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THE HYDRODYNAMIC COEFFICIENTS OF TWO PARALLEL

IDENTICAL CYLINDERS OSCILLATING

IN THE FREE SURFACE)

'reline.

In this report basic data are given for the de-
termination according to the strip theory of the
hydrodynamic coefficients of catamarans per-
forming harmonic oscillations.

The reader is supposed to be familiar to a
certain extent with Ursell's method to evaluate
the hydrodynamic coefficients of a single
cylinder, oscillating in the free surface. This
method is in fact the starting point for the de-
termination of the hydrodynamic coefficients of a
'single-body' vessel according to the strip theory.
For this the reader is referred to the papers of
Ursell [1, 2], Tasai [3, 4] or Porter [51.

Their results have been compiled and supple-
mented by the present author in his earlier report
[6]. It will be seen that many methods, which are
eeded for the solution of the double-cylinder

problem, are Identical to those of the single-
cylinder problem and, therefore, they will be
mentioned in this report only very concisely. In
order to aid the reader who wants to acquaint him -
self with these methods, the present author will,
at some places in this report, refer with much
detail to his above -mentioned report.

liii rod ii('I joli.

The last few years scveral catamarans have
been constructed for all kinds of purposes. This
is largely due tothe possibility to construct these
ï Itepout no. 2c1. , Shipl,u huh ng I.ahwu;ut 01v. I hilt
''j Mathemni tetan, Shipt'uiliuiuig LahoiaIorv Ih1íi.

by B. de Jong ')
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In the present report expressions are derived for the hydrodynamic coefficients of two identical
rigidly connected parallel cylinders of infinite length which perform harmonic oscillations in the free
fluid surface. The cylinders are supposed to have only connections above the free surface.

The method applied in this report Is in fact an extension of Ursell's method for the corresponding
problem of one cylinder.

vessels in such away that the resistance for high
F is much lower as compared with conventional

ships with the same deck area. In this connection
it shouldbe observed that we can give the floating
bodies of the catamaran shapes which can't exist
as separate single body vessels. However, ex-
periences with recent designs showed that
catamarans have larger heaving and pitching
motions as compared with conventional ships.
These phenomena justify a theoretical analysis
of the motions of a catamaran. The present report
gives a basis to determine the hydi'odynaniic co-
efficients of such a ship with the strip theory
methodwhlch has proved to give very useful re-
sults for single body vessels. Analogous to the
single body vessel the catamaran is divided up
into a number of sections and for each section,
which is taken to have a constant profile, the hy-
drodynamic properties are determined, assuming
that the disturbances in the fluid due to the motions
of the sections only propagate in the direction
perpendicular to its longitudinal axes.

The catamaran is assumed to be composed of
two identical floating bodies which have been
rigidly connected above the free surface. Conse-
quently, for the aplilcation of the strip theory
methociwe need expressions for the hydrodynamic
coefficients of a system of two infinitely long
identical parallel cylinders which have been
rigidly connected above the free surface at a given
finite distance.

Analogous to the single cylinder, this problem
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is formulated as a linearized boundary value
problem from the potential theory which is
achieved by assuming the fluid to be inviscid in-
compressible and irrotatlonal and the amplitudes
of the motions of the system to be very small.

The velocity potential is again composed of a
linear combination of a source or dipole potential
and a number of multipole potentials such that the
boundary conditions are satisfied. However, the
expressions for the source, dipole and multipole
potentials have to be adapted to the conditions
which result from the presence of two cylinders.

Further, analogous to the single-cylinder prob-
lem, also for the problem of two cylinders we
have to determie a conformal transformation
which maps a circular cylinder into the cross-
section of one of these cylinders. Since suitable
numerical techniques are available to devise such
atransformation, wewill considerin this report
cylinders with an arbitrary shape, [see 6, section
4.1].

I. Formulation (If the prol1l1m1.

We assume that a system of two parallel
identical infinitely long cylinders, which are
rigidly connected above the free surface at a dis-
tance ¡ from each other, carries out a harmonic
one-dimensional oscillation with frequency a,
while the mean position of the axes of both
cylinders is in the undisturbeclfree surface of the
fluid. The origin of the rectangular Cartesian
coordinates (x,y) is taken in the mean position
of the axis of the right-hand cylinder, (Figure
1.1). The x-axis Is horizontal and perpendicular
to the axis of the cylinder, the y-axis vertical,
positive in downward direction.

As possible modes of oscillation we consider
heaving, swaying and rolling about the point P
which is in the free surface and in the symmetry

FIgure 1.1.

e' =e
Since the swaying component is a second order

quantity, we shall conceive in this report the roll -
Ing motion of the double cylinder system as a com-
bined heaving and rolling motion of the separate
cylinders. The velocity potential for the rolling
motion of thé system will consist of a component
due to the heaving and another due to the rolling
motion of the separate cylinders. Analogous to
the single cylinder problem [6. ch 1], a velocity
poteñtial (x,y,t) has to be determined which Is
a solution of a linearized boundary value problem
fromthepotentialtheory. Consequently, we may
write:

jotD(x,y,t) = -ip(x,y) e

where p(x,y) is a solution of the equation of
Laplace:

2 2ap ap-+--- = o
2 2

dx 3y

and satisfies, in addition, the following conditions:

(I) the linearized free-surface condition:
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plane x = -1 of the system. With respect to tue

rolling motion, represented by e e cos(at-fy).

it is readily seen thatthis motion involves a com-
bined heaving, swaying and rolling motion of the
separate cylinders. For the right-hand cylinder
we find the following ordinates of these com-
ponents, respectively:

31e
5fl®

X = l (cosC-1)

e' = e
Expanding the sine and cosine functions in these

formulas and retaining only the first term we ob-
tain:

i
=

12
X0 = l0 (1.2)
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lnwhichk = z-. represents the wave number.
g

the radiation condition:

-ky -ikx -iki(1+e

ky+ikx -ikl-. Ce (1+e

where C1 and C2 are constants.

This condition implies that every disturbance
in the fluid vanishes when y -.

the boundary condition on the cylinder con-
tour:

where U denotes the normal outward veloci-
n

ty on the cylinder surface, (Figure 1.1). We
observe that the above condition refers to the
mean position of the system, since the linear-
ized case Is considered.

(1v) when the system is carrying out a heaving
motion, the potential p(x, y) has to be a sym-
metric function with respect to the plane

x = - 1, for swaying and rolling the potential

is skew-symmetric.

(y) for i = O the potentials for the heaving,
swaying and rolling motion of the double-
cylinder system become equivalent with the
potentials for the respective motions of one
cylinder.

2. Ou Iii ne of t he mel 110(1 of s 0111 iion.

Analogous to the single-cylinder problem the
velocity potential for the two cylinders is also
synthesized of a source or dipole potential and a
linear combination of multipole potentials. The
source, dipole and multipole potentials are chosen
such that the conditions (I), (Ii), (iv) and (y) are
satisfied by each potential separately, while the
condition (iii) is satisfied by choosing the linear
combination in an appropriate way. In the follow-
ingchapterswe will derive for each mode of os-
cillation of the double-cylinder system adequate

expressions for the above mentioned potentials.
It turns out that these potentials are easily derived
from the corresponding single -cylinder potent -
ials. It is well-known that the expressions for
the multipole potentials, (see (3.2) and (4. 2)),
for the single-cylinder problem depend on the
parameters a, a1, a3.....which are the co-

efficients in the following transformation form-
ulas, [6; eq. (4.1.8)]:

M a
sin O + Z (-1)

2n+1 sin(2n+1)ø }
n=O r

n 2n+1

M a
cos O + Z

(1)n+1 2n+1
2n+1

n=O r

Figure 2.1.

The coefficients a, a1, a3, are determined

such that the semi-unit circle (r=1, - O.

in the reference plane (ç-plane), in which the
polar coordinate system (r, O) has been defined,
is mapped onto the cross-section in the physical
plane (z-plane) with cartesian coordinates (x,y),
[6; section 4. 1]. The number of terms M, con-
sidered in the equations (2.1), determines the.
accuracy of the transformation.

The formulas (2. 1) can also be Interpreted as
defining a curvilinear coordinate system (r, O) in
the physical plane such that one of the coordinate
lines (r=1) coincides with the cross-section.

