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THE HYDRODYNAMIC COEFFICIENTS OF TWO PARALLEL
IDENTICAL CYLINDERS OSCILLATING
IN THE FREE SURFACE*)

by B. de Jong **)

Summary.

In the present report expressions are derived for the hydrodynamic coefficients of two identical
rigidly connected parallel cylinders of infinite length which perform harmonic oscillations in the free
fluid surface. The cylinders are supposed to have only connections above the free surface.

The method applied in this report is in fact an extension of Ursell’s method for the corresponding

problem of one cylinder.

Treface.

In this report basic data are given for the de-
termination according to the strip theory of the
hydrodynamic coefficients of catamarans per-
forming harmonic oscillations.

The reader is supposed to be familiar to a
certain extent with Ursell’s method to evaluate
the hydrodynamic coefficients of a single

. cylinder, oscillating in the free surface. This
method is in fact the starting point for the de-
termination of the hydrodynamic coefficients of a
‘single -body’ vessel accordingtothe strip theory.
For this the reader is referred to the papers of

~Ursell [1, 2], Tasai[3, 4] or Porter [5].

Their results have been compiled and supple-
mented by the present author in his earlier report
(6]. Itwill be seen that many methods. which are

eeded for the solution of the double-cylinder
problem, are identical to those of the single-
cylinder problem and, therefore, they will be
mentioned in this report only very concisely. In
order toaidthe reader who wants to acquaint him-
self with these methods, the present author will,
at some places in this report, refer with much
detail to his above-mentioned report.

Introduction.

The last few years several catamarans have
. been constructed for all kinds of purposes. This
“islargely due tothe possibility to construct these

' *) Report no, 264, Shipbuilding Laboratory, Delft,
.
. **) Mathematician, Shiphuilding Laboratory, Delfi.

vessels in such away that the resistance for high
Fn is much lower as compared with conventional

ships with the same deck area. In this connection
it shouldbe observed that we can give the floating
bodies of the catamaran shapes which can’t exist
as separate single body vessels. However, ex-
periences with recent designs showed that
catamarans have larger heaving and pitching
motions as compared with conventional ships.
These phenomena justify a theoretical analysis
of the motions of a catamaran. The present report
gives abasis to determine the hydrodynamic co-
efficients of such a ship with the strip theory
method which has proved to give very useful re-
sults for single body vessels. Analogous to the
single body vessel the catamaran is divided up
into a number of sections and for each section,
which is taken to have a constant profile, the hy -
drodynamic properties are determined, assuming
that the disturbances in the fluid due to the motions
of the sections only propagate in the direction
perpendicular to its longitudinal axes.

The catamaran is assumed to be composed of
two identical floating bodies which have been
rigidly connected above the free surface. Conse-
quently, for the apllication of the strip theory
method we need expressions for the hydrodynamic
coefficients of a system of two infinitely long
identical parallel cylinders which have been
rigidly connected above the free surface ata given
finite distance.

Analogous tothe single cylinder, this problem
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is formulated as a linearized boundary value
problem from the potential theory which is
achieved by assuming the fluid to be inviscid in-
compressible and irrotational and the amplitudes
of the motions of the system to be very small.

The velocity potential is again composed of a
linear combination of a source or dipole potential
and a number of multipole potentials such that the
boundary conditions are satisfied. However, the
expressions for the source, dipole and multipole
potentials have to be adapted to the conditions
which result from the presence of twocylinders.

Further, analogous to the single-cylinder prob-
lem, also for the problem of two cylinders we
have to determine a conformal transformation
which maps a circular cylinder into the cross-
section of one of these cylinders. Since suitable
numerical techniques are available to devise such
atransformation, we will consider in this report
cylinders with an arbitrary shape, [see 6, section
4.1].

1. Formulation of the problem.

We assume that a system of two parallel
identical infinitely long cylinders, which are
rigidly connected above the free surface at a dis-
tance |l fromeach other, carries out a harmonic
one-dimensional oscillation with frequency o,
while the mean position of the axes of both
cylinders is in the undisturbed free surface of the
fluid. The origin of the rectangular Cartesian
coordinates (x,y) is taken in the mean position
of the axis of the right-hand cylinder, (Figure
1.1). The x-axis is horizontal and perpendicular
to the axis of the cylinder, the y-axis vertical,
positive in downward direction.

As possible modes of oscillation we consider
heaving, swaying and rolling about the point P
whichis in the free surface and in the symmetry

SRS

Figure 1.1,

_—9" 0o __—~¢© x

1
plane x = -2-1 of the system. With respect to the
rolling motion, represented by 0O = G)a cos(ot+y),

it is readily seen that this motion involves a com-
bined heaving, swaying and rolling motion of the
separate cylinders. For the right-hand cylinder
we find the following ordinates of these com-
ponents, respectively:

1

= -] sin®
Yo 2

11 (coso-1 1.1
x = -1 (coso- )
o 2 ) (1.1)
e'=¢p

Expandingthe sine and cosine functions in these
formulas and retaining only the first term we ob-
tain:

—119
Yo T2

1. 2
xg = ;10 (1.2)
e'=o

Since the swaying component is a second order
quantity, we shall conceive in this report the roll-
ing motion of the double cylinder system as a com-
bined heaving and rolling motion of the separate
cylinders. The velocity potential for the rolling
motion qfthé system will consist of a component
due to the heaving and another due to the rolling
motion of the separate cylinders. Analogous to
the single cylinder problem [6, ch 1], a velocity
potential o(x,y,t) has to be deterrmined which is
asolution of alinearized boundary value problem
from the potential theory. Consequently, we may
write:

o(x,y,b) = -ip(x,y) e (1.3)

where o(x,y) is a solution of the equation of
Laplace:

=0 (1.4)

and satisfies, in addition, the following conditions:

(i) the linearized free-surface condition:

a
kq>+—‘p=o wheny = o0 (1.5)
dy

(i)

(iii

(iv)

v)

ing
cill



ions:

(1.5)

2
inwhichk = %—- represents the wave number.

(ii) the radiation condition:

v i -ikl
o ky 1kx(1+e i )

o -ikl
o ky+ikx (1+e 1k)

P - C1 as x -
(1.6)
- a8 X -» -
9 CZ
where C1 and C.2 are constants.

This condition implies that every disturbance
in the fluid vanishes wheny -+

(iii) the boundary condition on the cylinder con-
tour:

(32 =Un (X,y) wheny =20

s (1.7)

where U denotes the normal outward veloci-
n

ty onthe cylinder surface, (Figure 1.1). We
observethatthe above condition refers tothe
mean position of the system, since the linear -
ized case is considered.

(iv) when the system is carrying out a heaving
motion, the potential ¢(x,y) has to be a sym-

metric function with respect to the plane
1

X = '9:1' for swaying and rolling the potential

is skew-symmetric.

(v) for 1 =0 the potentials for the heaving,
swaying and rolling motion of the double-
cylinder system become equivalent with the
potentials for the respective motions of one
cylinder.

~ 2. Outline of the method of solntion.

Analogous to the single-cylinder problem the
velocity potential for the two cylinders is also
synthesized of a source or dipole potential and a
linear combination of multipole potentials. The
source, dipole and multipole potentials are chosen
such that the conditions (i), (ii), (iv) and (v) are
satisfied by each potential separately, while the
condition (iii) is satisfied by choosing the linear
combination in an appropriate way. In the follow-
ing chapters we will derive for each mode of os-
cillation of the double-cylinder system adequate
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expressions for the above mentioned potentials.
Itturns outthat these potentials are easily derived
from the corresponding single-cylinder potent-
ials. It is well-known that the expressions for
the multipole potentials, (see (3.2) and (4.2)),
for the single-cylinder problem depend on the

parameters a, al, a3,.... which are the co-

efficients in the following transformation form-
ulas, [6; eq. (4.1.8)]:

a
n 2n+l
X=a rsine+ I (-1 sin2n+le}
{ (-1) 2n+1 ( )
n=0 r
M a
n+l 2n+1
y=a{rcosb+ 3 (-1)
2n+1
n=0 r

cos(2n+1)6 } (2.1)

The coefficients a, al, a3, ...... are determined

such that the semi-unit circle (r=1, -;—rs e\<§)

in the reference plane ({ -plane), in which the
polar coordinate system (r, 8) has been defined,
is mapped onto the cross-section in the physical
plane (z-plane) with cartesian coordinates (x,y),
[6; section 4.1]. The number of terms M, con-
sidered in the equations (2.1), determines the .
accuracy of the transformation.

The formulas (2. 1) can also be interpreted as
defining a curvilinear coordinate system (r, 8) in
the physical plane such that one of the coordinate
lines (r=1) coincides with the cross-section.

