
Enabling FPGA Mem-
ory Management for Big
Data Applications Using
Fletcher

L. Wijtemans

M
as
te
r’s

th
es
is

Enabling FPGA Memory
Management for Big Data
Applications Using Fletcher

by

L. Wijtemans

in partial fulfillment of the requirements for the degree of

Master of Science
in Embedded Systems

at the Delft University of Technology,
to be defended publicly on Tuesday August 27, 2019 at 10:30 AM.

Student number: 1505378
Faculty: Electrical Engineering, Mathematics and Computer Science
Department: Quantum & Computer Engineering
Programme: Embedded Systems
Specialisation: Computer Architecture
Project duration: November 26, 2018 – August 23, 2019 (40 ECTS)

Thesis committee: Dr.ir. Z. Al-Ars, TU Delft, supervisor
Prof.dr. H.P. Hofstee, TU Delft, IBM Austin
Dr. J.S. Rellermeyer, TU Delft
Ir. J.W. Peltenburg, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Availability of FPGAs is increasing due to cloud service offerings. In the wake of a new in-memory
storage format specification, Apache Arrow, FPGAs are increasingly interesting for data processing
acceleration in the big data domain. The Fletcher framework can be used to easily develop FPGA
accelerated applications that access data stored in Apache Arrow format, while providing throughput
near the system’s limit. The current implementation of Fletcher has limited support for memory man-
agement of FPGA-local memory, with one of the biggest limitations being that memory can only be
used once.

This thesis explores several memory management techniques which could be suitable for use on
FPGAs in a big data context. Paged memory is implemented on FPGA within the Fletcher framework in
order to facilitate this memory management. The implemented system takes less than 5% of a data
centre FPGA card’s resources (Xilinx UltraScale+ VU9P). Experiments show that the paged memory
provides throughput of over 99.7% of the system’s throughput for linear memory accesses. Random
memory access throughput for paged memory drops to between 30% and 90% of the system’s original
throughput, depending on request size. The performance drop can be lightened or even prevented by
employing suitable address-translation caches.

iii

Preface

You are about to read the concluding work of a nine month project. I am thankful for all the support
that I have gotten over this period from my mother and father, without whom I would not have been
able to pursue my studies in this way. I am grateful for the ever unwavering support from my grand-
father, who could not help but be constantly curious about those upcoming quantum computers.

Special thanks go to Johan Peltenburg for offering the project in the first place. He was not only
always willing and able to help with Fletcher internals, but also brought much welcome interesting
conversations during lunch. Additionally, I wish to thank Jeroen van Straten and Matthijs Brobbel for
their comments on my initial plans, and Jian Fang for his paper suggestions.

I want to thank Zaid Al-Ars for giving me the opportunity to work on an interesting project like this,
and for agreeing to be my thesis supervisor. Additional thanks go out to Zaid Al-Ars and Peter Hofstee
for their helpful guidance and insights to give the project a good start. All members of the thesis com-
mittee get my thanks for their time, Zaid Al-Ars, Peter Hofstee, Jan Rellermeyer, and Johan Peltenburg.

Finally, I want to thank my friends and family, who may not have seen me as much as they wanted
or needed during this period. I’m glad I was permitted the time it took to undertake this project, and
surely I’ll repay most of you.

In loving memory of Dirk Rietveld.

Lars Wijtemans
Spijkenisse, August 2019

This thesis is typeset with XƎLATEX using TU Delft house style fonts. Diagrams are created with Dia.
Graphs are plotted with PGFPlots.

v

Contents

1 Introduction 1
1.1 Context. 1
1.2 Problem definition . 2
1.3 Thesis outline . 3

2 Background 5
2.1 Fletcher . 5
2.2 Memory management . 5
2.3 Virtual memory on FPGAs . 5

3 Alternative solutions 7
3.1 Requirements . 7
3.2 Heap based management . 7
3.3 Segmented memory . 8
3.4 Paged memory . 9
3.5 Comparison . 9

4 Architecture 11
4.1 Memory address space . 11
4.2 High level overview . 12
4.3 Address translator . 13
4.4 Page table walker . 13
4.5 Allocator . 13
4.6 Changes to Fletcher . 15

5 Implementation 17
5.1 Virtual memory size . 17
5.2 Page table organisation . 17
5.3 Host communication. 18
5.4 Address translator . 18
5.5 Page table walker . 19
5.6 Allocator . 20

5.6.1 State machine programming . 20
5.6.2 Frame allocation . 21
5.6.3 Packing page tables (rolodex) . 21
5.6.4 Authoritative lookup . 22
5.6.5 Page allocation . 22
5.6.6 Deallocation and reallocation. 23
5.6.7 Initialization . 24

6 Measurements 27
6.1 Area. 28
6.2 Impact of translator cache size. 29
6.3 Impact of page size . 29
6.4 Impact of page walker pipeline depth . 29
6.5 Performance of operations . 30

7 Conclusions and recommendations 33
7.1 Conclusions . 33
7.2 Recommendations . 34

Bibliography 35

vii

Acronyms

AWS Amazon Web Services. 5, 11, 17, 21, 27, 33

AXI Advanced eXtensible Interface. 7, 13, 34

BRAM Block Random Access Memory. 7, 21, 34

CAM Content Addressable Memory. 18

CAPI Coherent Accelerator Processor Interface. 5, 12

CLB Configurable Logic Block. 28, 34

CPU Central Processing Unit. 1, 12

DRAM Dynamic Random-Access Memory. 7, 21, 27, 34

FIFO First In, First Out. 18

FPGA Field-Programmable Gate Array. 1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 17, 18, 21, 27, 28, 34

GPGPU General-Purpose Graphics Processing Units. 1

HBM High Bandwidth Memory. 7

IP Intellectual Property. 7

MMIO Memory-Mapped Input Output. 18

RAM Random Access Memory. 11

TLB Translation Lookaside Buffer. 6, 18

VHDL VHSIC1 Hardware Description Language. 7, 17

VHSIC Very High Speed Integrated Circuit. ix, 7

1Very High Speed Integrated Circuit

ix

1
Introduction

1.1. Context
FPGAs1 are a valuable tool in accelerating certain classes of data processing, able to compete with
GPGPU2 based acceleration on latency, throughput, and performance per Watt for certain applications.
In the last two to three years, cloud providers started to include FPGAs as part of their offering. This
takes away the entrance barrier of buying (expensive) FPGAs, bringing FPGA acceleration within reach
of anyone with the expertise to program them. However, a big obstacle in using FPGAs is that they are
more difficult to program than conventional CPUs3, requiring specifically trained personnel, and have
longer development cycles.

Some tools and frameworks, like high level synthesis and SDAccel, exist to ease the development
burden of FPGAs. These tools can be very helpful when implementing algorithms on FPGAs, but do not
always produce implementations that perform well. One of the cases where these automated tools fall
short is in accessing data stored in an upcoming big data storage standard, Apache Arrow. The Apache
Arrow data storage format is a specification for contiguous in-memory data storage. [1] The standard
exists to increase interoperability between applications and reduce data (de)serialisation costs.

To provide a performant and resource efficient way of accessing data stored in the Apache Arrow
format from an FPGA, the Fletcher framework is being developed at the TU Delft. [2] This framework
provides an interface between the data, stored in the Apache Arrow format, and a computation kernel
on an FPGA. The computation kernel is application specific and is separate from the framework for
accessing the data. By using Fletcher, developers can focus on creating the computation kernel, instead
of spending time designing data fetching and transforming logic.