In addition to the rectangular coordinate

7 .eonslant

r2.cotani r ioconstant
e1

e
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system(x,y), as defined in the previous chapter,
which has its origin O in the mean position of the
axis of the right-hand cylinder, we introduce in
this chapter an identical coordinate system which
has its origin in the mean position of the axis of
the left -hand cylinder. The first-mentioned sys -
tern isdenotedhereby(x11y1) with origin 01, the

other by (x2, y2) with origin 02, (Figure 2. 1). The

cor responding pola r coordinate systems in the
-plane or curvilinear coordinate systems in the

z-plane are denoted by (r1,
°1

and (r2, °2'
respectively. According to (2. 1) the following
relations are valid between the rectangular and
curvilinear coordinates in the z-plane:

cos(2n+l)0. }

i=a{ i' +

where 1' > 2

Consider apointQ In the z-plane, which is the
image point of the point Q' in the e-plane. The
point Q is represented by the rectangular coor-
dinates (x1,y1) and the curvilinear coordinates

(r1,01), which both refer to the origin 0. The

image point Q' in the -plane is given by the polar
coordinates (r1,01) with origin O'. However,

this point can also be represented by the polar
coordinates (r2,

°2
with origin 02 It is easy to

(2.3)

see from Figure 2. 1 that the following relations
are valid between the polar coordinate systems
(r1,01) and (r2,02):

+ r1 sin 01
O = areLan
2 r1coso1

= r +1 +2r l'sino'2
J2 ,2

i

It Is clear that the equations (2. 4) can also be
interpreted as representing the relations between
the curvilinear coordinate systems (r1, and

(r2, 02) in the z-plane which are very useful in our

future calculations.

(2.'i)

3. Addcd IIIa&M ahl(I ii a iii I ing tor ihr hens ing
1H01 joli.

It is clear that the source and the multipole
potentials, which are used for the solution of the
heaving problem of one cylinder, can't be used
for the solution of our problem here since the
symmetry condition (iv) is not satisfied. How-
ever, it will be seen that the set of potentials,
which satisfy each the condition (iv) are easily

i = 1,2. (2.2) derived from the single-cylinder potentials. The

The distance 1' between the two semi-circles source potential q? and the symmetric multipole
can be determinedfrom the relation which is ob-
tained by inserting in the first equation of (2. 2)

potentials p used for the single -cylinder prob-

lem are given by:
either x2 =

2 =
and r2 = 11 or x1 = -1,

= - and r1 = I'. This yields: p (x,y) = - e
s gb J -3m (k sin y - cos y)

d13 '-

o k-i-p2 2

-ky-ik xi
+ Irre

and

s cos 2mo cos(2m-1)0
P (r,o)- +ka +

2m 2m 2mlr (2m-1)r -

}

N

+ >
(1)n

n0
(2n+1)a cos(2m+2n+1)0

2n+1
2m4-2n-i-i

(2m+2n+1)r
m= 1, 2, 3

(3. 1)
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O..constant

e' = arctan
i' +rsjn0

r cos O
(3.5)

e

where, according to (2.4), by identifying (r',O')
with (r2, 02) and (r, 0) with (r1, Or):

r= Vr2Fll2+2ltrslng

in which 1' and 1 satisfy the relation (2.3).
Since the conditions (i) and (ii) are satisfied by

the potentials and separately, the cor-

responding potentials C,5
and

Cq) for the

double-cylinder problem satisfy also these con-
ditions. Further, we can easily verify that these
potentials satisfy the symmetry condition (iv) and
the condition (y) for 1=0.

By using the Cauchy -Riemann relations we de-

termine the conjugate streamfunctions 4)S
and

of the potentials and , respectively.2m 2m

34)

3x dy

3p_ 34)
dy 3x

kcosl3+IsinI3y_22k +p

sin(2m-1)0
+

2m-1
(2m-1)r

N
+

(_1)fl

n=0

(2n+1)a sln(2m+2n+1)0
2n+1

(2m+2n+1)r

The streamfunctions C4)S(x,y) and (r, 8) for

the double-cylinder system are given by:

cs lis s4) (x,y)= 4) (x,y)+4) (x+l,y)

and

c4)m(r, 0) m'' O)
+ m

0') } (3. 11)

Expression (3. 10) is clear without further pre-
face.

The validity of (3. 11) is easy to show by ob-
serving that:

3q(r', 05 3q(r' , &) r +1 sin O

2m+2n+1

(3. 6)

(3.7)

(3. 8)

(3.10)
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r.constant Oconstant

Figure 3.1.

stani
and in polar coordinates:

3p_ 134-'
3r r30
34) i 3p

In the first formula b represents the wave height 3i' r00
at infinity due to the oscillation of the cylinder
while the parameters a,a1,a3, in the consequently:

second formula represent the coefficients in the s gb I -131,a
transformation formulas (2. 1). 4)(X,y)TTG

+fe
The corresponding potentials for the double- o

cylinder problem, which will be denoted by the
superscript e, are defined by: 4-

Cs i xo
p (x,y)= P5(x,y)+p5(x+l,y) (3.3)

and

and s sin2mO(r,0)- +ka
Cs i

4)
2m 2mr

2m" 0)= 'm'' O)4-q(r', O1)} (3.4)

n
d

'le
he

ed
he

Is,
uy
he

ale

3.2)
In rectangular coordinates these relations have 8r r'

(3. 12)

the form: and
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N i
CS CS I I(r'O') 194) (1J01) r(r+Isino)

+ { 12m 4)2m
Sfl at I2m 2m (3.13)

n=1 i2
de 190' r'

where (r' , 0') is defined such, that the where
2m

Cauchy -Riemann relation

s
r9ç1 (r' , 0')_ m(1J , 0')

2m
holds. and

dr r 30

Then it can be shown that also:

s 8

1
(94) (r',e')

2m
(3. 14)-

Nes CsC4)(r0t)=
[

2m 4)2m } cosot+ (1,)=
dt o

iïa n1

C4)S(XY)_
{

9)S(x y) +9)8x+1 y) }

Cs l{ s s
9) (x,y)=- 4) (x,y)+p (x+l,y) }

s 2 s s

in which:

s -ky
4) (x,y)=rre sinkx

C

which proves that (3. 11) is correct.
Thevelocitypotentialforthe heaving motion of s e

the system is written in the form: ± 2 2o k +3

C es kycoskx 19 dy 3 dy dx-----cosa or ---=--
dn dt ds dtds

Substituting 0=0, yields:

1 sin 3y +k cos 13Y } d

(3.21)

' -131x1s _kyjk e where ais the angle between the positive normalp(x,y)
2 2 on the cross-section and the positive y-axis,

o k +13 (Figure 3.2).
(13cospy-ksin3y)dp (3.17) Analogous to the single-cylinder problem [6,

(4. 2. 8) (4. 2. 13)], this relation can bein which the coordinates (x,y) and (r, e) are
reduced to

related by the formulas (2. 1).

For the conjugate streamfunction CW(r, 0, t) we C(rl 0) = - x (r=1, 0) (3. 22)

find:

(3.23)

e gb Ics N Cs - -kyC(r,0,t)= ( P + P P cosat -4--rie coskx x>o
1-ia e 2m 2mj

m=l The values of the coefficients p and n In
2m 2m

(3.20)

Ni e s c s

I

(3. 15) and (3. 18) are determined in such a way
1 s4-2m '2m J

sinOEt
that the boundary condition (III) on the contour
of the cylinders is satisfied. The value of N de-(3.15)
termines the accuracy of the approximation of the

where velocity potential by (3. 15).
c s i s s } In virtue of the symmetry of the system with
p (x,y)=- p (x,y)+p (x+l,y)

1c 2 e e respect to x = -il, it is sufficient to restrict our
and discussions with respect to the determination of

C 5 1

{

S 5x+l ) }
p and q to the right-hand cylinder.

p (x,y)=- p (x,y)+p , (3.16) 2m 2m
s 2 s The boundary condition on the contour of this

while cylinder Is given by

dr' r'

(3. 18)

(3.19)
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3.22)

3. 23

y
rigure 3.2.

Eliminating . from (3.22) and (3.23), we
obtain:

N
e x(1,0)c Tr

(3.24) c s C S TIB 1,2)
- '2 2m 2m1'2'A y(l )+ P 9)o

m=1
Substituting (3. 18) in this expression, we find

a set of 2N linear equations for the coefficients Ncs ir cs
p and
2m

B= q'(1,)+
m=1

Nc s x(1, 0) c s 1T Then the pressure along the cylinder contour'4) (1,0)- 9) (1,-)= p f (1,0)
c B c 2 2m 2m can be written In the following form:

o m=1
MB+NA MA-NB.

