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Abstract

Surgical teams use instrument counts to prevent leaving unintended objects in patients. This is done manually,
but could potentially be done through computer vision software. This paper presents a proof of concept for
detecting instruments in the operating room with the Scale Invariant Feature Transform (SIFT). The SIFT
algorithm is explored and tested on a variety of household appliances to substitute medical instruments. The
algorithm responds differently to metal objects compared to matte objects and has room for many improvements.
Further research on run time and multi object images is necessary. The proof of concept is considered successful
when not taking run time into account.
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1 Introduction

The operating room (OR) is by its nature a hazardous
place. Many things can and do go wrong, resulting in
increased cost and reduced quality of care. One method
of preventing mistakes in the OR is to have checks and
redundancy checks. These can vary from pre-procedure
anaesthetic and allergy checks to instrument counts [9].

Leaving an unintended sponge, needle or instrument
in a patient is a mistake that occurs with a frequency
ranging from 1 in 5000 to 1 in 7000 [1, 3]. The instru-
ment count is a standard procedure that takes place
pre- and post- surgery. It has been standardized by
the World Health Organization [9]. Sponge, needle and
instrument counts are done at all procedures that risk
the possibility of an unintended foreign object being
retained in the patient. These objects can lead to in-
flammation, obstruction, perforation sepsis and death
[11]. The risk of foreign object retention increases for
emergency operations, a sudden change in surgical pro-
cedure and patients with a high body-mass index [4].

The count takes several minutes and is done multi-
ple times, often by multiple members for redundancy.
Reconciling miscounts is done via X-rays and results in
increased OR time and costs.

If the count could be automated in such a way that
it is both fast and reliable, it frees up multiple mem-
bers of the team and OR time decreases along with
cost. Automating the count could be done using Radio
Frequency IDentification (RFID) tracking [11], which
requires trackers on all objects entering the body. An-
other method would be to use computer vision soft-
ware to track objects without adjusting instruments
and with minimal change to operating room procedure.

There are different options for computer vision soft-
ware. In this paper we chose to work with the Scale
Invariant Feature Transform (SIFT) by Lowe [7]. Simi-

lar software such as Oriented Features from Accelerated
Segment Test and Rotated Binary Robust Independent
Elementary Features (ORB) is faster but focuses on the
center of the image. Software Speeded Up Robust Fea-
tures (SURF) outperforms SIFT only in noisy images,
but is less accurate when it comes to clear images [2].
Another option would be to use deep learning. Deep
learning emulates the working of the human brain. It
requires a lot of data to train the software. After it
has been trained the inner mechanisms are often diffi-
cult to understand. In this thesis, we focus on accuracy
and reliability over speed and we use sharp and clear
images. We also want to be able to understand what ef-
fect different variables have on our outcome. For these
reasons, we chose to work with SIFT [5, 6, 7, 8].
SIFT compares keypoints in images and matches

these to a database. This software is invariant to scale,
translation, rotation and illumination. Additionally, it
can detect objects rotated in depth up to 20 degrees.
These properties make SIFT suitable as instruments are
not necessarily placed neatly on a tray under the same
lighting conditions pre- and post- operation.
The research question of this thesis is:
”Can the Scale Invariant Feature Transform (SIFT)

algorithm reliably detect objects in an operating room
setting?”
This thesis will serve as a proof of concept.

Figure 1: An example of a true positive identification (upper) and a false positive identification(lower). A false negative identification is the
same but without any colored boxes.
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2 Method

In an operating room setting, a health practitioner
would take a picture of all instruments on a surface
at various stages of surgery, but at least before and af-
ter. These are the scene images. The algorithm would
identify the number and type of all objects in a scene
image from a previously defined database of instrument
images. Non-detections and false positives increase the
likelihood of harm to a patient. Which is why we de-
fine a correct identification as the detection of the cor-
rect type of instrument with no false positives and a
70% overlap of area between the scene and instrument
photo. This 70% was chosen because it seemed reason-
able.
Positive identifications are shown by colored boxes

around the detected instrument in the scene image as
in figure 1, upper left. In the case of comparing single
instrument scene images, if there are multiple boxes
per image, it’s determined to be a false positive. All
detections are verified by eye.

In an operating room setting, run time would be es-
sential to consider as well. In that setting, the run time
of the program should be no more than the current
count procedure time. However, there are too many
variables influencing run time of the program to con-
sider the run time with regards to the research question.

2.1 Multiple images per instrument

Single image comparison often would not yield positive
identifications. If objects are rotated too much along
the wrong axis, the algorithm loses the ability to de-
tect it. As instruments are not always neatly placed in
real life situations, there was a need for a comprehen-
sive way of detecting instruments regardless of lighting
or angle. We decided to make a map of images per
instrument that vary in several parameters.

These parameters are instrument rotation, camera
angle, lighting angle and lighting intensity. All im-
ages per instrument were added to an instrument folder.
Then every instrument in a scene has multiple different
instrument images to compare to.

The program is also not mirror-invariant. To solve
this, images of instruments were mirrored and both ver-
sions of the instrument image were used.

2.2 Generating results

The program was tested on household appliances that
are similar to surgical tools in shape and size shown in
table 1. Preliminary tests of SIFT showed a large dif-
ference in outcome between metal and matte objects.
This is why we divided the instruments into two cate-
gories shown in table 1.

Table 1: Objects that were used to test the program.

Glare Matte

Fork Wooden spatula
Butter knife Black spatula
Spoon Black soup spatula
Ice cream scoop Blue spatula
Whisk

2.3 Camera setup

The objects were photographed in a dark room where
light sources were controlled. Each object was placed
individually underneath the camera on either a white
or black background, depending on the colour of the ob-
ject. The light never shone directly on the objects, but
always on a white wall to imitate omnidirectional ho-
mogeneous lighting. True homogeneous lighting would
decrease the variability of the results and we expect
it would decrease number of false positives, as even
slight errors in light direction might lead to different
keypoints. The light we used was a Dörr SLR-16 Bi-
Color Selfie Ring Light, which allows for multiple an-
gles on lightning and camera angle. The camera is from
a Huawei P20 Lite phone, with 16 megapixel camera,
f/2.2 lens and a 2 megapixel depth sensor. In figure
2 we see the default configuration of the set up. The
camera is parallel with the horizontal of the table. The
object is placed directly beneath it and parallel with the
alignment of the camera. The light points up toward
the white ceiling.
For each object, depending on the size of the object,

we varied the distance of the camera to the surface to
capture the entire object. We then cycled through all
light intensities. We took the lowest intensity that was
still clear and sharp because over-lighting the image
could result in a surplus of keypoints. From this default
position we varied light intensities, the object rotation,
the orientation of the light source and the tilt of the
camera. For each variation in orientation of light and
camera tilt, we rotated the object. Table 2 shows the
object rotation, light orientation and camera tilt varia-
tions. Per object there are 54 photos, 62 including the
light intensity variations.

2.4 Running SIFT

We took the default configuration of the camera and
position of the object as the scene image. All other
images from an instrument were put into a folder and
served as the instrument images. We ran the program
for three variables in two settings resulting in eight con-
figurations. Table 3 shows the type of transform, the
cluster threshold and the probability threshold. These
are found in section 3 The cluster threshold was chosen
to be three and four instead of the minimum because
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Table 2: Rotation angles of the object, light and camera.

Object rotation Light orientation Camera tilt

0° Up 0°
7.5° 180° 10°
17.5° 90° 27.5°
45° -12.5°
90°
135°
180°
-7.5°
-17.5°

preliminary tests showed an overabundance of false pos-
itives when the cluster threshold was two.
All instrument images of every object in table 3 were

compared to their scene images. Photos were manually
checked whether it was a true positive, a false nega-
tive or a false positive. False positives were defined as
having multiple identifications within the same image.

Table 3: Settings for SIFT

Transform Cluster threshold Probability threshold

Similarity 3 0.98
Similarity 3 0.99
Similarity 4 0.98
Similarity 4 0.99
Affine 3 0.98
Affine 3 0.99
Affine 4 0.98
Affine 4 0.99

Figure 2: The setup used to take pictures of instruments. The ring light can rotate (red) and tilt (blue). The camera can be tilted so perspective
(skewed) photos can be taken (green). Finally the object itself can be rotated (pink). In this local reference system the direction of the knife is
0° for the object rotation and light orientation. A light orientation towards the ceiling is defined as up. The angle for the tilt is defined as 0°
directly above the object, with -90° and 90° when the camera hits the table along the green arrows.
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3 Theoretical Framework

The algorithm used in this paper is the SIFT algorithm
based on Lowe’s work [7][6]. Generally, SIFT compares
2D images and detects objects they share. In this appli-
cation of SIFT, one scene image is compared to many
instrument images. An instrument image contains the
object that must be detected. The scene image poten-
tially contains it as well. For each unique instrument we
use a range of reference images to increase the proba-
bility of detection of the instrument in the scene image.
The algorithm is coded in Python using integrated de-
velopment environment Spyder version 5.

Many of the values chosen for the parameters in this
section are experimentally determined by Lowe [7, 6].
Many of these could be chosen to have a different value.
An oversight of these with more in depth explanations
can be found in appendix A. We decided to focus on
cluster threshold and probability threshold as the pa-
rameters to tune the algorithm with. We chose the
cluster threshold because it has a straightforward effect
and because the minimum step difference of the cluster
threshold is already significant on the performance of
the algorithm. We chose the probability threshold be-
cause it is one of the final tuning opportunities. It also
has a straightforward effect.

SIFT consists of a number of steps, to be repeated for
every instrument and scene image. The goal of the algo-
rithm is to create a singular model for each instrument
present in the scene that transforms the coordinates of
the instrument image into scene image coordinates.

To clearly explain SIFT, example instrument image
of figure 3 will be matched onto example scene image
of figure 4.

3.1 Overview

This is a very short overview of how the algorithm
works. Sections 3.2 through 3.12 explain it more in
depth.
First the scene and instrument images are loaded.

After loading, every subsequent step builds on the pre-
vious one. First keypoints are evaluated for both the
instrument and scene image based on their position.
Data based on the immediate area around every key-
point is added to these keypoints. Keypoints between
the instrument and scene are matched into keypairs.
Similar keypairs are clustered. From every cluster, a
model is computed. A model maps the instrument onto
the scene image. The models are evaluated and filtered.
The remaining models are the detections in the scene.
Figure 5 shows the steps in order. The middle blocks

are the steps. On the right these are summarized. On
the left the information that’s passed on from step to
step is shown. The purple blocks are the contents of
the pink blocks.

Figure 3: This image of a fork will be the example instrument image to illustrate the steps of SIFT.

