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A reduced order modeling algorithm for the estimation of space varying parameter 
patterns in numerical models is proposed. In this approach domain decomposition is 
applied to construct separate approximations to the numerical model in every subdomain. 
We introduce a new local parameterization that decouples the computational cost of 
the algorithm from the number of global principal components and therefore provides 
attractive scaling for models with a very large number of uncertain parameter patterns. By 
defining uncertain parameter patterns only in the various subdomains the number of full 
order simulation required for the derivation of the reduced order models can be reduced 
drastically. To avoid non-smoothness at the boundaries of the subdomains, the optimal 
local parameters patterns are projected onto global parameter patterns. The computational 
effort of the new methodology hardly increases when the number of parameter patterns 
increases. The number of training models depends primarily on the maximum number 
of local parameters in a subdomain, which can be decreased by refining the domain 
decomposition. We apply the new algorithm to a large-scale reservoir model parameter 
estimation problem. In this application 282 parameters could be estimated using only 90 
full order model runs.

© 2020 Elsevier Inc. All rights reserved.

Abbreviation

POD, proper orthogonal decomposition; PCA, principal component analysis; RBF, radial basis function; TPWL, trajectory 
piecewise linearization; DD, domain decomposition; FOM, full-order model; SLP, smooth local parameterization.

1. Introduction

We address the problem of the computationally efficient estimation of spatially varying parameters in large-scale sim-
ulation models of porous media flow. Earth science domains in which these problems arise include hydrocarbon and 
geothermal reservoir engineering, hydrology and geophysics. For example, in reservoir engineering, where the problem 
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is known as history matching, simulation models typically contain 105 − 106 spatially related but largely unknown model 
parameters, available data are sparse and often indirect, and relationships between parameters and data tend to be highly 
nonlinear. The unknown parameters include, amongst others, the properties of discrete volumes of porous rock at depths 
up to a few kilometers, and functional models of interaction between fluids that are present in the pores of that rock. In 
the context of multi-phase flow in subsurface porous media, like oil-water flow in an oil reservoir model, the unknown 
parameters contain static geological parameters and dynamic parameters representing the fluid interactions. The geological 
permeability, porosity, hydraulic conductivity, fault multiplier and net thickness gross (NTG) belong to the static parameters, 
while the relative permeability coefficients and capillary pressure belong to dynamic parameters. Data are typically obtained 
at wells that are drilled from the surface and are used to either produce fluids from the reservoir or inject fluids in the 
reservoir in order to displace the fluids present in it. These wells are normally sparsely distributed over large areas, leaving 
the largely heterogeneous reservoir rock in-between the wells unsampled. Alternative ways of gathering information are 
based on geophysical techniques, such as reflection seismic, which register the arrival time and amplitude of acoustic waves 
that are reflected at contrasts in acoustic impedance, which in turn is affected by the density and mechanical properties 
of the rock and fluids. Such geophysical information is often of low spatial resolution (especially in the vertical, or depth, 
direction). All these aspects make the reservoir history matching a challenging problem.

The methods that have been proposed in the past to address this problem share many similarities with those employed 
to solve state and parameter estimation problems that appear, for example, in oceanography and meteorology. It has been 
widely acknowledged that the adjoint method is one of the most efficient approaches to solve such large-scale parameter 
estimation problems [1–4]. This approach exploits the so-called adjoint model to calculate the gradient of the model-
data mismatch with respect to the parameters. Unfortunately it is an intrusive method that requires access to the source 
code of the simulation model and often also requires a significant implementation and maintenance effort. Some studies 
have looked at ways to make the implementation of the adjoint method more feasible. Courtier et al. [5] proposed an 
incremental approach that replaces the high resolution nonlinear model with an approximate linear model whose adjoint 
can be obtained more easily. Liu et al. [6,7] developed an ensemble-based four-dimensional variational (En4DVar) data 
assimilation scheme where the approximated linear model is constructed using an ensemble of model simulations.

Reduced order model approaches have received attention as a way of reducing the computational effort of model-based 
workflows through dimensionality reduction. The main idea is to construct a (linear) low-order surrogate model by pro-
jecting the dynamics of the system onto the subspace of dominant variability of the model dynamics. Most model order 
reduction (MOR) strategies employ POD of time series of model state ‘snapshots’ to identify an orthogonal set of basis 
functions of the subspace. Such MOR strategies have been applied with success in speeding up model simulations in com-
putational fluid mechanics [8–10], subsurface flow simulations [11–13], air pollution [14] and aerospace design [15].

The combination of model linearization and dimensionality reduction also provides possibilities to ease the implemen-
tation of the adjoint method for high-dimensional non-linear systems. Cardoso et al. [16] were the first to integrate POD 
and trajectory-piecewise-linearization ([17]) and applied this strategy to oil production optimization. Subsequently, He et 
al. [18,19] also applied POD-TPWL to reservoir history matching. These studies suggested that POD-TPWL has the potential 
to significantly reduce the computational cost associated with solving subsurface flow problems [20], especially by reduc-
ing the overall full-order model simulation runtime. However, POD-TPWL in its original form requires access to derivative 
matrices used internally by the numerical solver of the simulation model, and therefore cannot be used with, for example, 
most commercial simulators [21].

A non-intrusive POD-based method to build reduced-order linear approximations of high-dimensional non-linear sub-
surface flow models was proposed by Vermeulen and Heemink [22]. The adjoint of this reduced-order linear model can be 
easily constructed and the minimization of the model-data mismatch can therefore be handled efficiently. Altaf et al. [23]
and Kaleta et al. [24] applied this method to a coastal engineering and reservoir history matching problem, respectively. 
This algorithm considers any simulator as black box and is completely non-intrusive with respect to the simulation code. 
However, the model linearization is realized through a perturbation-based finite difference method, which requires a signif-
icant number of full-order model simulations and is therefore computationally less attractive for large scale problems with 
many uncertain parameters.

Domain decomposition (DD) as a strategy for constructing reduced-order models (ROM) is not new and has been ex-
tensively investigated in various fields. Lucia et al. [25,26] introduced the subdomain idea into ROM for tracking a moving 
shock wave, whilst other applications of the subdomain approach into ROM include the work of Baiges et al. [27], Kerfriden 
et al. [28], Amsallem et al. [29] and Chinchapatnam et al. [30]. Antil et al. [31,32] also used a subdomain idea to construct 
balanced truncation based ROMs. Xiao et al. [9,33] developed a non-intrusive procedure that splits the computational do-
main into spatial subdomains and calculates a local reduced order approximation to the governing equations within each 
subdomain. These reduced-order model approaches aim primarily at approximating the dynamic response of the full model 
as accurately as possible. Our objective here, on the other hand, is to effectively and efficiently estimate uncertain full order 
model parameters through approximation of the adjoint of the original high-dimensional non-linear model.

Xiao et al. [34] proposed a non-intrusive approach, e.g., subdomain POD-TPWL, that combines dimensionality reduction, 
piece-wise linearization and domain decomposition, and demonstrated this approach on an example from the field of sub-
surface reservoir engineering. Compared to the POD-TPWL approach proposed in [16], this subdomain POD-TPWL has two 
advantages: (1) Instead of taking global basis functions to define the low-order subspace, the snapshots of dynamic states 
are first partitioned according to the domain decomposition strategy and then local basis functions are obtained from these 
2
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partitioned snapshots. (2) The derivative matrices required in the process of model linearization are separately approximated 
in each subdomain using a RBF interpolation method [35], such that access to the underlying model code is not required. 
A drawback of that approach was that only the dimension of the model state space was reduced in ‘local’ subdomains, 
whereas the number of parameters was still determined by a global PCA decomposition of the parameter space over the 
entire spatial domain. Based on numerical experiments, it was found that the total number of full-order model simula-
tions required for subdomain POD-TPWL is roughly 2-4 times the number of global parameters. This computational cost is 
therefore still too high for large-scale parameter estimation problems with a large number of uncertain parameters.

In this paper we propose a new method that incorporates a local parameter decomposition into the subdomain POD-
TPWL approach. We will show that the resulting reduction in the dimensionality of the local PCA parameterizations is much 
larger than that obtained through global PCA parameterization. As a result a much smaller number of full-order model 
simulations will need to be run to solve the parameter estimation problem. A consequence of the decomposition of the 
spatial parameter field into spatial non-overlapping subdomains is the potential loss of smoothness. When implementing 
parameterization techniques such as PCA [36], kernel PCA [37], discrete cosine transform (DCT) [38] and discrete wavelet 
transform (DWT) [39] in the global domain, it is guaranteed that the reconstructed spatial parameter field is smooth. How-
ever, applying these techniques in each subdomain separately to obtain local parametrizations will introduce discontinuities 
at the boundaries among neighboring subdomains. We therefore introduce an approach that resolves the non-smoothness 
at the boundaries of neighboring subdomains by projection of the estimated local PCA patterns onto global PCA patterns. 
This smooth local parameterization simultaneously inherits the advantages of global PCA (e.g., smoothness and differentia-
bility) and of local PCA (computational efficiency). We combine this parameterization method with subdomain POD-TPWL 
to drastically speed up the solution of parameter estimation problems with many uncertain parameters. The methodology is 
assessed in detail by analyzing its performance in example applications to petroleum reservoir history matching problems.

The remainder of the paper is organized as follows. The formulation of the inverse modeling is presented in Section 2. 
A brief description of subdomain POD-TPWL with global parameterization and its limitation are introduced in Section 3. Sec-
tion 4 describes the smooth local parameterization method to represent parameter patterns in each subdomain individually 
while preserving smoothness. The procedure of subdomain POD-TPWL combined with the smooth local parameterization is 
presented in Section 5. Section 6 describes the basic settings of two case-studies using a 2D reservoir simulation model. 
Section 7 analyzes in detail the results of numerical experiments. Finally, Section 8 summarizes the results and discusses 
future work.