Internally, Fletcher consists of hardware building blocks for prefetching data, bus multiplexers, and
host-side software to interact with the FPGA. An overview of Fletcher can be found in Figure 1.1.
The system uses input that is stored in the Apache Arrow format, feeds it through application specific
processing logic, and produces output that is structured according to the Apache Arrow format. This
input and output data is stored in a memory that can be located on the host system or on the FPGA
board itself. The host has an operating system and libraries to manage the allocation of its memory,
but the FPGA does not. In the current implementation of the Fletcher framework, data that is allocated
on FPGA board memory is put there contiguously by the host software, without a mechanism to re-use
a memory range once specific data is no longer needed. Another problem is that the size of generated
output data is not generally known in advance, in which case allocated output memory may either not
be large enough to accommodate all the generated data, or is over-dimensioned.

1Field-Programmable Gate Arrays
2General-Purpose Graphics Processing Units
3Central Processing Units

1

2 1. Introduction

Figure 1.1: High level overview of Fletcher

1.2. Problem definition
Consider an example application, illustrated in Figure 1.2, that (i) uses an input dataset, A, of size 𝑆A,
and (ii) splits it into two datasets, B and C, of sizes 𝑆B and 𝑆C, where 𝑆B + 𝑆C = 𝑆A. The total needed
space for all three datasets is 2𝑆A. However, since the size of dataset B and C can be anywhere between
0 and 𝑆A, a total of 3𝑆A needs to be allocated to run this application. Furthermore, when (iii) datasets B
and C are processed further on the FPGA to produce dataset D, for which dataset A is not needed, the
space previously occupied by dataset A cannot be used to store dataset D. Finally (iv), datasets should
be able to be split in memory so that free space fragmentation does not prevent further allocations,
when there is enough free memory in total.

From the problem description, the following research questions can be formulated:

1. Which memory management methods can provide the required functionality?

(a) Allocate memory for buffers.
(b) Reuse memory from buffers that are no longer in use.
(c) Allow allocations to grow as required.
(d) Allow usage of multiple separate memories.
(e) Allow usage of host memory for platforms that support it.
(f) Present a malloc-like interface.
(g) Allow random access into the buffers.

2. Which memory management method is the most appropriate, taking into account

(a) performance impact,
(b) memory usage overhead,
(c) implementation complexity?

3. Can a suitable memory management method be implemented within Fletcher?

4. What are optimal parameters for the implemented memory management method?

1.3. Thesis outline 3

Figure 1.2: Current and desired memory allocation pattern

5. What is the cost of the implemented memory management method in terms of

(a) performance,

(b) memory usage overhead,

(c) FPGA area?

1.3. Thesis outline
Chapter 2 will introduce Fletcher in some more depth, in addition to some concepts from memory
management. Three alternative approaches to the memory management challenge will be discussed
in Chapter 3. An architecture for implementing memory management in Fletcher is established in
Chapter 4, after which the implementation is explained in Chapter 5. The performance impact of
several implementation parameters are explored in Chapter 6. Finally, the main findings and answers
to the research questions are discussed in Chapter 7.

2
Background

2.1. Fletcher
Fletcher accesses data that is stored in the Apache Arrow format and provides it to a user provided
FPGA hardware design. The data format stores data in one or more buffers, which are contiguous
sections of memory. The individual buffers are typically read linearly, from beginning to end. However,
some applications may require random access into these buffers. When data is generated and stored,
buffers need to be allocated before the data can be written to memory. However, it is not always known
in advance how much data is stored in each buffer. It can therefore happen that a buffer needs to be
made bigger after it has been allocated. Buffers can of course be over-dimensioned, but this would
cause a big memory overhead.

Different platforms with differing FPGA accelerator interfaces exist. The two main platforms sup-
ported by Fletcher are OpenPOWER’s CAPI1, and AWS2’ FPGA instances with a PCIe interface. CAPI
takes care of virtual address translation for host memory, allowing direct access to host memory from
the FPGA. The AWS system does have access to host memory from the FPGA, but does not perform
virtual address translation. This makes direct usage of the host memory difficult, since address transla-
tion needs to be done by the user, in addition to taking extra precautions to prevent virtual to physical
mappings from chaning, like memory pinning.

2.2. Memory management
Memory management has been a challenge in computer systems for a long time and a lot of effort has
been spent to make memory allocation efficient, to varying degrees of success [3]. A lot of focus has
been on heap memory management, since this has been the most performance critical in the past [4]
[5] [6]. In the present, big data applications have very different memory needs than has been usual.
They need a lot more memory, and use the memory in a different way: usually scanning through an
entire dataset from beginning to end, instead of adhering to the classical working set model [7].

An important measure for the effectiveness of a memory management technique is internal frag-
mentation and external fragmentation. Internal fragmentation is the amount of wasted memory due
to the fact that allocation sizes are rounded up towards a certain size. External fragmentation is frag-
mentation of the free space, and can cause contiguous allocations to fail even when enough free space
is available in total.

2.3. Virtual memory on FPGAs
Virtual memory has already been employed on FPGAs before. CAPI allows an FPGA access to the
processor’s virtual address space. [8] The virtual to physical translation is done in much the same
way as a processor does when accessing virtual memory. A big advantage of this system is, is that
host memory can be directly accessed from the FPGA, without having to copy any data to the FPGA’s

1Coherent Accelerator Processor Interface
2Amazon Web Services

5

6 2. Background

memory. A feature that still misses from this is the ability to use the FPGA’s on-board memory within
the same virtual address space.

The Intel Core Cache Interface provides virtual to physical address translation by copying the host’s
page tables to the FPGA and using an FPGA based page table walker. [9] To increase performance,
the FPGA uses a TLB3 with a level 1 and level 2 cache of 512 entries. The system supports 4 KiB and
2MiB pages. This also misses the ability to use the FPGA’s on-board memory within the same virtual
address space.

3Translation Lookaside Buffer

3
Alternative solutions

3.1. Requirements
The memory management system must have a malloc-like interface and behaviour. Meaning that for
allocations, a certain size is requested, and the system returns a pointer to the start of the allocated
buffer. For deallocations, only the pointer that was returned previously is given. So the memory
management system is responsible for keeping track of the size of each allocation.

Fletcher will read from and/or write to one or more buffers, which are contiguous data sections
in memory. Each of these buffers will commonly be accessed in a sequential manner, but in some
cases may be accessed randomly. Fletcher is mainly used in big data environments, where datasets
are generally large and throughput is the most important measure of performance.

The system should integrate with Fletcher using Fletcher’s internal AXI1-like bus with minimal modi-
fications to Fletcher itself. Additionally, the system should be able to be integrated in Fletcher generated
designs programmatically in the future, although implementing this is outside the scope of this project.

When writing to a buffer, the total amount of data written may exceed the size of the allocated
memory. In this case, it must be possible to grow the size of the allocated memory without losing
previously written data.

FPGAs sometimes have multiple memories. For instance multiple DRAM2 channels, internal BRAM3,
and/or a special HBM4. It should be possible for applications to choose a specific memory for each
buffer.

Since one of Fletcher’s goals is to be vendor-agnostic and IP5-free, these additions should also use
no specific IP or vendor specific primitives. Since Fletcher is written in VHDL6, and include tools that
mainly process VHDL, the memory management system should also be written in VHDL.

3.2. Heap based management
One of the more direct approaches is to treat the FPGA’s memories as heaps, much like heap memory
is managed in C programs. A big advantage of this method is that once memory is allocated, physical
addresses can be used directly for accessing the memory. This means that there will be no memory
performance decrease when accessing the allocated buffers. However, heap based allocation algo-
rithms often target applications that make a lot of smaller (order of 1MiB) allocations and use trees
and linked lists to keep track of allocated space [10]. Using it for large allocations may cause allocations
to fail due to external fragmentation.