Figure 4: This image of a fork will be the example scene image to illustrate the steps of SIFT
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Figure 5: A general overview of SIFT. A scene image and instrument image are loaded into the program at the top. If done correctly the final
product is a model that maps the instrument image onto the scene image.
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3.2 Scale space extrema detection

SIFT uses extrema detection to define keypoints be-
cause this method is rotation invariant and is highly
efficient [5]. The image is blurred by convolving it with
Gaussians of different standard deviation values σ. The
blurred images are called scales. The different σ values
are separated by a constant factor k. The Gaussians
have standard deviations σ0,

√
2σ0, 2σ0, etc.

As this trend continues, more computational time is
needed as a higher σ means that a larger area in the im-
age must be evaluated for blurring per individual pixel.
However, k is chosen to be

√
2. Because of this, every

fourth scale can be replaced by a downsampling of the
image by a factor of 2 (i.e. taking every second pixel of
an image). As shown on the left side in figure 6, this
downsample is original of the second scale. This saves
on computational time and has the same accuracy [7].
A set of scales before downsampling is called an octave

because it is done with a factor of 2. Lowe recommends
4 octaves [7], which is what we will be using.

In each octave the scales are stacked on top of an-
other. Adjacent scales are then subtracted from each
other, with 5 scales giving 4 Difference of Gaussians
(DoGs) as shown on the right side of figure 6. This
is done for each scale. Of these 4 DoGs, two are the
middle layers. Every pixel on these two middle layers
except for the edge pixels have 26 neighbors, 9 on the
layer above them, 8 on their own layer and 9 on the
layer below. Figure 7 shows the pixel marked ’x’ as an
example. If the value of this pixel is larger or smaller
than all its neighbours, it is a local maximum or local
minimum and defined as a keypoint.

3.3 Keypoint localization and removal

Now that we have a set of keypoints, we want to make
them more descriptive to be able to match them later

Figure 6: The scales are images convolved with kσ0. Every second scale is downsampled to become the first of the next octave.

8



Figure 7: The middle of the middle layer is evaluated. If all 26
surrounding pixels are collectively darker or brighter, the pixel is
defined as a keypoint. Image taken from Lowe, 2004 [7].

on whilst removing keypoints that are not robust across
images due to, for example, noise. Now, the keypoints
possess a discreet location and a scale.

Pixels exist in discrete space. However, the positions
of local maxima and minima of the pixels can be eval-
uated in continuous space. This makes them more de-
scriptive. We can find these positions by evaluating the
derivative in every direction, where a higher derivative
means that the extrema leans toward that direction.
Additionally, it allows for a value at the place of the ex-
trema, giving an opportunity to filter keypoints based
on this value compared to a threshold value. Low val-
ues are extrema with low contrast which are sensitive
to noise [8][7]. This value is discarded for all keypoints
as it will no longer be of use.

Keypoints at the edges of the image are common.
But as it is the edge of the image, local extrema are
much more likely and much less reliable. These are
eliminated by evaluating the derivative in the x direc-
tion and contrasting it with the y direction. At the
edge, one of these is going to be big whilst the other
will be small. If the ratio between the two is smaller
than the edge ratio (appendix A), the keypoint is dis-
carded.

3.4 Keypoint orientation

So far, each keypoint has a scale, a continuous location
and a value. Now we assign an orientation. The closest

Gaussian smoothed image to the scale of each keypoint
is taken. Selecting for scale in this manner approaches
scale-invariance. With this scale, the magnitude m and
orientation θ are computed using pixel differences as in
formula 1 and 2.

mx,y=
√

(Lx+1,y-Lx-1,y)2+(Lx,y+1-Lx,y-1)2 (1)

θ(x, y) = arctan (Lx,y+1−Lx,y−1)
(Lx+1,y−Lx−1,y)

(2)

These formula are applied to each pixel in the im-
age for this scale. Then, for every keypoint, we create
an orientation histogram with 36 bins over 360 degrees.
The histogram is filled by taking the orientation and
magnitude of the pixels within a 1.5σ area around the
keypoint and adding these to the histogram. The far-
ther away a pixel, the less weight it carries in the his-
togram. The peak position is then approximated more
accurately by fitting a parabola on the two histogram
values closest to each peak and taking the position of
the maximum. If the second highest peak is within 80%
of the highest peak, the keypoint is duplicated with this
orientation. Figure 8 shows all 3134 keypoints for our
instrument image. In figure 9, the largest circle clearly
shows two orientations.

3.5 Local Image descriptor

Each keypoint now has an continuous location, a scale
and an orientation. Around every keypoint location,
for the scale of that keypoint, the orientations and gra-
dient magnitudes of all sample points in that region
have been computed in section 3.4. These are rotated
relative to the keypoint orientation and weighted ac-
cording to distance from the keypoint location with a
Gaussian weighting function σw equal to one half the
width of the descriptor window (appendix A). The sam-
ple points come from a 16x16 area around the keypoint
with respect to the rotation. This 16x16 area is divided
into 4x4 regions each with a histogram in 8 directions
as shown in figure 10.
To avoid boundary effects, the orientations are tri-

linearly interpolated across adjacent histogram bins to
ensure continuity across bins. The histograms can be

Figure 8: The keypoints of the instrument image 3. There are 3134 keypoints in this image with 3134 corresponding descriptors. Every green
circle is a keypoint
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Figure 9: The tip of the fork of image 8 is enlarged to show the keypoints. Every circle is a keypoint where the center indicates position and
the radii the orientation. Note that there can be up to 2 radii in a keypoint, depending on whether they satisfy the 80% histogram requirement.
Higher octaves and scales (i.e. blurrier images) produce less keypoints.

summarized in a 4x4x8 = 128 vector for each keypoint.
This is the local image descriptor. This vector is then
normalized to unit length, which keeps its value if all
pixels’ illumination increase by the same amount. This
makes the local image descriptor illumination invariant,
provided the illumination is constant over all pixels in
the region around the keypoint. If that is not the case,
gradient magnitudes are disproportionally affected with
respect to gradient orientations. By capping the gradi-
ent magnitudes and renormalizing the vector, emphasis
is placed on orientation.

Figure 10: This example image uses a 8x8 set of samples from which
a 2x2 descriptor array is computed. Image taken from Lowe, 2004 [7].

See the following example in equation 3, where the
vector is 5 dimensional. The vector in this example
is normalized, capped at 0.5 and renormalized. The
actual value of the cap is experimentally determined to
be 0.2 (appendix A[7]).


7
3
2
1
1

 −→


7/8
3/8
2/8
1/8
1/8

 −→


4/8
3/8
2/8
1/8
1/8

 −→ 1√
31


4/8
3/8
2/8
1/8
1/8

 (3)

3.6 Keypoint matching

Each keypoint possesses a continuous location, a scale,
an orientation and a local image descriptor.
The local image descriptor is used to match keypoints

of one picture to another. A match of keypoints is a key-
pair. The minimum Euclidian distance of the descrip-
tor vector is found by brute-force comparisons. These
distances can be globally thresholded, but this method
performs poorly because Euclidian distance isn’t a great
predictor of distinctiveness of the descriptor. For that,
relative Euclidian distance between the closest neigh-
bor and second-closest is used. If the closest match is
much closer than the second-closest match (appendix
A), then the descriptor is distinctive. We use a brute
force approach to match the keypoints. Lowe [7] uses
the Best-Bin-First algorithm, which is faster. We use
the brute force method because it is more accurate.
Figure 11 shows keypoint matching between images
without and with the Euclidian distance requirement.

3.7 Keypair clustering

We are now working with keypairs. Every keypair has
a pair of continuous position, a pair of scales a pair
of orientations and a pair of local image descriptors.
The local image descriptor is no longer needed and is
discarded.
Keypairs indicate where the instrument should be

placed in the scene. It can be likened to using thumb-
tacks to overlay images on a scrap board. The more
thumbtacks are present, the surer one can be that the
image is correctly placed. However, this does not mean
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Figure 11: The keypoint matching algorithm applied to the instrument (upper left) 3 and scene (upper]right) 4 image. Every line matching
these is a keypair. The bottom is the same but with the Euclidian distance requirement

all keypairs can be used in this manner because not
all keypairs indicate true positive instrument detections
within the scene. This is why the keypairs are grouped
together based on how much they are alike.

A keypair has the following information in both the
instrument and scene image: the position, orientation
and the scale. Grouping keypairs together must be done
based on invariant parameters. In this case the dif-
ference between the positions, orientations and scales.
This gives a translation, rotation and scaling. These
are computed in following section 3.8. They can then
be grouped according to these differences.

3.8 Keypair parameters

A keypair has the x position, the y position, the ori-
entation θ and the the scale s for the instrument and
the scene image. From these the following parameters
can be computed: the difference in x coordinates dx,
the difference in y coordinates dy, the scale ratio dScale

and the difference in orientation dθ. The parameters
dScale and dθ are straightforwardly computed in equa-
tions 4 and 5.

dScale =
scaleScene

scaleInstr
(4)

dAngle = θScene − θInstr (5)

Parameters dx and dy are more complicated. The co-
ordinates from the instrument image must be mapped
to the scene image first. Instrument image coordinates
must be adjusted for scale and rotation. The order is
relevant, but all orders are possible. In this paper we
do scaling first, rotation second. The scaling is relative
to the center of the instrument image. See equations 6
and 7.

xscaledInstr = (xInstr − xlengthInstr

2 )dScale (6)

yscaledInstr = (yInstr − ylengthInstr

2 )dScale (7)

After scaling, the scaled instrument positions are ro-
tated based on the difference in orientation dθ to find
the x and y positions in the scene xInstrScene and
yInstrScene. This is done with a rotation matrix shown
in equation 8.

[
xInstrScene
yInstrScene

]
=

[
cos dθ -sin dθ
cos dθ sin dθ

] [
xscaledInstr
yscaledInstr

]
(8)

Now the position of the instrument keypoint can be
located in the scene. Finding parameters dx and dy is
a simple subtraction. See equations 9 and 10.

dx = xScene − xInstrScene (9)

dy = yScene − yInstrScene (10)

3.9 Hough Transform

Each keypair now has the four known parameters dx,
dy, dScale and dθ. These describe how a keypoint in the
instrument image is placed in the scene image. From
these keypairs a model can be computed that maps all
the pixels from the instrument image onto the scene
image.
One keypair is sufficient to transform the instrument

into the scene with the proper rotation. However, the
second keypair determines the size of the image. The
model that can be computed from two keypairs is called
the similarity transform. The instrument or the scene
image can also be taken at an angle, making it necessary
to skew the instrument image. For this a third keypair
is needed. The model computed from three keypairs is
called the affine transform. Not just any three keypairs
can be considered to find an instrument in the scene.
The keypairs must be sufficiently similar. We use the
Hough transform to cluster the keypairs.
The Hough transform considers the keypoints in pa-

rameter space, creating a 4 dimensional box known as
a bin where the 4 parameters are enclosed by the 4
dimensions. Figure 12 shows the principle in 3 dimen-
sions.
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Figure 12: This example box is illustrated in 3 dimensions. Ev-
ery keypair with an angle difference between 30-60 degrees, a y dif-
ference between 0-200 pixels and an x difference between 800-1200
pixels would fall in this box. For illustrative purposes the boundary
problems are not shown, but can be viewed as one point falling into
two adjacent boxes.

