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A B S T R A C T   

Machine learning (ML) methods for the structural health monitoring (SHM) of composite structures rely on 
sufficient domain knowledge as they typically demand to extract damage-sensitive features from raw data before 
training the ML model. In practice, prior knowledge is not available in most cases. Deep learning (DL) methods, 
on the other hand, can obtain higher-level features from raw input data and have proven superior in several 
applications. This paper proposes a Convolutional Neural Network (CNN) based approach for the delamination 
prediction in CFRP double cantilever beam (DCB) specimens using raw local array strain measurements via 
distributed optical fiber sensors. The conventional CNN architecture is modified to perform regression, as the 
delamination size is a continuous value. 1D and 2D CNN architectures are deployed and compared and different 
techniques are exploited to encode 1D spatial strain pattern series as 2D images. Raw strain patterns collected 
during static testing are used to train the CNNs, while testing is performed on unseen raw fatigue strain patterns, 
showing the CNN ability to automatically extract discriminative features from the non-pre-processed static strain 
pattern-based signals that generalize to raw fatigue signals as well. This strategy has the potential to reduce 
fatigue testing expenditures while also shortening the time required to gather training data.   

1. Introduction 

Carbon fibre reinforced plastics (CFRP) are increasingly used in 
several industries as an alternative to conventional metallic alloys, due 
to their specific strength and stiffness, making them suitable for a wide 
range of applications where weight savings are crucial to the overall 
performance [1]. Although CFRP have numerous advantages over con-
ventional alloys, they also suffer from a few major disadvantages, as 
their damage initiation and propagation mechanisms are more difficult 
to predict compared to metallic materials [2]. These failure mechanisms 
are known to initiate at the level of the constituents (e.g., matrix 
microcracks, delaminations, fiber breakage, etc.) and can grow to an 
extent that compromises the structure integrity. 

Among failure modes, delamination is possibly the major and most 
frequent, crucially affecting the strength, stiffness, stability, and useable 
service life of laminated composites, eventually leading to catastrophic 
failure of the composite structures [3]. For these reasons, the delami-
nation monitoring of composite laminates is of prime importance and 

structural health monitoring (SHM) approaches have been developed in 
order to replace the traditional nondestructive testing (NDT) based 
maintenance strategies [4,5], fostering the transition to condition-based 
maintenance philosophies. Although SHM methods have been success-
fully applied in both metallic and composite structures, the latter pre-
sent additional challenges, as the material heterogeneity, together with 
the incomplete knowledge about the principles underlying the multi-
variate damage evolution and interaction processes, leads to uncertainty 
in the assessment of current and future material properties. 

SHM methods are typically grouped into two categories, i.e., model- 
based approaches and data-driven approaches [6]. Model-based ap-
proaches tend to be more accurate if the damaged system response can 
be modeled precisely, requiring prior knowledge about the physics of 
the system, which is often not available in practice. On the other hand, 
data-driven approaches rely on historical data and AI methods to 
quantify the damage state of the structure, and do not require prior 
expertise about the system underlying physics. The abundance of data 
engendered by the advances in information and sensing technology has 
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promoted the development of data-driven algorithms, and good results 
have been obtained. 

Among AI techniques, machine learning (ML) is the most acknowl-
edged [7]. Conventional ML techniques, however, require considerable 
domain knowledge as they demand to extract damage-sensitive features 
from the raw data before training the ML model. Deep learning (DL) 
methods have overcome this shortcoming, as they allow data to be used 
in their raw form, automatically learning from data using a 
general-purpose learning procedure [8]. Recently, DL methods such as 
convolutional neural networks (CNN) and recurrent neural networks 
(RNN) have been successfully applied to the SHM of civil structures [9, 
10], especially to automatically process image data, as structural dam-
age is typically visible. The same concept has been applied to composite 
materials; for instance, Fotouhi et al. [11] used a comprehensive 
image-based data set including common microscale damage mecha-
nisms, such as matrix cracking and fiber breakage, and macroscale 
damage mechanisms such as impact and erosion to train a CNN, 
achieving a classification accuracy level of 87%–96% for identifying the 
damage severity and types. In addition to image data, time-series data 
are widely used for damage detection, often transforming the raw 
time-series data into frequency spectra or spatial time-frequency spectra 
[12–14]; however, 1D CNNs have been recently proposed to operate 
directly on time series and immediately achieved the state-of-the-art 
performance levels in several applications [15]. 