With this kind of management, growing existing allocations is usually necessarily done by copying
the allocation to another physical memory location. When a buffer is filled linearly with 𝑤 bytes and

1Advanced eXtensible Interface
2Dynamic Random-Access Memory
3Block Random Access Memory
4High Bandwidth Memory
5Intellectual Property
6VHSIC Hardware Description Language

7

8 3. Alternative solutions

needs to grow each time it is full, the total amount of data written to physical memory for that buffer
is given by

𝑡 = 𝑤 + 𝑑
⌈log ()⌉ − 1
𝑑 − 1 , (3.1)

where 𝑑 is the ratio of the grown buffer size to the original size. This leads to a write amplification,
𝑎 = , for large buffers given by

𝑤 +
𝑤 = 1 + 1

𝑑 − 1 ≤ 𝑎 < 2 +
1

𝑑 − 1 =
𝑤 +
𝑤 (3.2)

in addition to reading to +𝑤 bytes for copying. Choosing the growing ratio 𝑑 to be large will
minimise copy overhead, but will also lead to greater potential internal fragmentation. The average
fraction of memory wasted due to internal fragmentation is given by 𝑓 = (𝑑 − 1). When choosing
the convenient factor 𝑑 = 2, average memory usage overhead for growable buffers due to internal
fragmentation will be 50% of the size of the written data. Average write throughput will be decreased
to 40% of the baseline throughput due to write amplification, not taking into account the extra reads
that are needed.

3.3. Segmented memory
Segmented memory is characterised by referring to memory by segment and offset. The segment can
be a buffer identifier, so that each buffer lives in its own segment. This still leaves open in which way
the segment and offset should be mapped to physical memory. A promising technique is using the
physical memory like an extent based file system uses hard disk space: each segment is comprised
of one or more extents (variable sized contiguous blocks), which are individually mapped to physical
memory, illustrated in Figure 3.1. The mapping of extents can be done like heap based management.
This technique is similar to the direct segment method proposed by Basu et al. [11]. Overall this
method is much more flexible than pure heap based management. Since each extent can be placed at
a different location in physical memory, a buffer does not need to be contiguous in physical memory
like is the case with heap based management. This takes away the need to copy an entire buffer to a
new location, so there is no write amplification with this method.

External fragmentation poses little problems, since extents can be made to fit any contiguous free
space in physical memory. Internal fragmentation can be managed by using exact-fitting extents
where possible, and growing allocations by a small amount each time. The biggest disadvantage of
this method is the complexity of keeping track of free space (of variable sized blocks), splitting new
allocations in case of fragmentation, and random access. Random access requires scanning of all the
extent mappings of a segment, or traversal of some kind of lookup structure. The extent mappings
could be cached, but the amount of mappings for a given buffer depends on the fragmentation state
of the memory and is therefore difficult to estimate.

Figure 3.1: Example of segmented memory with extents

3.4. Paged memory 9

internal
write fragmentation random

method throughput overhead access implementation
heap <40% 50% direct trees

(𝑑 = 2) (complex)
segmented 100% up to 7% scan / search lists / trees

with extents (for growable) (complex)
paged (𝑝 = 4𝑀, 100% 0.2% to 7% lookup page table

32MiB < 𝑏 < 1GiB) (simple)

Table 3.1: Comparison of memory management techniques

3.4. Paged memory
Paged memory is often used in contemporary operating systems. For simplicity, this section constrains
itself to paged memory with a single flat virtual address space. With paged memory, the virtual address
space that is used by the allocations can be much larger than the available physical memory. The sheer
size of the virtual memory can prevent external fragmentation from causing problems. There will always
be a large enough contiguous free space in virtual memory for desired allocations.

The virtual memory is mapped to physical memory in fixed size blocks. The size of these blocks is
called the page size, and is an important factor for internal fragmentation. Any allocation that is not
a multiple of the page size will waste space, up to one page per allocation. This means the fraction
of wasted memory (𝑓) due to internal fragmentation depends on the relative size of allocations (𝑏) to
page size (𝑝) and is given by 𝑓 = . One can observe that a smaller page size leads to less wasted
memory [12]. However, a smaller page size will also lead to more pages, which all need to be tracked.

Random access will cost a lookup in the page table, but does not require a scan or search as with
variable sized extents.

3.5. Comparison
To evaluate the properties of the memory management techniques, certain assumptions are made. For
the fragmentation estimation of paged memory, we will assume a 4MiB page size and an average buffer
size between 32MiB and 1GiB. The estimated write throughput, internal fragmentation overhead, and
random access method are listed in Table 3.1. The heap method is unsuitable due to the low write
throughput for dynamically growing buffers and problems with external fragmentation. The segmented
method seems promising, but allocation algorithms get complex and the performance of random access
is questionable. The internal fragmentation is comparable to the paged method for growable buffers
and depends on the size the buffer grows by each time. Paging is relatively simple to implement through
page tables, has acceptable internal fragmentation, has no problems with external fragmentation and
has no inherent throughput limitations. Therefore, paging will be implemented for further evaluation.

Host-based versus FPGA-based management
The allocation algorithms can be implemented either on the host or on the FPGA. The advantage of
letting the host perform allocations, is that implementing an algorithm in software usually takes less
development time than implementing the same algorithm in FPGA hardware. A disadvantage is that
allocations initiated from the FPGA require at least a round trip communication delay, while these
allocations are probably the most time critical compared to allocations initiated from the host, since
they can occur while processing is happening and might stall writes from the FPGA. This disadvantage
is exacerbated when using an allocation algorithm that requires frequent updates to allocations. For
this reason, FPGA-based memory management is chosen.

4
Architecture

The required memory management operations are typically implemented by a software library that
manages the application’s heap memory. In fact, the requirements are constructed around the guar-
antees that the malloc, realloc and free library functions give. These libraries often have opti-
mizations that target multi-threading, fragmentation, or a large amount of small allocations [13], but
these are unnecessary in our particular application domain. What these libraries use under the hood
for large allocations such as is typical in Fletcher, is the mmap system call. This system call is used to
map RAM1 into the application’s virtual address space. Unfortunately, the FPGA does not have a virtual
address space (yet). This will have to be implemented.

To implement a virtual address space, we will need a component that translates virtual addresses
into physical addresses, the translator. Next to that, a component that manages the virtual and physical
memory is needed, which here is called allocator. It will present a malloc-like interface, as specified in
the requirements. Internally it will work like the mmap system call, updating page tables as required.
[14]

4.1. Memory address space
On systems like AWS FPGA instances, the virtual address space of the host and the address space of
the FPGA are separate, as illustrated in Figure 4.1c. The virtual address space on the FPGA is accessible
from the host through an abstraction provided by AWS software. It is then possible to use any arbitrary
1Random Access Memory

host
RAM

FPGA
RAM

DMA column
R/Winterconnect

host
RAM PSL column

R/Winterconnect

physical (host) physical (FPGA)

physical virtual (host)

(a) Original AWS system

host
RAM

FPGA
RAM

DMA column
R/Winterconnect

host
RAM PSL column

R/Winterconnect

physical (host) physical (FPGA)

physical virtual (host)

(b) Original CAPI system

virtual (FPGA)

physical

host
RAM

FPGA
RAM

DMA column
R/Winterconnect

physical (host) virtual (FPGA)

MMU

host
RAM

FPGA
RAM

PSL

column
R/Winterconnect

physical

virtual (host)

physical

MMU

(c) AWS system with virtual memory

virtual (FPGA)

physical

host
RAM

FPGA
RAM

DMA column
R/Winterconnect

physical (host) virtual (FPGA)

MMU

host
RAM

FPGA
RAM

PSL

column
R/Winterconnect

physical

virtual (host)

physical

MMU

(d) CAPI system with virtual memory

Figure 4.1: Original and virtualized conceptual memory organisation for CAPI systems and AWS systems

11

12 4. Architecture

addressing space and scheme, since addresses that are used on the FPGA are unambiguously belonging
to the FPGA memory. However, since systems using CAPI give the FPGA access to the host’s virtual
address space (Figure 4.1b), this is not possible on these systems. Note that the virtual address space
that we will create on the FPGA and physical memory on it will not be directly accessible from the
host system on this architecture (Figure 4.1d). In principle, the entire 64 bit address space refers to
virtual memory on the host. Here a mechanism is needed to be able to tell apart virtual host addresses
from virtual and physical FPGA addresses. Addresses of 65 bit were considered, but these do not fit in
standard (64 bit) data structures or bus address lines. The chosen solution is to designate a portion
of the host virtual address space for use on the FPGA. Current Power and x86_64 CPUs and operating
system implementations do not use the full 64 bit address space, but only 48 to 57 bit, leaving a portion
of the space available for use on the FPGA. When future processors and operating systems do use the
full 64 bit address space, a fixed portion of it will have to be reserved through the operating system.
This should be fine, since the available virtual address space on the host is very big [11].