N p(1,0)=pB +pB a yÇ3.32)o2 2 o 2 2A+B A+Bc s x(1,O)c s it9) (1,0)- 9)
s B s'2 2m2m1'°

o m4

where

x(1,0)c s lT C S
f (1 0)_
2m ' B 2m1'2 2m1'°

o

X

NCs CsN(0) = p (1,&)+ p
s 2m

m=1

(3.28)

ac
According to the relation p(r, 0) = -p , the

at'
pressure distribution along the contour of the
cylinder can be written as:

p(l, 0) = _!!- (M cos at -N sin aL) (3. 29)

We define:

dy_gb
dtiraB Acosat-Bsinat)

o

where in virtue of (3.23):

401

(3.25) cylinders becomes:
The total vertical force per unit length on both

F=-2fp(1,o)coscxds (3.33)

0

(3.26)
Analogous to the single-cylinder problem [6;

It is observed that the set of equations (3.25) eqs. (4.2.21), (4.2.26)J, this expres-
Tr u slon can be reduced to:has to be solved for the range - 0

MB+NA MA-NB
2pB2ci

The velocity potential at the contour of the
F = -2 PB2

2
y

- 2 2
ycylinder (r=1) is written as: °

A2-i-B
° A +B

e gb1(1,0,t)= (M sinat+Ncoscrt)ira (3.27)
where

where TI

M(e)= p(l,0)+ 2m1'° il,CS CS O G

m=1 -

N M = f M(o)Y-de
/2

(3.30)

(3.31)

(3.34)

(3. 35)
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11/2 The conjugate streamfùnctions of these

N = f N(0)--dO (3. 35) potentials are given by:
o G

Tr/
-f31*i

rl gb yy (x,y) - j
in which ria 2 2

k(x. +y ) o

\Vo)=cos 0+ (-1)(n+1)a1cos(2n+1)O cosy _ksinPyd+._kY_ikIxI

n=o k -P

N

G=I+ a
2n+1

n=o

For theaclded mass M anddamping.N per unit

d gb( x -IXvI=_ ¿ +'r 'J,
11(11 2 2

k(x +y

- °°e°°Ik cos I3' +
2 2'

o

+ ne
-ky -ikixi

2m
(2m+2n+2)r

(3. 36)

(4.1)

length we find:

M B+N A
M =2pB2 (3.37) (2m+2n+2)ro AB2

2 2
MA - NB The rectangular coordinates (x,y) and

N ,=2p.aB0
2 2

(3.38) curvilinear coordinates (r,0) in these formulas
A + B relate to the right -handtcylinder' of the system as

indicatedin Figure 3. L The dipole potential
cd

4. .(lde(I Ilias- Wll(l (181111) ¡ iig for swavi Ilg (x, y) and the multipole potentials cPm(r, O) for

COLlI)1 i lI cuet1ieieiit ol wa'iIIg i lito rolliìi

The dipole and skew-symmetric multipole cd, _1 j .d,.

potentials
d

and
a , ùsed for finding the ve-
2m

locity potential for the single-cylinder problem,
are given by:

(i)'a21(2n+'i) cos(2m+2n+2)o

2m+2n+2

(4.3)

a -cos(2m1)10 Icos 2mo
' (r,0)= kai. +
2m 2m. I 2mr 2mr n=o

}

(4.4)

g. the double-cylinder problem are nowdéfined by:

cPm(r, 0)
= .{ 2m' 0)

+ m"' 0')
}

(4.6)

where (r,0) and (r',O') represent the curvilinear
cooidinate systems which relate, respectively,
to the right-hand and left-hand cylthder of the
system in the physical piane (FIgure 3. 1).

Between the coordinàte systems (r, 0) and

(r', O') exist the relations (3. 5).. Analogous to the
heaving problem we find for the corresponding.
streamfunctions:

sfnath0
N C9'd(xy)=

{

(x,y)+pd(x+1,,y) (47)

2mr nno

(-1)a(2n+1)sin(2+2n+2O
c9'm(r, 0) = { 9'm' 0) +9'(r , o!) } (4.8)

+2n+2 } Forthecomplete potentlaF and conjugate

streamfunction t we write:
(4.2)

c

and

C

(4.5) mw

d
4,

whe

C

cl
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the
ing

:atc

C

and

r N
C gb lcd ca ic1(r 0,t) =- t + P cosat+110 2m 2rnj

m=1

Nlcd ca i
+ , +: q' sinot

.1 S 2m 2mj
m=1

(4.9)

I
C gb lcd ca i:p(r,O,t)= ç p + p q ?cosat+° I c 2m 2mj

m=1

where:

+

d -kyq'(x,y) =iîe coskx

.7). d -ky -f3ixi9)(x,y)=Tre sinkixi-f e

Nlcd ca
a '

S '2m 2m
m=1

cylinder is satisfied. It is easy to verify that ex-
pression (4. 9) satisfies also the other condition
mentioned in chapter 1.

In virtue of the skew-symmetry of the system

with respect to x = _l, it is again sufficient to

restrict our discussions to the right-hand
cylinder. From Figure 3. 2 we derive that the
boundary condition on the surface of this cylinder
is given by:

- =sin a
dn dt orL=

ds dt ds (4. 13)

Analogous to the single-cylinder problem [6,
section 5. 2J, we can reduce this relation to

e e clx(r=ì,O)-(x=1,_)-_._.y(r-1,Q). (4.14)

Substituting O ='o yields:
cÇd(X y) =, (x,y) +

} c(10) c(1u) =T (4. 15),cd .11 dq'(x,y) p(x,y)+p(x
(4.11) where T is the drt of the cylinder.d i d d '.1

dx
c(XY)

{
(x,y) +(x+l,y)

Eliminating from (4. 14) and (4. 15) yields:
d(xy)= (x,y)+x'+l,y)

I
{

c(1 ci.:}
{In which

C ii

d i

-
c(x,y)=-ire3Tsin,kx (4.16)

Inserting(4. 10), we obtain the following set of
linear equatlonsfor the coefficients p andq

2m

I c d c d ii i y(l,O) I c d
c'' - T

Ncd ir)- y(1,-) } = p fe 2 j 2m2m
m=1

d -
q'(x,y) =-4-rre kyk + f e"'

ar o

"y.,
the k cos py +3 SiniPYd x22 22

k k(x 4-y )

x>o (4.12)

{

cd c4,c1(

) }
y(i,o) cd

-
m-4 m 2m

P cos py - ksin
13'dp

2 2 22 wherek +P k(x.-l-y)

Thecoefflcientsp andq are chosen such 2mT {

4alO
that of the

(4. 17)
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IC4J:m(l, O)-
Ca(1

.-) }: (4. 18)

Next, we define:

=-- J - A cos at - B sin aL (4. 19)
dt TIaT(

Then, according to (4.10) and (4. l'5);

Apd(l,) _cd(1Ø) P2{ 2m'2 Ne 2 m1 G=1+ . a2
n=0.

_Cm(1p0) }
Substituting (4.24):, we obtain:

N MB+NA. MA-NBBq(l,) cd(1Ø)
m1 m1)_ F-2pTB

'2
2pTB0a

2 2
k

m=1 A +B A +B

- C4)m(1 0)} '(4.20) ' ' ' (4.28)

where
The pótential along, the contòur of the right-

hand cylinder is defined in the following way:

Then'

cd caM= a(1,O)+
m=1

(4.22)
Ncd ' ca

N = p (1,e)+ p p (1,:O.)
2m 2m

m=1

The pressure along this cylindercan be written
in the form: '

p(I,O) = - !?(M cos at -Nsinot) (4.23)

or by using (4. 19):

MB+NA.. MA-NB.
p(1,O)=pT

2 2
x+PTa

2 2
x (4.24)

A+B A+B

F=-2B f p(1,O)dO

where

2

y(o)'
N = f N(0)_deo G

Tr

2

Tr

V(0)
'.1 M(0)---dO

2

For theaddedmassof thesystem perunit length
we find:

MB+NA
o oM =2PTB

x o 2 2
A +B

and for the damping:

M A-N B
N =2pTBa °

x o 2 2A+B

(4.26)

(4.29)

(4. 30)

(4.31')
5.
roI

The total horizoñtal hydrodynamic force on the We consider now the rolling moment on the
system is given 'by: system about the point P due to the swaying

motion:
F =-2 Jp(1,O)slnads (4.25)

TI lT
j ceiS(0) 2 the

2 2 i .i ax. 3y L
MRs=2 f P(l°) fl+x)+y- do

Analoou to the single-cylinder problem, [6,
O O he

sectiOn 5.2], this formUla can be reduced to 2 ' (4.32)
cyl

whe
whe
(4.

whe

Y

U

owi

H

dan
pro

C(10) =(Msinat+Ncosat) (4.21)

TI

2



where the moment is considered to be positive
when it is in clockwise direction. Substituting
(4.23), we obtain:

M8 =

where

XR f N(0) { (xl)+

2
2B pgb

o
TI

o:_ -
2

TI

R=11M(0){ (x+

Using (4. 19), we cari write (4.33) in the foll-
owing form::

BY +AX
MRS=2pTB2 2'A+B

AY -BX
2, R R.-2paTB X
o 2 2

A+:B

Heñce, for the added moment Of
damping per unit length for the
produced'by swaying we obtain:

BY +4j(
2 R RI 2pTB

2 2RS ° A +B

NRS 2paTB2
AYR

5. Added moine n t ni i neri ¡ n sud da nip i ng for
ro iliiig ; coi. pi i uig C OP Iii cie n is o f roll ¡iii g i lito
swaying.