2. Formulation of the inverse problem

In the following a brief overview of the mathematical formulation of the parameter estimation problem is provided, 
along the lines of the description in [34]. The dynamic equation for a porous medium fluid flow system can be described by

xn = fn(xn−1,β), n = 1, · · ·, Nt (1)

where the dynamic operator fn: R Nx→R Nx represents the nonlinear time-dependent model evolution from discrete time 
step n − 1 to time step n, xn∈ R Nx represents the dynamic state vector, and β∈ R Nβ is a vector containing the model param-
eters. In the following we will consider an oil reservoir two-phase flow with x consisting of pressure and water saturation 
in all Ng gridblocks (that is to say Nx = 2Ng ) and β representing a vector of the geological permeability in all gridblocks 
(e.g., Nβ = Ng ). Nt denotes the total number of simulation time steps.

The relationship between the measured data ym∈ R N y and the model state can be described by introducing a measure-
ment operator hm: R Nx→R N y as follows

ym = hm(xm,β) + rm, m = 1, · · ·, Nobs (2)

where Nobs is the number of time steps at which the measurements are taken (a subset of the Nt simulation time steps), 
and N y is the number of measurements at each time step. rm denotes a vector of measurement errors for the data gathered 
at time step m. These errors are generally assumed to satisfy a Gaussian distribution G(0, Rm) where Rm is the measurement 
error covariance matrix. In our case study we consider two types of measured data, namely well data (fluid rate and pressure 
measured at the well locations only), and water saturation data (assumed to be observed in all gridblocks). Water saturation 
data are used to mimic time-lapse seismic data from which water saturation can be extracted through seismic inversion 
[40].

If the prior probability density function (PDF) of the parameters β is Gaussian with mean βb and covariance matrix C, 
maximization of the posterior probability density conditioned on the measurements dobs is equivalent to minimizing the 
objective function defined as

J F O M(β) = 1

2
(β − βb)

T C−1(β − βb) + 1

2

Nobs∑
m=1

[dm
obs − hm(xm,β)]T Rm−1[dm

obs − hm(xm,β)] (3)

If the derivatives of fn and hm with respect to xn and βb are available for n = 1, · · ·, m, the adjoint method can be employed 
to obtain the gradient of this objective function [1–3], which can subsequently be used in a gradient-based algorithm to 
solve the minimization problem.
3
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3. Description of subdomain POD-TPWL

3.1. POD-TPWL

Here we will briefly describe the POD-TPWL method [16,41]. First, one or more training samples of the unknown param-
eters β are generated and subsequently used as input for generating an ensemble of model simulations that solve Eq. (1), 
resulting in a time series xn

tr with n = 1, · · ·, Nt . The TPWL surrogate model approximates the state xn , for a given the state 
xn−1 and parameters β , as the first-order expansion around the training solution (xn

tr, x
n−1
tr , βtr) as follows

xn≈xn
tr + En

xtr
(xn−1 − xn−1

tr ) + Gn
βtr

(β − βtr) (4)

with

En
xtr

= ∂fn

∂xn−1
tr

, Gn
βtr

= ∂fn

∂βtr
(5)

If there is more than one training solution, (xn
tr, x

n−1
tr , βtr) is chosen to be the solution that is ‘closest’ to the state vector 

xn−1. A criterion for closeness was suggested by He et al. [41].
The matrices En

xtr
∈ R Nx×Nx and Gn

βtr
∈ R Nx×Nβ represent the derivatives of the dynamic model given by Eq. (1) at time 

step n with respect to state vector xn−1
tr and parameters βtr , respectively. Throughout this paper, the variables with subscript 

tr represent the training model we linearize around. Eq. (4) is, however, still in high-dimensional space, xn ∈ R2Ng and β ∈
R Ng , and is computationally very expensive to compute. This has motivated the development of the POD-TPWL algorithm.

Proper Orthogonal Decomposition is used to project high-dimensional state vectors onto an optimal lower-dimensional 
subspace. The basis of this subspace is defined by the left singular vectors obtained by performing a Singular Value Decom-
position (SVD) of a snapshot matrix containing states at selected time steps (snapshots) computed from training simulations. 
The state vector x (the superscript indicating the time step is omitted to simplify the notation) can then be represented in 
terms of the product of a matrix of basis vectors � and a coefficient vector ψ

x = �ψ =
[
�p 0
0 �s

]
ψ =

[
�p 0
0 �s

][
ψ p
ψ s

]
(6)

where �p and �s represent matrices of basis vectors for pressure and saturation respectively. In general there is no need 
to retain all columns �p and �s and reduced state representations can be obtained by selecting only the first columns 
according to an energy criterion [41].

The same procedure can be used to project the high-dimensional parameter space onto an optimal lower-dimensional 
subspace [42]. Any Gaussian distributed parameter vector β can be represented by a vector of Gaussian random coefficients 
ξ with zero mean and unit variance according to

β = βm + �βξ (7)

where βm represents a background (mean) parameter vector and �β denotes a matrix of NG parameter basis vectors. 
Analogous to the POD procedure sketched above, the basis vectors can be computed from large set realizations of the 
random parameter vector [43]. In the following we will refer to this procedure for the parameter space reduction as principal 
component analysis (PCA).

Substituting Eq. (6) and Eq. (7) into Eq. (4), we obtain the following reduced-order linear model

ψn≈ψn
tr + En

ψtr
(ψn−1 − ψn−1

tr ) + Gn
ξ tr

(ξ − ξ tr) (8)

with

En
ψtr

= �T ∂fn

∂xn−1
tr

� = �T En
xtr

�, Gn
ξ tr

= �T ∂fn

∂βtr
�β = �T Gn

βtr
�β (9)

Similarly, the measurement operator (Eq. (2)) is also linearized around the training solution (ψm
tr , ξ tr) as follows

ym≈ym
tr + Am

ψtr
(ψm − ψm

tr) + Bm
ξ tr

(ξ − ξ tr) (10)

with

Am
ψtr

= ∂hm

∂xm
tr

�, Bm
ξ tr

= ∂hm

∂βtr
�β (11)

Eqs. (8)-(9) and (10)-(11) represent the standard POD-TPWL systems for a dynamic model and a measurement operator, 
respectively. En , Gn , Am and Bm are used internally by the numerical solver and are not easily to compute. Unlike 
ψtr ξ tr ψtr ξ tr

4
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the model state operator in Eq. (9) where the state variables xn are reduced using the projection basis matrix φ, the 
measurements ym (e.g., fluid rate and bottom-hole pressure) are generally different from the state variables, e.g., saturation 
and pressure, and therefore do not need the projection by the basis matrix φ. As a result, the definitions of Am

ψtr
and Bm

ξtr
do 

not contain the left-multiplication of an φT in Eq. (11). Since these derivatives are not generally accessible, in the following 
we will describe an alternative non-intrusive method that uses the adjoint of a reduced surrogate model instead.

3.2. Domain decomposition

The POD-TPWL algorithm is based on a low-order state approximation in terms of a global POD, i.e. a basis representa-
tion obtained from the snapshot matrix containing the global (full domain) state vectors. For subsurface multi-phase flow 
problems has been observed that the number of retained global patterns needed to meet reasonable criteria for representa-
tion of the variability of the original state is quite high, resulting in limited computational gains. The idea behind subdomain 
decomposition is that local variability may be represented by much fewer patterns, potentially allowing a more significant 
reduction of computational cost. Before explaining in the next section why and how this reduction can be carried out, we 
first define the necessary notation.

The global domain � can be decomposed into S non-overlapping subdomains �d , d ∈ {1, 2, · · ·, S} with � = ⋃S
d=1 �d

and �i ∩� j = 0 for i �= j (see Fig. 1). Each subdomain �d contains a total number of Nd
g gridblocks after the decomposition. 

The snapshots from the training simulations are now first partitioned accordance with this domain decomposition strategy 
and then the local basis vectors are obtained by performing a POD using the snapshots corresponding to each subdomain.

xd = �dψd =
[
�d

p 0
0 �d

s

]
ψd =

[
�d

p 0
0 �d

s

][
ψd

p

ψd
s

]
(12)

where xd∈R Nd
x represents the dynamic state vector consisting of pressure and water saturation in all Nd

g gridblocks of the 
subdomain �d . Nd

x represents the total number of state variables in subdomain �d , that is Nd
x = 2Nd

g . �d
p and �d

s represent 
matrices containing the basis vectors for pressure and saturation for subdomain �d . �d and ψd are the assembled local 
basis matrix and local POD coefficients, respectively.

3.3. Subdomain POD-TPWL

From the previous section it can be seen that POD-TPWL requires access to the Jacobian matrices containing the deriva-
tives of the state and measurement equations with respect to the states and model parameters. Xiao et al. [34] recently 
proposed a procedure to construct a RBF interpolation model that approximates the original models Eq. (1) and Eq. (2), 
from which the equivalent derivative matrices can be derived analytically. The computational complexity of RBF interpola-
tion is dominated by the dimensionality of the inputs, e.g., ψ and ξ in our study. A direct implementation of POD in the 
global domain (as done, e.g. in [22]) will result in the requirement to retain a large number global POD patterns, and a 
high computational complexity. Domain decomposition (DD) was therefore introduced to enable the efficient evaluation of 
independent subdomain models expressed in much smaller numbers of local POD patterns [34].