Despite DL methods have proven superior to conventional ML 
methods in several applications, they have only been used in a few 
studies with composite materials for SHM applications [16]. For 
instance, Tabian et al. developed a passive sensing CNN based frame-
work for impact detection [17]; time domain signals corresponding to 
distinct sensors are gathered together and transformed into 2D images 
prior being fed to the CNNs, performing impact localization (the struc-
ture is divided into subregions) and impact categorization (energy level, 
3 energy classes), achieving a 95% accuracy. Similarly, Damm at al [18]. 
and Jung et al. [19] developed CNN-based impact damage assessment 
frameworks. Khan et al. [12] proposed a CNN based approach for the 
classification and prediction of in-plane and through-the-thickness de-
laminations in smart composite laminates using structural vibration 
measurements. Time domain transient signals are transformed into 
spectrograms via the short time Fourier transform (STFT). The CNN 
distinguishes between the damaged and undamaged states, and clas-
sifies the damage scenario (i.e., the delamination location) with an 
overall classification accuracy of 90.1%. Yu et al. used an addressable 
conducting network (ACN) and deep learning-ANN for damage detec-
tion in CFRP specimens, achieving a detection accuracy rate of about 
95% [20]. 

In the literature, a vast range of techniques have been proposed for 
the delamination assessment in laminated composites [21], among 
which strain-based methods have been proven to be adequate and pre-
sent some practical advantages over other techniques, also thanks to the 
recent advances in fiber optic sensing technologies [22–31]. For 
instance, several studies have shown the possibility of embedding the 
optical fiber (OF) within the composite laminate [22,24,26,32,33], and 
the introduction of distributed OF sensors has fostered their deployment 
in many SHM applications [22,23,34]. 

To the authors knowledge, published conventional data-driven SHM 
approaches require some sort of preprocessing of the raw data to extract 
relevant features for the delamination assessment, implying that ex-
pert’s knowledge is essential. On the other hand, DL approaches do not 
require any preprocessing of the raw data; however, DL methods for the 
delamination assessment, such as CNNs, typically require the delami-
nation to be described by a finite number of states to make its classifi-
cation possible, rather than allowing the delamination state to be a 
continuous variable. 

One of the requirements for data-driven approaches is the avail-
ability of training data; generating a training dataset for the delamina-
tion fatigue assessment would imply running several run-to-failure 

fatigue tests to gather the training data, requiring considerable resources 
and preventing the use of data-driven approaches in most cases. 
Therefore, in this paper a DL approach is proposed that can address the 
above-mentioned challenges and limitations. Strain-based CNN archi-
tectures for the delamination prediction are developed that do not 
require any pre-processing of the input strain patterns. The CNN con-
ventional architecture is modified to perform regression rather than 
classification, as the delamination size is a continuous variable. Double 
cantilever beam (DCB) specimens are tested under static and fatigue 
loading. Distributed OF sensors are placed on the top-surfaces of the 
specimens to collect local strain patterns during delamination propa-
gation. Raw static test strain field array measurements at fixed times are 
fed to 1D and 2D CNNs for training, and different techniques are 
exploited to encode 1D spatial strain pattern series as 2D images (e.g., 
continuous wavelet transform, Gramian angular field, Markov Transi-
tion Field). Finally, the CNNs testing is performed on raw strain field 
array measurements collected from fatigue tests, showing that the CNNs 
can extract relevant features from static strain patterns that also 
generalize to unseen fatigue strain patterns. This approach can be 
extended to more complex structures, potentially saving fatigue testing 
related costs and cutting the time needed to generate training data. 

The paper is organized as follows: Section 2 (Experimental details) 
provides a description of the experimental set up and testing procedures, 
including a detailed characterization of the strain patterns. Section 3 
(Delamination sizing by deep learning and distributed strain measurements) 
discusses the system-level operation principle of the CNN and passive 
sensing-based methodology for delamination assessment, especially on 
how the sensing data can be prepared and used for the planned task, 
outlining the proposed methodology for the local assessment of de-
laminations from strain field response measurements. Section 4 (Results 
and discussion) illustrates the obtained results by comparing the out-
comes of the proposed DL approaches. Section 5 (Conclusions) outlines 
the contribution of the current work, including a discussion of potential 
future work. 

2. Experimental details 

2.1. Materials and fabrication 

The DCB specimens were manufactured by laminating 24 plies of 
300 × 300 mm carbon fiber unidirectional prepreg named HexPly® 
8552 (Epoxy matrix and AS4 12K carbon fibres); the stacking sequence 
is [024] and the panel was cured inside an autoclave according to 
recommendation from Hexcel. A 0.012 mm thick Teflon™ film was 
inserted at the midplane of the laminate for crack initiation so that the 
initial starting crack length was approximately 50 mm. Based on ASTM 
D5528 standard [35], strips 25 mm wide were cut from the plate using a 
water-cooled diamond saw, while piano hinges were bonded to the 
either side of the specimens; the specimen relevant dimensions are 
shown in Fig. 1. During tests, a 9 Megapixel camera with 50 mm-fo-
cal-length lens was placed at the side of the clamped specimen to 
monitor the delamination length on one of the edges. The edge surfaces 
of each specimen were covered with thin white paint in order to enhance 
the white-black contrast of cracked and uncracked regions (Fig. 2). One 
edge of each test article was marked in 1 mm intervals to obtain visual 
edge measurements using a synchronized camera system. The camera 
was synchronized with the testing machine and with the interrogator 
(ODiSI-B system from Luna Innovations Inc.). The OF sensor – single 
mode Ormocer coated low bend loss 125 μm fiber commercialized by 
FBGS Technologies GmbH (Jena, Germany) with LC/APC connector – 
was bonded on the top surface of each specimen using a cyanoacrylate 
adhesive, where three equally spaced fiber passes were used to assess the 
delamination front (see Figs. 1 and 3) offering a spatial resolution of 
1.25 mm along the bonded OF. 
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2.2. Static test 