As mentioned before in chapter 1, we can con-
cèiven the linearized case the rolling motion of
the system, ®=ocos(at+y),, as a combined

heaving and rolling motion of the separate
cylindèrs, accoring to

_XR Sin at + Y cos a.t } (4.33)

ax ay-ao e

}do

(4.34)

do

(4. 37)

ye2
& =e

The heaving motions of the two separate
cylinders have 1800 phase difference while the
rolllng motions are in phase.

Col!trihutio,l of the heaviiïg conipouient.

In contrast wlththe case of pure heaving, con-

sideredin chapter3, thesource potential C,S
and

multipole potentials cs
have tobe skew-sym-

metric with respect to x = _l.

Therefore, we define:

cP(XY)._l pS(*,y)_qS(x+ly)
}

C2m.(r, O) ={ m' O) - p8(.r' 0') }

where ,p8'and q are defined by (3. 1) and (3. 2).

Inananalogousmanner we define the complete
potential by

C(Q1)_b
[

cc}
{

Cp+ q2Cpfl} sinatj

(5.3)
in which

where parid p are defined by (3. 17).

The conjugate streamfunction becomes:

N
C C

'1? + P q' COSat+e 2m 2mjm-1
N

c C tqi+. q 4) s1ncts zm 2mjm=l

(5.-1)

(5.2)

(5.5)

c()_.1
{ p(x,y) - p5(x+1,y) }

Col
{ p8(x,y)

_PS(x+I,y)
}

(5.4)

(4.35)

inertia and the
rolling motion

(4.36)

0,t) gb
Tra
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where

CMJc(xIy) ={ I.PS(x,y) .-q)S(,x+l,y,)
}

C4)s(xy) = 3') +1,y) }

cP2m(r, O) =
I

0) ,0') }
f ( i tIX

M -2 j p (10)1 (xl--1)--+.y dOE

inwhich and are defined by (3.20) and '1

2 ()O ao

c s 2m . . (5.11)
e c where

these equations have to be replaced by q' , q'

respectively,, which are defined by M= f M(0) { (x+I)+'y } do

Analogous toexpression (3. 32), we find for the 2

pressuredistribution along the cylinder contour: u (5. 12)

MB+NA MA-NB.
2 i ôx y

PH(l,0)_PBO
A2+B2

'+pB0a
A2+B2

(5.7) N.=f N(0)

where:

N
. The added moment of inertia 1 and damping

A=c(l,)+PC.(l,_,)
N per unit length due to the heaving component

N
is given by:

B=C4)s(1)+ q9)(l,)
H

MB+NA

M,=Cp (i8)+ .q2CP2(.1,o).
NH=pB cil

0
2

m=1' .,
. R o A+B

m=1 I pBl

N

. MA-NB
(5.8)

R
.

by (3. 9).,
The coefficients p2 and q2 in the ex-

pressions (5. 2) and (5.4) are determined from a
set of linear equationssimilar to (3.25). How-escs es
ever the streamfunctions q' q.» and q' in,

pB1 pBa1
o MB'+NA o MA-NB.p('i.0)

2 2 2 2 2 20
A+B A+B

(9)
(5. 6) The rolling moment on the system about P is

found to be

N

(i,8)+ p (1,0)
c ' 2m 2m

m=i Cous t rib ut io ii of u he roui iig e oiu pone Ut.

It is readily seenthat in this case the potentials
and streamfunctions can 'be chosen' Identically to
those ofthe pure swaying motion, defined'by (4. 5),,

, (4.8).

equ

2
10)

whe
Substituting (5.9), we find: bet

M B + N A M A- N B cont.0 0... pB al O O
O COO]

In

M =-pB i
fl o. 2 2 oAB. 2 2A+B

Inserting, according to (5.1), and

2
we find:

2 2
dt

(5. 13)

(5. 14)

T]

the f
effic

sud
c ont

sect

C
q

A

sed

In a

lic

gi

whe

g

and

1



tials
1ly to
(4.5),

Thé. complete potential and streamfunction have
the form (4. 9) and (4. 10).. However,, here the. co-
efficients p and q. have to be determined2m
such that. the following boundary condition on the.
contoui f the right-hand cylinder is valid, [6,
section 5. 3):

e c
a dedR a de d i 2.

or

where

2. 2 2
x (l,0)+y (1,0) -B0

g(0)-

and

2
ITO K B

a o
q0=

2b

2
iï® K B

a o.
2b

(5.15)

This canbe reducedtothe following set of linear
equations for

2m
and q2:.

Ncd . cdq' (1,0)- q' (1,-)= p f (0)
c c 2 2m2m

m=0

Ncd c.d ii
q.' (1,0)- q' (11,_')= q f (0)

.5 s 2 ¿m2m
m=0

in which

2 2 2X (:1,0)+y(1,O)_B
=p(O -

where R = 0) +2ie} is the distance ° B

between the origin O and the point (x,y) on the . (5 20)
contour of the right-hand cylinder and s the line f2mm(1i) _Cqm(1; 0), mo
coordinate along this contour (Figure 1.1). .

In the usual manner we reduce (5. 15) to: For the.pressure along the contour of the right-
hand cylinder due to the rolling motion of the

0) (1 ,)
=_{ x2(1, 0) + y2(1, 0) - separate cyl:inders we find, analogous to (4. 23):

_B2} . (5.16) PR(l,O)=_;_.(McosU.t_Nsint). (5.21)

where we substitute for the coefficients p andAnalogous to the method, expounded In [6, . 2m
sectIon 5. 31, we represent the rolling motion by q2,, which are found in the expressions (4. 22)

e = ea cos(at+Y) and substitute -O asin(at+Y) . for M and N, the values which satisfy the set of
equations (5.19).in above formula. Then we obtain:

Analogous to (4. 32) and (4.33), we find for the
T1 ¡'C C TI hydrodynamic moment on the system.
- (i,.0)- q'(l,)j=

. 2
g(Ò)(p cosat+q singt) 2B pgb

O O
MR= ° {

XRsinat+Y cosat} (5.22)

çombining this with the relation:

d®
Oa5Ifl(ot+Y)z

2.. . 2bg
B

. ___( qsinat-p0cosat)
îraB

(5.18) 0 (5.23)
which is derivedfrom (5.18), we. find:.

4YP.X
M=-pB OpaB e

R o 22 o 22p+q . p

(5.24)
(5. Ï8) For the added moment of inertia I and. damping

(5. 19)

N per unit length clue to rolling component we

find:
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Po + q

where the expressions for the quantities XR and

Y are given by (4.34), in which we substitute 2
R M f M(OYdO

forthecoefficients.p anda ,which are found o G
2m ¿in lT

in the expressions(4. 22) for M and N the values, 2

satisfying the set of linear equations (5.19). (5. 32)

Finally, wefind'from (5. 13), (5.14), (5. 25) and
(5 26) for the total added moment of inertia 'R Ñ = j N(0) de

and the total damping NR of the system per unit
length.