In addition to the rectangular coordinate

1
®
0, X2 Oy Xy
Bzsconsta
@1 =constant
Bz 61
. . Q
‘~_\ F2=constant b j=constant
\
% o
Y. Y, 2
z . ! ysconstant
K F=constant
r
03 0; ©
1 1
Ny
7] Q
Figure 2.1.




system (x,y), as defined in the previous chapter,
which has its origin O in the mean position of the
axis of the right-hand cylinder, we introduce in
this chapter an identical coordinate system which
has its origin in the mean position of the axis of
the left -hand cylinder. The firsl-mentioned sys-
tem is denoted here by (xl,yl) with origin 01, the

other by (xz,yz) with originoz, (Figure 2.1). The

corresponding polar coordinale sysliems in the
{-plane or curvilinear coordinate systems in the
z-plane are denoted by (r_ ,0 ) and (r_,0_ ),

plane ai n y (r;»8,) (r,,9,)

respectively. According to (2.1) the following
relations are valid between the rectangular and
curvilinear coordinates in the z-plane:

a
2n+l
2n+l
r
i

n
X =a{ risine_ + 5 (-1
i
n=0

sin(2n+1) 6, }

M a
—a{rcose +Z(1n+1 2n+1
Yi i i ) 2n+1
n=0 r.
i
cos(2n+1)6i }
i=1,2. (2.2)

The distance 1' between the two semi-circles
can be determined from the relation which is ob-
tained by inserting in the first equation of (2. 2)

k14
i - =1 g = - dr = ! = -1
either x2 v 8, =5 an 12 I' or x1 ,
01=—;—r and r1=1’. This yields:
a2 +1
1=a{1‘+z . } 2.3)
2n+1
n=01'

where I' > 2
Consider a pointQ@ in the z-plane, which is the
image point of the point Q in the {-plane. The
point Q is represented by the rectangular coor-
dinates (xl,yl) and the curvilinear coordinates

(rl,el), which both refer to the origin 01. The

image pointQ' in the { -plane is given by the polar
coordinates (1'1,01) with origin 0'1. However,

this point can also be represented by the polar
coordinates (1'2, 02) with origin 0'2. It is easy to

see from Figure 2. 1 that the following relations
are valid between the polar coordinate systcms

(1'1, 01) and (1'2,02):

Y+1r sino
1

02 = arclan 5
r. cos
1°9%%

2 2
r = \/; +1'“+2y I'sine
2 1 1 1

(2.4)

It is clear that the equalions (2.4) can alsov be
interpreted as representing the relations between
the curvilinear coordinate systems (1'1,01) and

(1'2 . 02) inthe z -plane which are very useful in our

future calculations.

3. Added mass and damping for the heaving
motion.

It is clear that the source and the multipole
potentials, whichare used for the solution of the
heaving problem of one cylinder, can’t be used
for the solution of our problem here since the
symmetry condition (iv) is not satisfied. How-
ever, it will be seen that the set of potentials,
which satisfy each the condition (iv)are easily
derivedfrom the single-cylinder potentials. The

s

source potential ¢ and the symmetric multipole
s

potentials qazmused for the single-cylinder prob-

lem are given by:

dp +

2 2

‘ps(x,y) - E’%{ f e—plxl (k sinpy - B cos py)
o k +p

+iw

e—ky—iklm } 3.1)

and

‘ps (r, 8) = cos 2mé +ka{ cos(2m-1)6 N
2m-1

2
m r (2m-1)r

N
+ 5 (1"
n?O

(2n+1)a2n+lcos(2m+2n+1)e

2m+2n+1 } (3-2)
(2m+2n+1)r

6'=c<

at
whi

sec

tra
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Figure 3.1.

Inthe first formula b represents the wave height
at infinity due to the oscillation of the cylinder
while the parameters a,al,a3, ....... in the
second formula represent the coefficients in the
transformation formulas (2. 1).

The corresponding potentials for the double-
cylinder problem, which will be denoted by the
superscript ¢, are defined bhy:

1
=z { SmneleLn ) e
and
c s 1

- 8 8 o
P =3 { o rren ', 00} 3.4y

where, according to (2.4), by identifying (r',0"
with (rz, 02) and (r,9) with (rl,el):

I' +rsing
r cos o

8'=arctan
(3. 5)

2
r'= l/rz +I'“+2I'rsino

in which I' and 1 satisfy the relation (2.3).
Since the conditions (i) and (ii) are satisfied by

s 8
the potentials ¢ and q>2 separately, the cor-
m

c cs
responding potentials q>S and ¢ m for the

double-cylinder problem satisfy also these con-
ditions. Further, we can easily verify that these
potentials satisfy the.symmetry condition (iv) and
the condition (v) for 1=0.

Byusingthe Cauchy-Riemann relations we de-

. . ]
termine the conjugate streamfunctions ¥ and

s ] s
W of the potentials ¢ and ¢_ , respectively.
2m 2m

In rectangular coordinates these relations have
the form:
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do dy
ax dy
(3.6)
dp  dy
gy ox
and in polar coordinates
dp 19y
gr r 08
(3.7)
dy 1 do
or r d8
consequently:

oo

Ws(x’y)=gg { N fe-le: _kcosp+psinpy
wo

and

dp+
o k2+;32
- -ky-ikix
¥me™ } (3.8)
xZo
2 sin(2m-1)6
w: (r,e)=s——m2 M9 | ka { _Sin(zm-1)8 2n:—1+
m ™ (2m-1)r
N n
+ 3 (-1)
n=0
(2n+1)a2n+lsin(2m+2n+1)e s s
2m+2n+1 (3-9)
(2m+2n+1)r

cs ‘c 8
The streamfunctions y (x,y) and y m(r, 68) for

2

the double-cylinder system are given by:

1
V=g { v Ly SR

and

cs r 1 s s oot
Yom® 05 { g 0t 45 0 0h 0.1

Expression (3.10) is clear without further pre-
face.

The validity of (3.11) is easy to show by ob-

serving that:

S ]
] t.e a ' -
cPZm(l ,07) chzm(I’,O) r+1sin®
= : (3.12)
ar or! o

and
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2
= . 5 (3.13)

as (1',8" oy (', d) r(r+lsine)
2m B m

L] ae' 1

where \p: (r',0') is defined such, that the
m

Cauchy-Riemann relation

S S
A it , el 9 l" , el
%o m )_ 1 Mo )
r

holds.

ar a9

Then it can be shown that also:

S .
d 1, g
(PZHI( )

8
9 rt, o
1 Yom® )

(3. 14)-
ar' ! aet
which proves that (3.11) is correct.

The velocity potential for the heaving motion of
the system is written in the form:

c gb c s Cc s }
¥ == + 2 cos ot +
o, 6,t) no l{ (Pc 1p2m <pZm ’
m:

+{cs+ I; o> }sinct
Qs qu q’Zm

(3.15)
where
csx —1{ S(x )+ S(x+l )}
(PC( sy)_z_ (PC 'y (PC Yy
and
=y | el ) @16
while
<pz(x, y) =me MY cos kx
o0 _p|x|
-k
qas(x,y) =te ysinkm—f
s 2 2
o k +p
(p cospy-k sinpy)dp (3.17)

in which the coordinates (x,y) and (r,8) are
related by the formulas (2.1).

c
For the conjugate streamfunction y(r, 8,t) we
find:

€ Ot—gP {CS+Z S }cosat+
g(r,0,t) =" v, 1p2m Yom
n:

. {c S, s cs } in ot
Ws qu WZm sin o
n=1 .
(3.18)

where

c s 1 s s
Wc(xsy)zé' { WC(X,Y)+\PC(X+1,Y) }

(3.19)
and
Cc s __1{ Sx +S(x+l )
\PS(X,Y)”Z \PS( ,y) \PS Yy }
in which:
-k
\Pz(X,Y)"-"e Ysinkx
ov _plx'
s e -
\Ps(x,y)=t f 2 % {psinpy+kcospy}dp+
o k +p

- -k :
+me ycoskx xzo (3.20)

The values of the coefficients p2m and q2m in

(3.15) and (3.18) are determined in such a way
that the boundary condition (iii) on the contour
of the cylinders is satisfied. The value of N de-
termines the accuracy of the approximation of the
velocity potential by (3. 15).

In virtue of the symmetry of the system with

1
respect to x = —2—1, it is sufficient to restrict our

discussions with respect to the determination of

Py and Ay to the right-hand cylinder.

The boundary condition on the contour of this
cylinder is given by

T — 0 r —— T —
ac %% %" T4s Tdt s

c c

do d d dy ax
. Y X (3.21)
an

where ais the angle between the positive normal
on the cross-section and the positive y-axis,
(Figure 3. 2).

Analogous to the single-cylinder problem [6,

(4.2.8).......... (4.2.13)], this relation can be
reduced to

Cy(r=1, 8) = -lel—’t'x(r=1, 8) (3.22)
Substituting 6 =0, yields:

%1, 0= (3.23)

has

cyli

whe
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dp +

20)

way
tour
de-
f the

with

our

n of .

this

3.21)

rmal
axis,

m [6,

an be

3.22)

3.2%

X

3

Vv

d
Eliminating —d')t! from (3.22) and (3.23), we
obtain:

Figure 3.2,

x(1,6) c

B
o

g1, 6) = w(l,g) (3.24)

Substituting (3.18) in this expression, we find
a set of 2N linear equations for the coefficients

p2m and cl2m

N
x(1,0)c s, T
5 ¥ v (1, )— P
c
o m=1

c s
v, (1,0) - (1,8)

f
2m 2m

x(1,8)c s - w

c s
\Ps(l,e)- v (1,5)= 2 q2 f (1,9)

(3.25)

where

x(1, e)c ] (1 _)_ \P

B 2m
o

f (1,0)—

o (1,0)

(3.26)

It is observed that the set of equations (3.25)

™ ™

has to be solved for the range 5 £0g 5

' The velocity potential at the contour of the
cylinder (r=1) is written as:

b
o1, 8,1) =§; (M sin ot + N cos ot) (3. 27)

where

N

M) ="v (1,0)+ = P

N
N(©) = o (1L,&)+ = p__ ‘e (1,0)
s m=1 2m 2m
(3.28)
3%
According to the relation p(r,0)=-p— , the
at'

pressure distribution along the contour of the
cylinder can be written as:

pgb .
p(1, 6) = (M cos ot - Nsin ot) (3.29)
We define:
dy gb
== - - 3.30
3t “7oB (-A cos ot -Bsginot) ( )
o
where in virtue of (3.23):
cs N cSs ‘
hlg hlg
= 1,-)+ -
A=v @50+ 2 p, v, (1.3)
m=1
(3.31)

c s b
- W (1 -)+m2 qu Zm(1 §)

