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Abstract
In general, data contain noises which come from faulty instruments, flawed measure-
ments or faulty communication. Learning with data in the context of classification or
regression is inevitably affected by noises in the data. In order to remove or greatly
reduce the impact of noises, we introduce the ideas of fuzzy membership functions
and the Laplacian twin support vector machine (Lap-TSVM). A formulation of the
linear intuitionistic fuzzy Laplacian twin support vector machine (IFLap-TSVM) is
presented. Moreover, we extend the linear IFLap-TSVM to the nonlinear case by ker-
nel function. The proposed IFLap-TSVM resolves the negative impact of noises and
outliers by using fuzzymembership functions and is amore accurate reasonable classi-
fier by using the geometric distribution information of labeled data and unlabeled data
based on manifold regularization. Experiments with constructed artificial datasets,
several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has
better classification accuracy than other state-of-the-art twin support vector machine
(TSVM), intuitionistic fuzzy twin support vectormachine (IFTSVM) and Lap-TSVM.
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1 Introduction

Support vector machine (SVM) was proposed in details by Vapnik et al. [1]. The
goal of SVM was to find an optimal hyperplane to separate the labeled data points
into two classes. Because of its excellent performance in text classification tasks [2],
it soon became the mainstream technology of machine learning. At present, SVM and
its variants have been successfully applied in many fields such as face recognition
[3], financial distree prediction [4], regression [5], traffic flow prediction [6], medi-
cal [7] and more. Proximal support vector machine (PSVM) [8,9] was derived from
SVM; it aimed to find two parallel hyperplanes so that each plane was closer to one
of two classes and as far away from the other as possible. Furthermore, in order to
simplify the constraints, the generalized eigenvalue proximal support vector machine
(GEPSVM) [10] was proposed. The main idea of GEPSVMwas to replace two paral-
lel hyperplanes with two nonparallel ones. According to this concept, Jayadeva et al.
[11] proposed a well-known twin support vector machine (TSVM). Unlike the large
quadratic programming problem (QPP) considered by traditional SVM, TSVM solves
a pair of relatively smaller QPPs. The constraints of each QPP are only related to the
data points of each of the two classes. Therefore, TSVM not only keeps the advan-
tages of SVM, but also trains four times faster than SVM. Based on TSVM, Shao et
al. [12] proposed an imbalanced weighted Lagrangian twin support vector machine
(WLTSVM) for the imbalanced data classification. Other extensions and applications
of TSVM can be found in [13,14].

Recently, the research of semi-supervised learning (SSL) [15–17] has become a new
hotspot in the field of machine learning. The main reason was that in many practical
problems, labeled data are always scarce, but there are large amount of unlabeled
data. SSL was to use these unlabeled data to assist a small number of labeled data
for learning, so as to improve the performance of classifier. Manifold regularization
(MR) [18,19] was one of the frameworks of SSL. In the MR framework, there are
two regularization terms. One controls the complexity of classifier in the Reproducing
Kernel Hilbert Spaces (RKHS), and the other controls the complexity as measured by
the geometry of the distribution. Following theMRframework,Qi et al. [20] proposed a
Laplacian twin support vector machine (Lap-TSVM), which was the first twin support
vector machine applied in the SSL problem. Extensive experimental results show
that Lap-TSVM has very good performance in semi-supervised classification. Other
extensions and applications of semi-supervised twin support vector machine can be
found in [21,22].

In general, data contain noises which come from faulty instruments, flawed mea-
surements or faulty communication. Learning with data in the context of classification
or regression is inevitably affected by noises in the data. If the training samples are
mixed by noises, both SVM and its variants are often unable to find an optimal hyper-
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plane and subsequently have difficulty to obtain satisfactory results. In order to solve
such problem, fuzzy support vector machine (FSVM) [23] was proposed. The idea of
FSVM was to use a membership function for each training sample. And the introduc-
tion of membership function can effectively reduce the effects of noises and outlier
points and thus produce a robust classifier. Moreover, combining the TSVM with
membership function can not only improve computational efficiency but also pursue
robust performance. In recent years, intuitionistic fuzzy twin support vector machine
(IFTSVM) [24] has been proposed which assigns a pair of membership and nonmem-
bership functions to every training sample. These two functions help the IFTSVM to
reduce the influence of noises and identify support vectors from noises.

The same difficulty was also encountered by the current semi-supervised twin
support vector machine and its variants. When there are many noises in the data,
the classification results are very poor and unsatisfactory. Ideally, we would like to
determine which points are noisy, and then either remove them or greatly lower their
weight. Therefore, inspired by the ideas of IFTSVM, we assign a pair of membership
functions to each labeled point, which reduces the influence of noises on the classifier.
Andwe introduce the ideas of fuzzymembership functions and the Lap-TSVM. In this
paper, we proposed a novel intuitionistic fuzzy Laplacian twin support vector machine
(IFLap-TSVM) for a semi-supervised classification problem.Weuse some constructed
tests and several real datasets to evaluate the effectiveness of the IFLap-TSVM. The
main advantages of our IFLap-TSVM are:

(1) Membership and nonmembership functions are used for each training sample to
indicate the contributions of different training samples to the learning of decision
functions, which significantly reduces the negative impact of noises and outliers
on classification accuracy.

(2) Intuitionistic fuzzy number can reduce the influence of noises and outliers in
labeled samples, and the semi-supervised framework of manifold regularization
was introduced to deal with labeled and unlabeled samples in the primal space and
the feature space. The combination of the two can further improve the classification
accuracy.

(3) IFLap-TSVM has better classification accuracy compared with other state-of-the-
art TSVM, IFTSVM and Lap-TSVM on constructed tests and real-world datasets.

The remaining parts of this paper are organized as follows. In Sect. 2, we briefly
introduce the background of SSL and Lap-TSVM. In Sect. 3, we describe the details
of IFLap-TSVM. In Sect. 4, the numerical experiment results on the constructed test
dataset, UCI dataset andMNIST dataset are reported. And Sect. 5 concludes the paper.

2 Background

In this section, we give a brief description of semi-supervised learning framework
(SSL) and Lap-TSVM. The training data of the classification problem can be described
as follows:

T = {(x1, y1), (x2, y2), · · · , (xl , yl), xl+1, · · · , xl+u}, (1)
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where xi ∈ R
n, yi = {+1,−1}, i = 1, 2, · · · , l, are the labeled data, and xi , i =

l + 1, · · · , l + u, are the unlabeled data. Denote the matrix A ∈ R
l1×n as the labeled

data belonging to class +1, where every row of matrix A represents a data point.
Similarly, the matrix B ∈ R

l2×n as the labeled data belonging to class −1. Clearly,
we have l1 + l2 = l.

2.1 Semi-supervised Learning Framework

SSL uses both labeled and unlabeled data to improve supervised learning. The goal
is to build amore efficient classifier with large amounts of unlabeled data and relatively
few labeled data. Regularization is a technique to prevent over fitting of training data,
which is widely used in machine learning [25]. The MR framework takes advantage
of the geometry of the probability distribution of the generated data and merges it as
an additional regularization term. The decision function of the MR framework can be
expressed as [18]

f ∗ = argmin
f ∈HK

1

l

l∑

i=1

V (xi , yi , f ) + γA‖ f ‖2K + γI‖ f ‖2I , (2)

where f is an unknown decision function. The first part of the above expression is
some loss function on the labeled data. The second part is a regularization term; γA

is the weight of ‖ f ‖2K and controls the complexity of f in the Reproducing Kernel
Hilbert Space. γI controls the complexity of the function in the intrinsic geometry
of marginal distribution, and it is the weight of ‖ f ‖2I , while ‖ f ‖2I is an appropriate
penalty term that should reflect the intrinsic structure of marginal distribution.

The MR framework [18] incorporates additional information about the geometric
structure of the marginal distribution. The important assumption of this approach is
that the probability distribution of data has the geometry structure of a Riemannian
manifold M. If two points are very close in the intrinsic geometry, then they should
have the same or similar labels. The RKHS regularization term ‖ f ‖2K and the intrinsic
regularizer ‖ f ‖2I are as follows:

‖ f ‖2K = ‖ f ‖22, (3)

‖ f ‖2I = 1

(l + u)2

l+u∑

i, j=1

( f (xi ) − f (x j ))
2Wi j

= 1

(l + u)2
f (X)�L f (X), (4)

where f (X) = [ f (x1), · · · , f (xl+u)] represents the decision function values over
labeled and unlabeled points. Wi j are edge weights in the data adjacency graph, L is
the graph Laplacian given by L = D − W , W ∈ R

(l+u)×(l+u) is the weight matrix
with entries Wi j , D is the diagonal matrix with its i-th diagonal Dii = ∑l+u

j=1 Wi j .
More detailed discussion of manifold regularization can be found in [18].
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2.2 Laplacian Twin Support Vector Machine

Based on the TSVM, the Lap-TSVM [20] model is deduced by introducing
the semi-supervised learning framework. According to the semi-supervised learn-
ing framework, for the linear case, the primal problems of Linear Lap-TSVM can be
written as

min
w1,b1,ξ

1

2
||Aw1 + e1b1||22 + c1e

�
2 ξ + c2(||w1||22 + b21)

+ c3(w
�
1 M� + e�b1)L(Mw1 + eb1)

s.t. − (Bw1 + e2b1) + ξ � e2, ξ � 0,

(5)

and

min
w2,b2,η

1

2
||Bw2 + e2b2||22 + c1e

�
1 η + c2(||w2||22 + b22)

+ c3(w
�
2 M� + e�b2)L(Mw2 + eb2)

s.t. (Aw2 + e1b2) + η � e1, η � 0.

(6)

And Wi j are the edge weights in the data adjacency graph and may be defined by
k-nearest neighbors or graph kernel as follows:

Wi j =
{

exp(−||xi − x j ||22/2σ 2), if xi , x j are neighbor;
0, otherwise.

(7)

f1 = [ f1(x1), · · · , f1(xl+u)]� = Mw1 + eb1, f2 = [ f2(x1), · · · , f2(xl+u)]� =
Mw2 + eb2, M ∈ R(l+u)×n includes all the training data, and e is an appropriate ones
vector.

By introducing the Lagrangian multipliers, the Wolfe dual of the problem (5) and
(6) can be formulated as

max
α

e�
2 α − 1

2
α�G(H�H + c2 I + c3 J

�L J )−1G�α

s.t. 0 � α � c1e2,
(8)

and

max
β

e�
1 β − 1

2
β�H(G�G + c2 I + c3 J

�L J )−1H�β

s.t. 0 � β � c2e1.
(9)

HereG = [B e2], H = [A e1] and J = [M e]. I is an identity matrix of appropriate
dimension. It can be proved that H�H + c2 I + c3 J�L J and G�G + c2 I + c3 J�L J
are positive definite matrices [26]. And the augmented vector v1, v2 are given by

v1 = −(H�H + c2 I + c3 J
�L J )−1G�α, where v1 = [w�

1 b1]�,

v2 = (G�G + c2 I + c3 J
�L J )−1H�β, where v2 = [w�

2 b2]�.
(10)
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The same as TSVM, the decision function of Lap-TSVM is as follows:

f (x) = argmin
i∈1,2

|w�
i x + bi |, (11)

where | · | is the perpendicular distance of point x from the planes w�
i x + bi . For the

nonlinear case, we refer to [20].

3 Intuitionistic Fuzzy Laplacian Twin Support Vector Machine

In this section, we first describe the concept of intuitionistic fuzzy set and then
propose IFLap-TSVM model. The structures of two kernel functions, i.e., linear and
nonlinear, are discussed in detail.

3.1 Intuitionistic Fuzzy Set

The traditional fuzzy set was given by Zadeh [27] . Let X be a nonempty set, the
fuzzy set A in a universe X can be defined as

A = {(x, μA(x))|x ∈ X}, (12)

where μA : X → [0, 1] and μA(x) is the degree of membership of x belonging to X .
As an extension of fuzzy set, an intuitionistic fuzzy set [28] is defined as

Ã = {(x, μ Ã(x), ν Ã(x))|x ∈ X}, (13)

where μ Ã(x) and ν Ã(x) are the degrees of membership and nonmembership of x
belonging to X . Hereμ Ã : X → [0, 1], ν Ã(x) : X → [0, 1] and 0 � μ Ã(x)+ν Ã(x) �
1. Define π Ã(x) = 1−μ Ã(x)−ν Ã(x); it denotes the hesitation degree of x belonging
to X .

It is important to select an appropriate membership function to reduce the effect of
noises and outlier points. For example, as shown in Fig. 1, the training points A and B
are located on the boundary of the positive class, the degrees of membership of these
two training points belonging to positive class are the same, but it is obvious that there
are many negative points around point B. Therefore, the classification contribution of
point A and point B is different. It may lead to wrong predictions if we only consider
the membership degree. In this case, we employ the intuitionistic fuzzy number (μ, ν)

to each training point as proposed in [29]. μ is the degree of membership function
related to the one class, and ν is the degree of nonmembership function related to the
other class. It is obvious that the points A and B in positive class have different degrees
of nonmembership.
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Fig. 1 Two training points with the same degree of membership

3.1.1 The Degree of Membership Function

In the high-dimensional feature space, the distance between training point and the
class center is used as membership function. The distance between training points is
expressed as

D(φ(xi ), φ(x j )) = ||φ(xi ) − φ(x j )||, (14)

whereφ represents themapping from the sample space to the high-dimensional feature
space.

The class center of each class is given by

C± = 1

l±
∑

yi=±1

φ(xi ), (15)

where l+ and l− denote the total number of positive and negative points, respectively.
The radius of each class can be measured by

r± = max
yi=±1

||φ(xi ) − C±||. (16)

For each training point, the degree of membership can be defined as

μ(xi ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − ||φ(xi ) − C+||
r+ + δ

, yi = +1,

1 − ||φ(xi ) − C−||
r− + δ

, yi = −1,

(17)

where δ > 0 is an adjustable parameter.
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3.1.2 The Degree of Nonmembership Function

The degree of nonmembership function is determined by the ratio between the
number of all heterogeneous points and the total number of training points in its
neighborhood. The degree of nonmembership function is as follows:

ν(xi ) = (1 − μ(xi ))ρ(xi ), (18)

where 0 � μ(xi ) + ν(xi ) � 1 and ρ(xi ) is the proportion between all heterogeneous
points and the total number of points in its neighborhood

ρ(xi ) = |{x j |||φ(xi ) − φ(x j )|| � α, y j �= yi }|
|{x j |||φ(xi ) − φ(x j )|| � α}| , (19)

where | · | denotes the cardinality and α > 0 is an adjustable parameter.
The degree ofmembership and nonmembership of a training point is designed based

on the inner product distance in the feature space. Therefore, the kernel functions are
used to make the construction of intuitionistic fuzzy numbers.

3.1.3 The Score Function

Based on the above definitions, the training points can be converted into the intu-
itionistic fuzzy numbers as follows:

T = {(x1, y1, μ1, ν1), (x2, y2, μ2, ν2), · · · , (xl , yl , μl , νl)}, (20)

where μi , νi denote the degrees of membership functions and nonmembership func-
tions of xi , respectively. For each given intuitionistic fuzzy number, a score function
can be used to measure the classification contribution of each training point. The score
function can be defined as

si =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μi , νi = 0,

0, μi � νi ,

1 − νi

2 − μi − νi
, others.

(21)

The score value si can easily distinguish the support vector from noises and outliers
points. For example, when vi = 0 (positive point A shown in Fig. 2), there are no
negative points in the neighborhood of A; a correct degree of membership function can
be easily defined. Obviously, the positive point A is far away from the class center so its
classification contribution is small. When μi � νi (negative point B shown in Fig. 2),
the point B has no negative points in the neighborhood; the degree of nonmembership
value is greater than the degree of membership value. Thus, B is a noise point with
zero classification contribution. For the case of positive point C, we have μi > νi and
νi �= 0. C is far away from the class center, but there are some positive points in its
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Fig. 2 Support vector, noise and outlier

neighborhood. Thus, it may be a support vector, instead of an outlier point. Hence, the
classification contribution of point C is greater than that of outlier A.

3.2 Linear IFLap-TSVM

According to the semi-supervised learning framework, the square loss function and
hinge loss function V (xi , yi , f ) can be expressed as

V1(xi , yi , f1) = ((Ai,· · w1) + b1)
2 + S2,i · max(0, 1 − f1(Bi,·)), (22)

V2(xi , yi , f2) = ((Bi,· · w2) + b2)
2 + S1,i · max(0, 1 − f2(Ai,·)), (23)

where Ai,· and Bi,· represent the i-th row of A and B, respectively. S1,i and S2,i denote
the i-th element in the vector S1 and S2, respectively. And S1 ∈ R

l+ and S2 ∈ R
l− are

the score values of positive and negative points, respectively.
The regularization terms ‖ f1‖2K and ‖ f2‖2K can be written as

‖ f1‖2K = 1

2
(||w1||22 + b21), (24)

‖ f2‖2K = 1

2
(||w2||22 + b22). (25)

And the manifold regularization terms ‖ f1‖2I and ‖ f2‖2I are defined by

‖ f1‖2I = 1

(l + u)2
f �
1 L f1, (26)
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‖ f2‖2I = 1

(l + u)2
f �
2 L f2. (27)

In accordance with (2), the linear IFLap-TSVM can be written as

min
w1,b1,ξ

1

2
||Aw1 + e1b1||22 + c1S

�
2 ξ + 1

2
c2(||w1||22 + b21)

+ 1

2
c3(Mw1 + eb1)

�L(Mw1 + eb1)

s.t. − (Bw1 + e2b1) + ξ � e2, ξ � 0,

(28)

and

min
w2,b2,η

1

2
||Bw2 + e2b2||22 + c4S

�
1 η + 1

2
c5(||w2||22 + b22)

+ 1

2
c6(Mw2 + eb2)

�L(Mw2 + eb2)

s.t. (Aw2 + e1b2) + η � e1, η � 0,

(29)

where c1, c2, · · · , c6 are pre-specified penalty factors, and ξ, η are slack variables,
e1, e2, e are column vectors of ones of appropriate dimensions, L is the graph Lapla-
cian.

The Lagrangian corresponding to the problem (28) is given by

L(w1, b1, ξ, α, β) =1

2
||Aw1 + e1b1||22 + c1S

�
2 ξ + 1

2
c2(||w1||22 + b21)

+ 1

2
c3(Mw1 + eb1)

�L(Mw1 + eb1)

− α�(−(Bw1 + e2b1) + ξ − e2) − β�ξ,

(30)

where α = (α1, · · · , αl2)
� and β = (β1, · · · , βl1)

� are the Lagrangian multipliers.
With the KKT conditions, we get

∂L

∂w1
= A�(Aw1 + e1b1) + c2w1

+c3M
�L(Mw1 + eb1) + B�α = 0, (31)

∂L

∂b1
= e�

1 (Aw1 + e1b1) + c2b1

+c3e
�L(Mw1 + eb1) + e�

2 α = 0, (32)
∂L

∂ξ
= c1S2 − α − β = 0. (33)
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Combining (31) and (32) leads to

[
A�
e�
1

]
[A e1]

[
w1
b1

]
+ c2

[
w1
b1

]

+c3

[
M�
e�

]
L [M e]

[
w1
b1

]
+

[
B�
e�
2

]
α = 0.

(34)

Let H = [A e1], J = [M e],G = [B e2], and the augmented vector v1 = [w1 b1]�,
then (34) can be rewritten as

(H�H + c2 I + c3 J
�L J )v1 + G�α = 0

⇒ v1 = −(H�H + c2 I + c3 J
�L J )−1(G�α),

(35)

where I is an identity matrix of appropriate dimensions. It can be proved that H�H +
c2 I + c3 J�L J is a positive definite matrix according to matrix theory [26].

Since β � 0, from (33), we get

0 � α � c1S2. (36)

Therefore, the Wolfe dual of the problem (28) can be written as

max
α

e�
2 α − 1

2
α�G(H�H + c2 I + c3 J

�L J )−1G�α

s.t. 0 � α � c1S2.
(37)

Likewise, the dual of (29) is

max
β

e�
1 β − 1

2
β�P(Q�Q + c5 I + c6F

�LF)−1P�β

s.t. 0 � β � c4S1.
(38)

where P = [A e1], F = [M e], Q = [B e2] and the augmented vector v2 = [w2 b2]�
is written as follows:

v2 = (Q�Q + c5 I + c6F
�LF)−1P�β. (39)

Once optimal v∗
1 , v

∗
2 are achieved, the two hyperplanes are known. A new input data

point x can be classified as positive or negative class based on the decision function

f (x) = argmin
i∈1,2

|w�
i x + bi |
||wi || , (40)

where | · | is the absolute value. And the whole procedure of linear IFLap-TSVM is
described in Algorithm 1.
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Algorithm 1 The linear IFLap-TSVM algorithm
Input:
l1 data points of class +1, l2 data points of class -1,u unlabeled data points,
Test data point x .
Output:
Class label of the test data point.
Step 1 Set the value of the penalty factors c1, c2, c3 and the graph kernel parameter σ .
Step 2 Compute the score functions S1 and S2 of data points in class +1 and -1.
Step 3 Compute graph Laplacian L=D−W where W is a weight matrix given by

Wi j =exp(−||xi − x j ||2/2σ 2) and D is a diagonal matrix given by Dii =∑l+u
j=1 Wi j .