Each parameter is one dimension of the bin. The
bin sizes per dimension are taken from Lowe [7]. They
are 30 degrees for orientation difference, factor 2 for
scale ratio and the maximum projected training image
dimension for dx and dy is 0.25 (appendix A). As the
entire parameter space must be accounted for, larger
bins mean less bins and vice versa.
The voting is done by assigning a unique number

to each box. Table 4 is an example of a keypair with
four parameter values. For angles, 30 degrees lead to 12
bins, values 0-11 in python. The scale ratio of 2 include
a number of scales, and can be assigned a number by
taking the log2(scale ratio). For dx and dy, the ratio
between dx and the size of the scene image in the x
dimension times the number of bins assigns a number.
Rounding up and down yields whole numbers, two for
every dimension for each keypair.

Table 4: Table of example parameter values for difference in orien-
tation, scale ratio, difference in x and difference in y. Parameters dx

and dy are dependent on image size, so normalized values are arbi-
trary. These are normalized and given a lowerbound and upperbound
number.

dθ dScale dx dy

Parameter value 45 8.0 489 9312
Normalized value 1.5 3 8.6 4.5

Lowerbound number 1 3 8 4
Upperbound number 2 4 9 5

In this example, there are four sets of two values.
These are added together like letters, to assign a num-
ber to a bin. The bin numbers for this example would
be 1384, 1385, 1394, 1395, 1484, 1485, 1494, 1495, 2384,
2385, 2394, 2395, 2484, 2485, 2494 and 2495. Each of
these bins gets one vote from this keypair. Other key-
pairs might vote for different bins, which will be gen-
erated. Multiple votes end up in the same bin only if
their parameter values fall in the same bin. A bin needs
at least two votes to compute a similarity model and

three votes for an affine model. These are explained in
section ??. Every filled bin is called a cluster.
Boundary problems are prevented by adding the key-

pair match to the two closest bins for each parameter.
For four parameters, this leads to 16 boxes with a vote
for each keypair. This also increases total number of
votes for bins by a factor 16, increasing the chance that
a bin receives multiple votes.

3.10 Computing models

Both the similarity and affine transform are models that
transform instrument image coordinates into scene im-
age coordinates. They both have the same basic for-
mula 11[7].

[
xScene
yScene

]
=

[
m1 m2
m3 m4

] [
xInstr
yInstr

]
+

[
tx
ty

]
(11)

The similarity transform model takes into account
scale, rotation and translation. The affine model takes
into account scale, rotation, translation and skew.
These are hidden in the m parameters from formula
11.
The m parameters from the similarity transform are

found by multiplying the rotation with the scale. The
scale is a scalar s. The rotation is defined by a stan-
dard rotation matrix R of rotation θ. The m parameter
matrix for the similarity transform is found in equation
12.

m = sR = s

[
cos(θ) -sin(θ)
sin(θ) cos(θ)

]
(12)

The affine transform adds another element to the m
parameters: the shear matrix C 13.

m = s R C = s

[
cos(θ) -sin(θ)
sin(θ) cos(θ)

] [
1 cx
0 1

] [
1 0
cy 1

]
(13)

The m parameters can be found by taking formula
11 and using a least squares method. The similarity
transform angle θ and scale s can then be calculated
from the m parameters in a straightforward manner as
in equations 14 and 15.

θ = arctan m2

m1
= arctan −s sin θ

s cos θ (14)

s =
√

m2
1 +m2

2 =
√
(s cos θ)2 + (−s sin θ)2

(15)
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The affine m parameters are more difficult to decom-
pose into angle, scale and shear. We used Maple for the
calculations. These can be found in appendix B.
The translation, scale and rotation of the model is

then checked against the original keypairs. The model
must be closer to the keypairs than half the original
bin sizes of the Hough transform (appendix A). If this
is not the case, the offending keypairs are removed from
the cluster and the model is recomputed without those
keypairs until the model is accepted. If the number of
keypairs is insufficient, the entire cluster is discarded.

3.11 Probability of model

The candidate models can be rank ordered and thresh-
olded by assigning a probability [6]. This is the prob-
ability that model m exists given the keypair set f .
Which is the probability that the keypairs are present
if the model is present divided by the probability that
the keypairs are present in general. This probability
can be approximated using equation 16 (appendix C).

P (m|f) ≈ P (m)
P (m)+P (f |−m) (16)

If this probability is larger than a certain threshold,
the model is accepted. Lowe recommends a probability
threshold of 0.98 (appendix A).

3.12 Duplicate removal by NMS

The method of applying the SIFT algorithm as de-
scribed in the previous section 2.1 leads to more posi-
tive identifications. However, as each instrument photo
is treated by the algorithm as a new possible instru-
ment, the same instrument can be found in the same
position multiple times as shown in figure 13 (left).

These duplicates in combination with the possibility
of multiple detections per instrument image distorted
the results of the algorithm. Every duplicate is a false
positive and throws the count off. To remove the du-
plicates we used the Non-Maximum Suppression algo-
rithm (NMS).

The NMS algorithm was used to identify duplicates
and remove them [12]. It functions by ranking the pro-
posed models by probability, taking the model with the
highest probability of being a true positive. This model

was then compared with all other models by calculat-
ing the intersection of the bounding boxes and dividing
by the union of the bounding boxes. This is the In-
tersection over Union (IoU). If this is larger than 0.9
(appendix A, that model is removed. This threshold
is chosen to be high to ensure that only very similar
models are removed. If the model is not removed, it
is retained as a separate detection and matched to all
remaining models.
The remaining models are the detected instruments.

Figure 13 (right) shows a successful removal of dupli-
cates leaving only one positive identification.

Figure 13: There are 14 detections before the NMS algorithm (left). Afterwards, only 1 detection remains (right).
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4 Results

The results displaying the differences between glare and
matte objects and the differences between the affine and
similarity transform can be found in table 5. Table 6
shows the effect of increasing the cluster threshold for
both glare and matte objects. The difference between
regular and mirrored images for glare, matte and their
average is found in table 7. Finally, table 8 shows the
difference between the similarity and affine transform
for both regular images and images taken by a tilted
camera along the green axis of figure 2.

Additionally, as an example we applied the program
on a scene with multiple instruments with an instru-
ment map of 28 instrument images. This took 40 sec-
onds. Figure 14 shows what a real life application of
the program could look like. Of the 4 objects, only
two were detected. These were detected with no false
positives.

Tables 5, 6, 7 and 8 show a significant difference be-
tween the performance of the glare and matte objects in
terms of both precision and recall. Tables 5 and 8 show

that affine transform performs worse than the similarity
transform in terms of both precision and recall.

Figure 14: An example of a scene image with multiple instruments detected. There are 2 false negatives and 0 false positives. The instrument
map here contains 28 images, 7 per instrument.
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Table 5: Comprehensive results displaying the true positive, false positive, false negative, precision and recall of glare and matte objects for
similarity (Sim) and affine (Aff) transform and their average (Avg).

Glare Sim Glare Aff Mat Sim Matte Aff Glare Avg Mat Avg

True positive 20% 14% 52% 39% 17% 46%

False positive 73% 67% 26% 26% 70% 26%

False negative 7% 20% 22% 34% 13% 28%

Precision 0.21 0.17 0.67 0.60 0.19 0.64

Recall 0.74 0.41 0.70 0.53 0.55 0.62

Table 6: Difference between glare and matte for cluster thresholds 3 and 4.

Glare Cluster 3 Glare Cluster 4 Matte Cluster 3 Matte Cluster 4

Precision 0.14 0.23 0.61 0.67
Recall 0.51 0.56 0.67 0.59

Table 7: Difference of precision and recall between regular (Reg) and mirrored (Mir) images for the glare, matte and their average.

Glare Reg Glare Mir Matte Reg Matte Mir Avg Reg Avg Mir

Precision 0.24 0.18 0.81 0.74 0.57 0.49
Recall 0.66 0.50 0.57 0.47 0.59 0.47

Table 8: Difference between tilt and regular for affine and similarity, for glare and matte objects.

Tilt Sim Glare Aff Glare Sim Mat Aff Mat Avg Sim Avg Aff

Precision 0.13 0.16 0.67 0.58 0.34 0.32
Recall 0.87 0.54 0.79 0.61 0.81 0.59

Regular Sim Glare Aff Glare Sim Mat Aff Mat Avg Sim Avg Aff

Precision 0.20 0.16 0.71 0.70 0.41 0.39
Recall 0.49 0.25 0.72 0.60 0.59 0.40
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5 Discussion

5.1 Matte and metal

In columns 5 and 6 of table 5 the difference between
glare and matte objects is clear. Glare objects have a
much higher false positive percentage and a much lower
true positive percentage than matte objects. Tables 7
and 8 show the difference between in terms of glare and
precision.
Table 6 concretely shows a lower precision and recall

for glare objects across cluster thresholds 3 and 4. Most
notably the precision for glare objects is much lower.
This is because the number of false positives is higher
in glare objects.

This difference is probably due to the unpredictabil-
ity of light reflection in metals. In the first step of SIFT,
scale space extrema detection, keypoints are generated
by local minima and maxima. Metal surfaces have spec-
ular reflection, while matte surfaces have diffuse reflec-
tion. A specular reflection can have many extrema and
therefor many keypoints, depending on what it reflects.
Additionally, the variability of these keypoints between
images can differ vastly due to the specular reflection
of metal surfaces.

On the other hand, diffuse reflections give a surface
a constant color. This uniform reflection has fewer lo-
cal extrema, and therefor fewer keypoints than a metal
surface. For matte objects, this means non-detections
are more prevalent.

Variables such as image quality, lighting, background
and object size and complexity being equal, metal ob-
jects generate more keypoints and these have a higher
variability.

The SIFT program should then account for what
type of instrument it is detecting, and adjust param-
eters accordingly. For glare objects, the number of ac-
cepted models should be reduced by increasing param-
eter thresholds.