Five DCB specimens were clevis-mounted in a Zwick - 20 kN test 
frame with a 20 kN load cell and loaded at a displacement rate of 1 mm/ 
min. Based on ASTM D5528 standard [35], precracking was performed 
before running the test. Baseline data were acquired prior to testing to 
calibrate the interrogator; the sampling frequency was set to 0.5 Hz. 

2.3. Fatigue test 

Four DCB specimens were clevis-mounted in a MTS - 10 kN Elas-
tomer hydraulic test frame with a 10 kN load cell and load-control fa-
tigue tested. A schematic representation of the applied loading profile, 
containing the repetitive cyclic loading blocks and the tensile loading- 
unloading ramps, is shown in Fig. 4. Precracking was performed 
before running the test to accelerate the delamination onset. Constant 
amplitude of sinusoidal waves, with a maximum load equal to the 80% 
of the precracking load, load ratio 0.1 and frequency 5 Hz were applied, 

Fig. 1. Experimental procedure setup.  

Fig. 2. Specimen edge during testing.  

Fig. 3. Specimens OF sensor placement.  
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while the tensile loading and unloading ramps were applied before and 
after every 500 cycles to trigger the measurements (Fig. 4); baseline data 
were acquired prior to testing to calibrate the interrogator. 

2.4. Strain characterization of the DCB specimen 

The strain profile along the length of the DCB specimen can be pre-
dicted under the assumptions that the DCB arms act as if they were 
Euler-Bernoulli beams clamped at the crack tip and the interface ma-
terial is infinitely stiff and perfectly brittle [36]. These assumptions lead 
to a triangle-like strain shape where two regions can be defined: i) 
bending strain region from the arm free-end up to the delamination front 
and ii) zero-strain region ahead of the delamination front. Region 1 is 
due to the separation of the DCB arms; the strain increases linearly due 
to the bending moment reaching its maximum value in correspondence 
of the crack tip. Beyond the crack tip, the magnitude of the strain jumps 
immediately to zero, leading to region 2 (null-strain region). In practice, 
the arms of the DCB, rather than being clamped, actually rotate at the 
crack tip [37]; this, along with fiber bridging [38,39], explains why a 
perturbed strain region in correspondence of the crack tip process zone 
is observed [40], which is defined as region 3, as shown in Fig. 5, where 
the three segments’ strain patterns are also illustrated, along with the 
regions. The experimental strain distribution for three different crack 
lengths (i.e., at different times) is shown in Fig. 6. As expected, the strain 
peak moves accordingly to the crack front location and can be used for a 
rough estimation of the crack front position. Region 3, i.e., the region in 
correspondence of the crack tip process zone, can be approximately 10 
mm in length, and sometimes is hard to identify where the boundary 
between regions locate, making the delamination tip location via the 
peak detection unreliable (see Figs. 5 and 6). 

The experimental strain distribution for the fatigue tests is shown in 
Fig. 7 considering different delamination lengths; note that the shape of 
the strain pattern is generally different with respect to the static strain 
patterns and, as for the static test strain patterns, it is not obvious to 
locate the delamination front by peak detection. Even if loading mode is 
substantially the same (except for the fact that during fatigue testing the 
load is repeated cyclically), the phenomena driving the delamination propagation are different [41], mainly affecting the process zone. For 

instance, the amount of fiber bridging is different under quasi-static and 
fatigue loading [26,38], being less in fatigue loading as compared to 
quasi-static loading. Therefore, as fiber bridging has been shown to 
affect the strain field [26,27], we expect to observe different strain 
patterns depending on the test type. 

The real crack length (i.e., the ground truth) is observed by visual 
inspection of the specimen edge images. However, this procedure has a 
few shortcomings: i) it assumes that the crack front is perfectly straight, 
ii) it is often difficult to identify the crack tip, despite the edge has been 
painted in white, iii) checking all the images is time consuming [42]. To 
overcome these drawbacks a calibration method has been adopted as 
shown in the ASTM 5528 standard [35] and as suggested by Hojo et al. 
[43,44] and illustrated by Sans et al. [45], generating a least squares plot 
of the cube root of compliance, C1 /

3, as a function of delamination length, 
ac. The compliance, C, is the ratio of the load point displacement to the 
applied load, δ/P. The values used to generate this plot should be the 
load and displacements corresponding to the visually observed 

Fig. 4. Fatigue test loading pattern.  

