = [ state_pred {1}(: ,n),state_pred

{2}(: ,n)];
20 M = 2;
21 tau2 = tau_old ([1:m-1 m+1: end],n);
22 s_loc2 = s_loc (: ,[1:m-1 m+1: end ]);
23 state_tmp = state_in (: ,[1:m-1 m+1: end ]);
24 RCS2 = RCS ([1:m-1 m+1: end],n);
25 end
26 [T{iter }(m,n), tau{iter }(m,n), Primal_cost (m,n)

, Dual_cost (m,n)] = ...
27 Policy_rollout (M, cov_pred {m,n}, state_pred

{m}(:,n), state_in , tau2 , s_loc (:,m),
s_loc2 , RCS(m,n),RCS2 , var_w(n), lam(m)
, l_roll , n_roll );

28 C(m,n) = Cost(T{iter }(m,n), var_w(n),
state_pred {m}(:,n), cov_pred {m,n}, R(:,n),
s_loc);

29 end
30 end
31 % tau_old = tau{iter };
32 [ lambda (:, iter), lam , grad (:, iter)] = SubGradient (ones(

M,N),M,tau{iter},step ,B,lam);
33

34

35

36 % Sum Cost & Compute Budget
37 C_sum = sum(C,’all ’)/(M*N);

% average Cost
38 f_res(iter) = C_sum;
39 f_res_dual (iter) = f_res(iter) + sum(lam *( tau{iter }./

ones(M,N))) - sum(lam .*B);
40 budget_tot (iter , :) = sum(tau{iter }./ ones(M,N) ,2);
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41 budget_ind {iter} = tau{iter }./ ones(M,N);
42

43 primal_plot (iter) = sum(sum( Primal_cost ));
44 dual_plot (iter) = sum(sum( Dual_cost )) - l_roll *sum(lam

.*B);
45

46 if max(abs(grad (:, iter)) ,[],’all ’) <= precision %&&
max(abs( f_res_dual (iter)-f_res_old )) <= precision

47 fprintf (’\n’)
48 break
49 end
50

51 %print info & prepare next iteration
52 del_line = sprintf ( repmat (’\b’,1, length ( info_line )));
53 info_line = sprintf ([’Iteration : %i -->’ ’ df = ’

repmat (’%f ’, 1, 1) ’ grad = ’ repmat (’%f ’, 1, M)
’Lam = ’ repmat (’%f ’, 1, M)],iter , f_res_dual (:,
iter)-f_res_old ,abs(grad (:, iter)),lambda (:, iter));

54 fprintf ([ del_line info_line ])
55 f_res_old = f_res_dual (1, iter);
56 iter = iter + 1;
57 end
58 tau_out = tau{end };
59 T_out = T{end };
60 f_res_dual_out = f_res_dual (end);
61 f_res_out = f_res(end);
62 end

D.3 Policy Rollout

1 function [T, tau , primal_out , dual_out ] = Policy_rollout (M,
P_old , state_old , state2 , tau_old , s_loc1 ,s_loc2 , RCS , RCS2
, var_w , lambda , l_roll , n_roll )

2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
5 % Description : Compute a policy rollout related to a single

target and a
6 % single sensor
7 %
8 % Inputs :
9 % Policy_rollout (M,P_old , state_old , state2 , tau_old ,

s_loc1 ,s_loc2 , RCS , RCS2 , var_w , lambda , l_roll , n_roll )
10 %
11 % M: Number of sensors

RCS: Radar cross
section

12 % P_old: Last known error covariance
RCS2: Radar cross section of other

sensors
13 % state_old : Last known predicted (!) state

var_w: variance of Process Noise
14 % state2 : Last known predicted states of other sensors

lambda : Lagrangian Multiplier
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15 % tau_old : Last known revisit times of the other sensors
l_roll : Length of rollout

16 % s_loc1 : sensor location of selected senors
n_roll : number of rollouts

17 % s_loc2 : sensor location of other sensors
18 %
19 % output : T: Selected revisit times - MxN
20 % tau: Selected dwell times - MxN;
21 % acc_cost : accumulated average cost - Ax1
22 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23