5.2 Similarity and affine transform

Columns 1 through 4 of table 5 show the difference
between the similarity and affine transform. The simi-
larity transform performs better in both true positives
and false negatives. False positives remain about equal,
with some variance below 10%. This indicates that
the similarity transform performs better than the affine
transform across the board. The nature of the affine
transform isn’t congruent with these results: it should
have fewer false negatives at least because it should be
able to fit models onto the scene more easily.

This not being the case indicates that there is some
problem with the affine transform. The affine trans-
form uses a complicated equation (appendix B) to de-

compose the m parameters into scale, skew and rota-
tion. However, for some affine model computations,
these formula attempt to take the square root of a neg-
ative number. These potential models were skipped as
candidate models, which makes it likely that an inde-
terminate number of true and false positives were lost.
Possible solutions can be to find a different mathemati-
cal way of decomposing the m parameters or to use the
similarity transform for these instances.

However, the affine transform is comparatively better
when looking at skewed images. Comparing the simi-
larity transform with the affine transform from table 8,
the average precision for glare and matte stays quite
even but recall drops significantly. For regular photos
the recall drops 8% more than for tilted photos. When
comparing skewed and regular images, the skewed im-
ages have an increase in false negatives for both the
affine and similarity transform. However, the increase
of the affine transform is smaller than the increase of
the similarity transform. This indicates that the affine
transform performs comparatively better than the sim-
ilarity transform for skewed images.

So there is evidence that the affine transform can be
more effective at comparing depth rotated objects. This
is only relevant if the affine transform can be made to
work properly, as it now performs worse in both preci-
sion and recall than the similarity transform.

5.3 Mirrored images

Table 7 shows that the regular images perform better.
This is expected because SIFT is not a mirror-invariant
program. This means that copying and mirroring im-
ages contributes to a higher positive detection rate, as
objects that would have been mirrored physically can
now be successfully detected.

The average difference found in columns 5 and 6 show
a difference of 14% in precision and 20% in recall. How-
ever, copying and mirroring every instrument image
also nearly doubles computing time.

5.4 Hyper parameters

The two hyper parameters that we varied were the clus-
ter threshold and the probability threshold.

The first two columns of table 6 show that the preci-
sion and recall of glare objects increases with increased
cluster threshold. The stricter threshold predictably re-
duces false positives and increases false negatives. This
is paired with an increase in true positives, as it reduces
false positives more than it reduces false negatives. For
the final two columns, matte objects show the same ef-
fect on false positives and negatives, though false nega-
tives increase more than false positives decrease, which
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means there are less true positives. This indicates, all
other things being equal, that the cluster threshold of
4 is more suited to glare objects while a threshold of 3
to matte objects.

For matte and glare objects, the best cluster thresh-
olds seem to be 3 and 4 respectively. A cluster threshold
of 3 means that there are 3 keypairs required to com-
pute a model. Going from 3 to 4 means that every
model that would have been accepted with 3 keypairs
is now discarded. However, these are often models that
are similar to the best model.

Changing the cluster threshold is more impactful
than it appears when solely looking at precision and
recall. When increasing the threshold, the number of
accepted models decreases. However, many of these
models are similar and would have been removed any-
way due to the NMS algorithm. This means that the
effect of the cluster threshold change on precision and
recall is not as noticeable. However, it means that any
effect on precision and recall is based solely on the mod-
els the NMS algorithm could did not catch.

The cluster threshold of 2 in this configuration of
SIFT generated too many false positives and a cluster
threshold of 5 generated many false negatives. How-
ever, depending variables such as the size of the instru-
ment map, higher cluster thresholds could be useful.

Varying the probability threshold from 0.98 to 0.99
proved too small of a step. We still believe that the
probability threshold is a logical choice to tune the algo-
rithm. It is near the end of the algorithm, which makes
it a very intuitive variable to tune. Model probabili-
ties often reached 0.999999, so further testing should
be done keeping a such a threshold in mind compared
to the 0.98 recommended by Lowe.

In the SIFT algorithm, there are many other vari-
ables that can be used to tune the program. An
overview of these and what would happen to the pro-
gram if you changed them can be found in appendix A.
Many of these were experimentally determined by Lowe
[7]. These can be tuned as well but we believe that the
cluster and probability threshold parameters should be
researched more thoroughly. The variables should be
considered first are the cluster threshold, the probabil-
ity threshold and the Hough transform bin size. These
are straightforward in their effect: reduce the number of
positive detections by increasing thresholds or reducing
the bin size. A more fundamental approach would be to
reduce the number of keypoints detected in any given
image. However, it is hard to predict what discarding
information at such an early stage would do.

5.5 Precision and Recall

The results are largely measured by precision and re-
call. These are measured over categories. The precision
shows the ratio of true positives and total positives,
that is what fraction of all detections is true. Recall
tells us the ratio between the true positives and the
sum of the true positives and false negatives, that is
what fraction of all relevant detections is detected. In
this subsection we explain how results should be inter-
preted when taking into account recall and precision as
separate.
We want to test he program in such a way that that

quantitative data is produced that sheds light on the
functioning of the program. This was done through the
matching of individual photos, which isn’t the way the
program would function in an OR setting. The program
takes an entire map of photos of an instrument and tries
to locate that instrument in the photo, for each photo.
Here we have tested individual images. We do this

because testing the entire map on a picture can give
qualitative results, but would generate little data that
indicate how the program would react to different con-
figurations. This means that the results must be inter-
preted whilst taking the individual nature of the test
into consideration.
For the precision this has little bearing; the higher the

precision, the better the program functions. However,
recall is another matter. A large number of false nega-
tives will decrease recall, but a that isn’t necessarily a
bad thing. Each false negative is just one undetected
instrument from an instrument map with potentially
hundreds of photo’s, which means false negatives aren’t
a problem so long as one of the other images in the map
finds a true positive, thereby detecting the instrument.
F score is meant to be a measure of accuracy and

often goes hand in hand with precision and recall [10].
In this thesis we disregard F score as its relationship
with accuracy is skewed due to the individual nature
of the tests contrasted with the wholesale nature of the
intended program.
A high recall means only that there are few false

negatives. It must be evaluated in concert with the
precision. Table 9 shows how the configuration of the
program should be altered for different situations. If
there’s a high precision and a high recall, then the pro-
gram is working as intended. If there is high precision
and low recall, the program might be too severe in its
boundaries. It could also be just fine, depending on
whether the map of instruments can generate at least
one true positive. For low precision and high recall, the
program needs to be stricter to increase the precision,
even though recall might fall. And for low precision and
low recall, the program needs to be stricter to increase
precision and perhaps more photos are to be added to
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the map to increase the chance of finding a true posi-
tive.
Table 9 shows how the algorithm should be config-

ured when
Table 9: Precision and recall for a map of images.

Low precision High precision

Low recall ↑ Threshold & images ↓ Threshold
High recall ↑ Threshold Good

Using an entire map of photos allows us to prioritize
precision over recall, which means making the program
stricter is preferable to reduce false positives, as false
negatives can be compensated by adding more photos of
instruments to maps. This will however increase com-
putational time.

5.6 Requirements and limitations

The main limitations are practical. The program can-
not detect what it cannot see. Therefor, the instru-
ments have to be placed on a table in such a way that
every object is at least partly visible. Also, the pro-
gram would work best when the objects are placed on
a contrasting background. These requirements would
probably require a human touch or at least a deviation
on current procedure.

Pictures have to be taken. This can be done auto-
matically with some sort of camera set up or by a med-
ical practitioner. Additionally, a good user interface is
essential. If the medical team can easily input what
instrument the program missed and draw a box around
the instrument, the database can be filled quickly. On
the other hand, if some instrument is supposed to be
missing, that too should be easily entered in the user
interface.

5.7 Future research

This algorithm needs more testing. Individual image
tests were promising, but more cluttered images need
to be tested. The NMS algorithm has not been tested
in a setting where multiple objects are stacked on top
of each other. The threshold for removing duplicates
should be strict enough to ensure that doesn’t happen.

Lowe [6] also integrates multiple views of an object.
He takes an initial view of the object and uses the
Hough transform [6] to add subsequent views from dif-
ferent angles. This creates a larger set of keypoints with
which to match an image. This increases the chance of
matching the model to an image. This method uses
the similarity transform instead of the affine because
the latter ”provides a poor approximation for rotation
in depth of more complex 3D objects” [6]. We believe
this approach is suited to this application. Instead of

comparing multiple models per training image for mul-
tiple images in our image map, the relevant keypoints
can be combined into one model. Additional training
image keypoints can then be compared to that current
model. If it matches, those keypoints can be added
to the model. If it doesn’t match, a new model can
be made. This increases robustness of the program [6].
More specific to our implementation, not just 3D depth
rotation could be varied. If the lighting changes per
training image, unique keypoints that are generated by
arbitrary specular reflection can be compared to the
model and be discarded. Additionally, keypoints from
the model can be weighted according to how often they
appear in training images.
Run time has not been the focus of this research.

For figure 14, the run time was 40 seconds on my lap-
top. and had 28 instrument images across 4 objects.
In an OR setting, more images should be used per face
of the instrument, increasing run time. However, the
computer on which the program is run could be much
faster instrument images can be loaded before every op-
eration. Additionally, in section 3.6 we choose to use a
brute force approach to matching, instead of the Best-
Bin-First algorithm. This would make the program
faster. There are many factors which can influence run
time, and future research should make evaluate the run
time thoroughly in an operating room setting.
Cluttered image tests should be done with images

from actual surgeries, where the instrument count is
done with SIFT and compared to a hand count. As
with any practical application, testing in the field is
preferable. In this case it is necessary, as it concerns
technology where errors might result in harm to pa-
tients.
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6 Conclusion

Glare objects generate more keypoints and more false
positives than matte objects. The SIFT algorithm
should be run on different settings for both. The clus-
ter threshold should be 3 for matte objects and 4 for
glare objects in the current configuration.
Positive detections will increase when instrument im-

ages and their mirrors are used. It is unclear whether
that is worth the increased run time.

The similarity transform performs better across all
metrics, probably because the affine transform does not
function as expected. The affine transform, when work-
ing correctly, is expected to be able to be better able to
deal 3D depth object rotation than the similarity trans-
form. If any improvements are made to this program,
fixing the affine transform should be high priority.

The probability threshold was varied too slightly be-
tween 0.98 and 0.99 to be used as a tuning variable. It
could still function as such, given more research.

Run time is a factor to be considered when imple-
menting the program in an operating room setting.