=pBl
2 2

+pB0
2 2

MB+NA Yq+Xp
o .4 Ro Ro (5.27) which are given by (5. 8). The quantities M and

inwhichforMandNthe exprOsslons are inserted

A +B Pq Ñ. Inthelasttwo terms of (5.31) are obtained by
o

replacingin (5. 32) the functions M(e) and N(e) In-X qMA-NB 4 Ro RoO
+paB

2 2
the Integrandsby the similar functiOns vhIch are

2 2 p+q found in (5.21).+B
0 0

(528) SO, finally, for the added mass and damping
perunitlength for swaying produced by the roll-

Analogous to (4.26) the swaying force on the ing motion we, obtain:
system due to the i oiling motion is determined
t. .. . . . MB+NA Mq+N.piom. 2 o o 3 o o o o

MSR=pBl 2 2
+pB

2 2
V(e) A +B p -'-q

FSR=_2Bof { PH(1,0)PR(1,6)}Gd6 (5.33)
(5.29)

For pH(1,O) we substitùte (5.9) while for.
NSR =pB2Ol

the following expression is inserted: A +B
.

p +q
(5. 34)

N=pB al

MBNA MA-NB
FSR_PBI °2 palB2 02

2A+B A+B

of this expression are. given by:.

lT

2

3. Tasai, F.., 'On the damping force and added mass of
ships heaving and pitching',. Journal of Zosen
Kiokai,No. 105 (July, 1959), p. 47-56. Translatéd

Yq±Xp
R 4 R o R OE

11q+Ñp rlp-Ñq
3 o o 0 0.. 3 o o o o.

-pB e e2
2p+q o

(5.25) pB
2 22 2p+q p+q

4. Ta
Yp-Xq (5.31)

R 4Ro Ro
(.5.26) . The quantities.Ii and N in the first twotermsN =paB

R o 22

p (1 eH= e+- eR' 2 22 2 22
pB Mq Np paB p. M -q N2. a

o o o o 0 0 Hefe re n e e s.

p q p +q
o. o o o

I. Ursell, F., 'On the heaving motion of a circular cyl-
(5.30) Inder n the surface of a fluid', Quart. Journal

Mech. and Applied Math., Vol. II, Pt. 2 (1949).
which is obtained by combining (5 21) and(5 23) 2 Ursell 1' 'On the iolling motion of cylindeis in the

Then:. . . surface of a fluid', Quart. Journal Mech and

Applied Math. , Vol. H, Pt. 3 (1949).
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Summary

In the present report expressions are derived for the hydrodynamic

coefficients of two identical rigidly connected parallel cylinders of

infinite length, which peform harmonic oscillations izi the free fluid

surface. The cylinders are supposed to have only connections above the

freé surface.

The method applied in this report is in fact an extension of Ursell's

method for the corresponding problem Ö one cylinder.



r

Preface

In this report basic data are given for the. determination accordinto

the strip theory, of the hydrodynwuic coefficients of catamarans performing

harmonic oscillations.

The reader is upposec1 to be familiar to a certain extent with tirsell's

method to evaluate the hydrodynamic coefficients of a single cylinder,

oscillating in the free surface. This method is in fact the starting point

for the determination of the hydrodynamic coefficients of a "single-body"

vessel according to the strip theory.. For this the reader is referred to the

papers of Ursell {1,2] Tasai [3,14i or Porter E5:
Their results have been compiled .nd supplemented by the present author in

his earlier report [J. It will be seen that many methods, which are needed

for the solution of the double.-oy1inder problem, are identical to those of

the aingle-culinder problem and, therefore, they will be mentioned in this

report only verr concisely. In order to aid the reader who wants to acquaint

himself with these methods, the. present author will, at some places in this

reports refer wîUi much. detail to his above.mentioned report.

2.



Introduction

The last few years several catamarans have been constructed for all kinds

of purposes. T1iis is largely due to the possibility to construct these vessels

in such a way that the resistance for high F i much lower as compared with

conventiaj. ships with the same aek area. In this connectioii it shoifid be

observed that we cn give, the floating bodies of the catamaran shapes, which

can't exist as separate single body vessels. However, experiences with recent

designs showed that catainarans haye larger heaving and pitchirig motions as

comred with convential ships. These phenomena justify a theoretical analysis

of the motions of a catamaran. The present report gives a basis to determine

the hydrodynamio coefficients of si.ch. a ship with. the strip theory method,

wh.icl- has proved to give very use'ul results f6r single body vessels. Analogous

to the ingle body vessel the catamaran is divided up into a number of sections

and for each. section3. which is taken to have a constant profile, the hydrodynamic

properties ars determined, assuming that the disturbanes in the f1uid due

to the motions of the ssctions only propagate in the direction perpendicular

to its longitudinal axes

The catamaran is assumed to be composed of two identical floating bodie,

which- have been rigidly connected above t.h.e free surface. Consequently for

the application of the stiptheory method. we need expressions for th hydrodynamic

coefficients of a system of two infinitely long identical parallel cylinders,

whIch- have been rigidly coîrnected above the free surface at a given finite

distance..

Analogous to the single cylinder, this problem is formulated as a linearized

boundary value problem from the potential theory, which is achieved by assuming

the fluid to be invisÒid incompressible and irrotational and the amplitudes of

the motions of the system to be very snall.

The velocity potential is again composed of a linear combination of a. source or

dipole potential and a number of multipole potentials such. that the boundary

conditions re satisfied However, the expressions for the source,dipole and

multipols potentials have to be adapted to the conditions which result from

the presence of two cylinders.

Further, analogous to the singlecylinder problem also for the problem of two

cyliiders we have to determine a conformal transformation, which. maps a circular

cylinder into the crosssection of ne of these cylinders. Since suitable

numerical techniques are available to dv'ise stich. a transformation, wO will

consider in this report cylinders with. an arbitrary shape53ee 6; section 1.i1.

3.



i Fprmulation of the problem

We assume that a system of two parallel identical infinitely long cylinders,

which are rigidly connected. above the free surface at a distance i. l'rosi each

other, carries out a harmonic one-dimensional oscillation with frequency 0,
while the mean position of the axes of both cylinders is in the undisturbed

free surface of the fluid. The origin of the rectangular Cartesian coordinates

(x,y) is taken in the mean position of the axis oÍ' the eighthand cylinder

(Fig. 1.1). The x-axis is horizontal and perpendicular to the axis of the

cylinder, the y-axis vertical, positive in downward direction.

I

Its possible modes of oscillation we consider heaving, swaying and rolling

about the point F , which. is in the free surfacie and In the symmetry plane

x = -1 of the system. With respect to the rolling motion, represented by

' 1 cos(Gt+), it is readily seen that this motion involves a combined

heaVing, swaying and rolling motiOn of thé separate cylindere. For the 'ight-

hand cylinder we find the following ordinates of these components respectively:

y1, = l sin

= i (cosi'- i)

=

Expanding the eine and, cosine functions in these formulas and retaining only

the first term we öbtain:

(1.2)

14

FIG. 11.1 y



Sincethe swaying component is a second order quantity, wp shailconceive

in this report the rolling fliotion of the double cylinder system as a combined

heaving and rolling motion of the separate cyiinaers. The ve-iovìty potential

for the rolling motion of the system will consist of a component due to the

heaving an another de to the rolling motion of the separaté cylinders.

Analogous to the sirg1e cïlinder problem [6 ch i], a velocity potential

(x,y1t. has to be determined, which. is a solution of a linearized boundary

value problem from the potential thóry. Consequeritly wé may writs: u

ict
y, t) = -i4(x,, y) e

where (c,y is a solution of the eQuation of Laplace

2 2
x y

and satisfies, in addition the following conditions:

(i) the linearized free-surface ¿ondition:

in which k =
g

(i11 the radiation condition:

as x -

-* c e1
2 asx-*.co

where C1and C2are constants

This condition implies that every disturbance in the fluid vanishes when

y--
(iii the boundary condition ori the cylinder contour:

(1.3)

(1.5)

(1.6)

when y = O (i.)

where U denotes the normal outward yelocity on the cylinder surface (Fig.1.1).

We observe that the above condition refers to the mean positiori of the system,

since the linearized case is considered.

(iv) when the system is carrying out a heaving motiOn, the potential (x,y)

has to be a symmetric function with. respect to the plane x .4 1, fo± swaying

k . + - = o when y o

represents the wave number.



and rolling the potential has to be a skew-synmietric one.

v) fOr i = O the potentials for the heaving, swaying and rolling motion of

the double-cylinder system become ecuivaient with the potentials for the

respective motions of one cylinder.

6.