24

25 [˜, ˜, F, ˜] = handler_functionsV3 ();
26 actions = set_actionsV2 (0.01 , 1);
27 L = size(actions ,2);
28 acc_cost = zeros (1,L);
29 primal = zeros (1,L);
30 T = 1;
31

32 % Run rollout for every possible action
33 parfor it_a =1:L
34 % Average over multiple iterations
35 for it_b = 1: n_roll
36 chosen_action = actions (:, it_a);
37 cov_pred = P_old;
38 state = state_old ;
39 state_pred = state;
40 state_in = state2 ;
41 tau_in = tau_old ;
42 for it_c = 1: l_roll
43 % Update selected sensor
44 [angle , range , ˜] = sensor_state (state , s_loc1

);
45 [meas , R] = input_kalman (RCS , chosen_action (2)

, range , angle);
46

47 [cov_est , state_est ] = ...
48 Kalman_est (R, meas , cov_pred ,

state_pred , s_loc1 );
49

50

51 % Update state & covariance using info of
other sensors ( tau_in ).

52 for m = 1:M-1
53 [angle , range , ˜] = sensor_state ( state_in

(:,m), s_loc2 (:,m));
54 [meas , R] = input_kalman (RCS2(m), tau_in (m

), range , angle);
55

56 [cov_est , state_est ] = ...
57 Kalman_est (R, meas , cov_est ,

state_est , s_loc2 (:,m));
58 end
59 % assume T is equal for all sensors
60 state = F(T)*state;
61 state_in = F(T)* state_in ;
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62

63 [C, cov_pred , state_pred ] = Kalman_pred (T,
var_w , cov_est , state_est );

64

65

66 % Relaxation for selected sensor
67 % only
68 Relaxation = lambda * chosen_action (2) ./

chosen_action (1);
69 acc_cost (it_a) = acc_cost (it_a) + C +

Relaxation ;
70 primal (it_a) = primal (it_a) + C;
71 end
72 end
73 acc_cost (it_a) = acc_cost (it_a)/ n_roll ;
74 primal (it_a) = primal (it_a)/ n_roll ;
75 end
76

77 A = acc_cost ;
78

79 [˜,I] = min(A);
80 tau = actions (2,I);
81 T = actions (1,I);
82 primal_out = primal (I);
83 dual_out = acc_cost (I);
84 end

D.4 Subgradient

1 function [lambda ,lam_out ,grad] = SubGradient (T,M,tau ,steps ,B,
lam_in )

2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
5 % Description : Compute subgradient to update Lagrangian

Multipliers
6 %
7 % Inputs :
8 % SubGradient (T,M,tau ,steps ,B, lam_in )
9 % T: Revisit time

10 % M: Number of sensors
11 % tau: Dwell times
12 % steps: Stepsize
13 % B: Maximum Budget
14 % lam: Last known Lambda
15 %
16 % output : lambda : used for plotting - 1xM
17 % lam_out : used for algorithm - 1xM;
18 % grad: Gradient - 1xM
19 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20

21 for m = 1:M
22 grad(m) = sum(tau(m ,:) ./T(m ,:))-B(m);
23 end
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24

25 % Increment lambda based on the step size
26 lam_out = lam_in + steps .* grad;
27 lambda = lam_out ; % Save lambdas for plotting
28 end

D.5 Additional Functions

1 function [P_est , state_est ] = Kalman_est (R, meas , P, state ,
s_loc)

2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
5 % Description : Compute Kalman Estimate
6 %
7 % Inputs :
8 % Kalman_est (R, meas , P, state , s_loc)
9 % R: covariance of observation noise

10 % meas: Measurement of sensor (s)
11 % P: Error covariance
12 % state: Current state of target
13 % s_loc: sensor locations
14 %
15 % output : P_est: Estimated covariance - 4x4
16 % state_est : Estimated state of target - 4x1;
17 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[h,H ,˜ ,˜] = handler_functionsV3 ();
18 I = eye (4);
19 [h, H, ˜, ˜] = handler_functionsV3 ();
20 % Estimation step
21 K = P*H(state , s_loc) ’/(H(state , s_loc)*P*H(state , s_loc )’