Can the Scale Invariant Feature Transform algorithm
reliably detect objects in an operating room setting?
Yes, it can. Conceptually, it could detect instruments
with 100% accuracy, provided all instruments are visi-
ble in the scene image.
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A Variables and constants

There are many variables and constants I’ve used in sec-
tion 2. In this appendix, they are displayed in table 10.
Many of these constants are tested or assumptions by
Lowe. We do not test most of these, but they are choices
that could be adjusted to improve the algorithm.

Table 10: Variables, constants and choices made in this application
of SIFT.

Parameter Value Section

k
√
2 3.2

σ0 1.6 3.2
Extrema threshold 0.03 3.3
Edge ratio 12.1 3.3
Gaussian window σ 1.5 scale 3.5
Keypoint descriptor area 16x16 pixels 3.5
Histogram vector 4x4x8=128 3.5
Gradient magnitude cap 0.2 3.5
Euclidian distance ratio 0.8 3.6
Min # keypairs sim 2 3.7
Min # keypairs aff 3 3.7
Degrees per bin 10 3.9
Bin size for dx, dy 10 3.9
Bin size for scale 10 3.9
Bin size for orientation 10 3.9
Bin size for verification Half bin size 3.9
Probability threshold 0.98 3.11
IoU threshold 0.9 3.12

Sigma multiplier k is chosen as is because the chosen
value allows for a downsampling of the image with a
factor 2, saving computational time. A greater σ0 im-
proves repeatability of keypoint detection, but increases
computational time. At the 1.6, the repeatability is
close to optimal.

The Taylor fit allows a value to be placed on the
extremum peak. If extrema are lower than the given
value, they are removed because these are unstable ex-
trema with low contrast.

To find and remove extrema on the edge, compute
the sum of the straight derivatives over the diagonal
derivative around the extremum. The ratio between
these can be thresholded [7].

In 3.4, 10 degrees per bin was chosen. Fewer degrees
per peak lead to more peaks, but lower. This increases
precision but also computational time. Fewer degrees
per bin would lead to more duplicates, which means
more keypoints. On the other hand, more keypoints
also mean more false positives.

The Gaussian weighting window σ is chosen to be
1.5 times scale of the keypoint. Larger windows could
improve accuracy, as more information is taken into
account. However, it could also decrease accuracy, as

at a certain pixel distance useful information carry over
is zero.

If peaks are within an 80% threshold, the keypoint is
duplicated and given this secondary orientation. This
increases the number of keypoints. However, it also
increases the number of false positives. At 80%, 15%
are duplicated.

The Gaussian weighting window σ in 3.5 is half the
descriptor window, which is 8 pixels in our case. Its
purpose is to remove is to reduce boundary issues by
adding a gradual decline of effectiveness of pixels far-
ther away from the descriptor position. Increasing σ in-
creases the effect of faraway pixels within the window,
making the boundary issues more prominent. Decreas-
ing σ also increases boundary effects, as the gradual
decline is lessened.

The keypoint descriptor area is chosen to be 16x16
pixels. This can be bigger, but again, it would take
into account pixels that wouldn’t contribute positive
information. It could be smaller, but pixels could be
missed that do contribute positive information. The
area allows for 4x4 descriptors.

The histograms have 8 pixels, leading to 4x4x8 =
128 element feature vectors. Larger feature vectors can
decrease matching by making the histograms too sen-
sitive to distortion. Smaller vectors perform worse as
well in terms of matching, though computational time
decreases. The descriptor is sensitive to affine change,
falling below an 80% matching repeatability for a view-
point angle difference of 40 degrees or more.

Lowering the cap decreases gradient emphasis. The
goal is to make sure gradient contribution isn’t over-
bearing, but also not so low that it’s irrelevant. The
gradient magnitude cap was determined experimen-
tally. The Euclidian distance ratio of section 3.6 is set
to 0.8. This eliminates 90% of false matches whilst dis-
carding less than 5% of true matches.

In subsection 3.9 two keypoint pairs are needed for
the similarity transform model and three for the affine
transform model.. However, the minimum could be in-
creased to a number greater than 3. This would lead to
models being accepted, but also a lower false positive
rate.

The bin sizes are chosen for the similarity transform,
not the affine transform. This means they are quite
broad to catch non-rigid transformations. Decreasing
bin size would lead to less models, but a lower false
positive rate.

In subsection 3.10, half the bin size of section 3.9 is
chosen to test the matches against. This is to remove
any outliers that aren’t within the scope of the model.
A stricter test would remove more potential models,
decreasing the false positive rate but increasing the false
negative rate. A looser test does the opposite.
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In subsection 3.11, the main variable is the probabil-
ity threshold. This is set at 0.98 by Lowe. Varying this
threshold is an excellent way of testing the algorithm.
If the threshold increases, and false positives are re-
moved, then the threshold should be higher. The value
at which correct identifications are removed is too high.
However, if the threshold increases and correct identi-
fications are removed before the false positives, then
something else is wrong.

The duplicate removal threshold is set to 0.5. This
application of the algorithm, with its many potential in-
strument identifications per instrument folder, needed a
strict duplicate removal threshold. The disadvantage of
this is that overlaying instruments have a higher chance
of being removed. To counteract this, the instrument
photos need to be cropped as close to the instrument as
possible, as to decrease the area of the bounding boxes.

B Affine

s =
√
m1m4 −m3m2 (17)

D = m1m4 −m3m2 (18)

C = m2
2 +m2

4 (19)

R = sqrts(s− Col) (20)

Arc1 = (R(m1m
2
4−m2m3m4)
CsD +m2

2m3 −m1m2m4)
(21)

Arc2 = (R(m1m2m4−m2
2m3)

CsD +m1m
2
4 −m2m3m4)

(22)

θ = arctan Arc1
Arc2

(23)

cx = R
D (24)

cy = 1
C (−m1m4

R
D +m2m3

R
D +m1m2 +m3m4)

(25)

C Probability

P (m) is the chance that a single keypair is correct,
which is the ratio of correctly matched image features
to all matched features in a typical image. This is about

0.01. See appendix A. The probability of matched key-
pairs f given that m is not present can be computed
with the binomial distribution 26.

P (f | −m) =
∑n

j=k

(n
j

)
pj(1− p)n−j (26)

Here the probability p is given by the following equa-
tion 27.

p = dlrs (27)

Where d is the probability of accidentally selec-
tion a database match to the current model, which is
the matches of the current model divided by all the
matches. l is the probability of accidentally satisfying
the location constraints, which is the bin size in both
dimensions multiplied, which is 1/16. r the probability
of accidentally satisfying the orientation restrains given
our bin sizes, which is 30/360 = -0.85 and s the prob-
ability of accidentally satisfying the scale constraints,
which is 0.5.

D Code

1 import numpy as np

2 import scipy as sp

3 import scipy.special

4 import shapely.geometry

5 from shapely. ops import cascaded_union

6 from shapely.geometry import Polygon

7 import math

8 from math import pi

9 import matplotlib

10 matplotlib.rcParams['backend'] = 'tkagg'
11 import matplotlib.pyplot as plt

12 import matplotlib.gridspec as gs

13 import cv2

14 from tqdm import tqdm

15

16 import warnings

17 warnings.filterwarnings("error")

18

19 import sys, os

20 from datetime import datetime

21

22 autofill = True

23

24 ## Constants

25 binSizeAngle = 30

26 binSizeScaleFactor = 2

27 binSizeXFactor = 0.25

28 binSizeYFactor = 0.25

29 polygonThreshold = 0.25

30 transformChooser = False

31 # transformChooser = True

32 clusterThreshold = 2
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33

34 probL = binSizeXFactor*binSizeYFactor

35 probR = binSizeAngle/360

36 probS = 1/binSizeScaleFactor

37 probM = .01

38 probThreshold = 0.98

39

40 showBoxPreNMS = True

41 showBoxPostNMS = True

42

43 '''
44 logBase: x is the input of the logarithmic

function, base the type of logarithm

45 '''
46 def logBase(x, base=2):

47 return np.log(x)/np.log(base)

48

49 ## Functions

50 '''
51 '''
52 def betai(a, b, x):

53 '''
54 Calculate incomplete beta function I_x(a,b),

taken from paragraph 6.4 of Press, W.H. et

al. - Numerical Recipes in C (second

edition)

55 '''
56 if x < 0 or x > 1: raise ValueError("betai:␣x␣

must␣be␣0␣<=␣x␣<=␣1")

57 if x in (0, 1): bt = 0

58 else: bt = np.exp(gammln(a+b)-gammln(a)-gammln

(b)+a*np.log(x)+b*np.log(1-x))

59 if x < (a+1)/(a+b+2): return bt*betacf(a, b, x

)/a

60 else: return 1-bt*betacf(b, a, 1-x)/b

61

62 def betacf(a, b, x):

63 '''
64 Calculate continued fraction for incomplete

beta function, taken from paragraph 6.4 of

Press, W.H. et al. - Numerical Recipes in

C (second edition)

65 '''
66 maxit = 100

67 eps = 3.e-7

68 fpmin = 1.e-30

69

70 qab = a+b

71 qap = a+1.

72 qam = a-1.

73 c = 1.

74 d = 1.-qab*x/qap

75 if np.abs(d) < fpmin: d = fpmin

76 d = 1/d

77 h = d

78

79 for m in range(1, maxit+1):

80 m2 = 2*m

81 aa = m*(b-m)*x/((qam+m2)*(a+m2))

82 d = 1+aa*d

83 if np.abs(d) < fpmin: d = fpmin

84 c = 1+aa/c

85 if np.abs(c) < fpmin: c = fpmin

86 d = 1/d

87 h *= d*c

88 aa = -(a+m)*(qab+m)*x/((a+m2)*(qap+m2))

89 d = 1+aa*d

90 if np.abs(d) < fpmin: d = fpmin

91 c = 1+aa/c

92 if np.abs(c) < fpmin: c = fpmin

93 d = 1/d

94 de = d*c

95 h *= de

96 if np.abs(de-1) < eps: break

97

98 if m > maxit: raise ValueError("betacf:␣a␣or␣b

␣too␣big,␣or␣maxit␣too␣small")

99 return h

100

101 def gammln(xx):

102 '''
103 Calculate natural logarithm of gamma function,

taken from paragraph 6.1 of Press, W.H.

et al. - Numerical Recipes in C (second

edition)

104 '''
105 cof = [76.18009172947146, -86.50532032941677,

24.01409824083091, -1.231739572450155,

0.1208650973866179e-2, -0.5395239384953e

-5]

106 y = x = xx

107 tmp = x+5.5

108 tmp -= (x+.5)*np.log(tmp)

109 ser = 1.000000000190015

110 for j in range(6):

111 y += 1

112 ser += cof[j]/y

113 return -tmp+np.log(2.5066282746310005*ser/x)

114

115 '''
116 instrumentCounter: keeps track of which instrument

is being considered at any given iteration of

i

117 photoCount tracks which photo is being looked at

according the the directories, whatIsDetected

gives the name according to the directories, i

is instrument index

118 returns the idintifier for the instrument

119 '''
120 def instrumentCounter(photoCount,whatIsDetected,i)

:

121 # photoCountSum = 0

122 photoCountSum = 0

123 for instrument in range(len(whatIsDetected)):

124 photoCountSum += int(photoCount[instrument

])

125 if np.floor(i/2) <= photoCountSum:
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126 instrumentIdentifier = whatIsDetected[

instrument]

127 return instrumentIdentifier

128

129 '''
130 keypointDifference: calculates the differences

between keypoints.

131 q is the for loop that iterates over the number of

matches. featMatches is a list of all the

matches between keypoints.keyPointsImg is a

list of all the keypoints of the image.

132 keyPointsImgsInstruments is the same, but for all

the keypoints of a given instrument of i. i is

the index going through all the instrument

images

133 Returns the difference in angle, in scale, in x

position, in y position and the indices of the

image and instrument keypoints.

134 '''
135 def keypointDifference(q,featMatches,keypointsImg,

keyPointsImgsInstruments,i):

136

137 indexImgKP = featMatches[q,0].queryIdx

138 indexInstrumentKP = featMatches[q,0].trainIdx

139

140 angleImgKP = keypointsImg[indexImgKP].angle*2*

pi/360

141 angleInstrumentKP = keypointsImgsInstruments[i

][indexInstrumentKP].angle*2*pi/360

142

143 scaleImgKP = keypointsImg[indexImgKP].size

144 scaleInstrumentKP = keypointsImgsInstruments[i

][indexInstrumentKP].size

145

146 xImgKP, yImgKP = keypointsImg[indexImgKP].pt

147 xInstrumentKP, yInstrumentKP =

keypointsImgsInstruments[i][

indexInstrumentKP].pt

148

149 dangle = angleInstrumentKP - angleImgKP

150 dangle %= 2*pi

151

152 dscale = scaleImgKP/scaleInstrumentKP

153

154

155 dx = (xInstrumentKP-imgsInstruments[i].shape

[1]/2) * dscale

156 dy = (yInstrumentKP-imgsInstruments[i].shape

[0]/2) * dscale

157 dx, dy = (np.array([[np.cos(-dangle), -np.sin

(-dangle)], [np.sin(-dangle), np.cos(-

dangle)]]) @ np.array([[dx], [dy]]))[:,0]

158 dx, dy = xImgKP-dx, yImgKP-dy

159 '''
160 hashTableFunc stores all keypair contributions to

the hough transform in a hashTable.

161 imgGray is the grayed version of the image.

imgsGrayInstruments[i] is the same for every

instrument image i. binSizeXFactor is the size

of the bin defined in variables.

162 Same for binSizeAngle and binSizeScaleFactor.

163 Doesn't return, but updates the hashTable

164 '''
165 def hashTableFunc(imgGray,imgsGrayInstruments,

binSizeXFactor,binSizeYFactor,binSizeAngle,

binSizeScaleFactor,dx,dy,dscale,dangle,

indexImgKP,indexInstrumentKP,hashTable,i):

166 xSizeImg = imgGray.shape[1]

167 ySizeImg = imgGray.shape[0]

168 xSizeInstrument = imgsGrayInstruments[i].shape

[1]

169 ySizeInstrument = imgsGrayInstruments[i].shape

[0]

170 maxSizeInstrument = max(xSizeInstrument,

ySizeInstrument)

171

172 binSizeX, binSizeY = np.array([binSizeXFactor,

binSizeYFactor])*maxSizeInstrument*dscale

173 nrXBins = np.ceil(xSizeImg/binSizeX)

174 nrYBins = np.ceil(ySizeImg/binSizeY)

175

176 angleHash = (dangle*360/(2*pi))/binSizeAngle

177 scaleHash = logBase(dscale, base=

binSizeScaleFactor)

178 xHash = dx*nrXBins/xSizeImg

179 yHash = dy*nrYBins/ySizeImg

180

181 for iAngle in int(np.floor(angleHash))+np.

arange(2):

182 for iScale in int(np.floor(scaleHash))+np.

arange(2):

183 for iXHash in int(np.floor(xHash))+np.

arange(2):

184 for iYHash in int(np.floor(yHash))+

np.arange(2):

185 key = str(iAngle)+str(iScale)+

str(iXHash)+str(iYHash)

186 if key in hashTable.keys():

187 hashTable[key] += [[

indexImgKP,

indexInstrumentKP,

dangle, dscale, dx, dy,

binSizeX, binSizeY]]

188 else:

189 hashTable[key] = [[

indexImgKP,

indexInstrumentKP,

dangle, dscale, dx, dy,

binSizeX, binSizeY]]

190 return

191

192 '''
193 hashTableClusterRemover removes clusters of

keypairs if they are less than 3 keypairs or

if the model they produce gives an error.

194 hashtableItems is a listed accessible version of

the hashTable, q iterates over every cluster
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in hashTable items, clusterThreshold is

defined in variables and reset is used to

reset the while loop this function is in.

195 returns the hashTableItems and a reset. Also

updates the hashTable.

196 '''
197 def hashTableClusterRemover(hashTableItems,q,

clusterThreshold,reset):

198 nInstrumentKeypoints = len(np.unique([

hashTableItems[q][1][s][1] for s in range(

len(hashTableItems[q][1

199 if nInstrumentKeypoints < clusterThreshold or

reset == 'remove':
200 keyToRemove = hashTableItems[q][0]

201 hashTable.pop(keyToRemove)

202 del hashTableItems[q]

203 reset = True

204 return hashTableItems, reset

205

206 '''
207 similarityTransform gives a model by checking if

clusters from the hashTable are within the

bins as defined in variables. This transform

takes into account rotation and scale.

208 All inputs are found in descriptions above.

209 returns modelMat, the model that transforms the

instrument coordinates to the image

coordinates. modelParametersMat gives the

rotation and scale in one matrix.

210 modelParametersTrans gives the translation

separately in one vector. reset, again gives

the option to reset if one of the keypairs in

the cluster didn't fall within certain

parameter bounds

211 '''
212 def similarityTransform(i,q,clusterThreshold,

hashTableItems,keypointsImg,

keypointsImgsInstruments,dangle,dscale,dx,dy,

reset):

213 affineA = np.zeros((2*(len(hashTableItems[q

][1])), 4))

214 affineB = np.zeros((2*(len(hashTableItems[q

][1])), 1))

215 keypointIndices = []

216 for r in range(len(hashTableItems[q][1])):

217 [indexImgKP, indexInstrumentKP] =

hashTableItems[q][1][r][:2]

218 xKeypointImg = keypointsImg[indexImgKP].pt

[0]

219 yKeypointImg = keypointsImg[indexImgKP].pt

[1]

220 xKeypointInstrument =

keypointsImgsInstruments[i][

indexInstrumentKP].pt[0] -

imgsInstruments[i].shape[1]/2

221 yKeypointInstrument =

keypointsImgsInstruments[i][

indexInstrumentKP].pt[1] -

imgsInstruments[i].shape[0]/2

222

223 affineA[2*r, :] = np.array([

xKeypointInstrument, -

yKeypointInstrument, 1, 0])

224 affineA[2*r+1, :] = np.array([

yKeypointInstrument,

xKeypointInstrument, 0, 1])

225 affineB[2*r] = xKeypointImg

226 affineB[2*r+1] = yKeypointImg

227 keypointIndices += [indexImgKP,

indexInstrumentKP]

228

229 modelParameters = np.linalg.lstsq(affineA,

affineB, rcond=None)[0][:,0]

230

231 modelParametersMat = np.array([[

modelParameters[0], -modelParameters

[1]], [modelParameters[1],

modelParameters[0]]])

232 modelParametersTrans = np.array([[

modelParameters[2]], [modelParameters

[3]]])

233 affineAngle = float(2*pi-np.arctan2(

modelParameters[1], modelParameters[0])

)%(2*pi)

234 affineScale = float(np.sqrt(modelParameters

[0]**2 + modelParameters[1]**2))

235 affineX = float(modelParameters[2])

236 affineY = float(modelParameters[3])

237 reset = False

238

239 for t in range(len(hashTableItems[q][1])):

240 dangle, dscale, dx, dy, binSizeX, binSizeY

= hashTableItems[q][1][t][2:]

241 binSizeScale = 2**(np.floor(np.log2(dscale)

)+1)-2**(np.floor(np.log2(dscale)))

242 if (np.abs(dangle-affineAngle) <= 0.5*

binSizeAngle*2*pi/360) and (np.abs(

dscale-affineScale) <= 0.5*binSizeScale

) and (np.abs(dx-affineX) <= 0.5*

binSizeX) and (np.abs(dy-affineY) <=

0.5*binSizeY):

243 R = np.array([[np.cos(2*pi-affineAngle)

, -np.sin(2*pi-affineAngle)], [np.

sin(2*pi-affineAngle), np.cos(2*pi-

affineAngle)]])

244 modelMat = affineScale*R

245 pass

246 else:

247 keyToChange=hashTableItems[q][0]

248 valuesToChange=hashTable.pop(

keyToChange)

249 del valuesToChange[t]

250 if len(valuesToChange) != 0:

251 hashTable[keyToChange]=

valuesToChange

252 reset = True

253 return 0, 0, 0, 0, reset
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254 return modelMat, modelParametersMat,

modelParametersTrans, keypointIndices,

reset

255 '''
256 affineTransform gives a model in the same way as

the similarityTransform, only adding an affine

element.

257 returns the same only modelParameters also

incorporates the affine element in the matrix.

258 The reset can be set to 'remove', which removes an

entire cluster instead of one keypair if the

found model gives an error.