Fig. 5. Strain pattern along the 3 segments for specimen 1 (for a 72 mm 
delamination length). 

Fig. 6. Static testing strain patterns along the 3 segments for specimen1 at 
different times (different crack lengths) (100, 250, 400th time steps). 

Fig. 7. Fatigue testing strain patterns along the 3 segments for specimen1 at 
different times (different crack lengths) (100, 250, 400th time steps). 
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delamination lengths on the edge. Note that only a subset of the 
observed propagation values is used; the missing values can be extrap-
olated after the least squares plot has been generated. The delamination 
front shape has been visually analyzed after testing the specimens, 
showing that the delamination front is fairly straight; actually, it is 
possible to theoretically demonstrate that the [0n] unidirectional layup 
has the smallest energy release rate (ERR) variation across the delami-
nation front, minimizing the delamination front curvature [46]. Addi-
tionally, calculations show that the ERR is constant in the interior of the 
specimens and rapidly approaches zero at the point where the delami-
nation tip intersects the edge free surface [47]. Therefore, the three OF 
loops are likely to produce similar strain patterns and that the same true 
delamination size (observed from the specimen edge) can be associated 
to all three of them. Equivalently, we can imagine decoupling the OF 
triplets, virtually tripling the number of specimens. 

3. Delamination sizing by deep learning and distributed strain 
measurements 

Several SHM approaches targeting delamination detection, sizing 
and location have been published, all requiring domain expertise and 
preprocessing of the raw data in order to extract relevant features for the 
delamination assessment [28–30,48]. Delamination sizing for a DCB 
specimen having distributed OF sensors along its arms, i.e., the identi-
fication of the delamination front, could be performed by simply 
detecting the peak of the strain pattern (i.e., the minimum strain relative 
to each OF segment), as, in principle, the strain reaches its maximum 
absolute value in correspondence of the delamination tip. However, as 
explained above, the process zone makes it difficult to accurately locate 
the delamination front, as the strain field in correspondence of the crack 
tip is generally perturbed [32]. The task is made even more difficult if 
we consider that the goal is to predict the delamination size given the 
fatigue strain patterns, whereas the training data is generated via static 
tests, as this requires that some general features are extracted from the 
static strain patterns (see the methodology scheme in Fig. 8). Therefore, 
a DL approach is proposed to automatically extract the strain pattern 
features that can better locate the delamination tip. 

The major advantage of DL methods over traditional ML methods is 
their ability to autonomously extract discriminative features from raw 
data [8]. Among DL methods, CNNs have proven to be a very efficient 
and effective artificial neural network (ANN) structure for image 
recognition and classification [8], as their architecture is specifically 

developed to take advantage of the fact that the input consists of images. 
CNNs layers are typically organized in 3 dimensions (width, height, and 
depth), and four operations are sequentially carried out: 1) convolution, 
2) nonlinear transformation, 3) pooling, 4) classification/regression. 
These operations are performed in three layers: the convolutional layer, 
the pooling layer and the fully connected layer. The convolutional layer 
extracts features from the input image by sliding a filter or kernel over 
the input image. Note that filters in the above example are random fil-
ters. In practice, a CNN learns to adjust the weights of filters such that 
the last layer of the network can predict classes/perform regression with 
the maximum accuracy [49]. This is done during training procedure. 
The convolution operation is followed by a non-linear operation, such as 
Rectified Linear Unit (ReLU), to introduce non-linearity in CNN, as most 
of the real-world data that is used for the learning of CNN is non-linear. 
The major goal of a pooling layer is to reduce the dimensionality of 
feature maps. The convolutional and pooling layers transform the input 
image into a high-level feature map that is employed by the fully con-
nected layer (output layer) for the classification of the input image/-
regression to some output variables. Full convolutional neural network 
architectures are formed by stacking the convolutional, pooling, and 
fully connected layers together. A detailed description of CNNs can be 
found in Refs. [50,51]. 

CNNs have been modeled and created specifically for 2D signals and 
their application is not straightforward for 1D signals, needing a 1D to 
2D conversion. Different conversion techniques have been utilized to 
convert 1D signals into 2D signals, typically posing a high computational 
complexity and training dataset size requirements [13,14]. To overcome 
such drawbacks a modified version of the 2D CNN, called 1D CNN, has 
been recently developed to directly operate on 1D signals such as time 
series and has become popular with a state-of-the-art performance in 
various signal processing applications [11,52]. 

