
Akka Decision Engine

An actor based decision engine on the DMN 1.1

specifications

by

Mark Acda, Toon de Boer & Thomas Bos

for the degree of Bachelor of Science at Delft University of Technology

June 25, 2019

Project duration: April 23, 2019 - July 5, 2019
Thesis committee: Dr. C.B. Poulsen TU Delft supervisor

Ir. O.W. Visser TU Delft BEP instructor
H. Wang TU Delft BEP instructor
A. Hagens Finaps product owner



Preface

This report discusses the project we worked on for our Bachelor End Project
(BEP) at the TU Delft. We had the privilege to work on a new project at
Finaps, an IT company in Amsterdam. This project is to finalise our bachelor
and to test our skills that we have learned in the last three years.

When we got the instructions for the BEP, we decided that we wanted to
do it at a company to get the feeling of the business life after university and
in the hope that what we build will also be used after the project. One of us
got contacted by Finaps via LinkedIn for a job long before the BEP started and
they also said that if he needed to do an internship of any kind he could contact
Finaps. That is how we got to Finaps and they were glad to have us to do
our BEP for them, because they had a project waiting for us. Finaps already
wanted to create a decision engine with an actor model before we showed up,
but they did not have enough time to start on it, so they gave us this assignment
and it was approved by the TU Delft.

We enjoyed working on this project and seeing good results very quickly kept
us motivated. Also the supervisor from Finaps was very glad with the progress
and we would like to thank a few people for their help and assistance during
the project. First of all, we want to thank the very kind people at Finaps for
having us and especially our product owner Andrew Hagens. Secondly we want
to thank Casper Poulsen, our TU Delft supervisor, for his help, feedback and
guidance through this project.

M. Acda, T. de Boer & T. Bos
Delft, June 2019

1



Summary

Decision engines can decide from a certain input what the output should be.
This is done in a table with columns for inputs and outputs and rows for a
combination of inputs together with its corresponding output. A row is also
called a rule. A simple program to decide such a decision table can easily be
made, like Camunda. However, when the output of one table is also the input
of another table and so on and the amount of rules get enormously big, the
problem gets more complicated and Camunda takes a very long time to solve
such structures.

We created a decision engine in Scala that can decide the output when there
are thousands of tables linked together in less than a minute with the help of
Akka. Akka is an actor model, which means that it can create multiple actors,
which each can perform a certain task. Actors can run in parallel, which speeds
up the decision engine. Actors send messages to each other and an actor will
only start working when they receive a message. The decision engine reads
DMN files and parses it to tables. For better performance the decision tables
get parsed into a tree structure with for every table the input tables are its
children. In this way the decision engine is very quick in solving tables, however
the parsing into trees still takes some time. This is not a big problem, since the
parsing is only done once and the tree can be saved and the solving can be done
very often. Also the deciding of a single table is improved, because we created
our own FEEL-expressions that can decide the rules very fast.

The result is that after a very large table with 50,000 rules is parsed, the
solving that took Camunda 400 milliseconds only takes 9 milliseconds for the
new decision engine and when the parsing is left out, the new engine is faster in
computing 500,000 rules than Camunda with 1 rule. Also when the parsing is
included in the time, the difference gets only bigger. For 50,000 rules, Camunda
takes 20 seconds to parse the file and solve the table, while the new decision
engine takes only a little more than 1 second to do this all. When the files get
larger, so does the difference.
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Chapter 1

Introduction

In current businesses, there are a lot of problems that needs to be decided. The
decision-making is automated to increase the efficiency. But bigger companies
need to take more and more decisions. To keep up with the increasing amount of
decisions they also need to be made faster. The problem of the existing software
for decision-making is that they are not scalable. When the load becomes too
high, they are not able to decide efficiently anymore. Therefore, the question
that this project tries to answer is: Is it possible to create a well tested decision
engine for the DMN specification, using the Akka actor system, that performs
very well on a very high load?

The background for this project and all the libraries and tools which are used
during the project will be discussed in chapter 2. The problems to be solved
by this project are stated and analysed in chapter 3 and chapter 4 discusses
the design choices and implementation of the decision engine. The results and
development process will be evaluated in chapter 5. The discussion and future
work recommendations can be found in chapter 6. In the final chapter, chapter
7, the conclusion can be found.

Firstly, a brief introduction of what a decision engine does will be provided.
Decision engines are programs that can solve a problem given inputs and deci-
sion tables. It runs the tables on the given input and returns a certain output.
Decision tables consists of multiple rules. The tables require one or more inputs
and matches them with all the rules. If the input matches the rule, the table
will return the output of that rule. In Figure 1.1, a simple table is shown with
2 rules. Every row represents a rule and every column represents an input or
an output.
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Figure 1.1: A simple decision table with one input “Weather” and one output
“How to dress”. [1]

The way a decision engine works is it processes the input, e.g. “Sunny” and
returns the output “T-Shirt”. For multiple inputs, outputs and rules it gets
more complicated. With more inputs and/or outputs, the decision table gets
added columns. This is shown in Figure 1.2.

Figure 1.2: A decision table with two inputs and one output. [1]

Similar to the simple table in Figure 1.1, for the table in Figure 1.2 every
row represents a rule and every rule gets evaluated on the inputs. When the
input is “Spring” for “season” and “10” for “guestCount”, we can see in the
table that for row 5 the inputs match the values of this rule and therefore the
result that will be returned is “Stew”. The output of one table can also be the
input of another table. For example, the “Dish” column in Figure 1.2 can be
the input for a beverage as shown as the first column in Figure 1.3.
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Figure 1.3: The “Beverages’ table, which takes the output of the “Dish” table
as an input. [1]

“Beverages” also has an additional input, which is “Guests with children?”.
The “Dish” and “Beverages” tables together with the three input variables are
presented in a diagram in Figure 1.4 for a clear overview of how the tables are
solved. Such a diagram is called a Decision Requirement Diagram, in short
DRD.

Figure 1.4: A DRD of two tables and three input variables. [1]
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A decision engine will solve the DRD in 1.4 by first solving the Dish table
with the inputs of “Season” and “Number of Guests”. After that it will take
the dish output and solve the “Beverages” table with this output and the input
of “Guests with children?”. This table will return the beverages corresponding
to the rules for which the inputs match.
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Chapter 2

Background

Before going more in depth about the problems and features of this project, some
background information is provided in this chapter. Different technologies will
be discussed that were used to develop the final product. First of all the Decision
Model and Notation is explained and why it is important for our project. After
that the platforms Camunda and Akka will be discussed in more detail. Finally
the reason why this project is coded in Scala instead of Java will be explained.