259 '''
260 def affineTransform(i,q,clusterThreshold,

hashTableItems,keypointsImg,

keypointsImgsInstruments,dangle,dscale,dx,dy,

reset):

261 affineA = np.zeros((2*(len(hashTableItems[q

][1])), 6))

262 affineB = np.zeros((2*(len(hashTableItems[q

][1])), 1))

263 keypointIndices = []

264

265 for r in range(len(hashTableItems[q][1])):

266 [indexImgKP, indexInstrumentKP] =

hashTableItems[q][1][r][:2]

267 xKeypointImg = keypointsImg[indexImgKP].pt

[0]

268 yKeypointImg = keypointsImg[indexImgKP].pt

[1]

269 xKeypointInstrument =

keypointsImgsInstruments[i][

indexInstrumentKP].pt[0] -

imgsInstruments[i].shape[1]/2

270 yKeypointInstrument =

keypointsImgsInstruments[i][

indexInstrumentKP].pt[1] -

imgsInstruments[i].shape[0]/2

271

272 affineA[2*r,:] = np.array([

xKeypointInstrument,

yKeypointInstrument, 0, 0, 1, 0])

273 affineA[2*r+1,:] = np.array([0, 0,

xKeypointInstrument,

yKeypointInstrument, 0, 1])

274 affineB[2*r] = xKeypointImg

275 affineB[2*r+1] = yKeypointImg

276 keypointIndices += [indexImgKP,

indexInstrumentKP]

277

278 modelParameters = np.linalg.lstsq(affineA,

affineB, rcond=None)[0][:,0]

279 modelParametersMat = np.array([[

modelParameters[0], modelParameters[1]], [

modelParameters[2], modelParameters[3]]])

280 modelParametersTrans = np.array([[

modelParameters[4]], [modelParameters

[5]]])

281

282 m = modelParameters

283 detM = m[0]*m[3]-m[2]*m[1]

284

285 if detM<=0:

286 reset = "remove"

287 return 0, 0, 0, 0, reset, q

288

289 col2lenM = m[1]**2+m[3]**2

290 rootMtemp = -detM*(detM-col2lenM)

291

292 if abs(rootMtemp) < 0.01:

293 rootMtemp = 0

294

295 if rootMtemp < 0:

296 reset = "remove"

297 return 0, 0, 0, 0, reset, q

298

299 rootM = np.sqrt(rootMtemp)

300

301 affineScale = np.sqrt(detM)

302 arctan2Part1 = 1/(col2lenM*affineScale)*(rootM

/detM*(m[0]*m[3]**2-m[1]*m[2]*m[3])-m[0]*m

[1]*m[3]+m[1]**2*m[2])

303 arctan2Part2 = 1/(col2lenM*affineScale)*(rootM

/detM*(m[0]*m[1]*m[3]-m[1]**2*m[2])+m[0]*m

[3]**2-m[1]*m[2]*m[3])

304 affineAngle = (2*pi-np.arctan2(arctan2Part1,

arctan2Part2))%(2*pi)

305 affineAngleCheck = (2*pi-np.arctan2(

arctan2Part1,-arctan2Part2))%(2*pi)

306 affineSkewX = rootM/detM

307 affineSkewY = 1/col2lenM*(-m[0]*m[3]*rootM/

detM+m[1]*m[2]*rootM/detM+m[0]*m[1]+m[2]*m

[3])

308 affineX = modelParameters[4]

309 affineY = modelParameters[5]

310

311 for t in range(len(hashTableItems[q][1])):

312 dangle, dscale, dx, dy, binSizeX, binSizeY

= hashTableItems[q][1][t][2:]

313 binSizeScale = 2**(np.floor(np.log2(dscale)

)+1)-2**(np.floor(np.log2(dscale)))

314

315 if (np.abs(dangle-affineAngle) <= 0.5*

binSizeAngle*2*pi/360) and (np.abs(

dscale-affineScale) <= 0.5*binSizeScale

) and (np.abs(dx-affineX) <= 0.5*

binSizeX) and (np.abs(dy-affineY) <=

0.5*binSizeY):

316 # Construct model matrix

317 Cx = np.array([[1, affineSkewX], [0,

1]])

318 Cy = np.array([[1, 0], [affineSkewY,

1]])

319 C = Cx@Cy

320 R = np.array([[np.cos(2*pi-affineAngle)

, -np.sin(2*pi-affineAngle)], [np.

sin(2*pi-affineAngle), np.cos(2*pi-

affineAngle)]])
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321 modelMat = affineScale*R@C

322

323 return modelMat, modelParametersMat,

modelParametersTrans,

keypointIndices, reset, q

324 else:

325 keyToChange=hashTableItems[q][0]

326 valuesToChange=hashTable.pop(

keyToChange)

327 del valuesToChange[t]

328 if len(valuesToChange) != 0:

329 hashTable[keyToChange]=

valuesToChange

330 return 0, modelParametersMat,

modelParametersTrans,

keypointIndices, reset, q

331

332 '''
333 probability checks whether a found model is likely

to be a correct model, and removes those not

able to make the threshold.

334 keypointsImgCoords is the location of any given

keypoint in the image. probL,R,S are the

probabilities that

335 returns the output that can be used to calculate

bounding boxes

336 '''
337 def probability(modelMat,modelParametersMat,

keypointsImgCoords,modelParametersTrans,

imgsInstruments,i,probL,probR,probS,

hashTableItems,probThreshold,

instrumentIdentifier,output):

338 keypointsImgModelCoords = np.linalg.inv(

modelParametersMat)@(keypointsImgCoords-

modelParametersTrans)

339 keypointsImgModelCoordsInds = np.where((

keypointsImgModelCoords[0,:] >= -

imgsInstruments[i].shape[1]/2) & (

keypointsImgModelCoords[0,:] <

imgsInstruments[i].shape[1]/2) & (

keypointsImgModelCoords[1,:] >= -

imgsInstruments[i].shape[0]/2) & (

keypointsImgModelCoords[1,:] <

imgsInstruments[i].shape[0]/2))[0]

340 keypointsImgModelCoords =

keypointsImgModelCoords[:,

keypointsImgModelCoordsInds]

341 n = keypointsImgModelCoords.shape[1]

342

343 # 2) Calculate probability of accidentally

matching a single image feature to the

current model pose

344 probD = len(keypointsImgsInstruments[i])/np.

sum([len(keypointsImgInstrument) for

keypointsImgInstrument in

keypointsImgsInstruments])

345 p = probD*probL*probR*probS

346

347 # 3) Calculate probability that feature

matches were accidental, given that the

model is not present (binomial probability

CMF, equation 6.4.12 from Press, W.H. et

al. - Numerical Recipes in C (second

edition))

348 probMatchesNoModel = betai(len(hashTableItems[

q][1]), n-len(hashTableItems[q][1])+1, p)

349

350 # 4) Calculate probability that the model is

present, given the feature matches

351 probModelGivenMatches = probM/(probM +

probMatchesNoModel)

352 # 5) Accept or reject model

353 if probModelGivenMatches >= probThreshold:

354 output[i].append([modelMat,

modelParametersTrans, keypointIndices,

instrumentIdentifier,

probModelGivenMatches])

355 return

356

357 '''
358 boundingCalculator finds the bounding boxes in the

scene image according to the instrument

images. output is an collection of the

relevant modelParameters,

359 the keypointIndices, the probability and the type

of instrument.

360 returns a list of bounding boxes, and plots them

too if desired.

361 '''
362 def boundingCalculator(imgsGrayInstruments,

imgsInstruments,output):

363 colours = matplotlib.rcParams['axes.prop_cycle
'].by_key()['color']

364 nInstrumentCols = int(max(1, np.floor(np.sqrt(

len(imgsGrayInstruments)))))

365 nInstrumentRows = int(np.ceil(len(

imgsGrayInstruments)/nInstrumentCols))

366 listPointsModel = []

367 for indImg in range(len(imgsGrayInstruments)):

368 y = int(np.floor(round(indImg/

nInstrumentCols, 1)))

369 x = indImg%nInstrumentCols

370

371 # Show instrument

372 imgInstrument = imgsInstruments[indImg].

copy()

373 imgInstrument = cv2.cvtColor(imgInstrument,

cv2.COLOR_BGR2RGB)

374

375 ax = fig.add_subplot(nInstrumentRows,

nInstrumentCols*2, nInstrumentCols*(y

+1) + x+1 + y*nInstrumentCols

376 ax.imshow(imgInstrument)

377 ax.axis('off')
378 rectPoints = np.array(np.meshgrid([0,

imgInstrument.shape[1]], [0,
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imgInstrument.shape[0]])).T.reshape

((-1,2))[[0,1,3,2],:]

379 rectPoints = np.append(rectPoints,

rectPoints[0,None,:], axis=0)

380 ax.plot(rectPoints[:,0], rectPoints[:,1],

colours[indImg%len(colours)])

381 ax.set_ylim([imgInstrument.shape[0]+1, -2])

382 ax.set_xlim([-2, imgInstrument.shape[1]+1])

383

384 # Show detections

385 currentOutput = output[indImg]

386 modelCounter = 0

387 for o in currentOutput:

388 modelParametersMat = o[0]

389 modelParametersTrans = o[1]

390 rectPointsModel = rectPoints - np.array

([imgInstrument.shape[1]/2,

imgInstrument.shape[0]/2])

391 rectPointsModel = modelParametersMat @

rectPointsModel.T +

modelParametersTrans

392 rectPointsModel = rectPointsModel.T

393 listPointsModel.append([rectPointsModel

,o[3],o[4],indImg,modelCounter])

394 modelCounter +=1

395 axImg.plot(rectPointsModel[:,0],

rectPointsModel[:,1], colours[

indImg%len(colours)]) # Plot

bounding rectangle

396 return listPointsModel

397

398 '''
399 duplicateRemover finds duplicates according to a

threshold and removes these with a Non-Maximum

Suppression algorithm.

400 PolygonThreshold is the chosen threshold at which

duplicates are removed.

401 returns a list of non-duplicate bounding boxes and

a list of the removed duplicates. The latter

one is used to remove duplicates from output

as well.