4.2. High level overview
The main components of the design are (i) the address translator and page table walker, and (ii) the
memory allocator. The address translation takes care of translating the bus requests which use virtual
addresses to physical addresses, with the help of a page table walker. For special cases, the page
table walker can defer address translation to the allocator. The memory allocator finds free virtual and
physical memory to satisfy an allocation request, after which it will alter the page tables.

Attaching a dedicated translator to each buffer reader and writer allows it to take advantage of
the fact that most buffers will be accessed linearly. When this is the case, only a single cache entry
is needed in each translator, keeping the implementations compact. The two translators in Figure 4.2
could be placed after the bus arbiter, but the accesses as seen by the translator would no longer be
strictly linear.

A page table walker can be shared between multiple translators. The page table walker can be
pipelined, allowing it to perform multiple page table walks simultaneously. However, when a translation
needs to be deferred to the allocator by the page table walker, the pipeline will need to stall until the
allocator has serviced the request. For this reason, it may not be desirable to use only a single page
table walker in the entire design.

The page table walker and the allocator respond to lookup requests, which consists only of a virtual
address. The response includes the virtual address, the accompanying physical address, and a validity
mask. The virtual address is included in the response to be able to broadcast gratuitous lookup results
to, for instance, invalidate cache entries. The validity mask is used to convey the size of a contiguous
virtual to physical mapping, allowing large mappings to be conveyed and cached efficiently, irrespective
of the used page size.

Figure 4.2: Structure of an example top level

4.3. Address translator 13

4.3. Address translator
The address translator has the same AXI-like interface that is used by Fletcher and it is inserted on the
address bus after a buffer reader or writer. The data bus is connected outside the translator without
changes. If the input address is in the FPGA’s virtual address space, the address is translated with the
help of an optional local cache. If the input address is not found in the local cache, a lookup request
will be sent to a page table walker, which may be shared between translators. The lookup result from
the page table walker is then stored in the cache, together with the address validity mask. Finally, the
physical address is passed on to the output of the address translator. If the input address falls outside
of the FPGA’s virtual address space, the input address is passed on unchanged, and no lookup requests
are issued to the page table walker.

4.4. Page table walker
The page table walker accepts lookup requests consisting of a virtual address. It then walks the page
table that is stored at a predefined location in memory, using Fletcher’s memory bus. When the page
table indicates there is no mapping to a physical address, the lookup is deferred to the allocator,
otherwise the result of the page table walk is used. This facilitates the option to allocate physical
memory for a virtual address only when it is first accessed. The page table walker responds with the
original virtual address, the corresponding physical address, and the validity mask.

The page table walker may also perform a lookup for adjacent virtual addresses and adjust the
validity mask accordingly when the address translation is valid for these adjacent addresses. For
example, with a page size of 256B, when a lookup for virtual address 0xABCD00 is requested, the page
table walker may perform a lookup for addresses 0xABC000 through 0xABCF00. Then the validity
mask can be 0xFFF000 instead of 0xFFFF00 if for each of the resulting physical addresses (𝐴phys) and
their corresponding virtual addresses (𝐴virt) it holds that 𝐴phys = (𝐴resp AND𝑀)OR (𝐴virt ANDNOT𝑀),
where 𝑀 is the validity mask and 𝐴resp is the physical address provided by the page table walker in the
response.

The page table walker should be able to absorb all outstanding bus requests. When it is unable
to, a deadlock situation can occur where the bus is unusable because of the queued responses for the
page table walker.

4.5. Allocator
The allocator is responsible for allocating virtual memory, physical memory, and updating the page
tables accordingly. The interface for (de/re)allocation should be similar to the malloc family of memory
management functions, meaning that an allocation request includes a desired size and results in a
pointer to the start of the allocated memory. A free request includes only a pointer previously returned
by the allocator in response to a (re)allocation request. A reallocation request includes both a previously
returned pointer and a new desired size, to which a new pointer is returned in response. This means
that the size of an allocation should be recorded internally, since it is not provided in a free request.
Requests can be made by the host runtime software, the Fletcher framework, and user provided logic
on the FPGA.

The allocator is not required to allocate physical memory immediately. A page table walker will
forward a virtual to physical translation request to the allocator when the virtual address does not have
a corresponding physical address. The allocator should then allocate physical memory, update the
page tables, and respond to the page table walker with the physical address so that it does not need
to walk the page tables again. The allocated physical address can be provided to the page table walker
before the page table updates are visible to the page table walker, since reading the old state of the
page tables will not lead to incorrect functioning.

The response of either allocation or free requests and that of reallocation requests should be given
only after the corresponding page table updates are visible to all page table walkers. This is to ensure
the page table walkers do not read a mapping that existed previously on the same virtual address.

Multiple readers and/or writers can be used to access a single buffer allocated by this system.
However, care must be taken when these buffers are reallocated. From the time a reallocation (or
free) request is issued to the allocator, the original base address for the buffer must be considered
invalid and any accesses through this base address are illegal. This means that all readers and writers

14 4. Architecture

that use the base address that is going to be reallocated must be suspended and all outstanding read
and write operations must have at least passed the address translator unit before a reallocation request
can be issued safely. When the allocator responds to the reallocation request, the readers and writers
can resume their requests with the new base address. This process is illustrated in Figure 4.3.

Just like the page table walker, the allocator should be able to absorb all outstanding bus requests.
When it is unable to, a deadlock situation can occur where the bus is unusable because of the queued
responses for the allocator.

buffer
writer

buffer
readeruser coreallocator

(host)

start

address A

alloc

written X
bytes at

address A

read up to X
bytes at

address A

realloc

address B

written Y
bytes at

address A

read up to Y
bytes at

address A
realloc

realloc

realloc okay

realloc okay

written Y
bytes at

address B

read up to Y
bytes at

address B

buffer
writer

buffer
readeruser coreallocator

(host)

Figure 4.3: Concurrent buffer access when using realloc

4.6. Changes to Fletcher 15

4.6. Changes to Fletcher
The Fletcher wrapper generator will need to be modified to place all the new blocks at the right places.
This kind of change is outside the scope of this thesis. In addition, it is necessary to provide the
allocator with a write response channel, a channel that is currently non-existent in Fletcher. Since this
change is critical to the correct functioning of the implementation, the write channel arbiter that is used
in Fletcher needs to be augmented with a write response channel. This should be done in such a way
that it is backwards compatible with the arbiter version that does not have a write response channel.

5
Implementation

The components are implemented using VHDL and should be synthesizable by tools from different
vendors, although they were only tested with QuestaSim and Xilinx Vivado, targeting the AWS f1
systems. Functionality was added incrementally, so that there was always a working prototype with a
subset of the required functionality. The component’s interfaces are already fixed by the architecture,
but this still leaves a lot of choices to be made for the individual components. The following sections
start with details that affect multiple components, after which it describes the implementation of the
individual components in more detail.