Then the pressure along the cylinder contour
can be written in the following form:

MB +NA MA -NB .
10(1,0)=pB0—2 7 ¥ +PB002—2-y(3.32)
A"+B A +B

The total vertical force per unit length on both
cylinders becomes:

Fy=-2fp(1,e) cos ads

)

(3.33)

S hlg hlg
(-5 €0 g5
Analogous to the single-cylinder problem [6;

egs. (4.2.21),.......... (4. 2. 26)], this expres-
sion can be reduced to:

M0B+N A M A-NB
F =-2pB y-ZPB OH_y
y A“+B °© A%+B
(3.34)
where
TT
f M(6) 2 (e) (3. 35)
_"/2

401



402

n
2 -
f/ N(,e)y—ég)de (3. 35)
_"/2 '
.in which
| .
‘W(e)y=cos 8+ = (-1) (21_1+.1)va-'2nﬂ.cos(2n+‘1‘)10
n=o
N
G=1+3 a, (3.36)
n=o

For the:added mass My ahd,damping.Ny per unit

length we find:

M B+N A
. (o] (o] .
M =20B — (3.37)
v AZ+p .
M A-N B
2 2
N-=2poB 2 © (3.38)
y °© A%+B

4. Added mass and damping for swaying;
: conpling coeflicients of swaving iito rolling.

The dipole and skew-symmetric multipole

d
potentials ¢ and ‘pzam" used for finding the ve-

locity ‘potential for the single-cylinder problem,
are given by: ‘

d, gb X -
° = {—§—2+
k(x +y )
= ~hx
;f _lkcospy+psinpyl

2 2°
o K k™ +p

dp+

e -ky -ikpxt }

”
Ay

'sin(2m+1)6 { sin2m#é
+:] : +

a - e) —_
% m™ 2m+1
r

2m

n o ‘ S
(-1) a2n+1 (2n+1)sin(2m+2n+2)0

~relatetothe right—hand\cylind_er‘ of the system as

(x, y) and the multlpole potentials: q>

o 4.1 - heaving problem we find for the corlesponding\

The . conjugate slreamfunctions of

these
potentials are given by:
ooe,_-p|x|.
¢ x,y) = ——z-f
o k(x- +y ) o
pcospy -k sm:pyd.pH"e—ky\—llﬂxl o
2 2 ' :
k +p
4.3)
N
a (r, 8 _ —cos(2m+1)9 ka {cos 2m0+
Yom' ? ) 2m, ' 2m _
r 2mr n=0
"2 (2niljcos(Zmizni2)
(-1 a2n+1‘( n+l)cos(2m+2n+2)
. .. 2m+2n+2
(2m:E2n+2)r
(4.4)
The rectangular \coordin'ates-b_ (x,y) and

curvilinear coordinates (r,6) in these formulas

: » ' . d
indicated in Figure 3.1 The dipole potential cq>
(r ) for

the double-cylinder problem are _nowrdefmed by: ‘

d_ 1f.d, d ‘
‘e ('X.y)=§{ ? (X,y) to (x+1,y) } (4.9)

c:a

) .
‘sz,(‘r,.e)=§‘{ (r e)+q> (r e')v} (4.36)

where (r,.8) and (r', 8') represent the curvilinear
coordinate systems which. relate, rPspectively,
to the right ~hand and left-hand cylinder of thev
system in the physical plane (Figure 3.1).

~ Between the coordinate systems (r,6) -and
(r', 8"y exist the relations (3. 5). Analogous to the

streamfunctions:

1

d d ] ‘ .
=z (v} wn

c a

_1f oa a v

and

2m+2n+2 )

(2m+2n+2)r

'(.4.2)

. _C -
For-the—complete potential™ @ and conjugate

. . Cc .
Streamfunction .y we write:.

i
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)

O O [e]
mQ.OQ.mQ.OQ.

0

in which

X, y)—‘-{ (x,9) +9
oJix, y)——{ (x,y) +9
(X, y)——{ oK, Y)

oJix, y)——{ VoK, y) +y

(x+l y) }

(x+1, y) } @ 1
“(x+1,y) } h

mQ.OQ.mQ.OQ.

(x+1,y) }

? (x,y)=-me . sinkx

00

(x,y)=+me coskx+f e P

o)

k cos py +@ sinpy X

2
k +p

and

v (x,y)=me “coskx

d
]

B cos By -k-sin py

v_(x,y) =me sinkixi- [ e

dp
k(x +y )

X’o0 (4.12)

o)

d y

k +p

The coefficients p

that_the boundary_condition-on-the-contour-of-the

k(x +y)

and q2 are chosen such

cylinder is satisfied. It is easy to verify that ex-
pression- (4. 9) satisfies also the other .condition
mentioned in chapter 1. C

In virtue of the skew-symmetry of the system
1 L
with respect to x = —2—1, it is ‘again sufficient to

restrict our discussions to the right-hand
cylinder. From Figure 3.2 we'derive that the
‘boundary conditionon the surface of this cylinder
is given by

—=—sgina or —I=—0 2 : (4.13)

Analogous to the smgle =cylinder problem [6,
sectlon 5.2], we can reduce this relation to

Co(r =1 8) —y(r =1, ——g%{y(r:'l,e‘)- (4.14)

5):
Substituting 8 =0 yields:

dx
v(1,0) - w(1 \)——T - (4.15),

where T is the draft of the cylmder

Ellminatmg— from (4. 14) and (4.15) ylelds

(L, 0) { wl,0) -l “’} ;T { (1,0
“wrp )
(4.16)

Insertingi(4. 10), we obtain the following set of
1i tions.for th fficient dq_~
near equations.forthe coefficients pzmanr %,

{ “lao -5 ’21)} Yo, 2 w(l'O)—

N
—w(l—)}

f
2 2
m=1 m 2m

: m y(1,8) [ c d
{ “ao-Slal) [ {“ao-

N

-y t(.1 z) }— b q‘meva (4.17)
where

y(1 e) c a
me {

o
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. ca - ca ) L
- 1,0) - 1.— ’ 4.18)
{“hnro-Y0p} @i
Next, we define:
dx_ b {-ACOSOt—Bsinot} (4.19)
dt T .
Then, according to (4.10) and (4. 15)x
1 e d N
cd. w ¢ c
A= ISy, o+ = Iy-
i) -0 = e, % a)
m=1
ca
- 1,0
\PZm( » 0) }
N

cd ™ cd .C a - ™
= ) - 1 > 1.-)-
B ws(l,z) vws( 0)+ 7-1q2 { Vo ( .2)

ca

- WZm(ll,O)-} "(4.20)

The potential along the contour of the right-
hand cylinder is defined in the following way:

b
c®(1,e<)=%(Msinot+Ncosot) (4.21)
Then:
N L
M=° :
sl,0+ = a, %o (1,0)
m=1 :
(4.22)
N )
N=° (1e)+z St (1,9)
? Py %y (1,0
m=1

. The pressure along this cylinder.can be written

in the form: ‘

p(1, e)—-—— (M cos ot - N sinat) (4. 23)
P
or by using (4.19):
.MB +NA . MA-NB.
p(1,8) =pT ———x+pTo———5 x  (4.24)
2 2 2 2 o
A +B A +B

The total horizontal hydrodynamic force onthe |

system is givenby: -~

=.-2 ] i ,
,Fx fp(l, ) sin ads (_4.,25)

-

~ Analogous to the single-cylinder problem, [6,
section 5. 2], this formula can be reduced to:

3 whe
. V(E)) : whe
F =-2B 1,8 4.26 .
. @ J 07 (@20 (4.2
hlg
-5
where - N
.. N K .
V(\e)—‘—sme+ 3 (- 1) a_ (2n+lsin@n+t)e § V°
2n+1 . .
n=0 4.27)
N .21~
iy T - z H
G=1+ 12n+1 X
n=0 .
» ‘Substit-uting (4. 24), we obtaih:
. M B+N A MA- NOB ;
: o !
F =-2pTB ——————X-2pTB 6——————x ¢
2 2 0 Y
X o. A%+ B A2+B2 :_
f
(4.28)
where U
owi
. .
2
= fN(e)L)de N
0
hlg
-5 o
. - (4.29)
V( )
M = [ M(8)——d6 :
f 7( ) - N H
hlg K
"3 § dan
. '§ pro
~ For the:added mass. ofthe,systempel unitlength’ «
we find: N I
. M B+N A !
M = ZpTBo : (4.30)
' A"+B 2
g 'NI
and for the damping: H
. M A- NOB B
N =2pTB o 4.3y -
X A“+B BT B P
. . ' roll
We consider now th_e rolling’ moment on. the s'w'u
system about the point P due to the swaying !
motion: ' S A
m cei'}
o2 ' oy the'
—==2 1;0){ = o} ‘,
MRS 1{ p(L, 0y { (P ) +y80 ! hea
2 @z o O



where the moment is considered to be positive:

‘when it is in clockwise direction. Substituting
(4.23), we obtain:
.2 .
2B pghb
o8
RS

m . .

é’ . .

[ o) { (x+11)"_"+_y 4 }de
| 36
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2

Using (4.19), we can wrlte (4 33) in the foll-

owing form:

BYR+AX
M —-ZpTB %5&‘- '
S 2
R © AZ,;p?
AY_ -BX
2. R R. . - . "
% A%«B ' '
Hence, for the added mome-n-t of lrieitla ‘and the

damping per unit length for the rolllng motion
produced by swaying we obtain:

BY HAX
RS 2 =
: ° aA%4B°
AY -B
N__=2poTB>_ B R XR (4.3
RS 2 2. o
0 42,52
5. Added moment of inertia and damping for
rolling: coupling (-m-llnu('u'ulq of volling into
swayving.