2.1 Decision Model and Notation

Decision Model and Notation (DMN) provides a construct to model decisions,
so that they can be understood by business analysts, technical developers, etc.
[2]. DMN bridges the gap between business decision design and decision imple-
mentation.
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Figure 2.1: An example of a Decision Requirements Diagram (DRD). [3]

2.1.1 How DMN works

DMN provides a specification to create so called Decision Requirement Diagrams
(DRD). These diagrams consist of the following elements [4]:

• Input data: represents an input. (e.g. “Person” in Figure 2.1)

• Decisions: gives output from a number of inputs. The output is deter-
mined by a set of rules depicted in a table. (e.g. “Address Verified” in
Figure 2.1)

• Business Knowledge Model (BKM): functions providing logic for multiple
decision elements.

• Knowledge Source: describes the way decisions are made and how it uses
the input data. (e.g. “AML Regulations” in Figure 2.1)

Each decision is composed of a set of rules depicted in a table. An example
of a decision table can be seen in Figure 2.2.

2.1.2 DMN 1.1 or DMN 1.2

The latest version of DMN is version 1.2 which came out in January 2019 [2].
Version 1.2 improves over version 1.1 in that it generally adds more flexibility in
the creation of DRDs, but does not add any big features that set both versions
apart [5]. Because of the existence of a DMN parser for DMN version 1.1 and
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Figure 2.2: An example decision table [3]. This table has three inputs, one
output and six rules. If, for instance, the inputs are “Private” for “Client
Type”, $30000 for “On Deposit” and “Medium” for “Estimated Net Worth”,
then the output of this decision will be “Personal Wealth Management”.

not for 1.2 (which will be discussed in section 2.2), we opted to use DMN version
1.1.

2.2 Camunda

Camunda is an open source platform for workflow and decision automation that
brings business users and software developers together [1]. With Camunda you
can make your own DRDs, parse and execute them, but we only used Camunda
to create DRDs for testing and benchmarking. Camunda has written their code
base in Java and builds on the older spec version DMN 1.1. It is important to
note that the Camunda DMN parser ignores Knowledge Sources and BKMs as
they are optional.

The main problem with Camunda is that Camunda is very slow in solving
DRDs and especially in solving multiple DRDs at the same time with differ-
ent inputs. From inspection of the base code [6], mostly by debugging actual
evaluation runs, it was deduced that no concurrency is used in the calculating
of results. This can be seen in the code snippet in Figure 2.3. Therefore, this
project aims to create a system based on the actor model to provide concurrency
and therefore higher throughput than the Camunda counterpart.

2.3 Akka

The Akka library is a toolkit for building highly concurrent, distributed, and re-
silient message-driven applications for Java and Scala and is an implementation
of the actor model on the Java Virutal Machine (JVM) [7].
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1 pub l i c DmnDecisionResult eva lua t eDec i s i on (DmnDecision
dec i s i on , Var iableContext var iab l eContext ) {

2
3 i f ( d e c i s i o n . getKey ( ) == nu l l ) {
4 throw LOG. unableToFindAnyDecisionTable ( ) ;
5 }
6 VariableMap variableMap =

buildVariableMapFromVariableContext ( var iab leContext ) ;
7
8 List<DmnDecision> r e qu i r edDec i s i on s = new

ArrayList<DmnDecision>() ;
9 bu i ldDec i s i onTree ( dec i s i on , r e qu i r edDec i s i on s ) ;

10
11 List<DmnDecisionLogicEvaluationEvent> evaluatedEvents =

new ArrayList<DmnDecisionLogicEvaluationEvent >() ;
12 DmnDecisionResult eva luatedResu l t = nu l l ;
13
14 f o r (DmnDecision eva lua t eDec i s i on : r e qu i r edDec i s i on s ) {
15 DmnDecisionLogicEvaluationHandler handler =

getDec i s ionEva luat ionHandle r ( eva lua t eDec i s i on ) ;
16 DmnDecisionLogicEvaluationEvent evaluatedEvent =

handler . eva luate ( eva luateDec i s i on ,
variableMap . asVar iableContext ( ) ) ;

17 evaluatedEvents . add ( evaluatedEvent ) ;
18
19 eva luatedResu l t =

handler . g ene ra t eDec i s i onResu l t ( evaluatedEvent ) ;
20 i f ( d e c i s i o n != eva lua t eDec i s i on ) {
21 addResultToVariableContext ( eva luatedResu l t ,

variableMap , eva lua t eDec i s i on ) ;
22 }
23 }
24
25 generateDec i s ionEva luat ionEvent ( evaluatedEvents ) ;
26 re turn eva luatedResu l t ;
27 }

Figure 2.3: The method which is used to evaluate decisions in the Camunda
code base [6]. The decision table is represented as decision and the inputs
are stored in variableContext. When decision needs to be evaluated, the
decision engine first extracts the required decisions in line 8 and 9, and then
evaluates them one by one in the for-loop from line 14 to 23. This means the
evaluation of decision tables happens sequentially rather than concurrently.
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2.3.1 Actor Model

The Actor Model is a conceptual model to deal with concurrent computation
[8]. Every actor is isolated, so multiple actors can act at the same time. Actors
can send messages between each other and every actor has a ‘mailbox’ where
it stores messages when it is processing another message as is shown in Figure
2.4. The actor model also provides fault tolerance, as the crashing of one actor
does not mean that the whole system fails. Actors in the system can act upon
the failure of other actors [9].

Figure 2.4: The Actor Model with 3 actors. [8]

The messages are used for communication between actors, because actors
do not share their state [9]. All information that is shared is via messages only.
Actors have the ability to do three things [8]:

• Create more Actors

• Send messages to other actors

• Designate what to do with the next message

The first two bullet points are very straightforward, but the last one is more
complicated. When an actor receives a message, it can alter its own state. In
this way for the next message, the state will be different. For example when
the state of an actor is 0 and it receives a message with add(1), for the next
message it receives, the state will be 1.
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2.3.2 Why Akka

We choose Akka as our actor framework, because it has high performance and
it lets us build a system that can scale by using multiple servers. Akka is able
to distribute tasks in different threads and run those in parallel, therefore the
efficiency increases and there is a significant speed-up. The creation of the actors
and sending and retrieving of messages comes with an overhead. However, Akka
has been proven to be significantly faster than 4 other actor models [10] and
has the least overhead of all, because it runs directly on the JVM.

Messages

Messages are used to send data between actors asynchronously, where the data
can be of any type, but it must be immutable [7]. Akka has two types of
messages, Ask and Tell messages. A Tell message sends the data, and that’s it.
The Ask message also creates a return object which encapsulates the possible
reply. When it is ready, the reply can be extracted from it. Separate actions
can be specified for when the reply was succeeded (the return object is given)
or failed (an exception is thrown). This makes the Ask message easier to work
with, but also creates some overhead. The messages between actors makes Akka
a perfect tool for our decision engine. How these messages are implemented will
be explained in Section 4.3.2.

Actor Hierarchy

Another advantage of Akka is that it has a built in fault tolerance model which
allows applications to fail and recover as soon as possible [9]. All actors are
structured in an actor hierarchy which looks like a tree. Every actors parent
also acts as a supervisor actor, which gets notified if an actor crashes [8]. The
supervisor can do something about it to return the actor to a consistent state
again (e.g. returning it to its initial state).

2.3.3 Scala vs Java

We had the option to write our program in Scala or in Java, because Akka has an
API for only those two languages. Our choice is to use Scala, because we believe
that Scala has some nice benefits over Java. An empirical study has shown that
Scala code is more compact [11]. Moreover, developers say that Scala is so much
more than Java thanks to its expressive type-system [12] and Scala is both an
object-oriented and functional programming language. The performance is also
an important aspect when choosing the programming language, but the API
performance of Akka should not differ for both languages. Therefore neither
one is much better for the API. But besides the API, Scala should run about
20% faster than Java according to a benchmark on sorting 100.000 items 100
times by writing similar code for both languages [13].

A huge benefit for this project in particular are Monads, which are objects
that wrap values of any type. For example the Option object that allows a
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value to be Some(value), where value can be of any type, or None is used a
lot. In particular the Scala Future compared to a Thread in Java is a great
advantage of Scala [14]. Both are used to run code in parallel. A Thread does
not have a return type while a Future is an object that holds a value that does
not yet exists but which may become available at some point. This is used a
lot with sending return messages to the parent actor from child actors, that
run concurrently. The actor structure and messaging of this project is further
explained in section 4.3.
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Chapter 3

Problem definition and
analysis

This chapter discusses the requirements as stated by the client and the scope in
which this project needs to be created.

3.1 Requirements as stated by the client

The requirements for this project are to create a decision engine that performs
very well on a very high load with multiple inputs at the same time. It has
to be an improvement over the existing decision engine software by Camunda
[1] by being faster and concurrent. Furthermore, it should use the Akka actor
model to provide that needed concurrency. The decision engine should be able
to use at least the DMN 1.1 spec .dmn files and it should be able to be callable
by API. It should then accept input in the format:

{dmnId:[dmnId],[param1]:[val1],[param2]:[val2],...}

The API should then return the computed result and a representation of the
decisions made to arrive at said result.

3.2 Scope

The Decision Engine is supposed to run continuously and it must be callable
by API. A big requirement for the solution is to be simple but effective and
the focus is not laid on the front-end but rather on the back-end where the
computations are done, and these computations need to be done with very
high throughput. This means that the decision engine will not feature a user
interface. It should, however, be able to output a representation of the way the
output was generated in the decision engine. A MoSCoW representation of the
requirements and scope can be seen in Appendix B.
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Chapter 4

Design and implementation

In order to arrive at an implementation which satisfied the requirements, a
number of design decisions had to be made. In this chapter, the workings of
each component and the reasoning behind the design are given.

4.1 DRD

The DRDs used as input to the system are stored in .dmn files. These files
are used by Camunda and represent DRDs in XML form and can be generated
using the Camunda Modeler [15]. Due to the XML structure they can easily be
interpreted and converted into decision trees.

4.2 Decision Tree

In order to solve a DRD using actors, the choice was made to first convert
it into a decision tree. The tree is constructed by taking the output decision
tables as nodes and appending their inputs as child nodes and then continuously
add inputs to decision tables until an input element is reached. The result of
converting the DRD in Figure 4.1 to a decision tree is shown in Figure 4.2.
The advantage of using decision trees is that each tree branch can be solved
concurrently without requirements from parallel branches. As you can see in
Figure 4.2, some tables occur multiple times in the tree, because they are an
input of different tables. This will not take more memory, because the same
tables point to the same memory address, which will also make the solving of
the tables faster. When the table has been solved once, the output is saved and
will be used at all other places in the tree.

17



Figure 4.1: An example DRD.

Figure 4.2: The decision tree from the DRD from Figure 4.1
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4.3 Actors

In order to achieve concurrency the Akka actor system is used. In this framework
actors are structured in a hierarchy and communicate by sending messages to
each other. An actor performs an action as a reaction to each message it receives.

4.3.1 Structure and tasks

In this project the actor hierarchy consists of two branches: the parsing branch
and the solving branch. This can be viewed in Figure 4.3. The parsing branch
handles the parsing of the DRDs into decision trees and the solving branch
handles the evaluating of decision trees on input. The ParserSupervisor and
the SolverSupervisor actors handle communication with the Master actor
and monitor their children, the Parser and TreeSolver actors. Parser actors
parse DRDs into decision trees with the help of the OutputNodeFinder and
InputNodeFinder actors. TreeSolver actors evaluate decision trees on input
and makes use of ElementSolver actors which evaluate individual decision tree
elements on the given input values.

Figure 4.3: The actor hierarchy.

4.3.2 Messaging

The Master actor receives SolveDrdRequest(drd, input, save, refresh)

messages from the decision engine, asking it to solve a given DRD on an in-
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put. The Master then checks whether the given DRD has already been parsed
into a decision tree. If not, or if the Master is asked to refresh the decision tree,
it will send a ParseRequest(drd, save) message to the ParserSupervisor

actors requesting it to convert a DRD into a decision tree. The ParserSu-

pervisor actor will then allocate one of its child actors, the Parser actors, to
convert the DRD. The Parser actor will first split the list of all tables in multi-
ple chunks and sends for each chunk a FindOutputRequest(chunk, inputIds)

to the OutputNodeFinder actors to find the output tables of the tree. inputIds
is a list with all the inputIds of all the tables together. The OutputNodeFinder
actor will check for every table in the chunk if they have an outputId that is
contained in the inputIds. It will return a FindOutputReturn(nodes), where
nodes is a list of all the tables that are not an input of another table. After
that the Parser actor will send for each node in the tree and for every chunk a
FindInputRequest(chunk, ids, children) to the InputNodeFinder actors.
The ids and children are the input ids and the list of children of the current
node. The InputNodeFinder actor will find all the input tables of a node and
will send a FindInputReturn when it is finished. When this is done and the
save parameter of the ParseRequest is true, it will save the decision tree to
disk. Finally, it will send back a ParsingReturn(decisionTree) which the
ParserSupervisor will forward to the Master.

The Master then sends a SolveRequest(decisionTree, input) message
to the SolverSuperviser actor which it forwards to one of its child actors, the
TreeSolver actors. They will solve the decision tree with the given input by
solving the decision tree from the ground up, solving individual decision tree
elements one by one by sending SolveTableRequest(element, input) mes-
sages to one of its child actors, the ElementSolver actors. They will then
solve a single decision tree element and return the result in a SolveElemen-

tReturn(output) message. The TreeSolver actor will collect the outputs and
when the decision tree is solved it will send a SolveReturn(output) message
to SolverSuperviser actor which it will forward to the Master actor. The
Master actor then returns the SolveReturn(output) to the decision engine.
This messaging can also be viewed in Figure 4.4.

4.4 API

The interaction with the decision engine is done via an API. This way, it can
be hosted on a server and be accessed via HTTP GET requests. These requests
are in JSON form which allows easy integration into other software. The DRDs
are stored locally on the server.

4.4.1 Input

The format of the HTTP GET request to the API is as follows:

[address]:[port]/decision engine?input=[DecisionEngineInput]
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where [DecisionEngineInput] has the form:

1 {
2 dmnId : dmnId ,
3 param 1 : va l 1 ,
4 param 2 : va l 2 ,
5 . . .
6 param n : va l n
7 }

Furthermore, multiple [DecisionEngineOutput] can be appended after each
other to do a batch calculation.

4.4.2 Output

The output of the API is a JSON list containing the results of each batch input.
Each result is a list of table output objects. A table output object lists the table
id, the output values and the input tables, which, again, is a list of table output
objects. A structural view of the output looks like this:

1 [
2 [ // Result 1
3 { // Output 1
4 tab l e Id : output tab l e 1 ,
5 output va lue s : [ va l 1 , va l 2 , . . . , va l n ] ,
6 inputs : { tab l e 1 , tab l e 2 , . . . , t ab l e n }
7 } ,
8 { // Output 2
9 tab l e Id : output tab l e 2 ,

10 output va lue s : [ va l 1 , va l 2 , . . . , va l n ] ,
11 inputs : { tab l e 1 , tab l e 2 , . . . , t ab l e n }
12 } ,
13 . . .
14 ] ,
15 [ // Result 2
16 { // Output 1
17 tab l e Id : output tab l e 1 ,
18 output va lue s : [ va l 1 , va l 2 , . . . , va l n ] ,
19 inputs : { tab l e 1 , tab l e 2 , . . . , t ab l e n }
20 } ,
21 { // Output 2
22 tab l e Id : output tab l e 2 ,
23 output va lue s : [ va l 1 , va l 2 , . . . , va l n ] ,
24 inputs : { tab l e 1 , tab l e 2 , . . . , t ab l e n }
25 } ,
26 . . .
27 ] ,
28 . . .
29 ]
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4.5 Sequence diagram

When calling the API, Figure 4.4 shows the sequence of calls and messages
through the system to arrive at the output.

Figure 4.4: The messaging between system components depicted in a sequence
diagram.
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Chapter 5

Evaluation

After the design and implementation, the performance and the behaviour of the
system need to be evaluated in order to check whether it satisfies the require-
ments. It is also important to evaluate the development process and methods.
The evaluation methods and results will be discussed in this chapter.

5.1 Performance

In order to test the performance of individual system components, or benchmark
the system against its Camunda counterpart, a number of methods were used.

5.1.1 Performance monitoring

In order to view the raw performance of the system, a number of methods were
used in different stages of development to find out whether the system was
providing desirable performance.

Stopwatch

The most basic solution was to use the ‘stopwatch’ method; basically mea-
suring the time it takes to do a calculation. This method’s reliability is not
ensured though, as run times are dependent on outside factors like processor
load, amount of free memory, and JVM garbage collection can occur in the
background, at any given time, which also uses processing power which then
cannot be used by the decision engine [16], resulting in inconsistent times.

JProfiler

A more reliable and trustworthy method is to use JProfiler [17]. This software
monitors the project when it runs and accurately measures the amount of time
the JVM stays in each bit of code. This way, when the process is done, the
bottlenecks of the system become clear which makes system analysis a lot easier.
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The bottlenecks can be methods which have lots of self-time or big amounts of
objects which clog memory because they are stored in the background. JProfiler
was used extensively in the later stages of the project when the code base was
fully functional, but needed optimisation.

Below are two snapshots of the CPU usage during solving. The second snap-
shot was taken 3.5 weeks after the first one. Let’s take the second line of Figure
5.1 to explain what the numbers are. This line shows that the JVM is for 67.5%
of the total run time in the method actor.ElementSolver.aroundReceive.
The total duration of the method is 303 seconds. 612 milliseconds are in the
method itself (called self-time), the other part of the time is in the methods it
calls. The method is called 1, 738, 787 times.

Figure 5.1 shows a snapshot where we started using JProfiler. What stood
out was how much time operations on lists took. For example, the program is
for 11.0% of the time in the method List.distinct.

Figure 5.1: JProfiler snapshot 23rd of May.

After more than three weeks of optimising, methods with a large amount of
self-time are optimised. The result is visible in Figure 5.2. As you can see, the
number of calls to a method in List is drastically reduced. The total run time of
the method dmn.DecisionTableElement.calculateOutput dropped from 265
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seconds to 41.2 seconds.

Figure 5.2: JProfiler snapshot 17th of June.

Use of datastructures

As you can see in Figure 5.1, methods on Lists took a long time. After some
research, we found out that if we know the size of the list before the calculations,
the way to go was with Arrays [18]. This source also stated that while loops are
much faster than calling foreach, so these were also replaced. If the initial size
of the collection is not known yet or the size will change very often, it is better
to still use lists.

5.1.2 Benchmarking against Camunda on varying number
of rules

The goal of the project was to make a system with a higher throughput than Ca-
munda’s system. Therefore, a benchmark was created in which the two systems
are tested against each other. This is implemented in a class Benchmark.scala.

Benchmark method

The benchmark program starts with generating a .dmn file with one decision
table with a pre-specified number of rules. Then a calculation is made on
this table with the implementation of Camunda, followed by a calculation of
our Akka-based system. These results can be found in Figure 5.3. The other
benchmark measures the computation time, together with the time it takes to
parse a .dmn file. For every benchmark, the code is run 50 times and the median
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run time is taken. The results can be found in Figure 5.4. Raw data of both
benchmarks, with and without parsing, can be seen in Appendix C.

Figure 5.3: Speed comparison between computing using Camunda and our im-
plementation.

Evaluation of benchmark on computation without parsing Figure 5.3
shows that our implementation is faster by almost two orders of magnitude,
no matter how big the decision tables are. Both implementations (Camunda’s
and ours) lose performance when the number of rules keep growing, which is as
expected. Parsing .dmn files would take too long by Camunda’s implementation
unfortunately, which means that we have no data from more than 70.000 rules.
But up until that point, the difference is still almost two orders of magnitude.
Our implementation performs just as good on 20.000 rules as it does on 100.000
rules, where the run time of Camunda’s implementation keeps increasing.
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Figure 5.4: Speed comparison between computing and parsing using Camunda
and our implementation.

Evaluation of benchmark on computation with parsing The improve-
ments are even greater during parsing of the .dmn files, as you can see in Figure
5.4. With a small amount of rules, both implementations differ for about one
order of magnitude from each other in favour of our implementation. When
the amount of rules keeps growing, the difference in speed also keeps growing.
In the end, we stopped measuring the parsing of the Camunda code because
it just took too long. Extrapolating the data shows that with 500.000 rules,
Camunda’s parsing would take over five hours (see dotted line in Figure 5.4).
This is a difference of already three orders of magnitude.

5.1.3 Benchmarking against Camunda on varying number
of tables

We are using the same benchmark as above, but now with a varying number of
decision tables instead of rules. The benchmark program starts with generating
multiple DRDs which are saved to .dmn files, all with different configurations. It
contains decision trees linked to each other in a tree-like structure. The variables
are number of children, and number of layers. The leave tables are the input
tables, and the root table is the tables which gives the output. To clarify this,
let’s give an example. Three layers and four children means that the root table’s
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input is an output of four other tables. Each of these table’s input is an output
of another four tables. This makes the three layers, and the total amount of
tables is 21. This process of generating .dmn files is followed by a calculation on
each DRD with the implementation of Camunda, and by a calculation of our
Akka-based system. The results of Camunda’s program can be found in Figure
5.5. The results of our program can be found in Figure 5.6.

Figure 5.5: Run time of Camunda’s program on the different configurations of
the .dmn file.
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Figure 5.6: Run time of our program on the different configurations of the .dmn

file.

Evaluation of comparing these benchmarks With a few layers in the
configuration, our program seems to be at least one order of magnitude faster.
With more and more layers and children, this gap is only growing. The difference
on eight children and five layers is already two orders of magnitude. We aborted
the fifth layer with sixteen children on Camunda’s program, because we were
already waiting for half an hour. If the speed kept rising with the same speed,
we calculated that the expected wait time was over five hours.
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5.1.4 Speed comparison for different settings of actor model

The actor hierarchy we created depends on some parameters. The number of
TreeSolver actors per SolveSupervisor actor and the number of ElementSolver
actors per TreeSolver actor are variables that can be set in the configuration file.
The optimal values are dependent for every system. The results for changing
these parameters can be seen in Figures 5.7 and 5.8. Raw data can be found in
Appendix C.

Figure 5.7: Speed comparison between multiple settings of the actor model with
one input. The result is the median of running the program on one input 250
times. The vertical bars is the standard deviation.

Evaluation of comparison with just one input When calculating just one
input, the SolveSupervisor actor sends the request to only one TreeSolver actor.
Due to this way of implementation, it does not matter how many TreeSolver
actors there are. More ElementSolver actors do increase performance, because
more decision tables can be solved at the same time. This is up to a certain point,
where the overhead of using parallel computing gets higher than the speedup.
From six ElementSolver actors upward, the times are not as consistent, and the
standard deviation also rises. This could be an indication that the upper limit
of the number of actors is reached.
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Figure 5.8: Speed comparison between multiple settings of the actor model with
30 inputs at once. The result is the median of running the program on 30 inputs
5 times. The vertical bars is the standard deviation.

Evaluation of comparison with 30 inputs at once When multiple in-
puts are given at the same time, the SolveSupervisor actor divides all requests
over the available TreeSolver actors. In this case, more TreeSolver actors are
supposed to compute the final result faster. As you can see in Figure 5.8, this
is indeed the case. The line of just one TreeSolver actor lies above the others.
With more TreeSolver actors, there are also more ElementSolver actors, as each
TreeSolver actor has its own set of child ElementSolver actors. With more of the
ElementSolver actors in combination with more TreeSolver actors, the overhead
is again the limiting factor when it gets bigger than the speedup. Section 6.2
describes this in more detail.

5.2 Behaviour

Besides the testing of raw performance, it is important to make sure that the
actual behaviour of the system is in line with expectations as well. This was
done by extensive testing with a number of libraries.

5.2.1 Test environment

For this project a goal of 80% branch coverage was set. This goal was achieved
by extensive unit testing using ScalaTest [19] and ScalaMock [20]. This amount
of testing ensured the functionality of the software. These frameworks were nice
to use and really helped. Our final test coverage was 97.20%, as shown in Figure
5.9.
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Figure 5.9: Pipeline status and test coverage.

ScalaTest

ScalaTest is a framework that is designed to increase productivity through sim-
ple, clear and readable tests that ensure correct functionality of code [19]. Al-
most all tests in the project were written with ScalaTest which enabled every
member to write tests which are very easily understood by the rest of the team.

ScalaMock

For integration tests ScalaMock [20] was used. ScalaMock allowed the creation
of dummy objects which are copies of objects which only allow certain calls to
its methods, effectively testing whether another object makes the right method
calls. In the beginning this was useful when testing components which used
features which were not implemented yet, as these features could be mocked.
When the features were implemented the tests could be replaced with unit-
and integration tests. Mocks also proved to be useful when testing the entire
project at once. For example, when running a calculation, the Main object calls
a printer object with the result and the printer object prints it to the console.
This printer object can be mocked to add an expected result. When the Main
object is done computing and it does not call the printer object with the correct
result the test fails.

TestKit

To test the actor system ScalaTest does not suffice. TestKit [21] enabled the
testing of individual actors to ensure that each actor behaved correctly in the
bigger system.

5.3 Code quality

It is obvious that the code should work, and that that should be the first priority.
But creating maintainable code is almost as important. This means that the
code should be of a high quality, adhering to the industry standards. The tools
and methods used to achieve these quality standards are listed below

Software Improvement Group

The Software Improvement Group, or SIG in short, checked the source code
and gave a detailed insight to improve the final code quality [22]. During our
project, two checks were done by SIG. First in the sixth week, and a second
time during the ninth week. The goal was to improve the quality of the code
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base, based on the outcome of the first test. The second test is a check to see if
whether the quality actually improved since the first test.

In the first test, the code base scored a 3.5 out of 5. Given feedback was that
some methods had too much parameters, and the complexity of other methods
was too high. After receiving the feedback the issues were resolved almost
immediately and the settings for the other static analysis tools were changed so
they matched the SIG requirements for code quality.

Static code analysis

To improve the quality of the code besides the checks by SIG, static code analysis
tools were used. These tools checked the code without running it (therefore
it is static) in the CI pipelines and in the IDE itself. Immediately after the
first feedback from SIG, we lowered the parameters for the warning on method
parameters and complexity. In this way, we had to use less parameters and write
less complex methods. This increases the overall quality and maintainability of
the code.

Scaladoc

It is very important that the code is readable to other programmers that work
with the software in the future. For that reason, Scaladoc was added to all
methods and classes and, when needed, additional comments in methods were
added.

5.4 Development Process

In the eight weeks of development the final product was implemented and a final
report was written. Appendix A shows what was implemented each week. This
section evaluates the development process and methods and lists the biggest
problems faced during development.

5.4.1 Scrum

To reach the final product, there were eight weeks of actual development. To
use these eight weeks as efficiently as possible, Scrum [23] was used. At the
start of each day a meeting was held to determine the activities of each member
that day. For each activity an issue was added to the issue board on the GitLab
repository with an appropriate time estimate. When the activity was finished,
the member could indicate the amount of time spend on that issue. This way
the time spend per week could be monitored to determine whether it was in line
with our expectations. The issue board also enables every one to keep track of
activities of all other members.

This worked very well for us, because we always knew what to do next. We
could assign ourselves a new issue. Sometimes at the end of the week, the issues
were not yet finished and had to shift to the sprint afterwards. Maybe this
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would not be the case if we had sprints of two weeks, so next time we could
think about that. We tracked our time for every issue, and that also worked
very well.

5.4.2 Git

For version control, Git [24] was used. Git allowed for a streamlined development
process where each member could develop his feature separately in a branch of
the master branch. When he was done he could create a pull request, which
had to be approved by at least one other member, to merge his work back into
the master if the continuous integration tests succeeded. This ensured a clean,
working and presentable master branch.

5.4.3 Continuous Integration

On every code push to the Git repository on the GitLab server, Continuous Inte-
gration (CI) made sure that all specification tests and static code analysis tools
were ran in a pipeline. This way every member automatically knew whether
his push was correct or faulty. CI also prevents the merging of faulty branches
into the master. In the beginning of the project, the pipelines took a very long
time. This sometimes reduced our productivity because we had to wait for the
pipeline to see if our change let the pipeline succeed. This was resolved after a
few weeks. Therefore, in the end, the Continuous Integration worked perfectly
for us.

5.4.4 Problems encountered during development

The main problem discovered during the project was the speed of the decision
engine. Camunda takes a very long time to solve when there is a high load and
turned out to be very slow in reading DMN files. The plan was to use the parser
of Camunda to read DMN files, however this turned out to be the bottleneck of
the program. Parsing took more than half an hour when solving only took only
milliseconds. Therefore the decision was made to not use Camunda at all and
write a new DMN parser from scratch.

Another problem was the concurrency of the actors. The actors were sup-
posed to work in parallel, such that the decision engine would increase in speed.
However, the engine had the same performance with one actor as it had with
any number of actors. The problem was that one method in an actor waited for
a result of another actor, before the next task was sent. This way, only one actor
was working at the same time. When this was resolved, the problem occurred
that the actors took too much memory. To solve this we created a maximum
number of tasks that can be solved at the same time. When those tasks are
solved the next batch of tasks are sent to the actors.

A very big challenge throughout the project was memory usage. When the
master actor had to handle a lot of requests at the same time, the system could
not keep up and the requests would pile up and flood the available memory.
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This issue was partly resolved at the time by re-implementing the TreeSolver
actor to make it use less memory, but the problem resurfaced when another
fix was implemented. This fix made sure that when the Master actor sent a
parse request for a DRD to the Parser actors, it would not send another parse
request for that same DRD again while the Parser actor was still parsing. This,
however, means that the Master actor had to keep all requests for that DRD in
memory. In the end the core cause of the problem was found with the JProfiler
software. The cause was that, when a lot of requests were at the same time, the
Master actor would send a lot of solve requests in one go each of which contained
a decision tree, which took a lot of space. Letting the TreeSolver actors fetch
the decision trees when they needed them resolved the issue.

We had a working decision engine very early in the development. We then
started to improve the performance using benchmarks and a profiler. When we
are in the same situation in a future project, it could be a better idea to start a
new research phase. Use a few days to sit together, and find out what the best
way is to improve the current system.
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Chapter 6

Discussion and
recommendations

6.1 Results

When the .dmn file is already parsed, our program is about two orders of mag-
nitude faster on calculating the output of a decision table than Camunda’s
program. This means that you can give the program 100 times as many inputs
as you can with Camunda’s program. When the parsing also gets involved, the
difference between the two programs is dependent on the size of the input. But
our program is at least one order of magnitude faster. Besides that, our pro-
gram uses caching of parsed trees. Once the program has parsed the decision
requirements diagram, the program will be as fast as Figure 5.3. Camunda’s
code still needs to parse on every input, making it as fast as Figure 5.4. This
makes our program three or more orders of magnitude faster than Camunda’s
program on one decision tables.

On multiple decision tables, we only measured the performance of parsing
and solving together. The difference is at least one order of magnitude, and is
increasing with more and more decision tables. This means that our program
is even faster on larger DRDs compared to Camunda’s program than it is on
smaller DRDs. This shows that our program is more capable of handling bigger
input, which leads to a higher throughput.

6.1.1 Quality of the comparison

An analysis of the run time of a program is never 100% reliable. It is dependent
on the systems resources (available memory, number of cores and threads, pro-
cessor speed, etc.). A computer also performs tasks in the background, which
makes the run time in the benchmark change on every run. Therefore we ran it
multiple times, and added an error bar, which represents the standard deviation
of the multiple runs.
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6.2 Bottleneck

Our program runs highly concurrent. The performance is therefore dependent
on the system it runs on. It needs enough memory to keep the decision trees
cached, and larger DRDs leads to larger decision trees, and therefore also more
memory needed. But the biggest factor is the number of threads the CPU has.
Actors can work concurrently, but with more actors than available cores, some
actors have to wait before they can process their messages. With more threads,
more actors can work at the same time, resulting in even faster computation
with an even higher throughput.

6.3 Overhead of Akka

As specified in Section 2.3.2, using Ask messages gives some overhead. This
results in a longer run time. But nevertheless we used the Ask messages to send
data through our actor system. We started with using Ask messages because
it seemed logical to use the ask-receive structure. The TreeSolver actors had to
wait for the result of the ElementSolver actors, which is perfectly handled in Ask
messages. After some weeks, we wanted to improve the speed of the program.
Therefore we wanted to change from Ask to Tell messages, as it should increase
performance according to the Akka documentation [7]. This did not improve
the run time in our system on high loads. The TreeSolver actors did not know
when all the ElementSolver actors were ready, so it had nothing to wait for.
Then the TreeSolver actors started with the next input to solve. This resulted
in too many requests for the TreeSolver and ElementSolver actors to handle
efficiently. Therefore we did not changed to Tell messages, and accepted the
small overhead.

6.4 Future work

We did our best implementing as much as possible during our development, but
of course it was not possible to implement everything. Below are some features
that could be implemented to extend the program in the future.

Newer DMN specifications When newer DMN specifications will be re-
leased in the future, the program could be extended to be able to work with
DRDs of that specification.

More extensive expression language Currently, the only expression lan-
guage that is implemented is the FEEL expression, but only the part of FEEL
expressions to make it work with the current DMN spec. The full FEEL expres-
sion language is far more extensive, so this could all be implemented. Besides
that, there are lots of other expression languages (JUEL for example) that could
be implemented to extend the program even further.
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Graphical user interface The program runs in the console, or on a server
where it can be accessed using an API. This could be extended with a graphical
user interface (GUI) in the future. That will make the program easier to use,
especially if users have less experience with using the program.

6.5 Ethical issues

In our project we developed a decision engine with the capability of evaluat-
ing decisions in very large decision graphs, simultaneously, within a very small
amount of time. According to Theo SchlossNagle, CEO of Circonus, considering
ethics, the one thing to ask yourself as a developer is: “How could this software
harm someone?” [25]. For this software it would be easy to name a use case that
would implicate harm due to its flexibility; it can be used to make decisions on
literally anything. The more important question to ask is whether the addition
of this software specifically enables harm on individuals. This would only be
the case if this type of software did not exist before, which is not the case. This
type of software already exists and therefore the addition of this project does
not necessarily add to the possible harm of individuals.
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Chapter 7

Conclusions

The main requirements for this project were to create a decision engine which
implements the DMN specification, it should be callable by API, it should use
the Akka actor library as concurrency implementation, it should take a DMN
file name and input parameters as input and it should return the output values
and a representation of the steps leading to that output. Furthermore, for the
development process, the branch coverage by testing of the code base should be
greater than 80%. Using benchmarks it was shown that the software created
in this project performs better than its Camunda counterpart and can handle
very high data loads. Furthermore, the code is tested for 97.20%. Therefore, it
has been shown that the main question of this project, “Is it possible to create
a well tested decision engine for the DMN specification, using the Akka actor
system, that performs very well on a very high load?”, has been answered and it
is indeed feasible to create the software within the set time limits and according
to development standards.
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Appendix A

Weekly activities

A.1 Week 1 - Research

• Learned about Akka.
• Learned how decision tables and decision requirement diagrams are scored

by Camunda.

A.2 Week 2 - Research

• Researched about the best way to create an actor system to score decision
tables and decision requirement diagrams.

• Created UML of the idea of the system.
• Wrote research report about weeks 1 and 2.

A.3 Week 3 - Development

• Created classes according to the UML.
• Communications between actors.
• Read .dmn files, and parse them to decision trees.

A.4 Week 4 - Development

• Validated user input.
• First running version which could calculate outputs on user input.
• Cached decision trees for performance improvements.
• Visualisation of trace of an output.
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A.5 Week 5 - Development

• Fixed the calculation (wrong outcomes occurred).
• Optimised messages between actors.
• Created a .dmn file containing all possibilities to test the system.
• Ability to automatically run and benchmark the system.

A.6 Week 6 - Development

• Refactored main class.
• Improved performance (shorter runtime).
• Upload to SIG.

A.7 Week 7 - Development

• Replaced foreach with while loops.
• Replaced Camunda parser and FEEL expressions with our own code.
• Wrote part of report.

A.8 Week 8 - Development

• Improved performance and memory usage using JProfiler.
• Handled SIG feedback.
• Created REST API.

A.9 Week 9 - Development

• Wrote part of report
• Implemented parsing using actors
• Further performance improvements using JProfiler

A.10 Week 10 - Development

• Finished report

A.11 Week 11 - Presentation

• Prepared and gave the final presentation.
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Appendix B

MoSCoW

The MoSCoW method is a method to prioritise different requirements of the fi-
nal product [26]. All items are classified under the labels ‘must’, ‘should’, ‘could’
and ‘won’t’ have which specifies its priority. Because the project definition does
not require a complicated user interface, but rather a simple API system, we
define a single requirements list which focuses on the developer using the API
to create his own software.

B.1 Must haves

This sections contains all features that must be contained in the final product.

• The software must run continuously and return output on a given input

• The software must be callable by API

• The software must return outputs based on new inputs that are put in
while the software is running

• The input to the API must be a combination of a Decision Requirements
Graph identifier and the input to that graph

• The code base must be tested as much as possible, with a minimum of
80% branch coverage

B.2 Should haves

This section contains all features that should be contained in the final product,
but have a lower priority than the must haves.

• The software should return a representation of the path taken through the
Decision Requirement Diagram

• The software should give an appropriate error on corrupt decision models
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• The software should be able to handle input and provide output to multiple
Decision Requirement Diagrams at the same time

B.3 Could haves

This sections contains all features that could be in the final product, if there is
time left.

• The software could contain a written parser for the DMN 1.2 spec .dmn

files

B.4 Won’t haves

This sections contains all features that will not be in the final product. Those
features might be implemented in any future work.

• The software will not contain a user interface besides the API

• The software will not correct corrupt Decision Requirement Diagrams

• The software will not cache results to provide a speed up

Every bullet point will be divided in multiple sub-tasks, which will be the
issues in the repository. There is no need to place all the sub-tasks in the
MoSCoW, because that would make it only more unclear. Only the most im-
portant features for a decision engine can be found in the MoSCow.
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Appendix C

Speed comparison data

C.1 Benchmark between Camunda’s program and
our program

Rules Camunda (ms)
Camunda including

parsing (ms)
Our implementation

(ms)
Our implementation

including parsing (ms)

1 92 620 1 119

10 108 715 1 123

100 133 791 2 168

1,000 220 913 2 356

10,000 211 7,061 3 678

15,000 246 14,323 4 792

20,000 268 21,010 13 925

25,000 279 39,770 14 921

30,000 357 95,379 17 1,004

35,000 311 91,906 5 1,024

40,000 375 124,810 8 1,071

45,000 341 170,350 13 1,160

50,000 374 213,977 9 1,174

60,000 646 283,823 8 1,629

70,000 469 513,800 10 1,772

80,000 11 1,975

90,000 11 1,860

100,000 15 2,578

200,000 22 6,118

300,000 33 9,406

500,000 58 17,299

Table C.1: Raw benchmark data
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C.2 Comparison between multiple parameters
about number of actors

C.2.1 One input

TreeSolver
actors

ElementSolver
actors

Time
(ms)

Standard
Deviation

TreeSolver
actors

ElementSolver
actors

Time
(ms)

Standard
Deviation

1 1 98 1.326649916 4 1 99 0.4

1 2 52 1.6 4 2 53 0.489897949

1 3 41 2.227105745 4 3 41 0.632455532

1 4 41 0.4 4 4 63 8.657944329

1 5 41 0.4 4 5 63 2.683281573

1 6 41 0.748331477 4 6 47 2.939387691

1 7 41 0.489897949 4 7 41 2.13541565

1 8 40 0.489897949 4 8 40 0.4

1 9 40 0.8 4 9 41 0

1 10 41 0.489897949 4 10 41 0.4

1 11 40 0.4 4 11 41 0.4

1 12 40 1.166190379 4 12 41 0.489897949

1 13 41 0.4 4 13 41 0.489897949

1 14 41 0 4 14 41 0.4

1 15 40 0.489897949 4 15 40 0.489897949

1 16 40 0.632455532 4 16 41 1.356465997

1 17 40 0.4 4 17 41 0

1 18 40 0.4 4 18 40 0.489897949

1 19 40 0.489897949 4 19 62 4.664761516

1 20 46 3.847076812 4 20 62 3.794733192

2 1 108 13.45511055 5 1 98 5.491812087

2 2 51 1.326649916 5 2 52 0.748331477

2 3 41 0.489897949 5 3 41 0.4

2 4 41 0 5 4 41 0

2 5 41 0.489897949 5 5 41 0.4

2 6 41 0.4 5 6 41 0

2 7 40 0.4 5 7 41 0.489897949

2 8 40 0.489897949 5 8 41 0.4

2 9 41 0.489897949 5 9 41 0.489897949

2 10 41 0.4 5 10 41 0.4

2 11 41 1.095445115 5 11 41 4

2 12 41 0 5 12 70 1.496662955

2 13 40 1.166190379 5 13 66 7.2277244

2 14 64 13.09350984 5 14 46 2.607680962

2 15 66 4.92341345 5 15 41 0.894427191

2 16 45 5.678027827 5 16 41 0.748331477

2 17 41 0.748331477 5 17 41 0.8

2 18 40 0.748331477 5 18 41 0.4

2 19 40 0.4 5 19 41 0.489897949

2 20 40 0.4 5 20 40 0.489897949

3 1 100 0.4 6 1 99 1.469693846

3 2 52 0.489897949 6 2 53 0.489897949

3 3 41 0 6 3 42 9.654014709

3 4 41 1.356465997 6 4 63 0.632455532

3 5 41 0 6 5 53 6.248199741

3 6 40 0.489897949 6 6 43 1.356465997

3 7 41 0.489897949 6 7 40 0.489897949

3 8 41 0.489897949 6 8 41 0.4

3 9 41 0.489897949 6 9 41 0.632455532

3 10 41 0.4 6 10 41 0.4

3 11 58 10.32666451 6 11 41 0

3 12 62 0.489897949 6 12 41 0.4

3 13 49 3.720215048 6 13 41 1.2

3 14 43 1.2 6 14 41 0.489897949

3 15 40 1.019803903 6 15 41 0.4

3 16 40 0 6 16 41 0.748331477

3 17 40 0.4 6 17 41 8.908422981

3 18 40 0.4 6 18 72 1.095445115

3 19 41 0.489897949 6 19 57 7.573638492

3 20 40 0.4 6 20 45 1.833030278

Table C.2: Raw data comparison one input
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C.2.2 30 inputs at the same time

TreeSolver
actors

ElementSolver
actors

Total time
(ms)

Standard
Deviation

TreeSolver
actors

ElementSolver
actors

Total time
(ms)

Standard
Deviation

1 1 3115 157.8751405 4 1 1925 35.13175202

1 2 1696 88.70941325 4 2 1804 49.49989899

1 3 1387 95.26888264 4 3 1571 225.1092179

1 4 1372 75.35940552 4 4 1253 68.8168584

1 5 1350 107.3256726 4 5 1162 102.4304642

1 6 1353 61.06848614 4 6 1075 35.64828187

1 7 1368 71.60614499 4 7 1051 22.22071106

1 8 1345 50.31659766 4 8 995 111.479146

1 9 1343 82.25958911 4 9 1035 18.26909959

1 10 2094 47.9124201 4 10 1030 87.20917383

1 11 1995 272.6550935 4 11 1003 51.30847883

1 12 1533 182.0213174 4 12 1041 29.15887515

1 13 1319 102.3824204 4 13 1065 101.8744325

1 14 1365 60.89334939 4 14 1219 79.72603088

1 15 1352 49.46352191 4 15 1667 186.3866948

1 16 1357 74.50208051 4 16 1797 73.40681167

1 17 1328 107.1156384 4 17 1844 132.9249412

1 18 1345 128.3853574 4 18 1345 86.14545838

1 19 1335 36.75323115 4 19 1176 54.81751545

1 20 1362 75.34825811 4 20 1129 108.3653081

2 1 1946 326.0813395 5 1 1088 85.97301902

2 2 2019 157.7156936 5 2 1014 87.77607875

2 3 1725 25.3424545 5 3 948 33.31906361

2 4 1422 224.1228235 5 4 989 41.11447434

2 5 1231 55.95140749 5 5 970 82.89607952

2 6 1163 25.99692289 5 6 1015 15.64097184

2 7 1089 85.20187791 5 7 1072 89.39932886

2 8 1134 88.25780419 5 8 1050 79.56531908

2 9 1137 38.13135193 5 9 1241 62.50439985

2 10 1149 39.97199019 5 10 1770 174.2389164

2 11 1095 36.69550381 5 11 1773 68.44559884

2 12 1122 95.79686842 5 12 1771 128.0599859

2 13 1098 28.38027484 5 13 1314 62.20096462

2 14 1344 58.1914083 5 14 1180 68.75463621

2 15 1681 202.7721874 5 15 1074 84.25769994

2 16 1838 42.04759208 5 16 999 13.39253523

2 17 1594 134.3541588 5 17 1053 150.3821798

2 18 1248 67.79085484 5 18 1038 34.48477925

2 19 1191 103.2763284 5 19 1040 26.39242316

2 20 1092 33.35026237 5 20 1018 127.825819

3 1 1176 111.6913605 6 1 1035 29.53235514

3 2 1030 31.98499648 6 2 982 141.5302088

3 3 1045 93.28665499 6 3 1095 51.02783554

3 4 1005 22.60619384 6 4 1310 102.1203212

3 5 1105 99.41549175 6 5 1694 58.32117969

3 6 1267 63.59056534 6 6 1637 48.31148932

3 7 1646 234.9788076 6 7 1685 211.1681794

3 8 1813 49.02815518 6 8 1191 39.95197117

3 9 1651 170.9580065 6 9 1072 66.26190459

3 10 1259 62.28322407 6 10 1052 109.5945254

3 11 1141 117.7583967 6 11 1040 26.45297715

3 12 1116 72.95313564 6 12 933 138.6584292

3 13 1034 52.02076508 6 13 995 19.77270846

3 14 1071 59.79765882 6 14 1042 53.54026522

3 15 1113 62.11151262 6 15 976 66.80419149

3 16 1051 140.2192569 6 16 1008 41.87409701

3 17 1057 30.92830419 6 17 985 106.6819572

3 18 1110 105.2760182 6 18 1035 61.52852997

3 19 1140 81.43316278 6 19 1336 234.7369592

3 20 1358 78.77715405 6 20 1668 60.90451543

Table C.3: Raw data comparison 30 inputs at the same time
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