5.1. Virtual memory size
The virtual memory should at least be big enough to fit all the data that can be put on the FPGA, so
at least the size of the FPGA board memory. However, the virtual memory can become fragmented to
such an extend that large contiguous allocations are no longer possible. The largest possible contiguous
allocation that can be satisfied at a given virtual memory usage is minimal when single-page allocations
are spread uniformly over the virtual address space. For instance, with a virtual memory space of
16GB and 3 pages allocated at a uniform distance, the largest contiguous allocation that can be made
is slightly less than 4GB. So when the maximum desired contiguous allocation, the maximum number
of allocations, and the maximum total size of all allocations are known, the minimum size of the virtual
memory can be determined to guarantee that these allocations will succeed.

When one takes the maximum number of allocations to be 𝑛 = 512, the maximum total size of all
allocations 𝑇 = 64GiB, and the maximum size of each allocation to be 𝐿 = 8GiB, the required virtual
memory size 𝑉 is given by

𝑉 = 𝐿(𝑛 + 1) + 𝑇 = 4168GiB, (5.1)

for which the next power of two is 8 TiB.

5.2. Page table organisation
The page size is a trade-off between performance and wasted memory. The larger the page size,
the more memory is potentially wasted when allocation sizes are not a multiple of the page size, also
known as internal fragmentation. Operating systems conventionally use a page size of 4 KiB for general
purpose computing. Since Fletcher is usually employed in the big data domain, allocations will generally
be large. Because of this, the percentage of wasted space will be low and page sizes can be larger than
for general purpose applications, which to reduces the number of lookups and consequently improves
performance. The maximum wasted space depends on the number of allocations and the page size.
At most one page can be wasted for each allocation, so the maximum wasted space due to internal
fragmentation with 512 allocations and a page size of 2MiB is 1GiB.

To keep lookup latency to a minimum and implementation complexity low, the number of page table
levels should be low. Since a single-level page table would be large (256MiB for 256KiB pages and
an 8TiB virtual address space), a two-level page table is used in the implementation. For a two-level

17

18 5. Implementation

Figure 5.1: Structure of address translation unit.

page table and 8TiB
256KiB

= 2 pages, there should be 2 entries per table in each of the two levels.
With 64 bit entries, each page table would take up 64KiB in memory.

5.3. Host communication

The host runtime software can send allocation and free requests to the FPGA trough the existing MMIO1

interface. The FPGA acknowledges the command and provides a response on a separate MMIO register,
which must be acknowledged by the host software. The allocation requests by the host and requests
by other sources on the FPGA are multiplexed onto the same bus to the allocator. The existing host
runtime library is altered to defer allocation and free operations to the FPGA allocator.

5.4. Address translator
The structure of the implemented address translator is shown in Figure 5.1. When a virtual address
arrives at the input, first a lookup is performed in the local cache. Implementing an effective cache
(TLB) is important [15], because misses are very expensive. The cache is fully associative, implemented
in registers, and takes into account the validity mask that is produced by the page table walker. The
cache can be updated by lookup responses in parallel to cache lookups. This is why the output of the
cache lookup is caught in a register slice, keeping the lookup result stable for the next stage. The
cache has a simple FIFO2 replacement policy in this implementation and its size is limited to 32 entries
due to timing constraints. A CAM3 was considered for the cache implementation, but CAM is expensive
to implement on an FPGA [16] [17].

The lookup result is stored in a request queue and if there was no entry found in the cache, a lookup
request is send to a page table walker. Because of the request queue, this design can take advantage
of a pipelined page table walker. At the output of the request queue, the responses of the page table
walker are merged into the stream of addresses for addresses which were not translated by the cache.
The sync blocks use StreamSync, the queue a StreamFIFO from vhlib [18].

5.5. Page table walker 19

5.5. Page table walker
The page table walker is pipelined, allowing it to perform multiple walks in parallel. Its structure is
shown in Figure 5.2. Again, the sync blocks use StreamSync, the queues a StreamFIFO from vhlib.

1Memory-Mapped Input Output
2First In, First Out
3Content Addressable Memory

Figure 5.2: Structure of page table walker.

20 5. Implementation

Each page table walk consists of two bus requests, one for the first level (L1), and one for the
second level (L2). Each bus requests needs two queues, one to store information about the outstanding
requests, and one to store the bus responses. Each response queue should be able to always absorb
all outstanding requests. To prevent new requests from being generated when any of the queues could
become full, a token system is used to limit the total number of outstanding requests.

If the page tables indicate that there was no physical memory allocated for a certain page, a request
is sent to the allocator to provide physical memory for that page. The allocator will then respond with
the corresponding physical address that will be used by the page table walker.

5.6. Allocator
The allocator is the most complex part to implement. There are also a lot of choices that need to be
made, like what allocation policy will be used, where and how data is stored, what search algorithms
to use. The first priority is to make a working allocator, not make a perfect one. So emphasis is on
time to implement. The allocator will have two main tasks: allocate virtual memory, and allocate the
associated physical memory. Of course this memory also needs to be freed eventually, but how this
happens mainly follows from the decisions made for the allocation. To keep implementation simple, a
first fit or next fit policy is chosen for virtual and physical memory allocation. Though these policies can
increase external fragmentation [19], the virtual address space is sized large enough that fragmentation
does cause issues, and external fragmentation is no issue for physical memory, since allocations can
be split up into individual pages. A structural overview of the allocator is shown in Figure 5.3. The
different components are explained in the next paragraphs.

5.6.1. State machine programming
A lot of internal action sequences are used at multiple points in different operations. To be able to re-use
these, the state machine of the virtual allocator uses a stack to be able to execute these sometimes
nested routines and then jump back to the state where these routines were “called” from. These
routines are indicated by flattened circles in the state diagrams.

Figure 5.3: Structure of allocator and authoritative lookup unit.

5.6. Allocator 21

5.6.2. Frame allocation
Virtual memory usage is stored in the page tables, these can be consulted when new virtual memory
needs to be allocated. However, the usage of physical memory also needs to be tracked to be able
allocate it. A lookup structure stored in on-board memory, like the page tables, is possible. However,
since physical memory allocation may need to be done separately for each page on first access, searches
for a free frame should return a result quickly. The features that would require a mapping from frames
to pages, like evicting a range of frames [20], are not necessary in this implementation. Fortunately,
only one bit for each frame needs to be stored and the size of physical memory accessible by the FPGA
is limited to 64GiB for AWS f1 systems, leading to a required storage size of 64 Kibit for 1MiB pages. A
table this small can easily be stored on the FPGA itself using BRAM, which has much lower latency than
the on-board DRAM. The BRAM to keep track of physical memory memory is accompanied by logic to
search it and encapsulated in the Frame store block. In this implementation, this BRAM is one bit wide,
allowing only one frame to be examined or altered per clock cycle.

When searching for free virtual memory, the frame store makes use of a roving pointer for each
memory region. A roving pointer stores the last location that was found to be free. Using a roving
pointer prevents the frame store from scanning the (already occupied) lower end of the memory over
and over for each search. The frame store can be accessed on different occasions: when allocating
virtual and accompanying physical memory, when freeing virtual and accompanying physical memory,
and when allocating a frame on a page’s first access. This last action is initiated by the Authoritative
lookup unit, which is separate from the allocator. Therefore, access to the frame store is arbitrated
between the allocator and lookup unit. An initial address can be given to the frame store, which is
currently ignored, but can be used to allocate adjacent frames to adjacent pages in order to leverage
the address mask in the page table walker.