As mentionedbefore in chapter 1, we can con-
ceiveinthe linearized case the rolling motion of
the system, ©=© cos(ot+Y), as a combined

heaving and rolling" motion of -the separate
cylinders, accoringto

M. =—— { —X'R sin ot+YR cos ot } (4.33)
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y =-10
._ye

(5:1)

(0] DNy =

el =

‘“The heaving motions of the two separate
cylinders have 180° phase difference while the
rolling motions are in phase.

‘Cu-ulr‘ih'ulion of the heaving compvmu-‘ul‘.

In cont'raétwlrth-.the case of puf‘e heaving, con-’
sideredin chapter3, thesource potential ccps -and
multipole potentials c,cp:m have to be skew-sym-

‘ ' 1
metric with respect to x= —il' -
v Therefore, \}ye define:
c o1 s s
CP(X,Y)=£ { ? (X,M)'CP. ('X+1,Y') }
- . (5.2)
- (r e>=1'{’ v, (,0)-0 (',0')
Pam' I TE | Tam ) 9, 00,00 ¢

~where cp&and (P;m are defined by (3. 1‘) and (3. 2).

Inan analogous manner we define the complete
potential by -

o N ,
cm(r. 6t =52 { o + = %, toosat+,
AR = I B Pom %2m ?
m=1
+'{ ° + s a, : } sin ot
. m 2m:
) . m= -1 :
- (5.3)
in which
c.. (’-( ,_1 \ .s(x‘ 8 x+1,y)
q>c' vy)_é' { CPC ,Y) q>C( _’y }
(5.4)

R 1 ‘q: )
CCPS(X,Y)=§{ ¢:(X,y')\*4?:(x*1fy5) }

where q>z'<an'd cp: are- defined by (3. 17).

The conjugate streamfunction becomes:

2m2

b - c .
Colr, 8, 1) io “ vt T p, Sy }cosot+
k . m=1 '

N
+{ % + s ¢ sin ot
E s %om \PZm} o
i m=1 .

(5.5)
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. B 1 1 . T
where @0 "o’ MB+NA é+pBo° MA -NBj the 1
) g 2 2 2 2 2 2 fes
v (x,) —%{ wz(x,y)—wz(‘xﬂ.y,) } A"+B A"+B effic
c ! | .
‘ o | (5. 9) suct
1 5 \ N
c\p (x,y) =§ {\ps(x.y)l_-\PS(XH., y) } (5.6) The rolling moment on 1he syslem aboul P is cont
s s s - . “found to be: ' ‘ sect
c 1 s 5 ' ' B
8) == -, 0) - r',o" - (
YomiTr O =3 { \PZm(_l .)_ Yo (T ),} ) 5
. ox ‘
: . MR——Z f p (1, e){(x S5 +y ')3 2
s ] :
in’whi‘ch \pc.‘and vy are defined by «(3..20) and (PZm _é » . (5.10)
by (3.9). . . _ ‘ .- wfle
The coefflcleﬂts p2m and q2m in the ex- Substituting (5.9), we find: ) bety
pressions (5. 2) and (5.4) are determined from a M0B+N A . MoA’_N B - cont
set of linear equat:ionsvvsimilar to (3.25). How- MR=—pB — ',; é—pBool ) €00
' ' . c8s c8 cs A +B .- A"+B Ir
* ever; the streamfunctions y , \p and y_ in :
c 2m (5.11) o
L ih
these equations have to be replaced by \yc,-c\ps where . :
‘and © tively, which are defined b 2
which are defined ‘
an \PZm’ respec lVE‘3 Y. C y \Mo-_:. f M(6). { ‘(x+_1)£+ ‘;z; de
(5. 5). : w - A
Analogous to. exp1 ession (3. 32), we: find for the 2 sec
pressure:distribution along the cylinder contour: - m (5.12)
' ' 2 S ] e=e
B+NA. MA -NB
p,(1,0) = pB £z—zy+ pB o—5—5 ¥ (6.7) f N(®) { (x+21) ax }de i a
A +B A +B
. 'é, T
where: H a
' N . Thc_e added moment of inertia IR and damping
c m : ; 3 -
A= 1 )+ = . (1, = H '
W (L, ) m= 1p2m WZm( 2,) : NR' per-unit length due to the heaving component
N | is given by: ‘ Wbe
c o
B=" v, (1 —)+ 2 g, W (li3) - M B+N A _
. m=1 IR =pBoli (5.13) . g
.. A ' '
N (5..8) | +B
M= + 3 ] ’ - -
o (1 8) q2 L, e) .. M _A-N B S
m= ‘N_=pB ¢l (5. 14)
R ° A +B ' :
N ,
N=%¢ (1,0)+ I p, ‘e, (1,0
2m 2m o : anc
m=1 Contributioir of the rolling component. anc
Inserting; according to (5.1), d—)—l:—lé and Itis reédily seenthatinthis case the potentials
and streamfunctions can be chosen identically to
ﬂ _ 1_le ‘we find: those ofithe pure swaying motion, definedby (4. 5),
W2 2 e , (4.8) 1

equ



.10)

12y

5.14)

|
Ltials :
1y to
(4..9),

" the form (4. 9)'_a'nd (4. 10).

.11) -

. The complete potential and streamfunction have
However, here the.co-

efficients p have to be determined

and q2

such that the 1oll’owing boundary condition on the.
“"contour -of the right-hand cylinder is valid, (6’

section 5 3]

3%__dedr Py dod 1.2
' '_——'E(R)

J ¢ ‘ 5.15
n dtds T Ts (5.15)

where R ="{x2l(r1:, 6) +y (1,,-0)‘} " is the distance

"' between the -origin O and the point (x,y) on the

coatour of the 'r.ight—hand_cylinder and s the line
coordinate along this contour (Figure:1.1)..
In the usual manner we r-educe (5.15) to: -

(1 0)— \_{J(l { (1 0)+y (1, 86) -

2
_B}
0

Analogous to the method, expounded in [6,
section 5. 3]; we represent the rolling motion by

. de
’ e=ea cos(ot+r) and substitute — = -ea o'8in(ot+7)

dt

. in above formula. Then we obtain:

o

'—‘{Mlm wu-w

gb
(e)(p cos ot+q smot)
(5.17)
where
2 . 2 2
X (1!0)+y (1!0)_B0
g(0) = 2
B
o .
9 ) (5.18)
T KB
"—"———ya ° inY -
Po™"2p S
and
2.
9 KB .
q =——2cosy (5.18) -

o 2b

ThlS canber educed tolthe following set of linear
equations for p -and q

(5.‘16) '

_where we substitute for the coefficients p

. N
cd o cd_ j
1, 0) - 1, =)= ; 3]
v 0 -Tw (L,5)= = p, £ (6)
m=0
| N (5.19)
“l,0-%a =3 o 1 (8
) W-s(' +8) - Ws(""i)_ Ym 2m
. m=0 :
in which
2 ' )
x (1,9) +y?(1, 0) —Bo
£ =g(®)= 3
(o} BZ
o
£, - (1 -)— w (1‘;0),m;‘o
Z_m . ‘

For the. pressure along the contour of the right -

_hand cylinder due to the rolling motion of the

separate cylinders we find, analogous to (4. 23):
"1 v -PED . ' _
pR(l,e)'—-——-.(»M cos ot - Nsin at), (5. 21)
hlg
and
m

qzm’,, which are found in the expressions (4. 22)

equations: (5.19).

Analogous to (4. 32) and (4. 33), we find for the

hydrodynamic moment on the system.

.
2B pgb

_M'=°—
hlg

R { ~Xh sin ot+YR cos ot}r " (5.22)

Combining this with the relation:

407

. for M and N, the values which satiéfy the set of

g@=— © osin(ot+Y) =
dt a -
',Zbg - . .
2(—qc'sm ot—pocos ot)
TrOB'o : - )
. o (5.23)
which is dex ived from (5.18), we. find:
" =_pB4YRq XR'Doe poB4YRp° XRqoé
R o p<2+q2 _ p2+qg ‘
o o . o o
- (5.24)

o . R
For the added moment of inertia IR and damping

N_ per unit length dlie. to rolling coniponent we

find
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. Y X :
R _pt Rl TR (5.25)
| = Q.
R P 2 2

P +q 0

Y p -X _¢q

R 4 R o Ro -
= - 5.:26
NR =P°B, 2 2 (5.26)

P+

where the expressions for the quantities XR and |

YR are given by ‘(4.‘34'), in which we substitute

for'the coefficients ‘pzm and (_IZm

inthe expiressions(4.22) for M and N the values,

satisfying the set of linear equations (5.:19).
Finally, we find'from (5. 13), (5. 14), (5.25) and

(5.26) for the total added moment of inertia IR

and the total damping NR of the system per unit

length.
M B+N A +
T o ,4YRqo xR.po .
I =pB 1 +pB (5.27)
R o 2 0 2 2
A +B ‘ p +q
o o0
MA-NB 4 YRrP, *r%
N_=pB al + poB —
o 2 2 2
A +B p0+qo
" (5.28).

- Analogous to (4..26) the swaying force on the
system due to the rolling motion is determined

from: _
; /2 ' V() o
FSR=—2BOV f {p 1, e)+p 1, e)} .de
._‘“/2'
(5..29)

For py(1,0) we substitute (5.9) while for.

p-R(l, 8) the following expressi'dn is inserted:

2 2
B” Mq +N poB pM-q N -
P qo Po po A PO q‘o,_

, which are fouind.

. 1, Ursell, F,

M +N,-
B3 oqo opoe B3 00 o o
*2o 22 P 22
po_ qo‘ po qo
(5.31)

- The quarit'itﬂies_l'\_lllo and N—'—o in the first twoterms

" of this expression are given by:.