In the present work, both 2D and 1D CNN architectures are deployed 
to assess the delamination size based on the collected strain pattern 
measurements. OF strain patterns are 1D and can be treated as time 
series, replacing time with space (OF length coordinate); therefore, 1D 
to 2D conversion techniques are used to feed the 2D CNN, while no 
preprocessing is required for the 1D CNN architecture. Three different 
techniques have been used to transform time-series into image-like 
representations: i) Gramian Angular Field, ii) Markov Transition Field 
and iii) Scalogram (continuous wavelet transform or CWT). The funda-
mental building blocks for the 2D CNN architecture are shown in Fig. 9, 
along with the data pipeline; the same is done for the 1D CNN in Fig. 10. 

Fig. 8. Methodology schematic representation.  
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For instance, in Fig. 9 the single strain pattern is collected from the 
specimen and preprocessed before being fed to the 2D CNN, i.e., scaled 
and then transformed into a single channel 2D image (matrix of pixels). 
After being transformed (in Fig. 9 the Gramian angular field transform is 
shown), the 2D image is scaled again and then fed to the CNN, where a 
series of layers perform sequentially the convolution and pooling op-
erations, transforming the input image into a high-level feature map. 

This feature map is converted into a 1D array (i.e., flattening operation), 
becoming the input for the fully connected layers, ending with the single 
output node that is responsible for the delamination size prediction. In 
Fig. 10 the strain pattern is scaled and then fed directly to the 1D CNN; 
the convolution and pooling operations are sequentially carried out 
along the 1D array, producing arrays of features that are concatenated 
(flattening) to produce one single array that is fed to the fully connected 

Fig. 9. 2D CNN pipeline.  

Fig. 10. 1D CNN pipeline.  
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layers, ending in the single output node. 

3.1. Training and validation of predictive CNN-based models 

To prepare the dataset required to train the CNNs, a total of 5 DCB 
specimens have been statically tested. Note that each specimen has 3 OF 
loops (Fig. 1), each accounting for 140 measuring points along its length, 
while the number of time observations, i.e., the number of crack length 
sizes at which strain measurements are collected, is not fixed and typi-
cally depends on the test setup. As mentioned in the previous sections, 
we can imagine that each OF loop identifies a different specimen, 
tripling the overall number of specimens, as the delamination front has 
been acknowledged to be straight in the monitored area. Therefore, for 
the i-th OF segment (i = 1,2, 3) corresponding to the j-th specimen 
(j= 1,…,5) a matrix Sj

i is obtained: 

Sj
i =

⎡

⎢
⎢
⎣

εx=0
t=0 ⋯ εx=140

t=0

⋮ ⋱ ⋮
εx=0

t=T ⋯ εx=140
t=T

⎤

⎥
⎥
⎦ (1)  

where rows represent the i-th OF segment strain pattern at the inspec-
tion times (x = 0,…,140), while columns show the strain time series of 
the measurement points. Clearly, for each input matrix Sj

i a corre-
sponding output vector aj

c is associated, where the observed crack 
lengths at the inspection times are collected: 

aj
c =

⎡

⎣
ac, t=0
⋮
ac,t=T

⎤

⎦ (2) 

Note that the output vector aj
c is independent of the OF segment, as 

we assume that the crack front is straight in the observed area, as also 
shown by tested specimens’ post-mortem analysis. The training dataset 
Τ is obtained by gathering all the input and output data from all the 5 
DCB specimens: 

Τ=

⎡

⎢
⎢
⎣

Sj=0
i=0; aj=0

c

⋮
Sj=5

i=3; aj=5
c

⎤

⎥
⎥
⎦ (3) 

In practice, each row of the dataset Τ represents a strain pattern 
(input) and its relative delamination length (output); in total 6110 ex-
amples (i.e., rows) are collected. Note that the rows of the dataset Τ are 
randomly shuffled before training the CNNs. The CNN model is thus 
expected to take as input a strain pattern (OF loop) [εx=0

t ,…, εx=140
t ] ∈

R140 at the inspection time t, providing as output the estimate for the 
actual delamination size ac,t ∈ R. The training dataset is partitioned in 
order to keep part of the data to validate the model during training; 
specifically, 20% of the training data is used for validation (Table 3 
summarizes the training, validation and test set size). Fig. 11 illustrates 
the training/validation data pipeline (neglecting the 1D to 2D conver-
sion that is needed for 2D CNNs): 3 OF segments (each segment is rep-
resented by a 140 elements array) are collected at each inspection time 
for each specimen (note that the number of inspection times might differ 
from specimen to specimen). When dealing with 2D CNNs, the arrays 
collecting the OF strain patterns are transformed into matrices (1D to 2D 
conversion), as shown in Fig. 9. 

In order to reduce the variance of the CNNs predictions, an 
“ensemble” approach is leveraged. In practice, a collection of networks 
with the same configuration and different initial random weights is 
trained on different subsets (randomly sampled) of the training dataset. 
Each model is then used to make a prediction and the actual prediction is 
calculated as the average of the predictions [53,54]. Each CNN ensemble 
is constituted of 10 CNN trained models. 