+ R);
22 P_est = (I - K*H(state , s_loc))*P;
23 state_est = state + K*( meas - h(state , s_loc));
24 end

1 function [C, P_pred , state_pred ] = Kalman_pred (T, var_w , P_est
, state_est )

2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
5 % Description : Compute Kalman Prediction
6 %
7 % Inputs :
8 % Kalman_pred (T, var_w , P_est , state_est )
9 % T: Revisit time

10 % var_w: Process noise
11 % P_est: Estimated covariance
12 % state_est : Estimated state of target
13 %
14 % output : C: Cost - Scalar
15 % P_pred : Predicted covariance - 4x4
16 % state_pred : Predicted state of target - 4x1
17 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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18 [˜, ˜, F, Q] = handler_functionsV3 ();
19 P_pred = F(T)*P_est*F(T)’ + Q(T,var_w);
20 state_pred = F(T)* state_est ;
21 C = P_pred (1 ,1)+ P_pred (2 ,2) + 1000/T.ˆ2;
22 end

1 function [P_pred , state_pred ] = Ext_Kalman (R, meas , var_w , P,
state , s_loc , T)

2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
5 % Description : Compute recursive update of the Global kalman

filter
6 % based on measurement and covariance of sensor
7 %
8 % Inputs :
9 % Ext_Kalman (R, meas , var_w , P, state , s_loc)

10 % R: covariance of observation noise
11 % meas: Measurement of sensor (s)
12 % var_w: Process noise
13 % P: Error covariance
14 % state: Current state of target
15 % s_loc: sensor locations
16 %
17 % output : P_pred : Predicted covariance - 4x4
18 % state_pred : Predicted state of target - 4x1;
19 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 [h,H,F,Q] = handler_functionsV3 ();
21 I = eye (4);
22 M = size(R ,1);
23 updates = size(R ,2); % R defines how many track

updates there are
24 state_est = state;
25 P_est = P;
26

27 for u = 1: updates
28 for m = 1:M
29 if ˜ isempty (R{m,u})
30 K = P_est*H(state_est , s_loc (:,m)) ’/(H(

state_est , s_loc (:,m))*P_est*H(state_est ,
s_loc (:,m))’ + R{m,u});

31 P_est = (I - K*H(state_est , s_loc (:,m)))*P_est
;

32 state_est = state_est + K*( meas{m}(:,u) - h(
state_est , s_loc (:,m)));

33 end
34 end
35 P_pred = F(T)*P_est*F(T)’ + Q(T,var_w);
36 state_pred = F(T)* state_est ;
37 end
38 end

1 function [h, H, F, Q] = handler_functionsV3 ()
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
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5 % Description : Define helper functions for tracking process .
Note that a

6 % compensation is made in the linearization based on the
location of the

7 % sensor .
8 %
9 % Inputs :

10 % handler_functionsV3 ()
11 %
12 % output : h: Measurement model
13 % H: Linearized observation model;
14 % F: State transition model
15 % Q: Covariance of the process noise
16 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 h = @(s, s_loc)[sqrt ((s(1) -s_loc (1))ˆ2+(s(2) -s_loc (2))ˆ2);

atan2(s(2) -s_loc (2) ,s(1) -s_loc (1))];
18

19 H = @(s, s_loc) [(s(1) -s_loc (1))/((s(1) -s_loc (1))ˆ2+(s(2) -
s_loc (2))ˆ2) ˆ(1/2) (s(2) -s_loc (2))/((s(1) -s_loc (1))ˆ2+(s(2)
-s_loc (2))ˆ2) ˆ(1/2) 0 0;

20 -(imag ((s(1) -s_loc (1)))+real ((s(2) -s_loc (2))))/(( imag
((s(1) -s_loc (1)))+real ((s(2) -s_loc (2))))ˆ2+( imag ((
s(2) -s_loc (2)))-real ((s(1) -s_loc (1))))ˆ2) ...