™
2
M= [N (ox\ﬂde
o
hLS
2
(5.32)
A1
2 0
N - [ ne) 22 g .
o “ .
2

in whi:ch‘for MandNthe expressions are insefted
which are given by (5.8). The quantities. Mo' and

1(1‘0 in the last two terms of (5. 31) are obtained by - |

replacingin (5. 32) the functions M(6) and N(6) in

the integrands by the sim11a1 functlons which are -

found in (5. 21).
So, finally, for the added mass and damping

per umtlength for swaying produced by the roll-.

ing motion we. obtain:

MB+NA Mg +N p

: : o’
M —pBl——.+pB

SR 2 2
°© A%+B" - p
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Summary

In the present report expressions are derived for the hydrodynamic
coefficients of two identical rigidly connected parallel cylinders of
infinite length, which perform harmonic oscillgtions in.the free fluid
surface. The cylinders are supposed to have only connections above the
free surface. q ) .

The method applied in this report is in fact an extension of Ursell's

method for the corresponding problem of one cylinder.



Preface

In this report basic data are given for the determination according to

the strip theory, of the hydrodynamic coefficients of catamarans performing
harmonic oscillations.

The reader is supposed to be familiar tQ a certain extent with Ursell's
method to evaluate the hydrodynamic coefficieﬁfs of a single cylinder,
oscillating in the free surface. This method is in fact the starting point
for the determination of the hydrodynamic coefficients of a "single-body"
vessel according to the strip theory. For this the reader is referred to the
papers of Ursell [1,é], Tasal [3,&1, or Porter [5}1 Q
Their resulbs have been compiled and supplemented by the present author in
his earlier report [6].~It will be seen that many methods,bwhich are needed
for the solution of the double-¢ylinder problem, are identical to those of
the single-cylinder problem and, therefore, they will be mentioned in this
report only very concisely. In order to aid the reader who wants to acquaint
himself with these methods, the present author will, at some places in this

report,; refer with much detail to his above-mentioned report.

o




Introduction

The last few years several catamarans have been constructed for all kinds

of purposes. This is largely due -to the possibility to construct these‘vesséls
in such a way that the resistance for high Fn is much lower as compared with
convential ships with the same deck area. In this connection it should be
observed that we can give, the floating bodies of the catamaran shapes, which
can't exist as separate single body vessels. However, experiences with recent
designs showed that catamarans have larger heaving and pitching motions as
compared with convential ships. These phenomena justify a theoretical analysis
of the motions of a catamaran. The present repbrt gives a basis to determine

the hydrodynamic coefficients of such a ship with the strip theory method,

which has proved to give very useful results fOr single body vessels. Analogous
to the dingle body vessel the catamaran is divided up into a number of sections
and for each,sectibn, which is taken to have a constant profile, ‘the hydrodynamic
properties are determingd, agsuming that the disturbandes in the fluid due

to the motions of the séctions only propagate in the direction perpendicular

to its longitudingl axes. a

The catamaran is assumed to be composed of two identical floating bodies,

which hgve been rigidly connected above the free surface. Consequently for

the application of the stfiptheory method we need expressions for the hydrqdynamic
coefficients of a system of two infinitely long identical parallei cylinders,
which have been rigidly connected above the free surface at a given finite
distance. : ’ = D '
Analogous to the single cylinder, this problem is formulatied as a linearized |
boundary value problem from the potential theory, which is achieved by assuming
the fluid to be invis¢id incompressible and irrotational and the amplitudes of
the motions of the system to be very small.

The velocity potential is again composed of a linear combination of a source or
dipole potential and a number of multipole potentials such that the boundary
conditions are satisfied. However, the expressions for the source,dipole and
multipole potentials have to be adapted to the conditions which result from

the presencekof two cylinders.

Further, analogous to the single-cylinder problem also for the problem of two
cylipders we have to determine a conformal transformation, which maps a cireular
cylinder into the cross<section of one of these cylinders. Since suitable
numerical techniques are availlable to devise such a transformation, w& will

consider in this report cylinders with an arbitrary shape,[See 6; section h.1}



1 Formulation of the problem

We assume that a system of two parallel identical infinitely long cylinders,
which are rigidly conpected above the free surface at a distance 1 from each
other, carries out a harmonic one-dimensional oscillation with frequency ¢ ,
while the mean position of the axes of both cylinders is in the undisturbed
free surface of the fluid. The origin of the rectangular Cartesian coordinates
(x,y) is taken in the mean position of the axis of the eight-hand cylinder
(Fig. 1.1). The x-axis is horizontal and perpendicular to the axis of the .
cylinder, the y-axis vertical, positive in dovnward direction.

S | o

a — %//’f&/a 4 —- X
" P -
T e

FIG. ; 1.]
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Its possible modes of oscillation we consider heaving, swaying and rolliﬁg
about the point P , which is in the free surface and in the symmetry plane
x = -31 of the system. With respect to the rolling motion, represented by

J =;; cos(ot+Y), it is readily seen that this motion involves & combined

"heaving, swaying and rolling motion of the separate cylinders. For the right-

hand cylinder we find the following ordiQates of these components respectively:

Yy = 31 sin ¢ _
x9 = 31 (cosd- 1) (1.1)
o=V

Expanding the sine and cosine functions in these formulas and retaining only

the first term we obtain:

Yy = L §
o O ;0 = ;132 ) (1.2)




Since the swaying component is a second order quantity, we shall conceive

in this report the rolling motion of the double cylinder system as a combined
heaving and rolling motion of the separate cylinders. The veloeity potential
for the rolling motion of the system will consist of a component due to the
heaving and another due to the rolling motion of the separaté cylinders.’
Analogous to the single cylinder problem [6; ch 1], a velogity potential

¢ (x,y,t) has to be determined, which is a solution of a linearized boundary

value problem from the potential theory. Consequently we may write: q
92 ©

°

t

o(x, y, t) = -ig(x, y) & (1.3)

where ¢ (x,y)} is a solution of the equation of Laplace
2 2 . )
L P N RPN | (1.4)

3x2 ng

and satisfies, in addition the following conditions:

(i) the linearized free-surface condition:

k¢ + L. o when y = o ‘ , (1.5)
2 % ’
in which k =-§— represents the wave number.

(ii) the radiation condition:

~ky-ikx , ) 0
$ > C1e 88 X ¥ o (1.6)
~ky+ikx
L C2e as x > -

vhere C1and Cgare constants

'This condition implies that every disturbance in the fluid vanishes when

y >
(iii) the boundary condition on the éylinder contour:

39 - |

= " Un (x, y) when y = 0 (1.7)
where U denotes the normal outward velocity on the cylinder surface (Fig.1.1).
We observe that the above condition refers to the mean position of the system,

since the linearized case is considered.

(iv) when the system is carrying out a heaving motion, the potential ¢ (x.y)

has to be a symmetric function with respect to the plane x = <} 1, for swaying

N



and rolling the potential has to be a skew-symmetric one.

(v) for 1 = O the potentials for the heaving, swaying and rolling motion of
the double-cylinder system become equivalent with the potentials for the

respective motions of one cylinder.
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2 Outline of the method of solution

Analogous to the singlé;cylinder problem the velocity potential for the two
cylinders is also synthesized of a source or dipole potential and a linear
combination of multipole potentials, The source, dipole and multipele potentials
are chosen such that the conditions (i), (ii), (iv) and (v) are satisfied by.
each. potential separately, while the condition (iii) is satisfied by choosing
the linear combination in an appropriate way. In the following chapters we

will derive for each mode of oscillation of the double-cylinder system adequate
expressions for the above mentioned pqtentials. It turns out, that these
potentials are . eapily derived from the corresponding single-cylinder potentials.
It is well~known that the expressions for the multipole potentials (see (2.2)
and (3.2)) for the single«cylinder problem depend on the parameters a,

a a co e d
) ‘]’ 3’
which dre the coefficients in the following transformation formulas, [6;eq(ha1.8)]:

N n %on+1
x=adrsino+ S (1) sin (2n+1)0 |
" en+1
n=0 r
(2.1)
N
vy = a { r cos O + Ei (- 1)n+1 Snil cos(2n+1)®}
n=0

The ceefficients a, I ags- et...are detefmined such that the éemi—unit gcircle
(r=1, -'él $0 g 2}) in the reference plane ( & =plane);, in which the polar
coordinaté. system (r,0 ) has been defined, is mapped into the créss-section

in the physical plane ( z < plane) with cartesian coordinates (x,y), [6; section
h.f]. The number of terms M, considered in the equations (2.1), determines the

accuracy of the transformation.

" The formulas (2.1).can also be interpreted as defining a curvilinear coordinate

system (r,0) in the physical plane such that one of the coordinate lines (r=1)

coincides with the cross-section. o



Q

y=consta

0,

n
r Q

In addition to the rectangular coordinate system (x,y), as defined in the

FIG. 2.1

previous chapter, which has its origin O in the mean position of the axis of
the right-hand cylinder, we introduce in this chapter an identical coordinate
system, which hasbitg origin in the mean positioh of the axis of the left-hand
cylinder. The first-mentioned system is denoted here by (% ) with origin

04, the other by ( x

1 Y4

X y2) with origin,Og, (Fig. 2.1). The corresponding polar

codrdinate systemg in-thet.-plane or curvilinear coordinate systems'in the z-plane
-

are denoted by (r1,9 1) and (r2,9 2) respectively. According to (2.1) the v

following relations are valid between the rectangular and curvilinear coordinates

in the 2z -plane:

M
a
- . n 2n+l .
X. = a { r. sin ei + :E (-1)" —=—— sin (2n+1)9i£

1 2n+1’
n=0 Ty
M (2.2)
- n+1_a2n+1
y; = a { r. cos ei +-:Z; (-1) —7zggﬁ-cos (2n+1)9L }
e n=0 ri

i=1, 2.