3.2. 2D CNN architecture 

This section discusses the architecture of the 2D CNN. The Pyhton 
Keras API is used to build the DL models illustrated in the present work 
(built on top of Tensorflow). Fig. 9 shows the 2D CNN architecture 
fundamental building blocks and data pipeline. The architecture is based 
on the general architectural principles of the Visual Geometry Group 
(VGG) model (featured by very small 3 × 3 convolution filters) [55] and 

Fig. 11. Training data pipeline.  
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consists of 2 VGG-based blocks, each comprising 2 convolutional layers 
and one pooling layer, for automatically extracting discriminative fea-
tures from the static strain patterns, including a dropout stage (fixed 
dropout rate) [56], followed by a fully connected layer and a ReLU layer 
(see Table 1 for the detailed architecture of the proposed 2D CNN). The 
weights are initialized randomly, and the Adam optimizer is used 
(learning rate is set to 0.0001). A batch size of 64 is used, and the 
training consists of 30 epochs. A detailed description of the hyper-
parameters listed in Table 1 can be found in Ref. [49]. Tuning the 
hyperparameters – as well as the architecture – would surely enhance 
the performance, but it is not the primary objective of the present work 
(for instance, in Ref. [19] the optimal values of the CNN hyper-
parameters were derived based on Bayesian optimization). Another 
consideration is computational efficiency; the architecture is somehow 
limited by available computational resources. The training with the 
actual CNN architecture can be done in less than 8 h on a laptop with a 4 
cores Intel i7-6700HQ (2.6 GHz) CPU and a 32 GB RAM. Exploring the 
deep network structures and parameters will be addressed in future 
work. 

3.3. 1D CNN architecture 

This section discusses the architecture of the 1D CNN. Fig. 10 shows 
the 1D CNN architecture fundamental building blocks and data pipeline. 
The employed 1D CNN architecture consists of 2 blocks, each 
comprising 2 convolutional layers and one pooling layer for automati-
cally extracting discriminative features from the static strain patterns. A 
dropout stage (increasing dropout rate) is added to each block in order 
to reduce overfitting and improve generalization [56]. Finally, a fully 
connected layer and a ReLU layer are used to predict the delamination 
size based on features extracted in the convolutional and pooling layers 
(see Table 2 for the detailed architecture of the proposed 1D CNN). The 
weights are initialized randomly, and the Adam optimizer is used 
(learning rate is set to 0.0001). A batch size of 64 is used, and the 
training consists of 30 epochs. Details concerning the 1D CNN 

architecture can be found in Ref. [15]. As for the 2D CNN, the hyper-
parameters have not been tuned, and the architecture is based on the 2D 
CNN architecture layout (2 blocks where convolution and pooling op-
erations are sequentially performed). 

3.4. 1D signal to 2D conversion 

Convolutional layers basically mimic the cells in the human visual 
cortex and are thus developed primarily for 2D signals such as images 
and video frames [57]. Inspired by the success of DL methods in com-
puter vision, several studies have proposed to transform time-series into 
image-like representations, leading to promising results [13,14]. Three 
different techniques are here leveraged to encode 1D strain patterns into 
images, namely i) continuous wavelet transform (CWT), ii) Gramian 
angular field (GAF), iii) Markov transition field (MTF). Details con-
cerning the mentioned techniques can be found in Refs. [13,14], while 
the hyperparameter settings for the selected encodings are described in 
the following. The pyts Python package for time series classification has 
been used for the GAF and MTF transforms [58]. 

The GAF transform is only defined for input arrays X = (x1,…, xN)

that satisfy the following constraint: xi ∈ [ − 1, 1], thus requiring the 
scaling of the strain patterns as proposed by Wang and Oates [13]: 

x̃i =
(xi − max(X) + (xi − min(X)))

max(X) − min(X)
(4) 

Alternatively, Garcia et al. [14] proposed to scale the training sam-
ples based on the full training dataset in order to keep the relationships 
and differences between the samples scaling, requiring that the max(X)
and min(X) values are replaced with an upper (UB) and lower bound 
(LB) based on the training set distribution. If the test set contains values 
exceeding these bounds, the values are clipped to the bound. As we 
assume that it is not necessary to keep the quantitative relationships and 
differences between the strain pattern samples, we followed the scaling 
in eq. (4), not requiring the setting of any bound. The strain patterns 
have thus been scaled accordingly, regardless of the transform 
technique. 

Table 1 
2D CNN architecture and hyperparameters.  