The main idea behind the subdomain POD-TPWL is to approximate the dynamical evolution of reduced states within sub-
domains by a reduced-order piece-wise linear model analogous to Eq. (8). Introducing an extra term to allow for dynamical 
interaction between each subdomain �d and its neighboring subdomains �sd , we assume that the local POD coefficients 
ψd,n in subdomain �d can be approximated by ψ̂

d,n
as follows

ψd,n ≈ ψ̂
d,n = ψd,n

tr + Ed,n
ψtr

(ψd,n−1 − ψd,n−1
tr ) + Esd,n

ψtr
(ψ sd,n − ψ sd,n

tr ) + Gd,n
ξ tr

(ξ − ξ tr) (13)

where

Ed,n
ψtr

= ∂£d,n

∂ψd,n−1
tr

, Esd,n
ψtr

= ∂£d,n

∂ψ sd,n
tr

, Gd,n
ξ tr

= ∂£d,n

∂ξ tr
(14)

Analogously, the measurements yd,m taken in subdomain �d are approximated by ŷd,m as follows

yd,m ≈ ŷd,m = yd,m
tr + Ad,m

ψtr
(ψd,m − ψd,m

tr ) + Bd,m
ξ tr

(ξ − ξ tr) (15)

with

Ad,m
ψtr

= ∂h̄d,m

∂ψd,m
tr

, Bd,m
ξ tr

= ∂h̄d,m

∂ξ tr
(16)

Above we have introduced new, so far undefined, functions £d,n(ψd,n−1, ψ sd,n, ξ) and h̄d,m(ψd,m, ξ) of the local reduced 
states ψd,n and the measurements yd,m and of the global reduced parameters ξ . By analogy to Eqs. (8)-(9) and Eqs. (10)-(11)
5
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Fig. 1. Illustration of domain decomposition in a 2D case. The entire domain is divided into nine rectangle subdomains.

these functions represent the reduced nonlinear dynamic model and reduced nonlinear measurement operator, respectively. 
Note that only the derivatives of these models appear in our proposed subdomain formulation and that we are free to 
choose the form of these functions. We would like to be able to evaluate their derivatives (Eq. (14)) efficiently and that, 
when used in Eq. (13), they deliver the best possible approximation ψ̂

d,n
of the full states ψd,n .

Xiao et al. proposed to define £d,n and h̄d,m in terms of a RBF interpolation model [34]. The RBF interpolation model 
can be represented as a linear combination of M radial basis functions θ by a vector of weighting coefficients ωd,n =
[ω1, ..., ω j, ..., ωM ] (where, j = 1, 2, ..., M) at time step n for subdomain �d

£d,n(ψd,n−1,ψ sd,n, ξ) =
M∑

j=1

ωd,n
j θ(||(ψd,n−1,ψ sd,n, ξ) − (ψd,n−1

j ,ψ sd,n
j , ξ j)||) (17)

and similarly,

h̄d,m(ψd,m, ξ) =
M∑

j=1

εd,m
j θ(‖(ψd,m, ξ) − (ψd,m

j , ξ j)‖) (18)

respectively, the subscripted index j identifies one of M training runs. The choice of M significantly depends on the dimen-
sion of inputs, e.g., ψd

j and ξ j . A discussion of how to choose M was provided by Xiao et al. [34]. Subdomain POD-TPWL 
uses analytical RBFs £d,n and h̄d,m to approximate the time series of full model state snapshots, which also allows us to 
derive the derivative matrices Ed,n

ψtr
, Esd,n

ψtr
, Gd,n

ξ tr
, Ad,m

ψtr
, and Bd,m

ξ tr
analytically. More information on the specific formula of the 

radial basis function θ and the determination of the weighting coefficients ω can be found in [34].
It can be seen from Eq. (13) and Eq. (15) that the subdomain POD-TPWL system is defined in terms of local POD patterns 

of the model dynamics, and global patterns representing the uncertain parameter space. Numerical experiments in [34]
have shown that the total number of full-order model simulations required to construct the subdomain POD-TPWL model 
is approximately 2-4 times the (limited) number of global parameter patterns, and the number will rapidly increase as the 
dimensionality of global parameter patterns becomes large. Decreasing the number of preserved global parameter patterns 
will reduce the computational cost, but will inevitably result in a loss of accuracy. The dependence of the computational 
cost on the dimension of the global reduced parameter space will inevitably restrict the application of subdomain POD-
TPWL to inverse problems with a limited number of uncertain parameters or with parameters fields containing smooth and 
large-scale spatial correlations.

From a computational point of view, implementing subdomain POD-TPWL in terms of local parameter patterns in each 
subdomain, similar to the treatment of the dynamic states, therefore seems attractive. Firstly, the number of local patterns 
in each individual subdomain will be smaller than the number of global patterns, this description might be almost valid 
in some practical problems, secondly, the computational cost of the parameter estimation procedure is proportional to the 
typical number of local patterns in any one subdomain, this statement has been partially verified in our previous work [34]
where the global parameter patterns are optimized. Such an approach we aim at proposing in this work would rely on the 
validity of assumption that it is possible to reconstruct global parameter fields from the local parameter solutions that satisfy 
criteria for acceptable solutions in the global domain. In the following section we will introduce a smooth local parameter 
reduction method that addresses the computational limitations associated with the use of global parameter reduction and 
produces smooth global space parameter patterns.

4. Smooth local parameterization

In this section, we first discuss global PCA and local PCA based representations of spatial parameter patterns in the 
global domain and in the subdomains, respectively. The disadvantages of each are investigated to motivate the development 
of smooth local parameterization.
6
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Fig. 2. The number of local PCA patterns in each subdomain for a domain decomposition consisting of 4×5 subdomains.

Table 1
Total number of local PCA and global PCA patterns, and the maximum number of local PCA patterns among all 
subdomains corresponding to three different domain decomposition strategies, e.g., 3×4, 4×5 and 5×6, respectively.

Domain decomposition
Smooth local parameterization Global PCA

NL = ∑S
d=1 Nd

l max{N1
l ,...,Nd

l ,...,N S
l } NG

3 × 4 236 18
484 × 5 275 15

5 × 6 312 12

4.1. Global and local PCA-based representations of spatial parameters

In analogy to the global PCA-based parameter reduction described above, the local parameter vector βd ∈R Nd
β in subdo-

main �d can be expressed as

βd = βd
m + �d

βξd, d = 1, · · ·, S (19)

where, βd
m represents a mean parameter vector and �d

β is the basis matrix that projects the high-order parameter patterns 
onto the low-order subspace of dimension Nd

l for subdomain d. ξd denotes an vector of local PCA coefficients for subdomain 
d. The energy criterion can be employed to choose the number of basis vectors [41].

In order to illustrate the global and local PCA procedures described above to reconstruct parameter fields, we manually 
generate Nr = 1000 random Gaussian realizations of the model parameter vector, representing the log-permeability for all 
gridblocks of the 2D reservoir model that will be used in the numerical experiments presented later. Specifically, the Stan-
ford Geostatistical Modeling Software (SGeMS) tool that we can download freely1 is used [44]. After defining the properties 
of the variogram, especially the maximum and medium ranges and the azimuth, and the ranges of the search ellipsoid to 
large values, these 1000 correlated random Gaussian fields can be generated by running the sequential Gaussian simulation 
algorithm in this software.

The entire model domain is decomposed into 20 non-overlapping subdomains (4 subdomains in one direction and 5 
subdomains in the second direction) as illustrated in Fig. 2. NG = 48 global PCA patterns are required to construct a reduced 
order representation that retains 95% of the energy (variability) in the original 1000 realizations. The maximum number of 
local PCA patterns max{N1

l , ..., Nd
l , ..., N S

l }, d = 1, 2, ..., S , obtained by the same procedure and the same energy criterion 
(but now applied in each subdomain separately) is summarized in Fig. 2. Results for other decompositions are summarized 
in Table 1. Decompositions with a larger number of subdomains results in fewer local PCA patterns in each subdomain. The 
maximum number of local patterns in any subdomain is substantially smaller than NG .

The first two panels of Fig. 3 show two examples of parameter patterns for random realizations of global ξ and local 
ξd PCA coefficients. It can be seen that sampling arbitrary local PCA coefficients will result in a non-smooth reconstructed 
global parameter field, while global PCA produces a smooth parameter field in a relatively high-order subspace. The max-
imum number of local patterns required in any subdomain is much smaller, however, than the number of global patterns 
that is needed. This motivates us to develop a smooth local parameterization (SLP) that exploits the advantages of global 
PCA (smooth representation) and local PCA (computationally efficiency). We will demonstrate the gain in computational 
efficiency in the following sections.

1 http://sgems .sourceforge .net/.
7
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Fig. 3. Example parameter reconstructions using (a) local PCA, (b) global PCA and (c) smooth local parameterization.