Consider a point @ in the z -plane, which is the image point of the point Q'

in the ¢ -plane. The point’Q is represented by the rectangular coordinates



o

( Xi5 ¥, ) and the curVilinear coordinates ( rys 61), which both refer to the
origin 0,. The image point Q' in the ¢ -plane is given by the polar coordinates
&1, 8, ) with origin O; However, this point can also be represented by the
polar coordinates (r2, 92 ) with originO!, It is easily seen from Fig. 2.1.,.
that the following relations are valid between the polar coordinate: systems

(I‘.], 91) and (rzs 62):

1

r,cos 91 (2.3)

6, = arctan

1 +r s5in ©
2 _ N

r =V/r? +l'2+2r1l'sin )

2 1

The distance 1' between the two semi-circles can be determined from the relation
Ll

which is obtained by inserting in the first equation of (2.2) eitherX2'=-l, 92='§—

and.r2 =1l'or x, = -1, 8, = - —and r, = 1', This yields:

1 1 2 1
M
Bon+1 g
, , Zon+1
l=a &l * Z Lr2nt] (2.4)
n=0

where 1' > 2
It is clear that’ the equations (2.3) can also be interpreted as representing
the relations between the curvilinear coordinate systems ( Tys 91) and (rzs 8

in the 7 -plane, which are very useful in our future calculations.

/
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©'=constant

10.

3 Added mass and damping for the heaving motion

It is clear; that the source and the multipole potentiéls, which are used

for the solution of the heaving problem of one cylinder can't be used for

the solution of our problem here since the symmetry condition (iv) is not
satisfied. However, it will be seen, that the set of potentials, which satisfy
each the condition (iv) are eésily derived from the single-cylinder potentials.
The source potential ¢S and the symmetric multipole potentials ¢;m , used for

the single-cylinder problem are given by:

@

0% (x, y) =__b{ J' o-Blxl (ksin gy - gcos By)@ﬂ + ite " ky-iklxl}

o k2 + B2 (3.1)
o
and
?s‘(r 6)= cos 2me+ka {cos(2m—1)6t¢£§ ( 1)n (2n+1)a2n+1cos(2m+2n+1e)i (3.2)
em " VT T 2m 1 - ‘ - . : .
m r m (2m—1)r2m n=0 (2m+2n+1)r2m+2n+1

m= 1, 2, 3 .....

In the first formular b represents the wave height at infinity due to the

oscillation of the cylinder while the parameters a, Bis Boarecren. in the

3

second formula reﬁresent the coefficients in the transférmation formulas (2.1)

e — a - EBO

O=constant /' | ¥ r=constant

FIG. 3.1

The corresponding potentials for the double-cylinder problem, which will be
denoted by the superscript ¢, are defined by:

43 (x, y) = 3 {cﬁs(x, y) + ¢S (x+1, y)i - {3.3)

and « ..

“Pam (x> ©) = 1{p3, (r.0 ) + 93 (', o)} (3.4)
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where, according to (2.3}, by idéntifying (r',6') with (r2,92) and (r ,0 )
with,(r1,e1l:

1' + r sin 6
r cos O

6'= arctan

(3.5)

r' = r2 + 1'2 + 21'r sin 6

in which 1' and 1 satisfy the relation (2.4).

Since the conditions (i) and (ii) are satisfied by thehpotentials ¢° and ?Zm
separately, the 5orresponding potentialsc¢s andcvgm for the double-cylinder
problem satisfy also these conditions. Further, we can easily verify, that

these potentials satisfy the symmetry condition (iv) and the condition (v)

. for 1=0.

By using the Cauchy~Riemann relations we determiné the conjugate streamfunctions

v ° and w;m of the potentials ¢° and ?Zm respectively. In rectangular coordinates

these relations have the form

39 o 3
9x 9y
> (3.6)
\ 3y ox
and in polar coordinates:
¥ __ 1w
or r 386
. =i 3¢ (3.7)
r r 236’
consequently:
WPlx, )z B2y [erPlReost Reluy g 3 giied] (3.8)
| k +8 N )
°© X220 .
and N
(2n+1) ) N
i i - o a,  .8in(2m+2n+1)e -~
T D B ey o el
2m* .em : 2m+2n+1
* 2m=1 (2m+2n+1)r
(em-1)r _
n=0
(3.9)

. c,s : ¢, s b . .
The streamfunctions V¥ (X, ¥) and wem(r,e) for the double-cylinder system

are given by:

W v) = P ) ¢ Py ' (3.10)

and

g@mh,e)=%iw;“r,6)+¢;JN, g* (3.11)

f
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Expression (3.10) is clear without further preface.

The validity of (3.11) is easily shown by obéerving, that :

.8 s .
3o, (' 6'),_ ap, (r', 8') r + lsin @ ~ (3.12)
ar - or' r'
and
awzm (r', 8') szm(r', 8') r(r + lsin 0) (3.13)
RY:) ' 26! r'2

where Wzm(r', 0') is defined such, that the Cauchy-Riemann relation
5 ! ! 8 ! !
Wop(r's 01) 1 dp(xt, 80)
’ r 3 ’ holds

ar

Then it can be shown that also:

B¢Zm(r" o') 1 szm(r", o)

ar' . r' 20" (3.14)

which proves, that (3.11) is correct.

The velocity potential for the heaving motion of the system is written in

the form:;
N N .
c, _ &b C, S , c s c,s c, B .
¢ (r, 8, t)= nc[{ ¢c * me p2m ?2m} cos 0t+{_ ¢s * 2 Qo P2m } sin Ot]
m=1 (3.15)
where o <
,s‘
“optx, y) = 3] 07 Gy 4 05Gx 4 1, 9}
and '
c. .8 ] s
o5(x, ¥) = 3400 (x, ¥) + ¢2(x + 1, )} (3.16)
while
¢z(x, y) = me Y coskx
. kv Bl : (3.17)
®(x, y) = Te Jsin k| x|~ JP-——§—7§— (BcosBy~k sin By)dB
S k +8 .

in which the coordinates (x,y) and (r,6) are related by the formulas (2.1)
For the conjugate streamfunction Cy (r, 6, t)we find:

N N
b s s , .18
“¥(r,0,t)= i‘;[{cw; S By Vo b cosote{ S+ qgmcwzm} sin ot (3.18)
n= 1 n=1 -
wvhere )
DECx ¥ = S G )+ v, (3.19)
and o (
cw:‘(X9 Y) = %{w: (x: Y) + w:(x"'ls y)}
in which:
wi (%, y) = me KYsin kx
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-Blxl
'w:(x, y) =+ I‘e‘gs‘ 2°'% Bsin By + k S»d
_ K+ B in By + k cos By B
o _ ky
+ Twe cos kx x>o

(3. 20)

The values of the coefficients;pemandq2m in (3.15) and (3.18) are determined
in such a way that the boundary condition (iii) on the contour of the cylinders
ig satisfied. The value of N determines the accuracy of the approximation of
the velocity potential by (3.15). b

In virtue of the symmetry of the system with respect to x = =3l it is sufficient
to restrict our discussions with respect to the determination of p2m and Loy

to the right-hand cylinder.

The boundary condition on the contour of this cylinder is given by

c
3¢ _ dy Y _dy ax
~ = 3¢ °os a Or= —z- = == (3. 21)

vhere qis the angle between the positive normal on the cross-section and the

positive y-axis (Fig. 3.2)

Ll 8
y FIG. 3.2
Analogous to the single-cylinder problem [6, (h.2.8)...........;(h.2.13)],
this relation can be reduced to
d . \ ’
c“’(r=1,e)=-a%x(-r=1,e) (3. 22)
Substituting 8 = 0, yields:
c 1y = . ¥ 5 ‘
¥, L) T B (3. 23)
T 4 :
Eliminating 3y from (3.22) and (3.23), we obtain:
’ 1 ) .24
c ¥(1, 0) = X(B,e) c W(1,'%) . (3 )
o

Substituting (3.18) in this expression we find a set of 2N linear equations

for the coefficients and
cle P2m qzm



6 ‘ N
' . x(1,8) o e .
cwz(ue)———-—gg— v, 3) = 3 by £, (15 0)
n=1
(3. 25)
“¥5(1,0) - fﬂlg:—) b0, 3 T 7 %n Totls ©
where )
_x(1, 8) s (3. 26)
£, (1, 6) -X—BQ— Vo (1o 3) = Sup (1, 0)

It is observed, that the set of equationg (3.25) has to be solved for the
m K

range - - 6 ¢ -

& > § V&5

The velocity potential at the contour of the cylinder (r=1) is written as:

°¢(1,~e, t) = (M sinot + N cosot) ‘ © (3. 27)
where N
- _c¢,s T
m(e) = ¢s qum ?2m » 6)
m=1
c,s - N c.s 4. (3. 28)
N(e) = S (1, 8) + 5 p, pS (1, 0)
m=1
c

. . o e X
According to the relation p(r,08)= -~ p -g-t—e; the pressure distribution along

the contour of the cylinder can be written as:

p(1, 8) = ~ 9—%3 (M cosot - N sinot) . (3. 29)
We aefine:

dy . _eb_ (~A cos ot— B s‘inqot.) (3. 30)

dt 1r0Bo

where, in virtue of (3.23):

N ) s
A= LD 0T B 500 )
m=1
' (3. 31)
. c s jul
B = lpS (19 Z q2m wzm ] 2)

m=1

Then the pressure along the cylinder contour can be written in the following

fon‘ﬁ:
\ , _ MB + NA . MA -~ NB . f )
p(1, 6)—pB0—2 5 Y+DB0—-—-—».2 — ¥ . (3. 32)

A® + B ° A + B

Th,



The total vertical force per unit length on both cylinders becomes:

F =-2| p(1, 6) coseds

‘y . -
8 (-5¢80<3) (3. 33)
Analogous to the single-cylinder problem [6; egs(4.2.21), 0, (h.2.26)],
this expression can be reduced to:
M B+N A M A-N B
Fo= —20B° 22 - 2pB§0e-9-2——§- v (3. 34)
y AS+B AT+B
h
where “/2 )
M = f m(e) H8L g
e} G
11. N
/2 (3. 35)
¥/2 (o)
= 0) ——=2 °
N f N(©) G de
Ly
in which N
n
W(8) = cosd + 2 (~1)" (20+1) 8, ., cos (2n+1)e
N n=o (3. 36)
G‘= 1+ EE a2n+1
‘ n=o
For the added mass My and damping Ny per unit length we find:
MOB + NOA
M = 2B —)/—m— (3. 37)
y °© A% 4P
- : . 38
N2 = 2p 032 MOA NOB . (3. 38)
y °© T2 2
A+ B

15.



4 Added mass and demping for swaying; coupling coefficients of swaying into

rolling

The dipolé and asymmetric multipole potentaals (Niandqgm, used for finding
the velocity potential for the single-cylinder problem are given by:

o]

¢ (x, )= gol __ g 2 +f 7 H{cosﬁy +351n6y}d6 + me -ky—iklxl}
0 L (xPy?) K2eg°
) x>0 (b 1)
: N n .
. i -1) +1 2m+2n+2)0
@a (e e)—Sin(2m+])e . ka{s;n omg zz (“1) %on +1(2n+ )sin(2m+2n+2) }
om " °® r2m+1 2mr2m (Pm+2n+2)r 2m+2n+2 )
n=o ( . 2)

The conjugate streamfunctions of these potentials are given by:

[><]

-
d gb 'y ) BcosBy - ksinBy -ky-ik{x| }
vi(xy y) no{' K (xPry?) ‘f 2 2 - ag + ime (4. 3)

k +B

(- 1) Bon+1 n+1)cos(2m+2n+2)9

¢Zm(r5 e)-COS(S$+1)e - ka{cosegi + E: 2m+2n+2 (b b)
r : ’ 2mr ' (2m+2n+2)r

n=o

The rectangular coordinates (x,y) and curvilinear coordinates (r, 8) in these
formulas relate to the right-hand cylinder of the system as indicated in Fig3.1
The dipole potential °¢Q (x,¥) and the multipole potentials c?gm (r, 8) for

the double-cylinder problem are now defined by

%% v)= 3 L%, ) + 6%, )} | (4. 5)

9 (r, 0)= 3402 (r, 0) ¢ g2 00} (b. 6)

where (r, ©) and (r',8") represent the curvilinear coordinate systems, which
relate respectivély to the right-hand and left-hand cylinder of the system
in the physical plene (Fig. 3.1).

Between the coordinate systems (rs-6) and (r', 0% exist the relations (3.5).

Analogous to the heaving problem we find for the coresponding %treamfunctions:

c.d

v o(x, y)= {w x,y)+¢(x+l,y)}

‘Jlel(nr, 6)= 3 {wgm(r, 8) + wgm(r', e')i . (4. 8)

For the complete potential €9 and conjugate streamfunction ¢v we write:

16.

(b, 7).



.
.l

17.

N ‘ N
‘ b d c.a c,d c.a I
®o(r, 6, t)= ﬁ—c[{ “o ZPZm f/’zmgcosot+ { o+ Z L sz}“’ln(’t] (k. 9)
- m=T o

m=1

' N , N ,
b d ¢ a - c. d q c a o (Ll. 10)
Cq:(r, ®, t)= g_o-[{ Cl‘bc-'- Zp2m lP2m§ cosot+{ lps-'- qu2m lP2m§ s1not]
m=1 m=1

c¢2(x, Y) = %{‘bi(xs Y) + ¢S(X+ls Y)}
“x, y) = %{¢d(x, y) + oSxe1, ¥}
8 3 3 (k. 11)
Cwi(x, y) = Huglx, ¥) + S0, ) }
d
lpd(xs y) = ;{_‘pg(xa y) + ‘ps(x"'l, }")} :
in which &
¢g(x, y) = = ﬂedkysiQkx -
¢d(xg y) = + ne” Vcoskx ¥ j‘e—ﬁxlkcosgy+gsin8y.d8 + —*—E——§— Xx 20
s - k(x“+y“)
and o] k +8

(k. 12)

wg(x, y) = ﬂe_kycoskx .
: ) aial L

W3 x, ) = ne " Vsink x| - f Bl BCOZByzksmVBY ag - —L5—

: k“+8 k(x"+y")

The coefficients Pop, and 4, are chosen such that the boundary conditdion on

the contour of the cylinder is satisfied. It is easlly verified that expression.
(4.9) satisfies also the other condition mentioned in chapter 1.

In virtue of the skew-symmetry of the system with respect to x = -31, it is
again sufficient to restrict our discussions to the right-hand cylinder.

From Fig. 3.2. we derive, that the boundary condition on the surface of this
cylinder 1s given by:

C C
3 0 _dx . 9 ¥ _ dx dy '
on dg ¢ °r 3% T Gt ds (k. 13)

Anelogous to the single-cylinder problem [6; section 5.2], we can reduce this.:
relation to

¢ ) (o] _ 7y _ dx - k. 1k
¥(x=1, 0) - “¥(r=1, 3) = T y(r=1, ). (. 1h)
Bubstituting 6 =g yields:
C‘ ¢ 1‘. =g£ (u' 15)
Y1, 0) - “¥1,35) =F T

where T is the draft of the cylinder.

Eliminating dx from (4.14) and (4.15) yields:
dt

: ¢, m (b 16)
m{CW(1’ e)—c‘il(19”121)}=‘f{c\y(1s O)— q}(1s§)} &
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Inserting (4.10), we obtain the following set of linear equations for the

coefficients p‘2m and Q,

N
o, o) - %30, DY - %{cwd(u 0) - %20, D=5 py T

c c
m= 1
¢, d ¢ d my (1, 8) {c.d c d,, ™ N
{580, 0 - S0, D} - BB o0, 0 - 0k 5 oy, 1y
. m=1

(b, 17)

where

£ =Y—(“—91{°wa (1, 0) - o3 (1, 1)} - {cwgm(ue )= S (1 '£)§ (4. 18)

Next, we define:

dx _gb § _ .
H = ToT - A cos ot - B sin otj (4. 19)
Then, according to (4,10) and (%4.15): ~
N ..
_c d myoc d c a Ty c.a :
A= %50, D=0, 0wy Sup (1, B g (1, 0]
m=1 (4. 20)

s s 2

; . N
_c,d myoc d : c,.a ZTy C.B
B = Sugh - Sg0s 00+ e, 4 5,009 S50, 0
' m=1

The potential along the contour of the right-hand cylinder is defined in the

following way:

“ot1, 0) = E2.(M sin ot + N cos ot) | : (4. 21)
Than X
= %%(1, o) %n (1, 0)
M= ¢s(1’ o)+ mZ=1 QYp Pop 1> ©
N - (4. 22)
_c d - ¢ a 5
N = ¢c(1’ 0) + Z_ Pop ()DQm(J’ o)
m=1:
The pressure along this cylinder can be written in the form:
p(1, &) = -‘9%3'(M cos ot - N sin ot) (4.23)
or, by using (4.19):
MB+NA ., - .
p(1, 6)=pT—2-—2-x+pToMgN§x (h,2k)
) A +B A™+B ]
The total horizontal hydrodynamic force in the system is given by:
F =4 1 i :
x 2 fp( ,» 0) sin ads (4.25)

T T
S(-ESGS‘E)

Ansalogous to the single«cylinder problem [6,‘,section 5.2]; this formuls can

be reduced to:




i N
A 4
n

‘
\

I
| 2 o)

. V(e , b, 26
F, = -2B f p(1, 6) —— do ( )

I

T2

where
S N n

v(e) = - sinNB- +n§O(-1) 8, ,1(20%1)sin(2n+1)6 (4..27)

G =1 +Z a'2n+1
n=0

Substituting (4.24), we obtain: 4

M B+N A M A-N_B X
' . . . 28
F = =2pTB —%‘X - QDTBOO —'2—'2——)( ( )
X © A%+B AS+B
where
Xii
2
_ oy V(0)
N = f N(e)rG ae | |
_T o L, 2
2 ) ( 9)
il °
2
- : v(e)
M = f M(8) ——= de
-
2
For the added mass of the system per unit lenth, we find:
MOB+NYA . .
M_= 20TB —5—5- P (k. 30)
X ° AT+B
and for the damping:
MA—NOB
N = 2pTB c——> o (k. 31)
X ‘ A“+B

°

We consider now the rolling moment on the system about the point P due to

the swaying motion:

19.

m
u B : -
Mpg = = 2f p(1, e){ (31+x) %+ Y%X}de . (4. 32)

-1
2

where the moment is considered to be positive when it is in clockwise direction.

'Substituting (4.23), we obtain:

oB° pgb
MRS:»QT{-XRSM ot + Y, cos Gt} (4. 33)
’ il
where 5
o f P
X, = sz w(o) { (erd1) B+ v a0 (h. 34)
B
(o]

| =



m
a 2
* Y, =15 M(e){(x+%1)@‘-+ yﬂ} de (L. 34)
R B2 - 206 a6 :
o
2
Using (4.19), we can write (4.33) in the following form:
BY _+AX AY -BX ’
Mg = - 2pTB2 —g——-e-li % - 2poTB§ 2—2-13 % (4. 35)
©  A%4B AS+B

Hence, for the added moment of inertia and the damping per unit length: for

the rolling motion produced by swaying, we obtain:

I.. = 2pTB

BY +A')(R o
2 R
ce R R (b, 36)

A2+B2

AY -BXR

, ) R . . . (4. 37)
@ Noo = 2p0TB. —5—s |

. RS o A2+B2

£

20

“”
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2 Added moment of inertia and damping for rolling; coupling coefficients of .

rolling into swaying.

As mentioped before in chapter 1, we can conceive in the linearized case the
rolling motion of the system,17= chos(0t+y), as a combined heaving and

rolling motion of the separate cylinders, according to

Yy = %lt) ' (5- 1)
D" = 'D' /

The heaving motions of the two separate cylinders have 180° phase difference

while the rélling motions are in phase.

Contribution of thevhgaVing_component

In contrast with the case of pure heaving, considered in chapter 3, the source

. ‘ . ’ . c s . .
potential c¢s and multipole potentials ¢ have to be skew-symmetric with

respect to x = e%1 2
Therefore, we define:
“6(x, ¥) = 3L 0%(x, ¥) - 0%0xe1, y) |
: v (5. 2)
Ponrs 0) = Hpo (s 0) -y (ra0n)}

where ¢°and §p; are defined by (3.1) and (3.2).

In an analogous manner vye deflne the complete potentlal by

ccb(r, 8, t) = [{ ¢ + z p2m (Pz }cos ot +{ s +Z q2m°¢/;2m?ssin ot]
(5. 3)
ip which
"0 ¥) = Hollx, v) - 92(xe, v
. (5. 4)

%o (x, ¥) %{«bz(x, y) = 60 (x+l, y)}

where ¢2 and ¢z are defined by (3.17)

The conjugate streamfunction becomes:

“¥r, o, t) = 5—-5[{ v +Z Pop ‘1’2m§°°S ot + { v +Z q2m em Ssm cjt](5. 5)

m=1

where




ctl»c(x, y) = %{w:(x, y) - wz(xﬂ,. y)§
Cws(x, y) =1 {ullx, y) - w:(x+1, n} (5.6
“o,(rs vl (v, 8) - vl (x, 6}

in which d’zand U':are defined by (3,20) and dighby (3.9)
The coefficients Py, and in the expressions (5.2) and (5.4) are determined

~ from a set of linear equations similar to (3.25). However, the streamfunctions‘

c.s c.s
b ws and ¢2 in these equations have to be replaced by, w , w and

c
Y,n respectively, which are defined by (5.5)
Analogous to expression (3.32), we find for the pressure distribution along

the cylinder contour:

. MB + NA , MA - NB
P.(1, 8) = pB ——=—§ + B o—5—5 7.
H 0 42,2 o7 42,52 (5. 7)
where .
= © X : ¢ ul
c % m
B="y_ (1, 5) + a, v, (1, 3)
s 2 m 1 2m 2m 2 (5. 8)
o co .
M= "¢ (1, 8) +Z 8 Yo (1, 6)
m=1
_c c ;.
N =% (1, 6) +Z Poy Polls
m="1
| 2
Inserting, according to (5.1), dt = ldy and ——% =31/ , we find:
_pBolMB+NA'}' "B"lMA-NB;]
Py(1, 0) = 2 2 ' 2 2 (5. 9)
2 AT+BS 2 A“+B
The rolling moment on the system about P is found to be:
2 ox oy
1 ox .
ﬁf PH(1, 8) { (x+31) TR i de - (5. 10)
.. 2 .
Substituting (5. g), we find:
. M B+N A ¢ M A-N B '
MR -'-'—pBol —0—'2_2 J— pBOOl 02—2 J . (5- 11)
o AT A+
Where ul
"2
- [ (e gy 8x, 0 '
4, f MCo) { Cerdl) 3+ vt L ae , (5. 12)

2e.
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% ‘
fN(e {<x+%1 %— y%%fde (5. 12)

®

. H . .
The added moment of inertia IR and damping Ng per unit length due to the

heaving component is given by!

H M B+N A

I =pB1 =2 (5. 13)
R o A2+32

H MOA—NOB

NR = pB ol 2 2 (5. 14)

Contribution of the rolling component

o

It is reagily seen, that in this case the potentials and streamfunctions can
be chosen identically to those of the pure swaying motion, defined by (4.5),
cereeey (M.B).

The complete potentil and streamfunction have the form (4.9) and (X, 10)
However, here the coefflclents by, and 95, have to be determined such that
the following boundary condition on the contour of the righs-hand cylinder
is valid, [6, section 5.3];

(] (]
N av dR by _adada ;.2
3 R & or -95 " 4t as ‘2R ) (5. 15)

; 2 3
where R = {x2(1, 8)+ y (1, 9)}213 the distance between the origin O and the
point (x,y) on the contour of the right<hand cylinder and s the line coordinate
along this contour (fig. 1.1).

In the usual manner we reduce (5.15) to:

o] (] m d‘lj 2 2 2
¥(1, 8) - "v(1, 5) = -3 FE{x(1, °)+Y“’°)'Bof (5. 16)

Analogous to the4method, expounded in [6; gection 5.3], we represent the rolling
] ) d . .
motion by 17":12; cos(ot + y) and substitute =& = - Ja. o sin {ot + y) in above

dt
formula., Then we obtain:

;g{ ¥(1, 8) - %¥(1, D) } = g(6) (p_ cos ot + q_sinot) . (5. 17)
where |
x2(1, 8) + y2(1, .0) - Bi
gle) =
B
5 ,

nJLK B q (5. 18)

p = — sin y <




and "'%‘K B2 O
9, = g €08 ¥ (5. 18)

This can be reduced to the following set of linear equations for Py, &nd dy,

N
c, d c.d Ty _
w201, 0 - %30, D = 7 o, 1, (0)
m=0
N (5. 19)
c. d c. d Ty _
v (1, 8) = "y (1, 3) qum om' ©
m=0
in which
2(1, 8)+y2(1, 9)‘B§
f = g(e) = § 2
B
° (5. 20)
f2m = ‘pgm( [ 2) lp2m( 9) > m¢o

For the pressure along the contour of the right-hand cylinder due to the -
rolling motion of the separate cylinders, we find analogous to (4.23):

PR(."’ 8) = -pg £2=(M cos ot -= N sin ot) (5. 21)

where we substitute for the coefficients Pon and Aoy > which are found in
the expressions (4.22) for M and N, the values, which satisfy the set of
equations (5.19).

Analogous to (4.32) and (4.33), we find for the hydrodynamic moment on the

system.

2B2 pgb 7
My = —— {_x, sin ot + Y_ cos ot (5. 22)
™ R . R
Combining this with the relation: -
o _ Y o sin(ot+y) = 2bg, (-q_ sin ot = p_cos ot) . (5. 23)
dt a TIOB2 (o) o
which is derived from (5.18), we fihd:
Y q+ X.p . q .
v - ot BT TR0 5 gk T o L S (5. o)
o 2 2 o 2 2
° Po + qo P + q

[

. . -R . R .
For the added moment of inertia IR and damping NR per unit length due to

rolling component we find:

Ya + Xp
IR=th_R_°__x§£ - (5.25)
R o .2 2

PO"'QO

ng 4 TBPo ~ *r% (5. 26)-

1
jeol
Q
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where the expressions for the quantities Xﬁ and YR are given by (k4.34),
in which we substitute for the coefficients Py, 8nd 4y which are found
in the expressions (4.22) for M and N the values, satisfying the set of

linear equations (5.19).

Finally,we find from (5.13), (5.14), (5.25) and (5.26) for the total added
moment of inertia IRand the total damping NRof the systemwper unit length.

+
MoB NoA Bh XRqOA+ %RPQ

I =pBl—r—--—"T—4+p ~ . ¢ . (5. 27)
R A2 + B2 o) 2 + q2 '
(o] (o]
A - -
W = pB o1 o o0, poB" Z8% ~ 'a
R o’" T2, 2 o~ 2 . 2 0 (5. 28)
+ B P * 4, : .

o

Analogous to (4.26) the swaying force on the system due to the rolling motion

is determined from:

o,
. v(e)
Fgp = - 230f $pe(1, 0) + pp(1, e)}—@-— de (5. 29).
-7/ :
ForopH(T,e)we substitute (5.9) while for pR(1,9)the following expression is
inserted: u )
2 2 N
B~ Mg + . M - :
(1, 8) = PEs My Npozy + pOBo Ps qu J
Ppt’» ¥ T2 2, 2 2 "2, 2 (5. 30)
P, * 4, P, * a .

which is obtained by combining (5.21) and (5.23).

Then:
— + I R — _ — .
© A+ B © A+ B
. Tt M -
3 Moqo l,v_opo J 3 oPo 1\quo J
- pB” - - poB
o) 2 + 2 fo) 2 + 2
Po 9, Po 9

by: m
2 N
- A v(e)
M ] M(o) 5 ae
-3 (5. 32)
T .
2
N = N(e)wde
o G
_T
2

in which for M and N the expressions are inserted, which are given by (5.8).

The quantities ¥ and,ﬁo in the last two terms of (5.31) are obtained by
. o .

25.



replacing in (5.32) the functionsM(8)andN(6)in the integrands by the similar
functions, which are found in (5.21).

So, finally, for the added mass and damping per unit length:i for swaying
produced by the rolling motion we obtain:

2 lvIoB +-ﬁoA 3 Méqo * I:Io 0
M, = pB1 ———2 4+ B '
SR o 42, g2 o 2,2 (5. 33)
Fo o
MA-NB Mp - N
_ 2 o N 3 Mopo N9, (5. 3k4)
N pB al + paB
SR 2 o 2 2 . :
A+ B po+qo
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