2 Outline of the method of solution

Analogous to the single-cylinder problem the velocity potential for the two
cylinders is also synthesized of a source or dipöle potential and a linear
combination of multipole potentials, The source, dipole and multile potentials
are choaen suchthat the conditions (i), (ii), (iv) and (y) are s4tisfiedby
each- potential separately, while. the condition (111) is satisfied by choosiuig
the linear combination in an appropriate way. In the following chapters we

will derive for each mode of oscillation of the double-cylinder system adequate
axpress ions for the above mentioned potentials. It turns out, that these
potentials are aily derLved. from the corresponding sIngle-cylinder potentials.
Lt is ell.-known that the expressions 'or the miltipole potentials (see (2.2)
and (3.2) fOr the sing1e..taylixide problema depend on the parameters a, a1, a3,...
which re the coefficients in the following transformation formulas, [6;eq(o1.8):

x = r sin G
+

sin (2n+í)@}.

(2.1)
N

y = a trcos 0+ (
.)fl+1 n: cos(2n+1)OI

The coefficients a, a1, a , are determined such that the serrii-unit circle
(r1, _ L) in the reference plane ( ' -plane) in which the polar
coordinaté. system ( r,0 ) has been defined, is mapped into the crOss-section
in the physical plane ( z . plane). with cartesiai coordinatee (x,y) [6; section
1+.iJ. The number of terms M, considered in the equations (21), determines the
accuracy of the transformation.
The formulas (2.1) can also be interpreted as defining a curyilinear coordinate
system (r,®) in the physical plane such that one of the coordinate lines (r1)
coincides with the cross-section.



In addition to the rectangular coordinat system (x,y), as defined in the

previous chapter, which has its origin O in the mean position of the axis of

the right-hand cylinder, we introduce in tiis chapter an identical coordinate

system, which has its origin in te mean position of the axis of the left-hand

cylinder. The first-mentioned system is denoted here by (, s-1) gith origin

O.i, the other by ( x2, y2) with ox*igin,02, (Fig. 2.1). The corresponôing polar

ooórdinate systeme in. the -plane or curvilinear coordinate aysteins in the z-plane

are denoted by (r1, O and (r2,
2

respectively. Acording to (2.1) the

following relations are valid between the rectangular and curvilinear coordinates

in the z -plane:

Consider a pintQ in the Z-plane, which is the image point of the point Q'

in the - -plane. The pointQ is represented by the reotangtilar coordinates

(2.2)

8.

a r. sin

+
r'

sin (2n+1)6 Ç

a r. cos 0

+

(1)fl+12fl+1
cos (2n+1)O.

i = 1, 2.



(x1, y1) and 1he curvilinear coordinates (r1, which both refer to the

origin 01. The image point Q' in the C-plane is given by th polar coordinates

(r1, 01 ) with origin However, this point can also be represented by the

poiar coordinates (r2, 02 ) with originO , lt is easily seen from Fig. 2.1.,

that the following relations are valid between the poiar coordinate: systems

(r1, and (r2, 0):

1' +rjij O02-arctan
1

r1cos 01

r2 1r +l'2+2r1l'sin
1

la 1'+

The distance 1' between the two semi-circles can be determined from the relation

which is obtained by inserting in the first equation of (2.2) eitherx2 1, 02_ F
and r2 = l'or = -1, 01 = - r1 = lt. This yields:

M

n0

(2.3)

(2.1)

where 1' > 2

It Ls clear that the equations (2.3) can also be interpreted as representing

the relations between the curvìliriear coordinate systems ( r1, 01 ) and (r2, 0

inì the t-plane, which are very useful in our future calculations.

9.



3 Added mass and damping for the heaving motion

It is clear, that the source and the multipole potentials, which are used

for the solution of the heaving problem of one cylinder can't be used for

the solution of our problem here since the symmetry condition (iv) is not

satisfied However, it will be seen, that the set of potentials, which satisfy

each the condition (1v) are easily derived from the single-cylinder potentials.

The source potential 4 and the symmetric multipole potentials , used for

the single-cylinder problem are given by:

and

Cs /
02m

'

Cx, y)
= { $

eN (k sin y - ßcos
+ irre

- ky-ik lxi

o

(r, o)= c0s22m0ka 02m)0
+ l)

(2n+1)a21cos(2ni+2n+18)

r (2rn-1)r
m-

fl0 (2m+2n+1)r2m+211+l

m1,2,3
In the first formular b represents the wave height at infinity thie to the

oscillation of the cylinder while the parameters a, a1, a3, in the

second formula represent the coefficients in the transfrmation formulas (2.1)

L

The corresponding potentials for the double-cylinder problem, which wiLl be

denoted by the superscript e, are defined by

and

y) = 4?(x, y) + 5(x+1, )} 3.3)

(3.2)

(r,o ) + (7Orn (rl, ot)} C3.4)

10.



where, according to (2.3)., by iantit'yng (r',O') with

d.th. (r1 ,Oiï:

i' + r sin O
0'= arctan

r cas O

Cs
,ßi (r

r' / r2 + i'2 + 21'r sin O

in which. 1.' and i satisfy the relation (2. 1f).

ince the cokiditi.ons (1 and. (ii are satisfied. by the potentials Ç and

separate1y the corresponding andC(Pm for the double-cylinder

problem satisfy also these conditions. Further, we can easily verify, that

these potentials satisfy the symmetry condition (iv). and the condition (y).

for LO.

By using the Cauchy..Biemann reltioris we determiné the conjugate streamfunctions

'p

S
and 'm of the potentials Ç and ?m respectve1y. In rectangular coordinates

these relation have the form

ax
(3.6)

and. in poLar coordinates:

_.1.!r0
q) .1 4

- r

consequently:

00

y)= + fe°2" d o_*_iklxI}

o xo

*2m( r, o)=
sin 2mO kaj sin(2xn-)O

+
fl

(2n+1) 2n+15i211+21)

r L (2m-1)r2"
(2m+2n+1)r2m+2I

n0
(3.9)

The streamfunction c,ps(x y) and cIJjrn(r,0) for the dóuble-cylinder system

arö given by:

C,JJS(X y) 4(x, y) +
pS(1)}

(3.10)

and

o)
= 2P2m' ) +

s

2m(1",

N

and (r ,0)

(3.5 )

(3.7)

(3.8)

(3.11)



Expression (3.10) is clear without further preface.
The validity of (3.11) is easily shown by observing, that:

The velocity potential for the heaving motion of the system is written in
the form

(r', O')

o')

Then it can be shown thats'
(j ir' O'

2m

whic1 proves, that (3.11)

o')
ar'

r
1

a1Pm(r', o')

also:

1 2m' o')
r'
is correct.

S -ky.
'' (x, y) ire sin kx

r + isin O
r'

2r'
where m(r', o') is defined such, that the Cauchy-Riemann relation

o

holds

(3.11)

12.

(3.12)

(r, O, t) .aJ
graL

N

cs
p
2m 2m

N

cos ot+ f c,1s + 2
m1

. sin at]
(3.15)

where
Cs 1y)

=
(x, 'y) ,-i-+ 1,

and
CS (x y)

=
i( s (x, y) + (x + 1, (3.16)

while
.s(x y) = -ky

ne coskx

(x, y) = Ç'llersin kxI- (ßcos6y-k sin y)d
(3.17)

22k +

in which the coordinates (x,y) and (r,O ) are related by the formulas (2.1)
For the corijugate strearnfunctionCl1 (r, O, t)we find:

N NCqI(0)
ira

Cs cs
m 2rn

cosat+. ''s
n=l n1

es
2m} at (3.18)

where

il Sc*s( , y) + lPS(x+ljp (x, y) y) (3.19)

arid

CIs. i( s
"'s ç, y) = X, y) + x+i,

in which:

and

"2m (r', o') o') r(r + isin O) (3.13)



-ß jx I

Y)
= ±°Jk2+ ß2 Bsin ßy kcos ßy d

+ iie coskx x>o

The values of the coefficients panc1 q2 in (3. 15) and (3. 18) are determined

in such a w&y that the boundary condition (iii) on the contour of the cylinders

is satisfied. The value of N determines the accui'acy of the approximation of

the velocity potential by (3.15).

In virtue of the symmetry of the system with respect to x -1 it is sufficient

to restrict our discussions with respect to the determination of and

to the right-hand cylinder.