21 -(imag ((s(2) -s_loc (2)))-real ((s(1) -s_loc (1))))/((
imag ((s(1) -s_loc (1)))+real ((s(2) -s_loc (2))))
ˆ2+( imag ((s(2) -s_loc (2)))-real ((s(1) -s_loc (1)))
)ˆ2) 0 0];

22 H_old = @(s) [(s(1))/((s(1))ˆ2+(s(2))ˆ2) ˆ(1/2) (s(2))/((s(1))
ˆ2+(s(2))ˆ2) ˆ(1/2) 0 0;

23 -(imag ((s(1)))+real ((s(2))))/(( imag ((s(1)))+real ((s
(2))))ˆ2+( imag ((s(2)))-real ((s(1))))ˆ2) ...

24 -(imag ((s(2)))-real ((s(1))))/(( imag ((s(1)))+real ((
s(2))))ˆ2+( imag ((s(2)))-real ((s(1))))ˆ2) 0 0];

25

26

27 % Predict
28 F = @(T)[1, 0, T ,0;0 , 1, 0, T; 0, 0, 1, 0;0, 0, 0,

1];
29 Q = @(T, var_w)[Tˆ4/4 , 0, Tˆ3/2 ,0;0 , Tˆ4/4 , 0,

Tˆ3/2;
30 Tˆ3/2 , 0 Tˆ2, 0;0, Tˆ3/2 , 0,

Tˆ2]* var_w;
31

32 end

1 function [ measurement ,R] = input_kalman (RCS ,tau ,range ,angle)
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
5 % Description : Take measurement & compute a covariance R based

on RCS ,
6 % dwell times , range and angle.
7 %
8 % Inputs :
9 % input_kalman (RCS ,tau ,range ,angle)

10 % RCS: radar cross section
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11 % tau: Dwell times
12 % range: Distance to target w.r.t. sensor
13 % angle: Angle to target w.r.t. sensor
14 %
15 % output : measurement : measurement - 2x1
16 % R: Covariance of observation noise - 4x4;
17 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 std_r0 = 25;
20 std_th0 = sqrt (4e -4);
21

22 SNR = calc_snr (0,RCS ,tau ,range); % delta b = 0!
23 var_range = ( std_r0 ./ sqrt(SNR)).ˆ2;
24 var_angle = ( std_th0 ./ sqrt(SNR)).ˆ2;
25 R = diag ([ var_range var_angle ]);
26

27

28 % Take n samples and average
29 measurement = [ normrnd (range ,sqrt(R(1 ,1))); normrnd (angle ,

sqrt(R(2 ,2)))];
30 end

1 function [angle , range , vel] = sensor_state (state ,
sensor_location )

2 % [angle , range , vel] = sensor_state (state ,
sensor_location )

3 angle = atan2(state (2) -sensor_location (2) ,state (1) -
sensor_location (1)) ’;

4 range = sqrt (( state (1) -sensor_location (1)).ˆ2+( state (2) -
sensor_location (2)).ˆ2) ’;

5 vel = (state (1)*state (3)+state (2)*state (4))./ sqrt(state (1)
.ˆ2+ state (2) .ˆ2);

6 end

1 function [A] = set_actionsV2 ( discretization ,M)
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Name: Bas van der Werk
4 % Date: 25 -2 -2021
5 % Description : Define a discrete action space based on the

number of
6 % sensors and a custom discretization step
7 %
8 % Inputs :
9 % set_actionsV2 ( discretization ,M)

10 % discretization : steps
11 % M: Number of sensors
12 %
13 % output : A: Discrete action space - 2M x y
14 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 tau = discretization : discretization :0.9;
16 L = length (tau);
17 T = 1* ones (1,LˆM); %

Fixed T for all sensors
18 A = [];
19 for i = 1:M
20 tmp = repelem (tau , Lˆ(M-i));
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21 actions = repmat (tmp , 1, Lˆ(i -1));
22 A = cat (1, A, T, actions );
23 end
24 end
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