Step4Determineparameters of the twonon-parallel hyperplanes using (35) and (39).
Step 5 Determine the class label of the test data point based on (40).

3.3 Nonlinear IFLap-TSVM

So far the above discussion is restricted to the linear case. Here, we extend the linear
IFLap-TSVM to the nonlinear case. We consider the following two kernel-generated
hyperplanes:

K
(
x�, M�)

λ1 + b1 = 0, K
(
x�, M�)

λ2 + b2 = 0, (41)

where K (xi , x j ) = (φ(xi ), φ(x j )) is a chosen kernel function. The nonlinear opti-
mization problem can be written as

min
λ1,b1,ξ

1

2
||K (A, M�)λ1 + e1b1||22 + c1S

�
2 ξ + c2(λ

�
1 Kλ1 + b21)

+ c3(Kλ1 + eb1)
�L(Kλ1 + eb1)

s.t. − (K (B, M�)λ1 + e2b1) + ξ � e2, ξ � 0,

(42)

and
min

λ2,b2,η

1

2
||K (B, M�)λ2 + e2b2||22 + c4S

�
1 η + c5(λ

�
2 Kλ2 + b22)

+ c6(Kλ2 + eb2)
�L(Kλ2 + eb2)

s.t. (K (A, M�)λ2 + e1b2) + η � e1, η � 0.

(43)

The Lagrangian corresponding to the problem (42) is given by

L(λ1, b1, ξ, α, β) =1

2
||K (A, M�)λ1 + e1b1||22 + c1S

�
2 ξ

+ 1

2
c2(λ

�
1 Kλ1 + b21)

+ 1

2
(Kλ1 + eb1)

�L(Kλ1 + eb1)

− α�(−(K (B, M�)λ1 + e2b1) + ξ − e2) − β�ξ.

(44)

123



Intuitionistic Fuzzy Laplacian Twin Support Vector...

The KKT conditions are obtained as follows:

∂L

∂λ1
= K (A, M�)�(K (A, M�)λ1 + e1b1) + c2Kλ1

+c3K
�L(Kλ1 + eb1) + K (B, M�)�α = 0, (45)

∂L

∂b1
= e�

1 (K (A, M�)λ1 + e1b1) + c2b1

+c3e
�L(Kλ1 + eb1) + e�

2 α = 0, (46)
∂L

∂ξ
= c1S2 − α − β = 0. (47)

Combining (45) and (46) leads to

[
K

(
A, M�)�

e�
1

]
[
K

(
A, M�)

e1
] [

λ1
b1

]
+ c2

[
K 0
0 1

] [
λ1
b1

]

+c3

[
K�
e�

]
L[K e]

[
λ1
b1

]
+

[
K

(
B, M�)�

e�
2

]
α = 0.

(48)

Let Hnon = [K (A, M�) e1], Onon =
[
K 0
0 1

]
, Jnon = [K e],Gnon =

[K (B, M�) e2], and the augmented vector vnon1 = [λ1 b1]�, then (48) can be rewritten
as

(H�
nonHnon + c2Onon + c3 J

�
nonL Jnon)vnon1 + G�

nonα = 0

⇒ vnon1 = −(H�
nonHnon + c2Onon + c3 J

�
nonL Jnon)

−1(G�
nonα).

(49)

Therefore, the Wolfe dual of the problem (42) can be written as

max
α

e�
2 α − 1

2
α�Gnon(H

�
nonHnon + c2Onon + c3 J

�
nonL Jnon)

−1G�
nonα

s.t. 0 � α � c1S2.
(50)

Likewise, the dual of (43) is

max
fi

e�
1 β − 1

2
β�Pnon(Q

�
nonQnon + c5Onon + c6F

�
nonLFnon)

−1P�
nonβ

s.t. 0 � β � c4S1,
(51)

where Pnon = [K (A, M�) e1], Fnon = [K e], Qnon = [K (B, M�) e2] and the
augmented vector vnon2 = [λ2 b2]� is follows:

vnon2 = (Q�
nonQnon + c5Onon + c6F

�
nonLFnon)

−1P�
nonβ. (52)

Once the optimal v∗
non1, v

∗
non2 are obtained, the two hyperplanes are known. A new

input data point x can be classified as positive or negative class based on the decision
function
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f (x) = argmin
i∈1,2

|K (x, M�)λi + bi |√
λ�
i Kλi

. (53)

The whole procedure of nonlinear IFLap-TSVM is described in Algorithm 2.

Algorithm 2 The nonlinear IFLap-TSVM algorithm
Input:
l1 data points of class +1,l2 data points of class -1,u unlabeled data points,
Test data point x .
Output:
Class label of the test data point.
Step 1 Choose a kernel function K (x, y). And set the value of the penalty factors

c1, c2, c3 and the kernel parameter σ .
Step 2 Compute the score functions S1 and S2 of data points in class +1 and -1.
Step 3 Compute graph Laplacian L=D−W , where W is a weight matrix given by

Wi j =exp(−||xi − x j ||2/2σ 2) and D is a diagonal matrix given by Dii =∑l+u
j=1 Wi j .

Step4Determineparameters of the twonon-parallel hyperplanes using (49) and (52).
Step 5 Determine the class label of the test data point based on (53).

4 Experiment

In this section, we investigate the effectiveness and generalization capability of the
proposed method on artificial and UCI datasets, and we compare IFLap-TSVM with
Lap-TSVM [20], IFTSVM [24] and TSVM [11].

The testing accuracies of all experiments are computed using standard 10-fold
cross-validation [30]. The pre-specified penalty factors ci (i = 1, · · · , 6) and the
RBF kernel parameter σ are selected from the set {2i |i = −5, · · · , 5}, and we set
c1 = c4, c2 = c5, c3 = c6. In addition, Gaussian kernel is applied to deal with the
nonlinear case, i.e., K (x1, x2) = exp(−||x1 − x2||2/σ 2). Each experiment is repeated
10 times. All the methods are implemented in MATLAB R2017b environment on a
PC with Intel Core i5 processor with 8 GB RAM.

4.1 Artificial Datasets

In order to verify the validity of the model, two artificial datasets are constructed
to evaluate IFLap-TSVM. We use two lines and half-moons containing 200 points
as tests. And for the two lines dataset, we select a linear kernel, for the half-moons
dataset, we select an RBF kernel. We choose 10 labeled points of each class as training
set. And we inject different proportion of noise, i.e., 10% and 20%, into the training
points. For example, 10% of the training points are randomly selected and their class
are changed to another class.
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4.1.1 The Impact of the Parameters

In this subsection, the effects of different setting of the parameters c1 and c3 are
analyzed using the half-moons dataset. In the first experiment, we compare the perfor-
mance of IFLap-TSVM and Lap-TSVM with different c1. For these two classifiers,
we consider the half-moons dataset with 10% noise, and we fix the regularization
parameters c2 = c3 = 1 and the RBF kernel parameter σ = 0.5, and then, let c1 vary
from 2−5 to 25. Figure 3(a) shows the accuracy rates of the IFLap-TSVM and Lap-
TSVM. IFLap-TSVMachieves the optimal accuracy when c1 = 22, while Lap-TSVM
obtains the best result when c1 = 20. The value of c1 corresponding to the best perfor-
mance for IFLap-TSVM is larger than that of Lap-TSVM, because the score si of each
training sample point in IFLap-TSVM is less than or equal to 1. In IFLap-TSVM, to
achieve different levels of penalty, training samples are given different score values.
The smaller the score value, the smaller the effect of training sample.

In the second experiment, in order to reflect the effectiveness of the manifold regu-
larization, we fix c1 = c2 = 1 and the RBF kernel parameter σ = 0.5, and let c3 vary
from 2−5 to 210. It is easy to see from the results in Fig. 3(b) that with the increase in
c3, the accuracy of IFLap-TSVM is also improved. However, the value of parameter
c3 should not be too large. When the value of c3 exceeds 23, the accuracy begins to
decline drastically, and finally it will drop to 50%. The reason for this is that when the
value of c3 exceeds a certain limit, the manifold regularization will be penalized too
much, which makes it lose its original function and make the model degenerate into a
supervised model.

4.1.2 Comparison with Other Methods

In this subsection, we compare the effectiveness of our IFLap-TSVM with Lap-
TSVM, IFTSVMand TSVMon the two lines and half-moons datasets. Figure 4 shows
the one-run results of each classifier on the two lines. And Figs. 4(b)–4(d) show the

(a) (b)
n n

Fig. 3 (a) Comparison of IFLap-TSVM and Lap-TSVM on half-moons dataset with different values of
parameter c1(c1 = 2n); (b) Accuracy of IFLap-TSVM on half-moons dataset with different values of
parameter c3(c3 = 2n)
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(a) (b)

(c) (d)

2.0

1.0

1.0

1.0

Fig. 4 (a)Original data points of the two lines without noise distortion. The classification results of TSVM,
IFTSVM, Lap-TSVM and IFLap-TSVM with different level of noise: (b) 0% noise; (c) 10% noise; (d)
20% noise

results of each classifier with a noise level of 0%,10% and 20%, respectively. It can
be seen from the results that with the increase in noise, our IFLap-TSVM can produce
more accurate hyperplanes than other models.

And the one-run results of each classifier on the half-moons dataset with different
level of noise are shown in Figs. 5, 6 and 7. It can be seen that compared with other
methods, our IFLap-TSVM is more robust to noise, and the decision boundary is
more accurate. In addition, for the half-moons dataset, we have done 10 experiments
to further evaluate the classification results and the training time of the classifier, as
shown in Table 1. The results show that with the increase in noise level, the accuracy of
each method decreases. However, the effect of noise on the accuracy of IFLap-TSVM
is the smallest. The training time of IFLap-TSVM is the longest, because compared
with the supervised model, the objective function of dual QPP of semi-supervised
model needs twice matrix inversion and the size of these matrices is (n+1)× (n+1).
And IFLap-TSVM has more steps to calculate the score value of each training sample
than Lap-TSVM.
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(a) (b)

(c) (d)

Fig. 5 Classification results of TSVM, IFTSVM, Lap-TSVM and IFLap-TSVM with 0% noise on half-
moons dataset. (a) TSVM; (b) IFTSVM; (c) Lap-TSVM; (d) IFLap-TSVM

In general, compared with Lap-TSVM, IFTSVM and TSVM, IFLap-TSVM
provides higher accuracy for both noiseless and noisy datasets. This is because
IFLap-TSVM can use the information of unlabeled data to improve accuracy and
use intuitionistic fuzzy number to reduce the effect of noises and outliers.

4.2 UCI Datasets

In this section, we investigate the performance of the IFLap-TSVM model on the
UCI dataset [31]. And the results are comparedwith TSVM,Lap-TSVMand IFTSVM.
Before training, all data are scaled such that all features locate in [0, 1]. First, each
dataset is divided into two subsets: 65% for training and 35% for testing. Then, for each
dataset, we randomly labelm(m = 10%, 20%, 30%) as labeled data and the remainder
as unlabeled data. Table 2 shows the detailed information of the UCI dataset.

The classification accuracy and standard deviation of the IFLap-TSVM and other
models are shown in Tables 3, 4 and 5. Tables 3, 4 and 5 show that with the increase
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(a) (b)

(c) (d)

Fig. 6 Classification results of TSVM, IFTSVM, Lap-TSVM and IFLap-TSVM with 10% noise on half-
moons dataset. (a) TSVM; (b) IFTSVM; (c) Lap-TSVM; (d) IFLap-TSVM

in the proportion of labeled data, the classification performance of all classifiers also
increases. And from the average “mean” accuracy given in Tables 3, 4 and 5, the
performance of IFLap-TSVM is better than other methods under the same labeled
data.

Furthermore, IFLap-TSVM and Lap-TSVM have higher classification accuracy
than IFTSVM and TSVM, which also shows that manifold regularization can help
the classification model by using the geometric distribution information of labeled
data and unlabeled data. More importantly, the accuracy of IFLap-TSVM is higher
than that of Lap-TSVM, indicating that the intuitionistic fuzzy function is effective in
reducing the effect of noise and outlier points.
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(a) (b)

(c) (d)

Fig. 7 Classification results of TSVM, IFTSVM, Lap-TSVM and IFLap-TSVM with 20% noise on half-
moons dataset. (a) TSVM; (b) IFTSVM; (c) Lap-TSVM; (d) IFLap-TSVM

Table 1 Classification accuracy and the training time on the half-moons test with different levels of noise

Noise/% 0 10 20 Time/s

IFLap-TSVM 97.06±1.79 96.28±1.97 94.96±1.92 0.090 4

Lap-TSVM 96.50±3.06 93.11±4.96 90.83±5.33 0.082 4

IFTSVM 95.89±1.55 94.77±1.62 91.88±1.53 0.081 7

TSVM 95.28±3.68 91.44±4.50 87.06±5.25 0.078 5

Note: Bold represents the best accuracy of the four models
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Table 2 Detailed information of UCI datasets

Dataset Number Attribute Class

Hepatitis 155 19 2

Australian 690 14 2

BUPA 345 6 2

CMC 1 473 9 2

Ionosphere 351 34 2

Diabetes 768 8 2

Heart-Statlog 270 14 2

Credit 690 19 2

Spect 267 44 2

German 1 000 20 2

Table 3 Mean and standard deviation (%) of accuracy at 10% of labeled data points on UCI dataset

Dataset IFLap-TSVM Lap-TSVM IFTSVM TSVM

Hepatitis 72.81±2.56 71.46±4.86 71.64±1.75 70.18±4.79�
Australian 67.40±1.36 65.83±4.62� 65.25±1.88� 63.97±4.02�
BUPA 65.13±1.98 65.29±6.27 64.38±1.48 64.31±4.81

CMC 62.50±0.91 61.87±4.55 61.64±0.78 59.98±5.23�
Ionosphere 74.39±1.28 73.09±4.39 70.73±0.87� 68.86±3.96�
Diabetes 60.97±1.26 60.34±3.43 59.56±1.26 59.77±4.03

Heart-Statlog 73.99±1.32 72.14±4.49� 71.16±1.66� 69.69±4.98�
Credit 73.18±1.69 71.69±3.62 70.33±1.39� 69.96±3.57�
Spect 68.30±1.99 68.40±3.33 67.33±1.42 66.92±4.33

German 62.08±1.69 60.68±3.71 60.34±0.97� 58.34±3.63�
W/T/L – 2/8/0 5/5/0 7/3/0

Ave.mean 68.08 67.08 66.24 65.20

Ave.std 1.60 4.33 1.35 4.34

Notes: (1) W/T/L (Win/Tie/Loss) denotes the number of datasets where IFLap-TSVM is significance Supe-
rior/Equal/ Inferior to the compared classifier; (2) Bold represents the best accuracy of the four models.
�/� indicates whether IFLap-TSVM is statistically superior/inferior to the compared classifier

4.3 MNIST Dataset

In this section, we apply the IFLap-TSVM to handwritten symbol recognition. The
MNIST dataset is shown in Fig. 8, which is a handwritten digital dataset composed of
handwritten images from ‘0’ to ‘9’. The size of each image is 28× 28 pixels with 256
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Table 4 Mean and standard deviation (%) of accuracy at 20% of labeled data points on UCI dataset

Dataset IFLap-TSVM Lap-TSVM IFTSVM TSVM

Hepatitis 76.00±1.72 74.73±4.73 74.00±0.72� 73.28±5.15�
Australian 68.06±0.89 67.11±3.92 67.60±0.81 65.58±4.08�
BUPA 66.61±1.66 67.93±5.93� 65.70±0.79 65.12±4.77

CMC 64.84±1.34 64.32±3.91 63.01±0.67� 61.32±3.92�
Ionosphere 75.29±1.22 74.07±4.10 73.90±0.98 70.09±4.58�
Diabetes 62.71±1.25 62.57±4.03 60.93±1.18� 59.63±2.98�
Heart-Statlog 74.42±1.22 74.53±4.46 72.53±1.04� 70.42±4.22�
Credit 75.99±2.04 74.30±4.56� 73.14±1.39� 72.31±4.16�
Spect 71.91±1.82 71.81±4.74 69.79±1.52� 68.72±3.92�
German 65.37±1.26 62.34±3.82� 62.69±1.05� 60.09±3.91�
W/T/L – 2/7/1 7/3/0 9/1/0

Ave.mean 70.12 69.37 68.33 66.66

Ave.std 1.44 4.42 1.02 4.17

Notes: (1) W/T/L (Win/Tie/Loss) denotes the number of datasets where IFLap-TSVM is significance Supe-
rior/Equal/ Inferior to the compared classifier; (2) Bold represents the best accuracy of the four models.
�/� indicates whether IFLap-TSVM is statistically superior/inferior to the compared classifier

Fig. 8 Samples from MINIST
dataset

gray levels. Similar to [32], we select four pairwise digits on raw pixel features for
comparison. And each set of pairwise digits contains 450 images, 300 images of which
are used for training and another 150 images for testing. Furthermore, we randomly
label 50 images for the training set, and m(m = 50, 100, 150, 200, 250) unlabeled
images are selected from the remaining training images. In addition, we only consider
these classifiers in the case of the RBF kernel.

Figure 9 shows the results of experiments. The results show that with the increase
in unlabeled data, the test accuracies of semi-supervised learning classifiers are grad-
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Table 5 Mean and standard deviation (%) of accuracy at 30% of labeled data points on UCI dataset

Dataset IFLap-TSVM Lap-TSVM IFTSVM TSVM

Hepatitis 77.82±1.43 76.18±5.31� 74.91±0.98� 73.82±4.55�
Australian 69.01±1.20 67.52±4.45 68.35±1.25 66.28±4.71�
BUPA 70.08±1.77 68.84±5.30 68.02±1.41 64.96±5.69�
CMC 67.29±0.86 65.74±3.47� 63.76±0.83� 62.48±4.54�
Ionosphere 76.42±1.48 74.96±4.33 75.61±1.08� 72.36±4.29�
Diabetes 64.54±1.07 63.75±4.73 61.90±1.04� 60.48±3.69�
Heart-Statlog 76.10±1.57 76.21±4.69 73.05±1.23� 71.26±4.86�
Credit 78.14±1.51 76.32±3.75� 74.42±0.94� 72.60±3.44�
Spect 74.36±1.77 74.47±3.37 72.77±1.67� 71.28±5.19�
German 67.63±1.20 63.69±3.27� 65.31±0.81� 62.03±4.88�
W/T/L – 4/6/0 8/2/0 10/0/0

Ave.mean 72.14 70.77 69.81 67.76

Ave.std 1.38 4.27 1.12 4.58

Notes:(1) W/T/L (Win/Tie/Loss) denotes the number of datasets where IFLap-TSVM is significance Supe-
rior/Equal/ Inferior to the compared classifier; (2) Bold represents the best accuracy of the four models.
�/� indicates whether IFLap-TSVM is statistically superior/inferior to the compared classifier

ually improved, because manifold regularization can use the geometric distribution
information of labeled data and unlabeled data to find a more accurate classifier. In
most cases, the classification results of IFLap-TSVM are better than other models, and
the standard deviations of IFLap-TSVM and IFTSVM are smaller than that of Lap-
TSVM and TSVM. Therefore, intuitionistic fuzzy can effectively reduce the impact
of noise and outliers on classification accuracy.

5 Conclusion

In this paper, we have proposed an intuitionistic fuzzyLaplacian twin support vector
machine for a semi-supervised classification problem, which is inspired by the intu-
itionistic fuzzy number and Lap-TSVM. Not only can it reduce the effect of noises
and outliers through the membership and non-membership functions, but also use the
geometric distribution information of labeled data and unlabeled data to construct a
more accurate classifier. Experimental results indicated that our IFLap-TSVM per-
forms well on both constructed test data and several real-world datasets. Compared
with Lap-TSVM, IFTSVM and TSVM, IFLap-TSVM has the best performance. In
the future, we will pay attention to improve intuitionistic fuzzy number to further
reduce the effect of noises and outliers on the model. Moreover, there may be noises
in unlabeled samples and that how to deal with this should also be considered. And
another possible work is to extend IFLap-TSVM to multi-class classification.
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(a) (b)

(c) (d)

Fig. 9 Test accuracy and standard deviations of IFLap-TSVM,Lap-TSVM, IFTSVMandTSVMonMNIST
dataset. (a) 0 versus 2; (b) 1 versus 7; (c) 3 versus 6; (d) 4 versus 9
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