The boundary condition on the contour of this cylinder is given by

C C
dy dvx-cos a or==----

n dt s Ut 3s

whereais the angle between the positive normal on the cross-section and the

positive y-axis (Fig. 3.2)

Substitutingo 0, yields:

C
1'i L) = - B12 dt o

(3. 20)

(3. 21)

(3. 23)

Eliminating from (3.22) and (3.23), we obtain:

c x(i3O) c ir (3. 24)
(i, o)

B
'(i,

Substituting (3.18) in this expression we find a set of 2N linear equations

for the coeficients P anO. q

13.

y FIG. 3.2

Analogous to the single-cylinder problem [6 (Ii.2.8) (1.2.13)

this relation can be reduced to

C
W(r=1, o) = - X (r t, (3. 22)



cips(i,o) x(1,O) c,:(1
) =

m i

c:(1O) x(i,e) C(1
) = m 2rn1'

m i

where

- =
(A cos ot- B

where, in virtue of (3.23):

A
CS

(i, -g.)
m1

P2m1

N

B
Cj)5 (i, ..) + qCPS(1

..)

m i

MB + NApCi, o) = pB
2 2

A; + B

f2m(1, e) x(1,O) C*S (i, ir) C*S(l e)

It is observed, that the et Pf equation (3.25) has to be solved for the
ir 11rangs --O--

2 2

The ve1ity pötential at the contour of the cylinder (r1
) is written as:

C(10
t) - (M sinet + N cosot) (3. 27)

where

Accòrdthg to the relation p(r,O) - bhe pressure distribution along

the contour of the cylinder can be written as:

pCi, o) = (M cosot - N sinot) (3. 29)

We define:

e)

(3. 25)

(3. 26)

Then the pressure along the cylinder contour can be writtenin the following

forni:

MA-NB+ pBu
2 2A +B

(3. 30)

(3. 31)

(. 32)

a

ç0 N

MCe)
c: (10 Im CS

N(e)
c:

e) +
2m

C
(3. 28)

rnl



The total vertical force per unit length on both cylinders becomes:

F = _2f p(1, O) cosdB

s (- o (3 33)

Analogous to the single-cylinder problem f6; eq.s(l.2.21), , (L2.26)J

this expression can be reduced to:

MB+NA MA-NB
2 o o 2 o o

F -2pB - 2pB a y (3. 31f)
°

A2+B
° A+B

where

in which

'2

M
= .1

M(0)
y(o)

dO
o

-'
/2

/2
N = r N(e)

w(o)
do

o J 'J

- /2

N

w(e) = cosO +
(_1)fl

(2n+1) . cos (2n+1)O
2n+ i

N n=o

G1+ &
¿n+1

For the added mass M and damping N per unit length we find:

(3. 35)

M+NA
M- 2 o o

- pB

A2 + B2

N2 = 2pq
M0A - N0B

y o
2 2A +B

15.

(3. 36)

(3. 37)

(3. 38)



Ii Added mass and damping for swaring,; cou,pling coefficients of swaying into
rolling

d aThe dipole and asymmetric multipole potent&als 4 andÇQ, used for finding
the velocity potertjal for the single-cylinder problem are given by:

= { 2 2
+ ire

k(x+y) -
o x o (Ir. i)

_sin(2m+1)0 + kaSifl 2mO + :1)

r 2mr (2m2n+2)r2m+211+2
n o (14. 2)

The conjugate streamfunctions of these potentials are given by:

d(X y)f-
k(x2+y2)

eco:-ksin$y
d

. -ky-iJçxf

J

0)-cos(2m+1)0 cos2m0 (" ni(2n+1)c0s(2m+212)0

r2rn
- ka{2 +

(2m2n+2)r2m+22
(14. )

The rectangular coordinates (x,y) and curvilinear coordinates (r, 0) in these

formulas relate to the right-hand cylinder of the system as indicated in Fig3.1

The dipole potential
cd

(x4r) and, the multipole potentials Cm (r, o) for

the double.-cylinder problem are now defined by.

O

cd, i
4 ¼X, y)= {,(x y) + (x+i, ï)}

ea, il a
't2m

e ÇP(r', e'),

where (r, O and (r',OT) represent the curvilinear coordinate systems, which

relate respectively to the right-hand and left-hand cylinder of the system

in the phyeical plane (Fig. 3.1.

Between the coordinate Bytems (r, 0) and (r', Ut) exist therelatiotis (3.5).

Analogous to the heaving problem we find for the coresponding treanifunctions:

cd
ij (x y)= j y)

,d(1
ï)}.

ca (r, o) e) 'e m'''2m

For thecomplete potential and conjugate streamfunc1ion c we write:

(14. 5)



i

C
o, t)=

{ {
cd ±?2mm sot+

{cd

where

cd(
y) = 1{(x, y) + 4(x+1, }

c d,
y) = ji(x, y) + (x+i,

cd
y) = ij(x, y) + ti-i, y)}

cd i
yj = j(x, y) + pd(xl,

) j.

in which
d -ky.c(x, y) = - ire sirkx

and

d -ky
y) = ire co5kx

4(x, y) + irecoskx fe_ CO y+ +
. ; 2 2

X > O

(14. 12)

cd
X2min cost+

d(x y) = lre_kYsinklxl_ f d6 -
2 2

k(x+y)
o

The coefficients p and are chosen such that the boundary conditthon on2m
the contour of the cylinder is satisfied. It is easily verified that expression.

(14.9) satisfies also the other condition mentioned in chapter 1.

In virtue of the skew-symmetry of the system with respect to x = -L, it is
again sufficient to restrict our dlscuss:iions to the right-hand ylinder.

From Fig. 3.2. we derive, that the boundary condition on the surface of this

cylinder is given by:

C C
B dx . dxdy

- - sin a or - - -
(14 13n dt S dtds

Analogous to the single-cylinder problem [6; section 5.2J, we can reduce this

reltjon to

e
. c dx

(14. 114)i'(i, O) - 1'(r=13 -y(r-1, e).

Substituting 0 =o yields:

Ct(1
o)

Cy(1 .) = - T (14. 15)

where T is the draft of the cylinder.

Elimiratirig dx from (14.i14) and (14.i) yields:
dt

N
d c'+) 0
s ¿ ¿ni '2m

m i

y(1, o)
jc(i e) - Cq,(

=
y(1 o) tií(i

..)}
(14. 16)

17.

sinGt] (14. 9)

sn] (. 10)

(14. ii)



where

= y(1, O)Sca
o

2m T t2m

o

Inserting (I.lO), we obtain the following set of linear equations for the

coefficients
2m

8J1d
N

o)
Cpd(1 )} y(1, o) 1cd(1

o) - .)}=
I1 2m 2m

m 1

o)
cd(1 L)

}
1(1., ) cd(1

o)- cd(l 1L)}
2m

R. 17)

ca(1
)} {ca(lO

)
ca(1!) R. 18)

The pressure along this cylinder can be written in the form:

p(1, o) = - - (M cos at - N sin at)

or, b$ using ().i.19):

MB+NA .. MA-NB
p(1, o) = pT

2 2
X + pTa

2 2
x

A+B Ai-B

The totaL horizontal hydrodynmic force in the system is given by:

F = -2 f p(1,, o) sin cLds

s(-e-)

Ithalogou to the single-cylinder problem [6;section 5.2J this formula can

be reduced to:

(I .23)

(14.21l)

18.

Next, we define:

dx gb at-Bsinat
R. 19)

Then, acàording to (1,iO) and (f.15):

cd(1
)-
cd

o)
+ Y2m j (i )- Cm(1 o)}

m-i
(4. 20)

B = ..)_ cd1
o)

m1
[ 2m(12)_ C1pm(1 o)}

The potential along the contour of the right-hand cylinder is defined in the

following wr:

c1
o) = (M sin at + N cos at) R. 21)

Then

M
c(1

o) (i o)

R. 22)

N 1, 0)
+

e)



where

N
y(o) = - sin o + (-i

N n0
G = + a2

n0

Substituting (.214), we obtain:

MB+NA MA-NB
F = -2pTB

° ° - 2pTB a
O

X O
A2+B2 A+B

where

where

o

o

We consider now the rolling moment on the system about the point P due to

the swaying motion:

- 2
j2

p(1, 8){ (ix) ft de
(14. 32)

where the moment is considered to be positive when it is in clockwise direction.

Substittiting (11..23), we obtain:

2B2 pgb
= Q

It j - Slit at + COS Gt} (IL. 33)

N(Ò) d0

M(e) y(o)
dO

For the added mass of the system per unit lenth, we find:
M Bi-N A

M 2pTB
X O Ai-B2

and for the iamping:
M A-N B
o oN =2pTBo 2 2X °
Ai-B

=f
2

a21(2n+1)sin(2n+1)O

F1) . + y - dO

(IL. 28)

(14. 29)

(14. 30)

(IL. 314)

19.

F = -2B f p(1, e) Y(o) dO (14. 26)



¶

dO

Using (I.i9), we can write (1.4.33) in the following form:

BY +AX
2 AY _BXR

M =-2pTB2 R R_20 R
S ° A+B °

A2+B

Hence, for the added moment of inertia and the damping per unit 1engthfor

the rolling motion produced by swaying, we obtain:

I = 2pTB2
BYR+AX

RS ° A+B

N = 2paTB2
AYR_BXR

RS °
A2+B

(14. 314)

(14. 35)

2O.,



in which

C4)( y)
=

r e

Added moment of inertia and damsin for rofljn, cou.lin. coefficients o

rolling into swaying.

As mentioped before in chapter 1, we can conceive in the linearized case the

rolling motion of the system, 7= lcos(at+y), as a combined heaving and

rolling motion or the separate cylinders, according to

y= lz

The heaving motions of the two separate cylinders have 180° phase difference

wh:Lle the rolling motions are in phase.

Contribution of the heaving component

In contrast with. the case of pure heaving, considered in chapter 3, the BourceCs Cs
potential 4) and multipole potentials P have to be skew-srrtunetric with

2m
respeot to x -1
Therefore, we define;

d4)(x y) = {
4)S(

)
4)S(x+l,

y)

CO(r o) = 2fr2 (r, o) m',°'}
where 4)5and Çmare defined by (3.i and (3.2).

In an analogous manner we define the complete potential by

C4)(r o, t)

= .{ {
C4)

12m ?P2mCoS .f{

where and 4 are defined by (3.17)
The conjugate streamfunction becomes;

CJ(r e, t) = sin at

15.

(. 3)

(5. 14)

X, y) = (x+1, )J.

21.

at + jC*+q C4)

m

2mP2
sin ot

y) -
s

C



in which 4and 'Pare defined by (32Q) and *by (3.9)

The coefficients
2m

and in the expressions (5.2) and. (5.14) are determired

from a set of linear equations similar to (3.25). However, the treainfunctiorie
Cs Cs C C

'1'2m
in these equatu.ons have to be replaced by. and

respectively, which are defined by (5.5)

Analogous to expression (3.32), we find for the pressure distribution along

the cylinder cOntour:

C's

C,
2m

y) = y) -

C(x
y) = :(X, y) :(X+1, y)}

C( i L'm' o) - 1(r' o')}12

B

2

MB+NA.. MA-NB.)=pB
2 2 y+pB( 2 2A+B 0 AB

where:
N

A
C(1 ..) +: 2m

C1p2m(1 )

m i

= C,p(i
'2m

Cp2m(l )

M
C,,(1

e) -Z Cp2m(l e)

m i
N

N = o) 2
2ni

C(P2(i
e)

m i

tnserting, according to (5i), = . 1t and -

o)

pBl MB+NA pBal dt

The roliing moment on the system about P is found to be:

MR = - 2 f PH(1, e) (x+i) - + y dO

ubtituting2(5.), wê find:

MBNA' MA-NB
JVL -pB 1 ° J- pB al

o o J° A+B °

Where

M( o') (x+l) + 4..}

we find:

(5. 9)

(5. 6)

(5. 7)

(5. 8)

(5. io)

(5. i2)

22.



M B+N A
o oT'pBl
2 2° A+B

M A-N B
oHB1 O

NR O A+B

Contribution of the rolling component

It is readily seen, that in this case the potentials and stx'eamfunctions can

be chosen identically to those of the pure swaying motion, defined by ()-L.5),

,

The complete potentil and treainfunotion have the form (L9) and (1,iO).

however, here the coefficients 2m and have to be determined such that

the following botndary condition on the coitour of the right-hand cyliider

is vali: [6, section 5.3J
cq, dd 2- = R----- or --- -----LRdtds as dtds2

where 1 = x2(1, o)+ y2(1, O)}21s the distance between the origin O and the

point (x,y1 on the contour of the right-hand cylinder and the line coordinate

along this contour (fig. i.i).

In the usual manner we reduce (5.i5 to:

C(1
o)

C IT\
- 'i'(i -j =' 2

.Ij{x21, o)+ y2(1, o) - B2
(5. 16)

Analogöus to the method, expounded in E6; section 5.3, we represent the rolling

motion by cos(at + ï)- anì substitute - = - a sin (at + 'r) in above

formula. Then we obtain;

!2jCq,(i
o)

C(1
) = g(0) (p cos at + q sin at). (5. i)gb o o

where

x2(1, o) y2(1, o) - B2
g(o)

o

inYK B2
a o
2h

B2

(5. 18)

23.

lT

fNe
(x+l)+yd0 (5. 12)

The added moment of inertia 4 and damping 4 per unit length due to the

heaving component is given by



and

in which

q
_irKB

o 2b

cd cd, ir

*(1, o)
-

cd, irc1d1
o) - ) =

N

= t)2m f2m(0)

m0

For the added moment of inertia

rolling component we find:

= PB1

+ X1

R 0 -2 2
+

14 1Ro -
= PCYB

2 2
Po + q

2
(1, 0)i-3r2(1, 0)-B2

o
f =g(0)

B2
o

ca rr\ca
2m = 12m(1 - (i, 0) , mo

where we substitute for the coefficients p2 and which are found. in

the expressions (14.22) 'for M and N, the values, which satisfy the set of

equations (5.19).
Analogous to (14.32) and (14.33), we find for the hydrodynaniic moment on the

system.

2B2 pgb

= ° i
i

+ R
COS cít

- -
o sin(crt+y) =

1TOB

which. is derived from (5.18), we fid:
Yq+XpRo Ro -Mf-pB

2 2
y -paB

p+q

sin at -

Yp_ Xq
2 2

p0 + q

and damping

equations forp and
2m

(5. 18)

(5. 19)

(5. 20)

(5. 22)

Combining this with the relation: -

(5. 214)

per unit length due to

(5.25)

(5. 26)

2k.

For the pressure along the contour of the right-hand cylinder due t the

rolling motion of the separate cylinders, we find analogous to (14.23):

o) - cos at - N sin at)
(5. 21)

This can be reduced to the fo1lowin et of linear

Po cos at) (5. 23)



where the expressions for the quantities X arid.
R

are given by (1.31l.),

in whici we substitute for the coefficients and which are found

in the expressions (.22) for M and N the values, satisfying the set of

linear equations (5.19).

Finally,we find from (5.13), (5.11&), (5.2) and (5.26) for the total added

moment of inertia IRand the total damping NRof the system per unit length.

MB+NA Yq +)Lp
o o 1Ro l'Co

'R
pBl

2 2
+ pB

2 2A +B p+q
MA-NB Yp -Xq
o o LL Ro Ro

NR pBol
2 2

+ peB
2 2 (5. 28)A +B p+q

Analogous to (lt.26) the swaying force br the system due to the rolling motion

is determined from:

R =
- 2BJ' {PH(1, e) + pR(1, e)}

y.-)
dO

(5. 29).

Forp11(1,O)we substitute (5.9) while for PR(1,O)the following expression is

inserted:
2

pB Mq +Np . poBpM-qN
o -o o' o o o

2 2 ' + 2 2 2
p +q p +q
o o o o

which is obtained by combining (.5.21) and (5.23).

Then:

MB+ÑA .
F - pB2l Y polB2 ° J
SR A2+B2 ° A +B

Mq+Np .. Mp -Nq3 oo .00L7_ 3oo 0017pB
2 2

poB
2 2

D +q p +q
o o o o

(5. 2)

(5. 30)

(5. 31)

The quantities V4 and Ñ in the first two terms of this xpession are given

by: ir

=11jM(e) y(o)

2

Ve)
dO

(5. 32)

in which for M and N the expressions are inserted, which re given by (5.8).

The q,uantitiea ifl the last two terms of (5.31 arè obtained by
o O

25.



replacing in (5.32) the f%mctionM(8)ndN(0)in the integrands by the similar

functions, which are found in (5.21).

SQ, finally, for the added masá and damping per unit 1ength for swayiflg

produced by the rolling motion we obtain:

fB+ÑA Wq +Np
MSR pB2l

MA-B

+ pB3

pBal
2 2

+ poB
2

2A +B p+q

(5. 33)

(5. 31f)
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