402 '''
403 def duplicateRemover(listPointsModel,

polygonThreshold):

404 polygonList = [] #make polygonlist including

instrument and probability

405 for model in range(len(listPointsModel)):

406 polyCoordinates = ((listPointsModel[model

][0][0][0],listPointsModel[model

][0][0][1]),(listPointsModel[model

][0][1][0],listPointsModel[model

][0][1][1]),(listPointsModel[model

][0][2][0],listPointsModel[model

][0][2][1]),(listPointsModel[model

][0][3][0],listPointsModel[model

][0][3][1]))

407 currentPolygon = Polygon(polyCoordinates)

408 polygonList.append([currentPolygon,

listPointsModel[model][1],

listPointsModel[model][2],

listPointsModel[model][0],

listPointsModel[model][3],

listPointsModel[model][4]])

409 ## NMS

410 polygonProposal = []

411 nextBestProposal = 0

412 negativeProposal = []

413 while len(polygonList) > 0:

414 maxProbPolygon = 0

415 if len(polygonList) == 1:

416 bestPolygon = polygonList.pop(

maxProbPolygon)

417 polygonProposal.append(bestPolygon)

418 break

419

420 for polygons in range(len(polygonList)-1):

421 if polygonList[maxProbPolygon][2] >

polygonList[polygons+1][2]:

422 maxProbPolygon = maxProbPolygon

423 else:

424 maxProbPolygon = polygons+1

425

426 bestPolygon = polygonList.pop(

maxProbPolygon

427 polygonProposal.append(bestPolygon)

428

429 toBePopped = []

430 for props in range(len(polygonList)):

431 polygonU = [polygonProposal[

nextBestProposal][0], polygonList[

props][0]]

432 union = cascaded_union(polygonU)

433 intersection = polygonProposal[

nextBestProposal][0].intersection(

polygonList[props][0])

434 IoU = intersection.area/union.area

435 if IoU > polygonThreshold:

436 toBePopped.append(props)

437 toBePopped.reverse()

438 for poppers in range(len(toBePopped)):

439 thePopped = polygonList.pop(toBePopped[

poppers])

440 negativeProposal.append(thePopped)

441 nextBestProposal += 1

442

443 return polygonProposal, negativeProposal

444

445 ## Ask path to image to load

446 if autofill:

447 print("Autofill␣enabled")

448 pathImgSrc = "YourImagePath"

449 else:

450 pathImgSrc = 0

451 while pathImgSrc == 0 or not os.path.isfile(

pathImgSrc) or not pathImgSrc[-4:].lower()

in (".jpg", ".png"):

452 print("Paste␣the␣path␣to␣the␣image␣to␣

detect␣instruments␣in␣below:" if
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pathImgSrc==0 else "The␣specified␣path␣

doesn't␣point␣to␣an␣existing␣image.␣
Please␣try␣again:")

453 pathImgSrc = input()

454 if pathImgSrc[0] == "&":

455 pathImgSrc = pathImgSrc[1:]

456 pathImgSrc = pathImgSrc.strip()

457 if (pathImgSrc[0] == "\"" and pathImgSrc

[-1] == "\"") or (pathImgSrc[0] == "\'"
and pathImgSrc[-1] == "\'"):

458 pathImgSrc = pathImgSrc[1:-1]

459 print()

460

461

462 ## Ask path to directory of directories with

instruments to detect

463 if autofill:

464 pathInstrumentsSrc = "YourInstrumentPath"

465

466 else:

467 pathInstrumentsSrc = 0

468 while pathInstrumentsSrc == 0 or not os.path.

isdir(pathInstrumentsSrc):

469 print("Paste␣the␣path␣to␣the␣directory␣with

␣instrument␣ground-truth␣images␣below:"

if pathInstrumentsSrc==0 else "The␣

specified␣path␣doesn't␣point␣to␣an␣
existing␣directory.␣Please␣try␣again:")

470 pathInstrumentsSrc = input()

471 if pathInstrumentsSrc[0] == "&":

472 pathInstrumentsSrc = pathInstrumentsSrc

[1:]

473 pathInstrumentsSrc = pathInstrumentsSrc

.strip()

474 if (pathInstrumentsSrc[0] == "\"" and

pathInstrumentsSrc[-1] == "\"") or (

pathInstrumentsSrc[0] == "\'" and

pathInstrumentsSrc[-1] == "\'"):
475 pathInstrumentsSrc = pathInstrumentsSrc

[1:-1]

476 print()

477 if pathInstrumentsSrc[-1] != "\\":

pathInstrumentsSrc += "\\"

478

479

480 # Retrieve filenames for ground-truth images

481 pathsInstrumentsSrc = []

482 photoCount = []

483 whatIsDetected = []

484 pathDirectories = os.listdir(pathInstrumentsSrc)

485 for e in range(len(pathDirectories)):

486 while 1==1:

487 print()

488 print('Detect',pathDirectories[e],'?')
489 isInstrumentPresent = input("Enter␣[y]␣or␣[

n].")

490 if isInstrumentPresent == "y":

491 print('Scanning␣for␣', pathDirectories[

e])

492 break

493 elif isInstrumentPresent == "n":

494 break

495 else:

496 print("Please␣enter␣[y]␣or␣[n].")

497 if isInstrumentPresent == "y":

498 pathInstrumentDirectory =

pathInstrumentsSrc + '/' +

pathDirectories[e]

499 pathsInstrumentsSrc.extend([os.path.join(

pathInstrumentDirectory, f) for f in os

.listdir(pathInstrumentDirectory) if os

.path.isfile(os.path.join(

pathInstrumentDirectory, f)) and f

[-4:].lower() in (".jpg", ".png")])

500 photoCount.append(len(os.listdir(

pathInstrumentDirectory)))

501 whatIsDetected.append(pathDirectories[e])

502

503 ## Load image

504 print("Loading␣image␣from␣file..")

505 img = cv2.imread(pathImgSrc)

506 imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

507

508 ## Load instrument images

509 print("Loading␣ground-truth␣images␣from␣directory

..")

510 imgsInstruments = [cv2.imread(f) for f in

pathsInstrumentsSrc]

511 imgsInstrumentsMirror = [np.flip(imgInstrument,0)

for imgInstrument in imgsInstruments]

512 imgsInstruments += imgsInstrumentsMirror

513 imgsGrayInstruments = [cv2.cvtColor(imgInstrument,

cv2.COLOR_BGR2GRAY) for imgInstrument in

imgsInstruments]

514

515 ## Apply SIFT

516 print("Initiating␣SIFT␣algorithm..")

517 sift = cv2.SIFT_create()

518

519

520 keypointsImg, descriptorsImg = sift.

detectAndCompute(imgGray, None)

521 keypointsImgCoords = np.array([kp.pt for kp in

keypointsImg]).T

522

523 print("Applying␣SIFT␣to␣ground-truth␣images..")

524 keypointsImgsInstruments = []

525 descriptorsImgsInstruments = []

526 for imgInstrument in tqdm(imgsGrayInstruments):

527 keypointsAndDescriptorsImgInstrument = sift.

detectAndCompute(imgInstrument, None)

528 keypointsImgsInstruments += [

keypointsAndDescriptorsImgInstrument[0],]

529 descriptorsImgsInstruments += [

keypointsAndDescriptorsImgInstrument[1],]

530

531

532 ## Match features (detect instruments)
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533 bf = cv2.BFMatcher(normType=cv2.NORM_L2,

crossCheck=False)

534

535 # Iterate over objects to detect

536 output = [[] for _ in range(len(imgsInstruments))]

537 allFeatMatches = [[] for _ in range(len(

imgsInstruments))]

538 instrumentTable={}

539 for i in tqdm(range(len(imgsInstruments))):

540

541 # Match features

542 featMatches = np.asarray(bf.knnMatch(

descriptorsImg, descriptorsImgsInstruments

[i], k=2))

543 imgsInstruments[i]

544 instrumentIdentifier = instrumentCounter(

photoCount,whatIsDetected,i)

545

546 # Ratio test

547 featMatches = featMatches[[featMatches[n,0].

distance <= .99*featMatches[n,1].distance

for n in range(featMatches.shape[0])]]

548 allFeatMatches[i] = featMatches

549 numberOfMatches = featMatches.shape[0]

550 hashTable={}

551

552 for q in range(featMatches.shape[0]):

553 dangle, dscale, dx, dy, indexImgKP,

indexInstrumentKP = keypointDifference(

q,featMatches,keypointsImg,

keypointsImgsInstruments,i)

554 hashTableFunc(imgGray,imgsGrayInstruments,

binSizeXFactor,binSizeYFactor,

binSizeAngle,binSizeScaleFactor,dx,dy,

dscale,dangle,indexImgKP,

indexInstrumentKP,hashTable,i)

555

556 # Geometric verification through Least Squares

to obtain affine projection

557 hashTableItems = list(hashTable.items())

558 q = 0

559 while q < len(hashTableItems):

560 reset = False

561 hashTableItems,reset =

hashTableClusterRemover(hashTableItems,

q,clusterThreshold,reset)

562 if reset == True:

563 continue

564 if transformChooser == False:

565 modelMat, modelParametersMat,

modelParametersTrans,

keypointIndices, reset =

similarityTransform(i,q,

clusterThreshold,hashTableItems,

keypointsImg,

keypointsImgsInstruments,dangle,

dscale,dx,dy,reset)

566 if reset == True:

567 continue

568 elif transformChooser == True:

569 modelMat, modelParametersMat,

modelParametersTrans,

keypointIndices, reset, q =

affineTransform(i,q,

clusterThreshold,hashTableItems,

keypointsImg,

keypointsImgsInstruments,dangle,

dscale,dx,dy,reset)

570 if reset == 'remove':
571 hashTableItems,reset =

hashTableClusterRemover(

hashTableItems,q,

clusterThreshold,reset)

572 if reset == True:

573 continue

574 probability(modelMat,modelParametersMat,

keypointsImgCoords,modelParametersTrans

,imgsInstruments,i,probL,probR,probS,

hashTableItems,probThreshold,

instrumentIdentifier,output)

575 q+=1

576

577

578 ## Show original image and ground-truth images

with features drawn

579 ## Show original image with boxes around detected

instruments

580

581 if showBoxPreNMS == True:

582 fig = plt.figure()

583 axImg = fig.add_subplot(1, 2, 1)

584 axImg.imshow(img)

585 axImg.axis('off')
586 listPointsModel = boundingCalculator(

imgsGrayInstruments,imgsInstruments,output)

587 polygonProposal, negativeProposal =

duplicateRemover(listPointsModel,

polygonThreshold)

588

589 # Count instruments

590 instrumentCount = 0

591 for iden in range(len(whatIsDetected)):

592 for detection in range(len(output)):

593 instrumentCount +=len(output[detection])

594 print("Showing",instrumentCount, "detected␣

instruments")

595

596 #Remove duplicates from output

597 negativeProposal.sort(key=lambda x: (x[4],x[5]),

reverse = True)

598 for q in range(len(negativeProposal)):

599 del output[negativeProposal[q][4]][

negativeProposal[q][5]]

600

601 # Count instruments

602 instrumentCount = 0

603 for iden in range(len(whatIsDetected)):

604 for detection in range(len(output)):
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605 instrumentCount +=len(output[detection])

606

607 print("Showing",instrumentCount, "detected␣

instruments")

608

609 # Show bounding boxes after duplicate remover.

610 if showBoxPostNMS == True:

611 fig = plt.figure()

612 axImg = fig.add_subplot(1, 2, 1)

613 axImg.imshow(img)

614 axImg.axis('off')
615 listPointsModel = boundingCalculator(

imgsGrayInstruments,imgsInstruments,output)
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