Layer name Layer description Output 
shape 

Trainable 
Parameters 

Input 140 × 140 single channel image 140 ×
140  

Convolution 1 Kernel size: 3 × 3, strides: 1, 
Number of filters: 32, ReLU, 
batch normalization 

140 ×
140 × 32 

320 

Convolution 2 Kernel size: 3 × 3, strides: 1, 
Number of filters: 32, ReLU, 
batch normalization 

140 ×
140 × 32 

9248 

MaxPooling Max Pooling Filter size: 2 × 2, 
strides: 2 

70 × 70 
× 32 

0 

Dropout 20% dropout 70 × 70 
× 32 

0 

Convolution 1 Kernel size: 20 × 1, strides: 1, 
Number of filters: 64, ReLU, 
batch normalization 

70 × 70 
× 64 

18496 

Convolution 2 Kernel size: 20 × 1, strides: 1, 
Number of filters: 64, ReLU, 
batch normalization 

70 × 70 
× 64 

36928 

MaxPooling Max Pooling Filter size: 2 × 2, 
strides: 2 

35 × 35 
× 64 

0 

Dropout 20% dropout 35 × 35 
× 64 

0 

Flatten  78400 0 
Fully 

connected 
ReLU  

128 10035328 

Dropout 20% dropout 128 0 
Fully 

connected 
ReLU  

1 129  

Table 2 
1D CNN architecture and hyperparameters.  

Layer name Layer description Output 
shape 

Trainable 
Parameters 

Input 140 × 1 single channel strain 
pattern 

140 × 1  

Convolution 1 Kernel size: 20 × 1, strides: 1, 
Number of filters: 32, ReLU 

121 × 32 672 

Convolution 2 Kernel size: 20 × 1, strides: 1, 
Number of filters: 32, ReLU 

102 × 32 20512 

MaxPooling Max Pooling Filter size: 2 × 1, 
strides: 2 

51 × 32 0 

Dropout 20% dropout 51 × 32 0 
Convolution 1 Kernel size: 20 × 1, strides: 1, 

Number of filters: 64, ReLU 
32 × 64 41024 

Convolution 2 Kernel size: 20 × 1, strides: 1, 
Number of filters: 64, ReLU 

13 × 64 81984 

MaxPooling Max Pooling Filter size: 2 × 1, 
strides: 2 

6 × 64 0 

Dropout 40% dropout 6 × 64 0 
Flatten  384 × 1 0 
Fully connected 

ReLU  
128 6160 

Fully connected 
ReLU  

1 129  

Table 3 
CNNs training/validation/test set sizes.  

Training set size Validation set size Test set size 

4888 1222 8762  
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The MTF requires that a discretization of the strain patterns is per-
formed based on Q + 1 bin edges, i.e., Q bins. The discretization of the 
time series plays a crucial role in the amount of information kept or lost 
by the transformation [13,14]. The number of bins has been set to 5, 
while their width has been set so that all bins in each sample have the 
same number of points. 

For the scalogram, a CWT with a Morlet wavelet was utilized via the 
PyWavelets Python package for wavelet analysis [59]. 

2D encodings have been also scaled prior being fed to the CNNs, so 
that each element xi,i satisfies the following: xi,i ∈ [0,1]. Encoding ex-
amples for a representative strain pattern are shown in Fig. 12. 

4. Results and discussion 

The CNNs architectures (1D and 2D) developed in the previous 
sections are employed to predict the delamination size of fatigue loaded 
DCB specimens based on their OF strain patterns. The bagging ensemble 
learning approach is followed to increase the predictive performance by 
combining the predictions from multiple models; in practice, for each 
CNN architecture 10 CNNs are trained on different random subsets of 
the training dataset and the predictions are averaged. Each DCB spec-
imen has 3 OF loops spanning the specimen width and delamination size 
predictions are based upon one single OF strain pattern, assuming that 
the delamination front is straight, thus making one strain pattern suffi-
cient for the delamination size estimation. The training dataset, which is 
generated by storing strain patterns along with the relative observed 
delamination size from the static delamination growth tests, comprises 
6110 examples, and is partitioned into training and validation subsets 
with a 4 to 1 ratio, respectively (see Table 3). Strain patterns have been 
resized to comprise 140 strain samples each, discretizing the DCB arms 
surface strain field, and their image encodings are 140 × 140 matrices; 
strain patterns have also been rescaled prior training/testing as shown in 
eq. (4). The CNNs goal is thus to learn relevant features from the raw 
static strain patterns (or their 2D counterparts) that could also gener-
alize to unseen fatigue strain patterns for estimation of the delamination 
size. This strategy could be extended to more complex structures, 
avoiding the need to run time consuming fatigue test. The test dataset 
comprises 4 specimens which were fatigue loaded; 3 specimens were 
tested under load control, while the remaining one was tested under 
displacement control. In total, 8762 strain patterns were collected dur-
ing fatigue testing (see Table 3). 