5.6.3. Packing page tables (rolodex)
Usually a page table is made to fit exactly in a page. Since our implementation is likely to use pages
larger than 1MiB, the page tables would be that big too, which would take a long time to initialize each
time a new table is required. This, along with implementation restrictions from an earlier version of the
allocator, lead to a solution where multiple page tables are packed into a single frame. Since both the
frame and page table size are a power of two, an exact multiple of page tables fits into a single frame.
The location where the first page table would be in the frame is reserved for a bitmap that indicates
what locations in the page are currently in use. A complication of this is that when a new page table
is needed, one needs to know which frames to search for free space. This role is filled by the Page
Table rolodex, which gets its name from the fact that it flips through all frames that are used for page
tables. One can insert new frames into the rolodex, or delete old ones. When the rolodex has flipped
through all the frames in its memory, it signals that there are no more frames to examine, after which
the allocator needs to allocate a new frame to create a new page table.

Figure 5.4: State diagram of page table deletion.

22 5. Implementation

Figure 5.5: State diagram of page table creation.

Page tables are managed by the allocator, since the allocator is responsible for assigning virtual
addresses. Due to the packing of multiple page tables per frame, the state machinery to manage page
tables is a little involved. Steps to create a new page table are outlined in Figure 5.5, steps to discard
a page table are outlined in Figure 5.4.

5.6.4. Authoritative lookup
The authoritative lookup unit is consulted when a page table walker cannot translate a certain virtual
address. This can happen when a virtual address has not been allocated accompanying physical mem-
ory yet, or when the page table update that allocated it was not yet visible to the page table walker.
Other causes include user error, which are not handled in this implementation. When the authoritative
lookup unit determines that physical memory needs to be allocated, it requests it from the frame store.
The frame store takes the memory region as argument. As soon as the frame store returns a frame
number, the lookup unit forwards this to the requesting page table walker in order to minimize the reply
time. After this, the corresponding page table is updated. This does mean that a lookup request for
the same page can arrive to the lookup unit again. Either because a second page table walker requests
the same page at the same time, or because the page table update is not yet visible to the page table
walker. If the lookup unit were to do a page table lookup before its previous updates are visible to
itself, it would allocate a different frame for the same page and overwrite the previous allocation. This
is why the lookup unit must wait for a page table update to hit main memory, where it is visible to itself
and the page table walkers. The barrier that is inserted after the lookup unit keeps track of writes that
are not visible yet, by monitoring the write response channel. The lookup unit will hold off while there
are still uncommitted writes.

5.6.5. Page allocation
Virtual address allocation is done by the virtual allocator. Since bookkeeping of the virtual address
space is done in the page tables, the allocator is also responsible for managing the page tables. Due
to project time constraints, the allocator only examines the first level page table for free space on

5.6. Allocator 23

Figure 5.6: High level state diagrams of allocation, deallocation, and reallocation

allocation. Consequently, there will always be a whole first level entry (or second level page table)
dedicated to a single allocation, limiting the number of allocations to the amount of entries in the first
page table. The allocator will scan the first level page table until a large enough free space is found.
After that, it updates the page tables, creating new page tables as needed. The memory region that the
allocation is for is recorded in the leaf entries of the page tables and the last leaf entry of the allocation
is marked, since the size of the allocation is not given when freeing it. Before the allocation address
is reported back, the allocator makes sure the page table updates are visible to other components by
waiting for the write response with the help of the barrier unit.

5.6.6. Deallocation and reallocation
When freeing an allocation, all the page table entries belonging to that allocation must be read in order
to mark the associated frames as free. To know whether a page table is free after the freeing of the
allocation, also the rest of each page table that is used by the allocation must be read. The page table
can then be reclaimed for other allocations, or when a now unused page table was the last page table
on the frame, the frame can be marked as free and used for other purposes. In order to speed up the
scanning of the page tables, a buffer reader from Fletcher is used. The reader will read ahead and
buffer responses from the bus, providing the deallocator with a semi-constant stream of page table
entries.

The same system is used when reallocating. First, the page table entries are copied to a new
location and more entries are appended. Thereafter, the page table entries of the old allocation are
marked free. This process is illustrated in Figure 5.6. Much in the same way as when deallocating,
except now the referenced frames are not marked free, because they are still in use ate the reallocated
spot. All in all, when trying to reuse the same machinery for allocation, reallocation and deallocation,
the state machine became quite complex, as shown in Figure 5.7.

24 5. Implementation

Figure 5.7: State diagram of page table entries updating.

A detail that needs to be taken into consideration, is that the lookup unit can allocate new frames in
parallel. Even though an allocation should not be accessed after a free or realloc command is given, it
could be that a page table update by the lookup unit is not yet visible by the allocator. To guard against
this, the allocator waits until the lookup unit has had a response for each of its writes. A more elegant
solution would be to implement an actual memory barrier on the read and write channels combined,
but this was skipped due to project time constraints.

5.6.7. Initialization
When the system is first turned on, or reset, some steps must be performed to get it in a usable state.
These steps are shown in Figure 5.8. First all frames must be marked unused. After that, the first level
page table is created at a predefined location, which must align with the first possible page table in an
arbitrary frame. The frame at this location is reserved for use for page tables, after which the entries
in the first level page table are cleared. When this finishes, the allocator is ready to accept commands.

5.6. Allocator 25

Figure 5.8: High level state diagram of allocator.

6
Measurements

The main question to be answered is: can the solution achieve near system bandwidth throughput?
For this, we consider two cases: random access, and linear access. Any real application throughput
will be somewhere between these two cases. An important parameter is the request (also burst) size,
measured in beats per burst, where one beat equals 64 B in this implementation. Several implemen-
tation parameters like cache and page size are explored. Lastly, the performance of the allocation
operations is examined. All of the measurements are done on an AWS f1.2xlarge FPGA instance, which
includes a Xilinx UltraScale+ VU9P FPGA connected to four DDR4 memory channels, of which only one
is used in these experiments. The design runs on 250MHz, which is the highest bus speed offered by
the AWS FPGA interface (shell). Unless otherwise noted, experiments use a page size of 64MiB, one
cache entry for the address translators, and a non-pipelined page table walker.

The baseline throughput to on-board DRAM can be found in Figure 6.1 and is near the maximum bus
throughput of 16GB/s. The memory interconnect that is used in the design has a limit on the number
of requests per cycle (1/4), which limits the throughput for requests that take less than four cycles to
complete. This is clearly visible in the throughput for linear access. The throughput for random access is
lower due to the DRAM’s internal processes. From this graph, one can derive that interleaved accesses
for different data should use at least 16 beats per burst (1 KiB) to achieve maximum throughput.

1 2 4 8 16 32 64
0

2

4

6

8

10

12

14

Beats per burst

Th
ro
ug

hp
ut
[G
B/

s]

Random read Linear read

Figure 6.1: Device memory raw throughput (baseline)

27

28 6. Measurements

An important aspect of the platform is the memory access time, or read latency. Since every (non-
cached) virtual to physical address lookup requires two sequential memory accesses (one for each level
of page tables), the latency for memory access through virtual addresses will about triple. In addition,
if lookups are not pipelined, lookup requests need to wait on each other to complete while the memory
bus sits idle. Random access read latency is 71± 5 cycles. Measured latency including virtual address
translation is 233± 23 cycles, which is close to the theoretical triple latency.

6.1. Area
There exists a trade-off for FPGA area against performance for several implementation parameters like
cache size and pipeline depth. However, the used area varies too much for small design changes to
see any correlation. The area of the design, excluding the AXI interconnect is 5038± 275 CLBs or
3.4± 0.2% of total available area. A hierarchical breakdown of the area can be found in Table 6.1.
The various arbiters are relatively big, mostly because they have additional registers on their in- and
outputs to meet timing more easily.