4.2. PCA-based smooth local representation of spatial parameters

The results shown in Fig. 3(b) suggest that direct reconstruction of the global parameter field from local subdomain 
parameter solutions, and then stitching all subdomains together, is unlikely to produce acceptable results. We therefore 
add a post-processing step that finds the best matching global PCA reconstruction. This solution is found by minimizing an 
objective function consisting of the sum of squared differences between the local solution based reconstruction in terms of 
ξd and a global reconstruction in terms of global PCA coefficients ξ ,

J (ξ ) = 1

2
[

S∑
d=1

Td(βd
m + �d

βξd) − βm − �βξ ]T C−1[
S∑

d=1

Td(βd
m + �d

βξd) − βm − �βξ ] + 1

2
ξ T ξ (20)

where Td∈R Ng×Nd
β is a transformation matrix with elements equal to 0 or 1 that maps a grid position in subdomain �d

to the corresponding grid position in the global domain, and Nd
l denotes the total number of local parameter patterns in 

subdomain �d . The squared differences between global and local reconstructions are weighted by the matrix C, which is 
the covariance matrix quantifying the prior variability of the Gaussian-distributed random parameters β . A regularization 
term is included to constrain the magnitude of solutions for ξ . The minimizing solution is obtained by setting the derivative 
of J (ξ) with respect to ξ equal to zero, resulting in

ξ = 1

2
�T

βC−1
S∑

d=1

Td�d
βξd (21)

The parameter field can then be reconstructed by insertion of the solution in Eq. 6, resulting in

β = βm + 1

2
�β�T

βC−1
S∑

Td�d
βξd (22)
d=1

8



It can be seen that smooth solutions for the parameter field can be expressed directly in terms of the local PCA coeffi-
cients ξd . Furthermore, this smooth local parameterization (SLP) is a differentiable and linear transformation, which makes 
the parameter estimation problem suitable for use of continuous gradient-based minimization approach. The last panel of 
Fig. 3 shows reconstructed parameter fields using the proposed SLP approach. Table 1 summarizes the maximum number 
of local PCA coefficients, e.g., max{Nd

l } and total number of local PCA patterns, e.g., NL = ∑S
d=1 Nd

l , d = 1, 2, ..., S , among all 
subdomains for different domain decomposition strategies. Decomposition with a larger number of subdomains results in 
fewer local PCA coefficients in each subdomain.

A final question to be addressed is the number of local PCA patterns that need to be retained. In order to guarantee 
smoothness and full reconstruction of the global solution space, many local PCA patterns may be required. However, previous 
experiments [34] have indicated that the overall computational cost is proportional to the number of PCA patterns. We will 
discuss here a procedure to estimate the minimum number of required patterns that delivers efficiency and guarantees a 
desired accuracy.

Eq. (21) can be written in compact form as

ξ = TGL ξ L (23)

where ξ L = [ξ1 T
, ..., ξd T

, ..., ξ S T ]T . TGL ∈ R NG ×NL is a transformation matrix for converting local PCA coefficients into global 
PCA coefficients, which, after unfolding, can be expressed as

TGL = 1

2
�T

βC−1[T1�1
β ,T2�2

β , · · ·,Td�d
β , · · ·,TS�S

β ] (24)

The global projection basis matrix �β can be written in unfolded form as follows

�β = [φ1,φ2, · · ·,φi, · · ·,φNG
] (25)

where φi ∈ R Ng×1, i ∈ {1, 2, · · ·, NG} is one global basis vector (we have dropped the subscript β on the individual basis 
vectors for notational clarity). Defining ei as the unit column vector with a 1 at position i and zeros elsewhere, each 
individual global basis vector can be extracted as follows

φi = �β ei, i = 1,2, ..., NG (26)

The solution space for the full parameter field is spanned by the global PCA patterns. SLP must therefore be able to 
produce any solution for the global PCA coefficients ξ . In other words, the following set of equations should have solution 
ξ i

L

TGLξ
i
L = ei, i = 1,2, · · ·, NG (27)

The transformation matrix TGL should be full-row rank, which implies the total number of local PCA patterns NL must 
be equal to or larger than that of global PCA patterns NG . The rank of transformation matrix TGL cannot be explicitly 
determined from Eq. (24). Therefore, we propose a numerical procedure to determine a minimum for the total number of 
local patterns NL . We assume that ξ i

L(NL) and φ∗
i (NL) as functions of preserved number of local PCA coefficients NL are 

the solution of the ith equation and the reconstructed i the global PCA basis vector, respectively. In this paper, we currently 
preserve the same number of local PCA patterns for each subdomain. We define a root mean square error RM S Ei(NL) to 
quantitatively characterize the accuracy of the reconstructed global PCA basis vector φ∗

i . The total RM S E(NL) is the average 
root mean square error of all global PCA basis vector reconstructions. The minimum NL is determined by minimizing the 
total RM S E(NL) as follows

NL = arg min
NL

RM S E(NL) = arg min
NL

NG∑
i=1

RM S Ei(NL) (28)

where

RM S Ei(NL) = ‖φi − φ∗
i (NL)‖2 = ‖φi − �β × TGLξ

i
L(NL)‖2 (29)

We solve this problem by simply evaluating the cost function (Eq. (28)) for increasing values of NL until a minimum is 
found. Fig. 4 shows the evolution of the RM S E(NL) as a function of the number of local PCA patterns NL for 2 different 
global energy criteria. It can be seen that a minimum NL can be obtained that makes RM S E(NL) equal to zero. Table 2
summarizes the minimum number of local PCA patterns corresponding to different domain decomposition strategies. We 
can confirm that the minimum total number of local PCA patterns NL is equal to or slightly larger than the number of global 
PCA patterns NG . Fig. 5 and Fig. 6 show the 1st global basis vector φ1, 72nd global basis vector φ72 and their corresponding 
reconstructed φ∗

1 and φ∗
72 when different number of local PCA patterns are retained. The global basis vectors are accurately 

reconstructed as long as we retain at least the minimum number of local PCA patterns.
C. Xiao, O. Leeuwenburgh, H.X. Lin et al. Journal of Computational Physics 424 (2021) 109867
9



C. Xiao, O. Leeuwenburgh, H.X. Lin et al. Journal of Computational Physics 424 (2021) 109867

Fig. 4. The RM S E Eq. (28) for different number of local PCA patterns in each subdomain. Four domain decomposition strategies are considered, consisting 
of 2×3, 3×4, 4×5 and 5×6 subdomains respectively.

Fig. 5. The reconstructed 1st global basis vector φ1 using different domain decomposition strategies and different number of local PCA patterns in each 
subdomain. Four domain decomposition strategies are considered, consisting of 2×3, 3×4, 4×5 and 5×6 subdomains respectively.
10
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Table 2
The minimum number of local PCA patterns corresponding to different domain decomposition strategies when RM S E = 0.

Energy for global PCA 95% 98%

NG 48 72

Domain Decomposition min{N1
l , ..., Nd

l , ..., N S
l } NL min{N1

l , ..., Nd
l , ..., N S

l } NL

2×3 8 48 12 72
3×4 4 48 6 72
4×5 3 60 4 80
5×6 2 60 3 90

Fig. 6. The reconstructed 72nd global basis vector φ72 using different domain decomposition strategies and different number of local PCA patterns in each 
subdomain. Four domain decomposition strategies are considered, consisting of 2×3, 3×4, 4×5 and 5×6 subdomains respectively.

5. Adjoint-based data assimilation with smooth local parameterization

Ideally we expect to generate reduced-order linear models for each large subdomain individually. However the effects of 
the neighboring subdomains should be considered to generate reduced-order linear models for each small subdomain. Both 
the local POD and local PCA patterns of these neighboring subdomains are also used as the inputs for the RBF interpolation, 
which will increase the number of interpolation variables for the RBF and hence requires us running additional training 
models. To avoid the extra computational cost, we assume that each subdomain is sufficient “large ”so that it can be 
handled individually. We should note that it will never be possible to easily clarify these local dependencies in realistic 
applications, and the definition of “large ”or “small ”is subjective. An inappropriate domain decomposition strategy, e.g., 
11
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too “large ”or too “small ”subdomains, adversely causes spurious long-distance dependency or cuts off real dependencies 
among neighboring subdomains and hence deteriorates the quality of the reduced-order models. The sensitivity analysis of 
the domain decomposition strategy will be provided in the following numerical experiments.

After integrating subdomain POD-TPWL with smooth local parameterization, which is referred to as LSPT hereinafter in 
this paper, the local POD coefficients ψ̂

d,n
of subdomain �d are reformulated by directly replacing the variables ξ and ξ tr

defined in Eq. (13) - Eq. (18) with the new variables ξd and ξd
tr . LSPT consists of an off-line stage and an on-line stage: (1) 

The off-line stage constructs SLP and reduced-order linear models for each subdomain. (2) The on-line stage implements 
LSPT given a set of new parameters.

The second assumption that the computational cost of the parameter estimation procedure is proportional to the typical 
number of local PCA patterns in any one subdomain proposed in Section 3 suggests that an efficient sampling strategy 
is essential for the implementation of RBF interpolation. The training simulations used to construct the RBF interpolation 
model should allow for accurate computation of derivative matrices. The procedure for choosing these training points will 
be described here. The accuracy of the RBF interpolation will be reduced if too few data points are chosen, while the 
computational cost increases with the number of data points, which will be prohibitive if too many points are chosen. To 
limit the number of FOM simulations used to construct the interpolation model for the local PCA coefficients we use 2-sided 
perturbation of each coefficient ξd

j resulting in totally 2 × Nd
l + 1 points.

The proposed LSPT approach can be incorporated into a parameter estimation algorithm based on the adjoint method. 
As an approximation to the original objective function J given by Eq. (3), a new objective function J R O M computed using 
reduced-order models is defined as

J R O M(ξ L) = 1

2
[

S∑
d=1

Td(βd
m + �d

βξd) − βm]T C−1[
S∑

d=1

Td(βd
m + �d

βξd) − βm]

+ 1

2

S∑
d=1

Nobs∑
m=1

[dd,m
obs − ŷd,m]T Rm

−1[dd,m
obs − ŷd,m] (30)

We introduce an adjoint model to compute the gradient of the objective function J R O M with respect to local PCA 
coefficients ξ L where we follow the mathematical derivation provided in [4]. A modified objective function ˆJ R O M(ξ L) is 
obtained by adjoining the reduced-order linear model, resulting in

Ĵ R O M(ξ L) = J R O M(ξ L) +
S∑

d=1

N∑
n=1

[ψ̂d,n − ψd,n
tr − Ed,n

ψtr
(ψd,n−1 − ψd,n−1

tr ) − Esd,n
ψtr

(ψ sd,n − ψ sd,n
tr )

− Gn
ξd

tr
(ξd − ξd

tr)]T λd,n (31)

The gradient of J R O M with respect to ξd for each subdomain �d is derived as

d J R O M(ξ L)

dξd
= d Ĵ R O M(ξ L)

dξd
−

N∑
n=1

[Gn
ξd

tr
]T λd,n (32)

where

d J R O M(ξ L)

dξd
= (�d

βTd)T C−1[Td(βd
m + �d

βξd) − βm]

−
N0∑

m=1

[Bd,m
ξ tr

]T Rm
−1[dd,m

obs − yd,m
tr − Ad,m

ψtr
(ψd,m − ψd,m

tr ) − Bm
ξd

tr
(ξd − ξd

tr)] (33)

The adjoint model is expressed in terms of the Lagrange multipliers λd,n for subdomain �d and is given by

[I − (Ed,n
ψtr

)T ]λd,n = [Ad,n
ψtr

]T Rn
−1[dd,n

obs − yd,n
tr − Ad,n

ψtr
(ψd,n − ψd,n

tr ) − Bn
ξd

tr
(ξd − ξd

tr)] + [Esd,n
ψtr

]T λd,n+1 (34)

for n = N, · · ·, 1 with an ending condition λd,N+1 = 0. The solution of the adjoint model Eq. (34), together with the solution 
of Eq. (33), can be used in Eq. (32) to obtain the desired total derivative with respect to the local PCA coefficients in 
subdomain �d . The full gradient with respective to all local PCA coefficients can be obtained as

	 J = [d J R O M(ξ L)
1 , ...,

d J R O M(ξ L)

d
, ...,

d J R O M(ξ L)

S
]. (35)
dξ dξ dξ

12
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Once the gradient 	 Jk at the kth iteration step is available, a steepest descent update of coefficients ξ L
k+1 is obtained by

ξk+1
L = ξk

L − αk
	 Jk

‖	 Jk‖∞
(36)

where αk is the step length at the kth iteration step [45]. The minimization process terminates when either one of the 
following three stopping criteria is satisfied: There is no significant change in the objective function,

| J R O M(ξk+1
L ) − J R O M(ξk

L)|
max{| J R O M(ξk+1

L )|,1} < η J R O M (37)

there is no significant change in the parameter estimate,

|ξk+1
L − ξk

L |
max{|ξk+1

L |,1} < ηξ L (38)

or the maximum number of iterations has been reached,

k = Nmax (39)

where η J R O M , ηξ L
and Nmax denote predefined constants and maximum iterative steps respectively. In our experiments 

η J R O M = 10−4, ηξ L
= 10−3. More strict criteria could possibly lead to more accurate results but we did not investigate this. 

Since the simulation of the reduced-order model is very cheap, we do not limit the maximum number of iterations Nmax for 
the inner-loop. The initial step size α0 = 0.1. Once the objective function increases, the step size is divided by 2 to improve 
convergence.

Oliver [46] and Tarantola [47] discussed the expected range of the optimal objective function. If the relationship between 
the simulated data and the parameters is linear, and assuming a tolerance of five standard deviations from the mean, the 
optimal objective function value J F O M(ξ L) should satisfy the inequality

Nobs − 5
√

Nobs � 2 J F O M(ξ L) � Nobs + 5
√

Nobs (40)

where J F O M is the objective function for the full order model and Nobs is the total number of measurements. Since we 
employ an approximate reduced order model in the minimization we apply a less strict criterion. Throughout this study, we 
use the following criterion

J F O M(ξ L) � 5 Nobs (41)

This criterion or tolerance can be considered to be an upper-bound to judge whether a set of acceptable optimized 
parameters has been obtained. Since the reduced-order model in Eq. (30) is not an exact representation of the full-order 
model given by Eq. (1), a number of outer-loops are typically required to update the reduced-order linear models. After 
convergence of an inner loop, the updated parameters are used as input for a full model simulation, which is added to the 
training set. An updated reduced order model is constructed as described in Sections 3 and 4, after which a new inner loop 
(minimization of Eq. (30) using the reduced order model) is started. In the numerical experiments we use a fixed number of 
10 outer-loop iterations for the base-case study, which appear to be sufficient for near-convergence in all cases, after which 
we evaluate the criterion Eq. (41) for J F O M(ξk

L). An overview of the full workflow is provided in Algorithm 1 for the offline 
stage and Algorithm 2 for the online stage.

Algorithm 1: Parameter and state reduction.

1 Create a large set of model realizations βi for i = 1, ..., Nβ ;
2 Form global basis matrix �β and coefficients ξ ;

3 Partition the global domain into subdomains �d;

4 For local basis matrices �d
β and coefficients ξd ;

5 Simulate a training set of model realizations ξd
tr and collect snapshots xn

tr ;

6 Compute local basis coefficients ψd,n
tr ;

6. Reservoir history matching experiments

In this section, the LSPT method is applied to a history matching example problem based on a 2D reservoir model 
describing a two phase water-oil reservoir system containing 6 producers and 7 injectors, labeled P1 to P6, and I1 to 
I7 respectively (see Fig. 7). The triangles and circles in the figures denote the injectors and producers, respectively. Some 
13
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Algorithm 2: Adjoint-based parameter estimation using LSPT.

1 Choose an initial ξ0
L , set k = 0;

while J (ξ L) > 5 Nobs do
2 Construct the RBF model in all subdomains (Eq. (17)-(18));
3 Compute the derivative matrices in all subdomains (Eq. (14), (16));

while not converged do
4 Simulate the RBF model (Eq. (13), (15));
5 Solve the adjoint model (Eq. (34));
6 Calculate the gradient (Eq. (32)-(33));

7 Update the parameter solution ξk
L → ξk+1

L (Eq. (36));

8 Evaluate the reduced model objective function J R O M (ξk+1
L ) (Eq. (30));

9 Check convergence (Eq. (37)-(39));
end

10 Simulate the full model (Eq. (1)) with solution ξ L (using Eq. (23));

11 Update the training set with (ξd, ψd,n);
12 Evaluate the objective function J F O M (ξ) (Eq. (3), (22)-(23));

end

Table 3
The abbreviations of the designed numerical experiments.

Abbreviations Description

LSPT1 Subdomain POD-TPWL with smooth local parameterization (smoothness)
LSPT2 Subdomain POD-TPWL with local parameterization (non-smoothness)
GSPT Subdomain POD-TPWL with global parameterization
LP-FD Finite-difference (FD) gradients with smooth local parameterization
GP-FD Finite-difference (FD) gradients with global parameterization

Table 4
Reservoir, fluid and well properties of the 2D reservoir model.

Description Value

Dimension 40×120×1

Number of wells 6 producers, 7 injectors

Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mPa·s, 2 mPa·s
Initial pressure 25 MPa

Initial saturation So = 0.80, Sw = 0.20

Connate water saturation S wc = 0.20

Residual oil saturation Sor = 0.20

Corey exponent, oil 4.0

Corey exponent, water 4.0

Injection rate 200 m3/d

Producer BHP 20 MPa

History production time 10 year

Prediction time 15 year

Model timestep 0.1 year

Measurement timestep 0.2 year

relevant properties of the reservoir geometry, rock properties, fluid properties, and well controls are shown in Table 4. An 
open-source reservoir simulator [48], Matlab Reservoir Simulation Tool (MRST), is used to simulate the reservoir model.

We consider numerical experiments with two variations of LSPT. In the first one (LSPT1), we will minimize the number 
of local PCA patterns using (Eq. (28)), while in the second one (LSPT2) we use the local PCA patterns obtained by use 
of an energy cutoff criterion without smoothness projection. For comparison purposes, the LSPT results will be compared 
against subdomain POD-TPWL with global parameterization (GSPT) and against results obtained with finite-difference (FD) 
gradients with respect to both global PCA and SLP parameter representations, referred to as GP-FD and LP-FD respectively. 
The abbreviations of the numerical experiments are provided in Table 3.

6.1. Description of history matching scenarios

Experiments are presented for two history matching scenarios. Scenario 1 is characterized by the combination of a pa-
rameter field dominated by large spatial scales and a relatively small number of well data (fluid rate and watercut (WCT) at 
the producing wells and bottom-hole pressure (BHP) at the injector wells). In Scenario 2 the spatial scales of the parameter 
14
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Fig. 7. Comparison of the “true” reservoir model in full-order space and reduced-order space for Scenario 1. The triangles and circles denote the injectors 
and producers, respectively. The global saturation and pressure snapshots are decomposed into 20 rectangle subdomains. The red dash lines represent the 
boundary of subdomains.

field are substantially smaller. At the same time, a much larger data set is available in this scenario, saturation values in all 
grid cells, such that it is possible to investigate the scaling of computational efficiency of our proposed methodology with 
the size of the problem. In both scenarios we will investigate the impact of different decompositions of the model domain 
into rectangular subdomains. Fig. 7(a) and Fig. 9(a) show a base-case decomposition based on a 4 × 5 subdomains. Note 
that for this decomposition some subdomains contain no wells, while one of the subdomains contains two wells.

6.1.1. Scenario 1
We select 1 out of 1000 generated model realizations as the truth for scenario 1 (see Fig. 7(a)). A global reduction of the 

parameter space using a 95% energy cutoff criterion results in NG = 48 preserved global PCA patterns. For the first step, we 
implement the local PCA (also employing a 95% energy cutoff criterion) without using our proposed smoothness projection. 
The number of local PCA patterns retained in each subdomain is shown in Fig. 1, which results in totally NL = ∑S

d=1 ld = 275
local PCA coefficients. Fig. 7 (a) and Fig. 7 (b) separately represents the projected ‘true’ permeability field using SLP and local 
PCA. We follow the procedure described in [34] to determine the number of full order model simulations for the selection of 
snapshots. 22 simulations were run using random global PCA coefficients sampled from the set {−1, 1}, from which a total 
number of 2200 (22 simulation models by 100 time steps) snapshots of both pressure and saturation were extracted. These 
2200 global saturation and pressure snapshots are decomposed into 20 rectangle subdomains. For each subdomain, two 
separate eigenvalue problems for pressure and saturation are solved using POD on the two sets of 2200 snapshots through 
using a 95% energy cutoff criteria. The resulting number of POD patterns for each subdomain is shown in Fig. 8. We have 
collected the snapshots at all time steps (in our study), although sometimes it is not necessary to resemble the snapshots 
for each time step as suggested in the literature [20]. Instead of taking global basis functions to define the subspace, the 
snapshots are first partitioned according to the domain decomposition strategy and then local basis functions are obtained 
from these partitioned snapshots. As a result, the implementation of POD for a large number of snapshots will not pose 
severe computational problems in the realistic applications.

6.1.2. Scenario 2
Scenario 2 aims to investigate the possibility of estimating a much larger number of parameters than in Scenario 1, 

given the availability of a much larger number of measured data. A second set of 1000 Gaussian-distributed logarithmic 
permeability fields is generated resulting in a set of NG = 282 preserved global PCA patterns. As in Scenario 1, a 4 × 5 
subdomain decomposition is chosen as a base-case (see Fig. 9(a)). Fig. 9 shows the “true”, and projected “true” logarithmic 
15
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Fig. 8. The number of reduced pressure and saturation POD patterns in each subdomain for Scenario 1. The global saturation and pressure snapshots are 
decomposed into 20 rectangle subdomains.

Fig. 9. Comparison of the “true” reservoir model in full-order space and reduced-order space for Scenario 2. The triangles and circles denote the injectors 
and producers, respectively. The global saturation and pressure snapshots are decomposed into 20 rectangle subdomains. The red dash lines represent the 
boundary of subdomains.

permeability fields using local PCA and SLP, respectively. For this scenario 32 full-order model simulations were run to select 
snapshots. The resulting number of local POD patterns in each subdomain is shown in Fig. 10.

6.2. Construction of the reduced order model

In scenario 1, a total of 53 = 22 + 2 × 15 + 1 full-order model simulations are run to construct the subdomain reduced-
order model. 22 full-order model simulations are used to collect the snapshots to construct the bases for the states, 1 
full-order model simulation is the specific training trajectory that is used in the linearization, and an additional M = 30 =
(2 × 15) full-order model simulations are run with perturbed parameter inputs to construct the subdomain reduced-order 
linear model (Eq. (17)-(18)). The vectors of PCA patterns which correspond to these 53 training models are sampled from a 
training interval ξ ∈ [−1, 1] by use of a two-sided perturbation method centered on βtr .

In terms of computational effort, the runtime for a single full-order model simulation for this case is about 9.8 s on a 
machine with i5-4690 Intel CPUs (4 cores, 3.5 GHz) and 24 GB memory using Matlab-R2015a. The LSPT base-case models 
for both scenarios, by contrast, require less than 0.3 s. However, the LSPT models for scenario 1 and 2 require respectively, 
53 and 72 training models plus additional overhead. Therefore, it would not make sense to construct the LSPT reduced-order 
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Fig. 10. The number of reduced pressure and saturation POD patterns in each subdomain for Scenario 2. The global saturation and pressure snapshots are 
decomposed into 20 rectangle subdomains.

model unless it is to be used for a large number of simulations. Because many simulations are required in history matching 
applications, the use of LSPT models should be attractive.

6.3. Error measures

To assess the performance of LSPT, we define the following relative errors with respect to the full model simulation 
reference,

Ed = 1

N Nd

N∑
i=1

Nd∑
j=1

|(di, j
F O M − di, j

R O M)|
di, j

F O M

(42)

where d represents the data vector (fluid rates, WCT, BHP and/or water saturation), and

Ex = 1

N Nd

N∑
i=1

Nd∑
j=1

|(xi, j
F O M − xi, j

R O M)|
xi, j

F O M

(43)

where, x represents the state vector (saturation and/or pressure in each gridblock).
We analyze the dependence of the model errors with respect to domain decomposition, energy cutoff criterion, testing 

interval and training interval. The testing interval or training interval represents the predefined perturbation intervals from 
which the testing and training samples are selected. Fig. 11 shows the RMSE error in fluid rate, water-cut, pressure and 
saturation as a function of these four factors for scenario 1. For scenario 2, Fig. 12 depicts the predictions of gridblock 
saturation and the corresponding relative errors at day 1825 and day 3650 using FOM and LSPT simulations for a relatively 
small subdomain size of 3×4 cells, which produced the most accurate results for this case. Accuracy is also improved by 
increasing the energy threshold and thus retaining more POD patterns, albeit at an increased computational cost. Retaining 
95% of the total energy during projection produces an acceptable accuracy in this case. The testing intervals and training in-
tervals represent the magnitude of two-side perturbations around the linearized trajectory corresponding to ξ tr . The testing 
case and training models will be randomly sampled from these two intervals, respectively. Increasing the testing interval, 
which represents the maximum discrepancy between test model and linearized training model, deteriorates the accuracy of 
the reduced model, with the best results obtained here with a [-0.1, 0.1] interval.

In order to evaluate the quality of parameter estimation results, we will compare the value of the final objective function 
against the tolerance (Eq. (41)) and against the reference objective function values for the true model (reflecting the impact 
of the data noise) and the projected true model (that is the best possible reconstruction of the truth given the selected PCA 
patterns). Reconstructed parameter maps will provide a visual indication of smoothness and uniqueness of the solution. For 
all approaches we will list the computational cost expressed in terms of the number of full order model simulations.

6.4. Generation of noise measurements

The historic production period is 10 years, during which well measurements are taken at 0.2 year intervals, resulting in 
50 time instances in total. Normal distributed independent measurement noise with a standard deviation equal to 5% of the 
‘true’ data value was added to all measurements. The complete well data set consist of 300 fluid rates and 300 WCT values 
measured in the producers and 350 bottom-hole pressures measured in the injectors (950 measured data points in total).

The seismic data used in scenario 2 correspond to the saturation values from the ‘true’ model simulation after 1825 
days (1st monitor) and 3650 days (2nd monitor) of production, mimicking the collection of data from two seismic monitor 
surveys. For this scenario there are in total 8920 measurements. The noisy measurements for the two monitor surveys are 
shown in Fig. 13.
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Fig. 11. Average LSPT errors as a function of domain decomposition, energy cutoff criterion, testing interval and training interval for Scenario 1. Results are 
for LSPT models constructed using 53 training simulations for the test case.

Fig. 12. Predictions of saturation distribution and its corresponding relative errors at the 1825 days and the 3650 days using FOM and LSPT for Scenario 2. 
The first row is at the 1825 days, while the second row is at the 3650 days.
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Fig. 13. Noise distribution of water saturation for scenario 2. Normal distributed independent measurement noise with a standard deviation equal to 5% of 
the ‘true’ data value was added to all observations.

7. Results

7.1. Scenario 1

7.1.1. Base-case
Fig. 14 and Table 5 summarize the evolution of the objective function values over the outer and inner iteration loops, and 

the initial and final values respectively. (Note that the jumps of the objective function values in the inner-loop iterations 
as Fig. 14(a) are the starting points of new outer-loop iterations.) Fig. 15 and Fig. 16 depict the true, initial (prior) and 
estimated (posterior) logarithmic permeability fields, and Fig. 17 shows the prior and poster data mismatches.

Fig. 14 reveals that GP-FD, LP-FD and GSPT obtain similar objective function values after the minimization, while our 
proposed LSPT obtains a slightly less accurate result. As can be seen from Table 5, both LSPT1 and LSPT2 require 62 FOM 
simulations, among them, 22 FOM simulations are used to collect the snapshots to construct the POD basis matrix for 
the states, 1 FOM simulation is the initial training trajectory that is used in the linearization, and M = 30 = (2 × 15) FOM 
simulations are run with perturbed parameter inputs to construct the subdomain reduced-order linear model (Eq. (17)-(18)), 
9 additional FOM simulation are used to update the reduced-order linear models in the following 9 outer-loops. GSPT 
requires 22 + (4 × 48 + 1) + 9 = 224 FOM simulations. Specifically, 22 full-order model simulations are used to collect the 
snapshots to construct the bases for the states, M = 193 = (4 × 48 + 1) full-order model simulations are run with perturbed 
parameter inputs to construct the initial subdomain reduced-order linear model at the 1st out-loop. Additional 9 full-order 
model simulation are the specific training trajectories that are used in the linearization at the following 9 outer-loops.

Fig. 15 displays the true, initial and final updated logarithmic permeability fields. Although LSPT2 obtains relatively low 
objective function values, the updated logarithmic permeability field is spatially non-smooth, which does not satisfy the 
(geological) assumptions underlying the model, and would therefore have to be rejected. LSPT1 produces an acceptable 
solution in terms of final objective function value and in terms of the spatial properties of the reconstructed parameter 
field. In Fig. 15 (c) one example area (red dashed rectangle) is highlighted in which the logarithmic permeability field is not 
correctly reconstructed due to lack of observations (no wells are present in the corresponding subdomain). The choice of 
domain decomposition may therefore have a significant influence on the performance of LSPT. We will further investigate 
this issue in the following section.

It can be seen from Fig. 16 that GSPT and LSPT1 obtain acceptable results after 5 outer-loops, and therefore that some 
additional FOM runs are not necessary. Fig. 17 illustrates the match for fluid rate, water-cut data and bottom-hole pressure 
up to 10 years and an additional 15-year prediction for all six producers and seven injectors. The predictions based on 
the initial model are far from that of the true model. After the history matching, the predictions of the updated models 
match the observations very well. Also the prediction of the water breakthrough time is improved for all production wells, 
including the wells that show water breakthrough only after the history matching period.

7.1.2. Impact of domain decomposition strategy
Fig. 18, Fig. 19 and Table 6 show the effects of domain decomposition strategy on the objective function minimization 

and the final estimate of the logarithmic permeability fields. Four strategies are considered, consisting of 2×3, 3×4, 4×5 
and 5×6 subdomains respectively. To ensure that all these four schemes converge to a final solution, we specified the max-
imum number of outer-loops as 15 in this experiment. The total number of local PCA patterns and the maximum local PCA 
patterns among all subdomains are summarized in Table 6. It can be seen that a higher number of subdomains will result 
in a lower number of local PCA patterns per subdomain. As a result, fewer FOM simulations are required. These numerical 
results demonstrate our aforementioned motivation that the number of required FOM simulations depends primarily on the 
maximum number of local PCA patterns in a subdomain, not on the underlying full-order model, which can be decreased 
by refining the domain decomposition. Fig. 18 and Fig. 19 demonstrate that the domain decomposition strategy has sig-
nificant influence on the performance of LSPT. All four domain decomposition strategies obtain an acceptable cost function 
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Fig. 14. Evolution of the objective function values using LSPT, GSPT, LP-FD and GP-FD method for Scenario 1 as a function of outer-loops. The computation of 
the objective function for inner-loops and outer-loops uses reduced-order linear model and full-order model, respectively. The two red dash-lines separately 
represent reference objective function values for the true model (reflecting the impact of the data noise) and the projected true model (that is the best 
possible reconstruction of the truth given the selected PCA patterns).

Table 5
The number of required FOM simulations and final objective function values for LSPT1, LSPT2, GSPT and FD method for 
Scenario 1. The reference values of true model and projected true model are also shown here. The domain decomposi-
tion for this base-case is 4 × 5.

– Iterations Number of FOM simulations J F O M (ξ)

Initial model – – 4.49×105

LSPT1 10 62 = 22+(2×15+1)+9 912.93

LSPT2 10 62 = 22+(2×15+1)+9 697.32

GSPT 10 224 = 22+(4×48+1)+9 587.83

LP-FD 61 4421 573.94

GP-FD 47 2773 571.73

Tolerance – – 4750

Ref - Projected True – – 528.1

Ref - True – – 447.4

Table 6
The number of required FOM simulations and cost function values of LSPT using different domain decomposition strategies, e.g., 2×3, 3×4, 4×5 and 5×6, 
for Scenario 1.

Domain decomposition NL max{ld},d = 1,2, .., S NG Iterations Number of FOM simulations J F O M (ξ)

Initial model – – – – – 4.49×105

2×3 112 20

48

15 77 = 22+(2×20+1)+14 901.69

3×4 205 18 15 73 = 22+(2×18+1)+9 878.21

4×5 275 15 15 67 = 22+(2×15+1)+9 912.93

5×6 322 12 15 61 = 22+(2×12+1)+9 869.01

Tolerance – – – – – 4750

Ref - Projected True – – – – – 528.1

Ref - True – – – – – 447.4

value after minimization. However, the updated log-permeability fields differ significantly, which implies that different local 
minima are generated using different domain decomposition strategies.

7.1.3. Quantification of different sources of errors
Three main sources of errors (SOE) contribute to the over-all quality of the history matching results: (1) approximation 

errors of the subdomain POD-TPWL (SOE1), e.g., POD, RBF, and domain decomposition; (2) the loss of global PCA patterns 
due to an insufficient number of local PCA patterns (SOE2); and (3) only a fraction, e.g. 95%, of the full energy is preserved 
by the global PCA (SOE3). To distinguish and quantify these three error contributions, LSPT and FD are consecutively imple-
mented. After minimizing the objective function using LSPT, continuing minimization using FD-LP can quantify the SOE 1, 
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Fig. 15. Comparison of the updated logarithmic permeability fields from the LSPT1, LSPT2, GSPT, LP-FD and GP-FD method for Scenario 1. The true model 
and initial model are displayed here for a comparison.

Fig. 16. Comparison of updated logarithmic permeability fields from LSPT1 and GSPT in 1st, 5th, and 10th steps of outer-loop for Scenario 1. Subfigures 
(a)-(c) are for LSPT1, and subfigures (d)-(f) are for GSPT.

while further minimization using FD-GP can quantify the sum of SOE1 and SOE2. To quantify SOE3, the objective function 
is minimized by successively preserving an increasing fraction of the global PCA energy, e.g., 95%, 98%, 99% and 99.5%.

We estimate the different error contributions in Table 7, Table 8 and Fig. 20 for a decomposition strategy with 2 × 3
subdomains and a fixed number of 15 outer-loop iterations. The impact of the number of retained local PCA patterns is 
tested using values of 2, 8 and 20 in all subdomains. Table 7 summarizes the initial, final and reference objective function 
values, the total sum of local PCA patterns and the required number of FOM simulations. A global reduction of the parameter 
space using a 95% energy cutoff criterion results in NG = 48 preserved global PCA patterns. The numerical minimum of 
local PCA patterns required to fully cover these 48 global PCA patterns is 8. Table 7 (last column) and the yellow curve 
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Fig. 17. Forecast of the producers’ liquid rate, WCT and injectors’ BHP for Scenario 1: green line-initial model, blue line-’true’ model, solid red line - LSPT1, 
dash red line - GSPT, solid cyan line - LP-FD, dash cyan line - GP-FD. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 18. Evolution of the objective function values of LSPT using different domain decomposition strategies, 2×3, 3×4, 4×5 and 5×6, for Scenario 1.

in Fig. Fig. 20(b), showing the sum of SOE1 and SOE2, reveal that not much further improvement can be obtained if a 
GP-FD minimization is performed, suggesting that 8 local PCA patterns are indeed nearly sufficient for obtaining an almost 
identical solution. Note, however, that a much smaller number of FOM simulations is required. We will further investigate 
to what extent this finding remains valid when assimilating a large number of measurements in the second case-study. 
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Fig. 19. Updated logarithmic permeability fields using different domain decomposition strategies, e.g., 2×3, 3×4, 4×5 and 5×6, for Scenario 1.

Fig. 20. Evolution of the objective function values when the LSPT and FD are sequentially implemented for Scenario S1. (a) continuing minimization using 
FD-LP; (b) continuing minimization using FD-GP; (c) the objective function is minimized through preserving more and more global PCA energy, e.g., 95%, 
98%, 99% and 99.5%. The vertical black line represents the starting point of minimization using the FD method.

Fig. 20(a) shows that the continued objective function minimization using LP-FD does not significantly decrease the cost 
function except in the case that only 2 local PCA patterns are retained. This implies that the SOE1 contribution is very 
small and almost can be ignored, as long as a minimum number of local patterns are retained. SOE2 can be decreased by 
increasing the number of local PCA patterns, but at the cost of additional FOM simulations.

Fig. 20(c) and Table 8 indicate that SOE3 will gradually decrease with an increasing fraction of retaining (global) energy. 
Retaining 98% energy is sufficient to accurately represent the original parameter field in this case. An additional increase of 
60 global PCA patterns from 48 to 108 requires an additional 10 local PCA patterns in each subdomain. This only requires 
20 new FOM simulations.

7.2. Scenario 2

For Scenario 2 with a large number of measurements, three different domain decomposition strategies, i.e., 3×4, 4×5 and 
5×6, are formed. The required minimum number of local PCA patterns corresponding to different domain decomposition 
strategies is summarized in Table 9, and the objective function evolution over the history matching process is shown in 
Fig. 21. The 4×5 domain decomposition strategy is seen to lead to the smallest objective function value in this case. Fig. 22
shows that the true parameter field can be reconstructed very accurately when a large number of measurements is available. 
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Table 7
The number of FOM simulations and the final objective function values when quantifying SOE1 and SOE2 for Scenario S1. A same number of local PCA 
patterns ld is retained among all subdomains. A decomposition strategy with 2 × 3 subdomains is used.

Objective function J F O M (ξ)

Initial model 1.01×105

Tolerance 4750

Ref - Projected True 528.1

Ref - True 447.4

ld NL NG Number of FOM simulations LSPT LP-FD GP-FD

2 12
48

53 = 22+(8×2+1)+14 2276.15 1441 886.3
8 48 53 = 22+(2×8+1)+14 902.48 869.24 860.24
20 120 77 = 22+(2×20+1)+14 892.21 854.69 860.24

Table 8
The number of FOM simulations and the final objective function values when quantifying SOE3 for Scenario S1. A same number of local PCA patterns ld is 
retained among all subdomains. The first column represents the preserved energy of global PCA. A decomposition strategy with 2 × 3 subdomains is used.

- NL ld NG Iterations Number of FOM simulations J F O M(ξ)

Initial model – – – – – 1.01×105

95% 48 8 48 15 53 = 22+(2×8+1)+14 902.48
98% 72 12 72 15 61 = 22+(2×12+1)+14 738.25
99% 96 16 92 15 69 = 22+(2×16+1)+14 694.18
99.5% 108 18 104 15 73 = 22+(2×18+1)+14 621.52
Tolerance – – – – – 4750
Ref - Projected True – – – – – 528.1
Ref - True – – – – – 447.4

Table 9
The number of FOM simulations and the final objective function values of LSPT using different domain decomposition strategies, e.g., 3×4, 4×5 and 5×6, 
for Scenario 2. A same number of local PCA patterns ld is retained among all subdomains.

– ld NL NG Iterations Number of FOM simulations J F O M (ξ)

Initial model – – – – – 6.39×104

3×4 24 288
282

10 90 = 32+(2×24+1)+9 7508
4×5 15 300 10 72 = 32+(2×15+1)+9 6783
5×6 10 300 10 62 = 32+(2×10+1)+9 9601
Tolerance – – – – – 2.75×104

GP-FD – – – – – 6416
Projected ‘True’ model – – – – – 5685
‘True’ model – – – – – 5149

Only the 5 × 6 decomposition leads to a poor spatial parameters reconstruction, consistent with a relatively high objective 
function value. Fig. 23 and Fig. 24 show the predicted saturation and its corresponding grid-based RMSE values. Compared 
to the initial model, the model predictions have been significantly improved.

Fig. 25 shows the simulated and measured well data up to the 10-year history period, and simulated data for an ad-
ditional 15-year prediction period. Results are shown for the initial model and for the estimated models for the three 
different domain decomposition strategies, as well as for the GP-FD solution. The predictions of especially the fluid rate 
and bottom-hole pressure based on the initial model are quite poor. After the history matching, the predictions of all the 
updated models are consistent with the measurements.

Compared to Scenario 1, the number of global PCA patterns has been increased from 48 to 282, however, taking the 4 
× 5 decomposition as an example, the required number of FOM simulations has only increased from 53 to 72. The degree 
of freedom for the history matching problem depends on the number of global PCA patterns, while the required FOM 
simulation depends on the number of local PCA patterns. It is therefore very attractive to increase the degree of the freedom 
by adding local PCA patterns in all subdomains. Taking the 5 × 6 domain decomposition scheme as an example, adding one 
local PCA pattern in each subdomain allows us to retain another 30 global PCA patterns, while only 2 more FOM simulations 
are added to the entire history matching procedure. These numerical results further demonstrate that introducing smooth 
local parameterization makes subdomain POD-TPWL highly scalable, the required number of FOM simulations does not grow 
rapidly with an increasing number of space varying parameters.

7.3. Computational complexity

The computational cost of the proposed parameter estimation approach can be split into two main parts. The cost of the 
offline stage consists of constructing the subdomain reduced-order linear model. The cost of the online stage consists of the 
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Fig. 21. Evolution of the objective function values as a function of outer-loops using LSPT for Scenario 2. The computation of the objective function for the 
outer-loops uses full-order model simulations. The two red dash-lines separately represent reference objective function values for the true model (reflecting 
the impact of the data noise) and the projected true model (that is the best possible reconstruction of the truth given the selected PCA patterns).

Fig. 22. Comparison of updated logarithmic permeability fields using LSPT and GP-FD for Scenario 2. The true model, initial model and updated models 
corresponding three different domain decomposition strategies, e.g., 3×4, 4×5 and 5×6, are displayed.

cost of solving the reduced system and the parameter estimation problem. We will now discuss these two stages in more 
detail below.

7.3.1. Offline stage
The cost of executing parameterization using eigenvalue decomposition of the global covariance matrix and local co-

variance matrix in each subdomain is negligible for small models, while it will become more significant for large-scale 
models. The approximate computational complexity is of order O(N3

β). An equivalent formulation can be derived in which 

the eigenvalue problem is formulated in the snapshots coordinate Ĉ by XT
c Xc

Nr−1 . It is a so-called method of snapshots [43]. An 
alternative way to calculate PCA patterns is to perform a singular value decomposition (SVD) on the matrix Xc . It can avoid 
the calculation of the covariance matrix C or Ĉ. The costs of these two efficient alternatives are proportional to O(N3

r ) and 
O(Nβ N2

r ), respectively. Both of them have a numerical advantage, because typically Nr � Nβ .
Generating snapshots is an essential part of the POD method. The actual generation of the snapshots is done by sampling 

an ensemble of parameter realizations around an initial mean field. For each member in the newly generated ensemble the 
FOM is simulated, and the values for the state variables at each time step are saved. The computational cost of performing 
this part of the process, expressed in number of FOM runs is equal to the number of members in the generated ensemble, 
namely O(F O M). Here O(F O M) denotes the computational complexity for one full-order model simulation, which is asso-
ciated with the model dimension Nβ , the number of simulation time steps N , and the efficiency of the numerical solver of 
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Fig. 23. Predictions of water saturation using LSPT for Scenario 2. The subfigures (a) - (d) present the results at the 1st monitor, subfigures (e) - (h) present 
the results at the 2nd monitor. Large errors occur at the water fronts. Three domain decomposition strategies, e.g., 3×4, 4×5 and 5×6, are conducted.

the forward modeling code. Taking Newton − Raphson iteration as an example, the corresponding computational complexity 
is O(log2(Nβ)N) [49].

The cost of solving the reduced eigenvalue problem to construct the POD is equivalent to the cost of a Singular Value 
Decomposition of the snapshot matrix. Since the dimension of the snapshot matrix in each subdomain is relatively low, this 
cost is also low.

The cost of approximating derivatives using the RBF interpolation represents the most computationally expensive part 
of constructing the subdomain reduced-order linear model. The computational time expressed in number of FOM runs is 
several times the number of local PCA patterns generated, or O(log2(Nβ)N).

7.3.2. Online stage
The cost of solving a system of model-reduced linear equations can be neglected in comparison with all other contribu-

tions.
The cost of the model-reduced optimization procedure is proportional to the number of times that a new subdomain 

reduced-order linear models is constructed which requires one FOM run with a cost of O(log2(Nβ)N).
In short, the total computational cost in terms of order analysis is (O(N3

β)+O(log2(Nβ)N)). The process is code non-
intrusive and does not involve overwhelming programming efforts. As the adjoint model is not always available, especially 
for commercial simulators, the finite-difference method can be used to approximate the gradient for use in an objective 
function minimization procedure. In that case, O (103 − 104) FOM simulations will typically be required for large-scale 
parameter estimation problems. An offline cost for our proposed approach of O (10 − 102) FOM simulations is therefore 
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Fig. 24. The RMSE distribution of the predicted water saturation in all gridblocks using LSPT for Scenario 2. The subfigures (a) - (d) present the results at 
the 1st monitor, subfigures (e) - (h) present the results at the 2nd monitor. Large errors occur at the water fronts. Three domain decomposition strategies, 
e.g., 3×4, 4×5 and 5×6, are conducted.

a significant improvement. For large-scale parameter estimation problems, the computational cost is dominated by the 
required FOM simulations. In our proposed method, most of the FOM simulations are performed in the offline stage.

Fig. 26 summarizes the required FOM simulations as a function of number of subdomains in this study. These results 
indicate computational efficiency can benefit from increasing the number of subdomains. On the other hand, the numerical 
results presented in Fig. 18 indicate that the quality of the parameter field estimate may deteriorate if too small subdomains 
are formed. It is therefore important to find an appropriate trade-off in efficiency and accuracy by optimizing the domain 
decomposition strategy.

8. Conclusions

We have introduced a new method for large-scale parameter estimation based on a non-intrusive reduced-order mod-
eling approach: Subdomain POD-TPWL with smooth local parameterization. A combination of Principal Component Analysis 
and Domain Decomposition is used to decompose the high-dimensional solution space for the spatial parameter field into 
lower-order parameter subspaces associated with the individual subdomains. The optimized local parameters are projected 
onto a global parameterization to eliminate the non-smoothness at the boundaries of neighboring subdomains. The local 
parameterization allows us to run only a small number of full-order model simulations by simultaneously perturbing the 
parameters in all subdomains. The use of smooth local parameterization enables the use of subdomain POD-TPWL to large-
scale problems since the number of full-order model simulations depends primarily on the number of local parameters in 
each subdomain.

The approach is tested using a 2D reservoir model for which two experimental scenarios have been developed. In the first 
scenario the parameter field is characterized by relatively large spatial scales, while the number of measurements is fairly 
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Fig. 25. Forecast of the producers’ liquid rate, WCT and injectors’ BHP for Scenario 2: green line - initial model, blue line - ‘true’ model, red line - LSPT with 
3×4 domain decomposition, magenta line-LSPT with 4×5 domain decomposition, cyan line - LSPT with 5×6 domain decomposition, yellow line - GP-FD.

Fig. 26. Summary of the required FOM simulations for Scenario 1 and Scenario 2 with respect to the number of subdomains.

small. In the second scenario spatial scales are much smaller and the number of measurements is much larger. The first 
numerical experiment results show that subdomain POD-TPWL with global and local parameterization is able to reconstruct 
feasible solutions for the parameter field, resulting in acceptable data mismatches, and produces comparable results as 
obtained with finite-difference gradients, but at much lower computational cost. The results of the second example show 
that also for a more complex problem where data available at all model gridblocks was used to calibrate 282 uncertain 
parameters, good results could be obtained.
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The number of full-order model runs can be reduced by using a larger number of subdomains in which a smaller number 
of local parameters is required. For the cases studied in this paper, the number of full-order model simulations was roughly 
2 times the maximum number of local parameter patterns among all subdomains. The method has therefore very attractive 
scalability properties. For a model with a much larger domain and when using the same size of the subdomains the number 
of full-order model simulations will hardly increase.

The proposed methodology could be further improved. All examples have shown that the choice of domain decomposi-
tion strategy has an impact on the model updating and the minimization of the cost function. We have chosen somewhat 
arbitrary decompositions of the global domain into rectangular subdomains. It may be beneficial to choose the subdomains 
based on information about either the scales of variability of the parameter field or of the dynamical patterns. In this study 
the distribution of both sparse well data and grid-based data was almost uniform over all subdomains. In that case an 
uniform choice of the number of local PCA patterns in each subdomain is appropriate. If data are irregularly distributed 
in space the subdomain could be chosen based on the amount of information in the subdomain, and the number of local 
parameters in each subdomain could possibly be informed by the number of available measurements.
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