The 1D CNN committee predictive performance is shown in Fig. 13 
(left), where the mean absolute error (MAE) is provided for each OF 
segment during the fatigue delamination propagation. The delamination 

size is predicted with a MAE which is lower than 5 mm, except for the 
specimen #4, where the segments 1 and 3 display a much higher MAE. 
This is due to the poor quality of the relative measurements, which 
might be due to the imperfect bonding between the OFs and the spec-
imen. Note that the specimen with the lowest MAE is specimen #2, 
which was loaded in displacement control (slower delamination growth 
rate and lower noise level). Fig. 13 (right) shows the relative frequency 
of the prediction residuals, providing an insight in the prediction error 
distribution; the mean is equal to − 2.2 mm while the standard deviation 
is equal to 2.4 mm. 

The 2D CNN committee predictive performance is shown in Fig. 14, 
following the same scheme as for the 1D CNN. The MAE is again pro-
vided for each OF segment in Fig. 14 (left). The plot follows closely the 
results of the 1D CNN. The GAF-based CNN generally performs better 
than the MTF and CWT-based CNNs, also outperforming the 1D CNN in 
terms of accuracy. The main differences of the different time-series to 
image encodings are mostly in their ability to better discriminate the 
features that also generalize to the unseen fatigue strain patterns. Fig. 14 
(right) shows the residuals relative frequency for each transform tech-
nique; overall results, also including the 1D CNN, are summarized in 
Table 4. 

The predictive performance of the illustrated CNN architectures 
shows that the proposed approach is able to: i) accurately predict the 
delamination size based on one single strain pattern, ii) automatically 
extract relevant features from static strain patterns that generalize well 
to unseen strain patterns. Although in the current work only DCB cou-
pons specimens have been tested, the proposed approach could be 
extended to assess more complex structures, also considering other types 
of damages affecting the strain field of the laminate. 

5. Conclusions 

Delamination monitoring is a vital step towards the SHM of lami-
nated composite structures, and the advent of DL methods is fostering 
the application of data-driven approaches due to their ability to auto-
matically extract relevant features from raw data. In this paper, a CNN- 
based approach that can perform delamination sizing by analyzing 
strain patterns collected from composite DCB specimens under fatigue 
loading is proposed. To obtain the data to train the CNNs, 6110 strain 
patterns are extracted from delamination growth static tests, while fa-
tigue strain patterns are used only for testing. Strain patterns are ob-
tained via distributed optical fiber sensors bonded to the DCB arm top 
surfaces; each specimen is equipped with three OF loops spanning the 
specimen width, sampling the strain field with a resolution of 1.25 mm. 

Fig. 12. 1D signal (strain pattern) image encodings: Gramian angular field (GAF), Markov transition field (MTF) and continuous wavelet transform (CWT).  
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Static strain patterns can thus be regarded as surrogate signals replacing 
the fatigue strain patterns, enabling a more efficient approach to the 
generation of training data for the delamination monitoring of com-
posite structures. Static strain patterns are observed to qualitatively 
differ from fatigue strain patterns; however, it is assumed that their 
information content concerning delamination sizing generalize also to 
unseen situations. The strain patterns have been scaled prior training/ 
testing to ensure that only the qualitative features of the signals are 
relevant to the delamination sizing, removing the load magnitude in-
fluence. 1D and 2D CNN architectures have been deployed for the 
delamination size estimation, yielding similar and very reasonable 
average positional estimation errors of − 2.2 mm and 0.47 mm 
respectively. 

The training data set for the delamination sizing has been prepared 
via 5 static delamination growth tests, while the test data set has been 
populated by fatigue testing 4 specimens. The 1D CNN has been trained 
with raw strain patterns, only requiring the scaling of the input, whereas 
the 2D CNN required the encoding of the strain patterns into images. 
Specifically, three different techniques have been utilized to transform 
1D signals into 2D signals, namely the Gramian angular field, the Mar-
kov transition field and the continuous wavelet transform, all delivering 
reasonable results in terms of accuracy. 

It is believed that the CNN-based methodology proposed in this study 
can be successfully applied to analyze more complex composite 

structures to monitor the delamination growth based on strain obser-
vations, also proving the ability of the CNNs to extract relevant features 
that generalize to unseen situations. The results presented in this paper 
are meant to foster the deployment of DL within the SHM of composite 
structures by enabling real-time structural damage monitoring. Impor-
tant future work will involve the application of the proposed method to 
more complex structures, also including the possibility of using different 
sensing technologies. We are also quite interested in how different 
loading scenarios might affect the predictions, also investigating 
different CNNs architectures. 
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Fig. 13. 1D CNN prediction MAE on the test set (a) and residuals relative frequency (b).  

Fig. 14. 2D CNN prediction MAE on the test set (a) and residuals relative frequency (b).  

Table 4 
Mean and std. dev. of the prediction error for the CNN models.   

1D CNN 2D CNN 

– GAF MTF CWT 

μ [mm] − 2.2 0.47 − 3.12 − 2.54 
σ [mm] 2.3 2.82 5.85 3.16  
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