The allocator contains a buffer reader, both in order to ease implementation and to speed up
scanning of page tables. This turns out to be a significant portion of the design area. Replacing the
reader with a thinner design would reduce area, but also increase the time it takes to complete free
and reallocation operations, due to memory access latency. Fortunately, the allocator is a one-time
cost and does not grow with the number of readers and writers. The number of translators and the
area for some of the arbiters, however do grow with an increasing number of readers or writers.

design element CLBs1

f1 top 5000
translator(r) 200
translator(w) 170
translation arbiter 190
AXI top 4600
AXI MMIO 350
Fletcher wrapper 4300
bus read arbiter 740
page table walker 540
bus write arbiter 440
translation arbiter 250
reader translator 140
reader translator 140
random reader 85
linear reader 70
MMIO to allocator 80
allocator 2600
page table reader 1200
bus read arbiter 760
bus write arbiter 730
gap finder (page tables) 280
gap finder (virtual mem) 50
frame arbiter 80
frame usage bits 15
page table pointers 35
main allocator write barrier 15
lookup allocator write barrier 5

Table 6.1: Hierarchical breakdown of FPGA area usage

6.2. Impact of translator cache size 29

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

2

4

6

8

10

12

14

Cache entries

Th
ro
ug

hp
ut
[G
B/

s]

64 beats per burst 32 beats per burst 16 beats per burst
8 beats per burst 4 beats per burst 2 beats per burst
1 beat per burst

Figure 6.2: Device memory translated read throughput as function of cache entries, random access

6.2. Impact of translator cache size
For linear access, subsequent accesses will be within the same page most of the time. For this access
pattern only one cache entry is required, and more is superfluous. Random access, however, requires
more cache entries to enable high throughput. Each cache miss will require two sequential accesses
to memory while the request for the actual data waits, making misses very expensive. To measure
the effect of a cache, 0.5GiB of data was read from a 2GiB buffer using a random access pattern.
The resulting throughput is plotted in Figure 6.2. Since the page size is 64GiB, with 32 entries all
address translations within the 2GiB range can be cached and the throughput becomes identical to the
raw throughput from Figure 6.1. Performance diminishes fast for smaller caches, especially for small
request sizes.

6.3. Impact of page size
Although a larger page size makes the translator caches able to cache a larger address range, the page
size does not have a direct influence on random access throughput. Therefore only linear access is
measured in relation to page size, since there page size has a direct relation to the number of page
lookups for a given amount of transferred data. In Figure 6.3 one can see that pages of 1MiB and
smaller start to have a noticeable impact on the system throughput. For larger pages the throughput
is near the system limit.

6.4. Impact of page walker pipeline depth
While the page table walker is waiting for a response to a page table lookup, it could already issue
a request for the next lookup. This can help increase throughput in cases where multiple lookups
are required back to back, like non-cached random accesses. In this experiment, random accesses
are made within a region of 2GiB until 0.5GiB has been read. Since the requested addresses are
random and there is only one cache entry, there is a 97% miss rate, which leads to an address lookup
request for almost every address. The results for different amounts of outstanding lookups are plotted
in Figure 6.4. For the non-pipelined version (single queue slot), the results are identical to the single
cache entry throughput from Figure 6.2. Unsurprisingly, the throughput increases with an increasing
number of queue slots, except for more than 21 queue slots, where there is a slight drop in throughput.

30 6. Measurements

0.25 1 4 16
0

2

4

6

8

10

12

14

Page size [MiB]

Th
ro
ug

hp
ut
[G
B/

s]

64 beats per burst 4 beats per burst
2 beats per burst 1 beat per burst

Figure 6.3: Device memory translated read throughput as function of page size, linear access

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

Queue slots

Th
ro
ug

hp
ut
[G
B/

s]

64 beats per burst 32 beats per burst 16 beats per burst
8 beats per burst 4 beats per burst 2 beats per burst
1 beat per burst

Figure 6.4: Device memory translated read throughput as function of queue slots, random access

The cause of the drop is yet undetermined.

6.5. Performance of operations
The time it takes for the various operations (alloc, realloc, free) to complete is relevant, though exact
limits depend on the application. Malloc operations mainly impact an application’s latency, while realloc
can have an impact on the application’s throughput, since it is used while writing out data, causing the
writes to stall for the duration of the reallocation.

6.5. Performance of operations 31

0 1 2 3 4 5

0

25

50

75

100

125

⋅10

Allocation size [TiB]

Cy
cl
es

@
25

0
M
H
z

0 0.2 0.4 0.6 0.8 1
0

2.5

5

7.5

10

⋅10

Allocation size [GiB]

Cy
cl
es

@
25

0
M
H
z

alloc (256 KiB pages) realloc (256 KiB pages) free (256 KiB pages)
alloc (1 MiB pages) realloc (1 MiB pages) free (1 MiB pages)

0 1 2 3 4 5 6 7 8
0

12.5

25

37.5

50

⋅10

Allocation size [GiB]

Figure 6.5: Operation latency for malloc, realloc, and free

The malloc and free times were measured alternatingly, always starting a malloc from an empty
virtual space. The reallocation time measurements were done from a slightly smaller buffer, to the
size indicated in the graph’s axis. Fletcher uses Apache Arrow tables as data source and destination,
which are recommended to stay limited in size to at most several gigabytes. However, to test the
scalability of the virtual memory system, tests were also run for very large allocations. In Figure 6.5
one can see the exponential time it takes for alloc (and consequentially realloc) to complete. This is
because the implementation needs to scan the bitmaps of all frames containing page tables in order
to find a location for a new page table. The effect is much less pronounced when less pages need to
be scanned, so when a lot of page tables fit within a single page.

Much of the cost for new small allocations is writing out a new page table, which takes over a
thousand cycles for a 64KiB page table. In turn, when an allocation is freed, that same page table
must be read entirely to check whether it is currently unused and can be removed, in addition to

32 6. Measurements

marking referenced physical memory as free. A realloc operation is essentially the sum of an alloc and
free operation, with the addition that there is already virtual memory in use at the time of the internal
allocation. The size of the page tables could be made smaller for larger page sizes, lowering these
costs as well.

7
Conclusions and recommendations

7.1. Conclusions
The first research questions was: Which memory management methods can provide the required
functionality? Where the required functionality consts of: (a) allocate memory for buffers, (b) reuse
memory from buffers that are no longer in use, (c) allow allocations to grow as required, (d) allow
usage of multiple separate memories, (e) allow usage of host memory for platforms that support it,
(f) present a malloc-like interface, (g) allow random access into the buffers.
We have seen several methods that can meet all these functional requirements. Among which were
heap based memory management, segmented memory, and paged memory.

Which memory management method is the most appropriate, taking into account (a) performance
impact, (b) memory usage overhead, (c) implementation complexity?
Paged memory is projected to have the lowest impact on write performance, have low internal frag-
mentation, and no issues with external fragmentation. Simple allocation algorithms can already be
very effective for paged memory, making implementation relatively straight-forward compared to the
other methods.

Can a suitable memory management method be implemented within Fletcher?
A general architecture was designed to manage paged memory, and an implementation made. The
implementation was tested and evaluated on an AWS f1 system. The implemented system meets
almost all functional requirements. It has a malloc-like interface, with the ability to allocate, grow,
and deallocate buffers. Memory for old buffers is reused, and random access to buffers is possible.
Additionally, it provides an easy to use “allocate on demand” feature, similar to the overcommit feature
some operating systems offer. This works around some of the limitations that the reallocate function
would impose on the system, like synchronisation between multiple units that access the same buffer
when it is reallocated, at the cost of increased latency when accessing a page for the first time. The
only functional limitation is that the translator’s cache needs to be reset externally when switching
buffers. This is to prevent stale entries from being used when a new allocation uses the same virtual
addresses as a previously cached allocation. Ideally, addresses that become invalid by e.g. deallocation,
are broadcasted to the translators so that they can invalidate the affected cache entries. Host memory
allocation was not implemented, because it is not useful for the targeted platform.

What are optimal parameters for the implemented memory management method?
For a linear memory access pattern, a page size of 4MiB or larger will have a negligible impact on
performance (over 99.7% of baseline throughput). For a random access pattern, performance is heavily
dependent on the amount of data per request and can range from 30% to 90% of the baseline
throughput when a pipelined page table walker is used with a pipeline depth of 21. To achieve good
performance for a non-linear access pattern, it is important that effective translation caches are used.

What is the cost of the implemented memory management method in terms of

(a) performance
When a cache is employed that is effective for the access pattern of the application, the through-
put can be over 99.9% of the baseline throughput and access time is increased by only a few
cycles (about 5% on top of 72 cycles) compared to a system without virtual memory support.

33

34 7. Conclusions and recommendations

(b) memory usage overhead
Paged memory suffers from internal fragmentation that leads to an average projected memory
usage overhead of 0.2% to 7%. In addition, paged memory needs at least 64 bit per allocated
page. The implementation, however, uses at least one (64 KiB) page table per allocated buffer.

(c) FPGA area
The implementation uses about 3% of the CLBs available on the FPGA. Buffer readers will be less
than 10% larger due to the added virtual to physical address translation.

7.2. Recommendations
The AXI-like interface that Fletcher uses internally does not provide a transaction ID, like AXI has.
Transactions are solely identified by the order they arrive in. As a consequence, transactions cannot
be reordered and fast transactions need to wait on slow transactions. This makes it difficult to, for
instance, make a cache on a memory bus work effectively. Since a transaction that is served by the
cache cannot be finished before all transactions that were issued before it are finished, the cache would
not be as effective. If transaction IDs are implemented in Fletcher, there would be more opportunities
to speed up page table lookups by leveraging caches.

The implemented virtual memory allocation algorithm should be improved, so that one allocation
does not take a whole page table for itself. Also, the page table walker does not implement aggregating
multiple virtual to physical mappings when possible. When implemented, this will make caches in the
address translators much more effective. To make this work, physical address allocation should be
augmented to allocate consecutive frames with proper alignment.

To increase performance, the first level page table can be stored in BRAM. This is an alternative to
using a cache for page table accesses. It would cut address lookup times almost in half, since only one
of the two required memory reads need to go to relatively high latency DRAM.

If the memory overhead is acceptable, a single level page table may be interesting to implement.
The implementation would be a lot simpler. In addition there would be the advantage of needing only a
single lookup in DRAM, instead of the two lookups for a two-level page table for an address translation.

As proposed by Dirks [21], freeing of frames can be deferred to a later point in time, allowing free
operations to return quickly and complete in the background later. Additionally, a list of free addresses
can be maintained to speed up allocation under high memory utilisation.

Using speculative address translation may improve linear access performance for the smaller page
sizes [15].

Bibliography

[1] Apache Software Foundation, Apache Arrow, (2019).

[2] J. Peltenburg et al., Fletcher: A framework to integrate FPGA accelerators with Apache Arrow,
(2019).

[3] A. Bohra and E. Gabber, Are mallocs free of fragmentation? in Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference (2001).

[4] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, Dynamic storage allocation: a survey and
critical review, in Memory Management (Springer Berlin Heidelberg, 1995) pp. 1–116.

[5] M. Aigner, C. M. Kirsch, M. Lippautz, and A. Sokolova, Fast, multicore-scalable, low-fragmentation
memory allocation through large virtual memory and global data structures, in Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications - OOPSLA 2015 (ACM Press, 2015).

[6] E. D. Berger, B. G. Zorn, and K. S. McKinley, Composing high-performance memory allocators,
ACM SIGPLAN Notices 36, 114 (2001).

[7] P. J. Denning, The working set model for program behavior, in Proceedings of the ACM symposium
on Operating System Principles - SOSP 67 (ACM Press, 1967).

[8] OpenCAPI Consortium, OpenCAPI consortium: Official site, (2019).

[9] M. Adler, Intel CCI: Core cache interface, (2017).

[10] O. Chedru, Memory management system for reducing memory fragmentation, (2011).

[11] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, Efficient virtual memory for big memory
servers, in Proceedings of the 40th Annual International Symposium on Computer Architecture -
ISCA 13 (ACM Press, 2013).

[12] P. J. Denning, Virtual memory, ACM Computing Surveys 2, 153 (1970).

[13] J. Evans, A scalable concurrent malloc(3) implementation for freebsd, (2006).

[14] M. Gorman, Understanding the Linux Virtual Memory Manager (PRENTICE HALL, 2004).

[15] S. Mittal, A survey of techniques for architecting TLBs, Concurrency and Computation: Practice
and Experience 29, e4061 (2016).

[16] X.-T. Nguyen, T.-T. Hoang, H.-T. Nguyen, K. Inoue, and C.-K. Pham, An efficient I/O architecture
for RAM-based content-addressable memory on FPGA, http://arxiv.org/abs/1804.02330v3 .

[17] Z. Ullah, M. K. Jaiswal, Y. Chan, and R. C. Cheung, FPGA implementation of SRAM-based ternary
content addressable memory, in 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IEEE, 2012).

[18] J. van Straten et al., vhlib: a vendor-agnostic VHDL IP library, (2019).

[19] M. S. Johnstone and P. R. Wilson, The memory fragmentation problem: solved? in Proceedings of
the 1st International Symposium on Memory Management, ISMM ’98 (ACM, New York, NY, USA,
1998) pp. 26–36.

[20] R. van Riel, Towards an O(1) VM: making Linux virtual memory management scale towards large
amounts of physical memory, in Proceedings of the Linux Symposium (2003) pp. 387–392.

[21] P. W. P. Dirks, Method for allocation of address space in a virtual memory system, (2000).

35

https://arrow.apache.org/
https://github.com/abs-tudelft/fletcher
http://dx.doi.org/10.1007/3-540-60368-9_19
http://dx.doi.org/10.1145/2814270.2814294
http://dx.doi.org/10.1145/2814270.2814294
http://dx.doi.org/10.1145/2814270.2814294
http://dx.doi.org/10.1145/381694.378821
http://dx.doi.org/10.1145/800001.811670
http://dx.doi.org/10.1145/800001.811670
https://opencapi.org/
https://01.org/sites/default/files/downloads/opae/cci-p-mpf-overview.pdf
http://dx.doi.org/10.1145/2485922.2485943
http://dx.doi.org/10.1145/2485922.2485943
http://dx.doi.org/10.1145/356571.356573
https://www.bsdcan.org/2006/papers/jemalloc.pdf
https://www.ebook.de/de/product/3262074/mel_gorman_understanding_the_linux_virtual_memory_manager.html
http://dx.doi.org/10.1002/cpe.4061
http://dx.doi.org/10.1002/cpe.4061
http://arxiv.org/abs/http://arxiv.org/abs/1804.02330v3
http://dx.doi.org/10.1109/ipdpsw.2012.47
http://dx.doi.org/10.1109/ipdpsw.2012.47
https://github.com/abs-tudelft/vhlib
http://dx.doi.org/10.1145/286860.286864
http://dx.doi.org/10.1145/286860.286864
https://surriel.com/system/files/riel2003_o1_vm.pdf

	Introduction
	Context
	Problem definition
	Thesis outline

	Background
	Fletcher
	Memory management
	Virtual memory on FPGAs

	Alternative solutions
	Requirements
	Heap based management
	Segmented memory
	Paged memory
	Comparison

	Architecture
	Memory address space
	High level overview
	Address translator
	Page table walker
	Allocator
	Changes to Fletcher

	Implementation
	Virtual memory size
	Page table organisation
	Host communication
	Address translator
	Page table walker
	Allocator
	State machine programming
	Frame allocation
	Packing page tables (rolodex)
	Authoritative lookup
	Page allocation
	Deallocation and reallocation
	Initialization

	Measurements
	Area
	Impact of translator cache size
	Impact of page size
	Impact of page walker pipeline depth
	Performance of operations

	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography

