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The scattering of coherent light from a system with underlying flow can be used to yield essential

information about dynamics of the process. In the case of pulsatile flow, there is a rapid change in

the properties of the speckle images. This can be studied using the standard laser speckle contrast

and also the fractality of images. In this paper, we report the results of experiments performed to

study pulsatile flow with speckle images, under different experimental configurations to verify the

robustness of the techniques for applications. In order to study flow under various levels of

complexity, the measurements were done for three in-vitro phantoms and two in-vivo situations.

The pumping mechanisms were varied ranging from mechanical pumps to the human heart for the

in vivo case. The speckle images were analyzed using the techniques of fractal dimension and

speckle contrast analysis. The results of these techniques for the various experimental scenarios

were compared. The fractal dimension is a more sensitive measure to capture the complexity of the

signal though it was observed that it is also extremely sensitive to the properties of the scattering

medium and cannot recover the signal for thicker diffusers in comparison to speckle contrast.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948297]

I. INTRODUCTION

The transmission or reflection of coherent light through

diffuse media gives rise to a granular intensity pattern called

speckle. The different optical path lengths traversed by

coherent light in a medium leads to constructive or destruc-

tive interference in the image plane. The image contains

bright or dark spots of varying sizes and intensity. Laser light

illuminating a rough surface is an ideal scenario for genera-

tion of speckle. This is noise for most imaging applications

but carries valuable information about the medium. By

studying the changes in the speckle pattern, the time evolu-

tion of the medium can be observed. In case the object as a

whole moves or parts of it move, changes can be seen in the

speckle pattern that are correlated to the motion for a certain

time, till the speckle pattern decorrelates completely. This

offers a unique opportunity to study changes in a medium

without direct imaging by simply quantifying the decorrela-

tion in the speckle pattern. The coarseness in granularity of

the spatial intensity distribution of the speckle patterns

makes them good candidates for a study of fractality.1 The

study of fractals in nature can vary from studying coastlines,

heartbeats, and snowflakes to the capillary network in

lungs.2,3 The fractal classification can vary depending upon

the object of study. One major distinction can be made

between regular or exact fractals and random or statistical

fractals. A regular fractal is defined when the object is an

exact replica of itself and appears self-similar on different

scales, whereas an object is a statistical fractal when its sta-

tistical properties replicate at different scales. Many physical

systems show that the characteristics of being statistical frac-

tals and scattering of coherent light from diffuse media to

form speckles also fall in this category. The random spatial

distribution of bright and dark spots in a speckle image

displays the self-similarity, scaling, and statistics which we

are familiar with in fractals.4 Fractal statistics is also very

relevant in studying biological systems. For example, in a

living system, a certain level of complexity is considered

normal and any deviation from that behavior can indicate

disease.5 In most physiological processes, the measured val-

ues usually fluctuate in time and this can also be studied for

fractal behavior. This has been investigated in studies like

that of cardiac inter-beats for healthy volunteers and

patients.6 Optical techniques are used in biomedical imaging

because important information can be obtained in a non-

invasive manner. These techniques can range from point or

line scans for instance in optical coherence tomography to

the full field imaging techniques. The imaging techniques

have their own complex requirements due to the equipment

and data processing required. The technique of laser speckle

imaging is currently being studied as a method to extract bio-

medical parameters using indirect imaging.7–9 In-vivo bio-

medical imaging always has the complication of relative

motion between the imaging system, the illumination, and

the subject. This is even more relevant when imaging dy-

namics like flow in a living medium. Speckle based techni-

ques have been shown to be quite robust for such cases.10,11

In most cases, the sample is illuminated by a laser light and

the scattered light is collected by a camera. Due to interfer-

ence of the light diffracted by the scatterers in the diffuse

media, a grainy speckle image is created. In the cases where

the sample is subject to motion or contains moving particles,

the dynamics of the complex scattering medium can be

extracted from the time evolving speckle patterns. The com-

plexity of these signals is mainly due to fluctuations caused

by moving red blood cells (RBCs) and appears to be quite

random in a scattering medium such as in the skin with an
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underlying capillary network. The standard technique of

studying these dynamic series of speckle patterns is based on

spatial or temporal implementations of laser speckle contrast

analysis. Fractal statistics is being used to study speckle

images in many recent studies.1,12,13 Analyzing the speckle

data with fractal statistics provides a measure of the fluctua-

tions of an evolving process at different temporal resolutions.

This reveals the self-similarity and regularities which under-

lie the apparent chaotic changes in the signal. This behavior

where statistical properties of smaller parts are proportional

to statistical properties of the whole can be addressed using

power law scaling in fractal statistics.

In this paper, we report on a study of a pulsatile flow

using speckle images. The characteristics of dynamic speckle

patterns generated by a pulsatile flow also fluctuate depend-

ing upon where in the time cycle of the pulse the image is

acquired. This is also reflected in the fractality of the speckle

images. Studying the fractal dimension (FD) of the image

also yields crucial information about the underlying flow

pulsation mechanism. Here we focus on flow pulsating sys-

tems. In every case, the fluid is pulsed at frequencies close to

the human heart. For fractal analysis of the speckle images,

using the differential box counting approach, we have meas-

ured the changes of fractal dimensional over time. The

speckle images were measured from different phantoms and

with underlying pulsating flow with different scattering flu-

ids. These datasets were in parallel analyzed using standard

speckle contrast analysis.

II. METHODS

A. Laser speckle contrast analysis

Study of dynamics in diffuse media using time varying

speckle patterns arising due to laser illumination has the

advantage of being full field and relatively inexpensive. A

speckle pattern generated by a sample which contains mov-

ing scatterers gets increasingly blurry as the integration time

of the pattern increases. Finally, the patterns decorrelate

completely. The crucial information about the evolution of

the media can be obtained by analyzing the time fluctuation

dynamics of speckle images. Laser speckle contrast was first

introduced by Goodman14 and demonstrated by Briers and

Webster15 as a parameter which can be used to quantify the

changes in the medium being studied. The speckle contrast

(K) is defined as the ratio of the standard deviation (r) over

the average intensity fluctuation (hIi), in the image16,17

K ¼ r
hIi : (1)

This parameter can be evaluated for the entire image at once

or using a sliding spatial window of (n � n) camera pixels.18

A pulsatile flow can be studied using speckle contrast by

recording a time series of speckle images. The resulting con-

trast time series are then Fourier transformed to obtain the

frequency spectrum. This frequency spectrum has informa-

tion about all the fluctuations arising in the flowing media

for the entire duration of each measurement. This is also a

function of the camera exposure time and acquisition rate.

B. Fractal analysis of speckle images

The fractal dimension of an image mainly corresponds

to the perception of roughness and also describes the scaling

seen in it mathematically. The fragmentation of the image

into structures where smaller pieces can reproduce the sta-

tistical properties of the entire image shows the measure of

fractality. This can be explained using a scaling law, where

an image is a union of N distinct, non-overlapping copies of

itself. The copies have been scaled down by a ratio r¼M/s,

where M is the image size and s is the size of the length

scale of the composing copies. The number N is related to

the ratio by

NðsÞ ffi r�D; (2)

where the non-integer exponent D is the fractal dimension.

It has been shown that the fractal dimension can be a useful

tool to study complex systems. The estimation of the fractal

dimension (FD) of an image can be performed using several

techniques: the Fourier power spectrum of image inten-

sity,19 the triangular prisms, or the reticular cell counting

method20,21 depending upon what is being investigated.

These techniques can be classified under three main catego-

ries of the spectral methods, the variance methods, and

finally the box counting methods.22 The study of certain

properties that do not change as an object undergoes contin-

uous deformation is described by topological dimension.

This is represented by the Koch snowflake where the topo-

logical dimension stays the same even as the curve gains

more complexity.23 However, the fractality of the curve can

reveal another dimension which mainly reflects the proper-

ties of the evolving curves and characterizes their texture.

This is a good measure of how structure or coarseness is

distributed in a surface area and can be clearly related to

the spatial distribution measured in a speckle pattern. The

time evolution of this in the area under observation is very

useful in studying dynamical systems. The original term

fractal was used to describe objects whose Hausdorff-

Besicovitch dimension exceeded their topological dimen-

sion. However, Mandelbrot applied this term for all sets of

objects which were self-similar, self-affine, or quasi-self-

similar.24 The concept of self-similarity can also be applied

to the temporal evolutions. The essential properties of frac-

tals are often seen in speckle images. In a speckle image, a

large number of wavelets contribute to form a dark or bright

spot in the image plane. The contributing waves have

encountered various path lengths on the surface or inside

the medium. In case of the box-counting method, the fractal

dimension is computed by subdividing the speckle image

with multiple boxes of a specific size as seen in Fig. 1 and

by estimating how many of them are required to cover the

whole object.25 This process is repeated for a range of sizes.

If the number of boxes N(s) is estimated across a range of s,

then there should be linear relationship between log(N(s))

and log(1/s), where the measured slope is an indication of

the fractal dimension. The fractal dimension then can be

written as
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FD ¼ lim
s!0

log Nsð Þ
log 1=sð Þ : (3)

The original idea of box counting has been extended to dif-

ferential box counting by considering an image as a surface

where its height is proportional to its image gray value or

intensity.26 In our analysis, the differential box counting has

been carried out on the speckle images to extract the fractal

dimension. An example of the speckle image recorded with

pulsatile flow is shown in Fig. 2, along with the image trans-

formed into the corresponding fractal image.

In this work, a speckle image is considered as a 3D spa-

tial surface where two coordinates are the spatial coordinates

of the pixel and the third one is the gray level. The original

speckle images are transformed to the fractal images. For

differential box counting, an image of size M divided into

3D space blocks (s x s x s0), where s is the size of the square

and s0 is the gray level of the block. If the total gray level of

the image is G, then we can write G/s0 ¼M/s. To determine

the required thickness of the blanket needed to cover the

image surface, we need to know that the minimum gray level

falls in the box number k and the maximum gray level falls

into box number l. Then the thickness of the blanket cover-

age on the grid (i, j) is

nsði; jÞ ¼ l� k þ 1: (4)

The total number of boxes is calculated for different

values of s, as

Nsði; jÞ ¼
X

1 � i � M=s
1 � j � M=s

nsði; jÞ: (5)

The fractal dimension was calculated for each image

from the slope of the linear regression line fit to the log plot

of total number of boxes Ns versus the dimension scale or

the box size s. This approach is mainly used in medical

setting for feature extraction.27 To study dynamics, a time

series of fractal dimension has been used to determine the

corresponding frequency spectrum.

III. EXPERIMENTAL SETUPS

In this section, an overview of different parts of the

setup will be given. The basis of the experimental setup itself

is simple and can be decomposed into three main parts: illu-

mination, detection, and phantom with a scattering fluid hav-

ing pulsatile flow. In practice, the measurements were

carried out in different experimental settings using various

phantoms and pumping mechanisms to generate the pulsa-

tion in the fluid. The main purpose was to test the general

technique and analysis algorithms for robustness in a variety

of real life situations. The phantoms are shown in Fig. 3, and

they consist of a rectangular flow cell, a cylindrical phantom,

and a carotid artery phantom. For all cases, the detection was

performed using a high speed camera (Photron Fastcam

SA3) with the pixel size of 17� 17 lm. The camera expo-

sure time is 20 ms and the frame rate is 50 Hz. For illumina-

tion, in the case of the rectangular flow cell, we used a

He-Ne laser at 633 nm; for the cylindrical phantom and the

carotid artery phantom, we used a frequency doubled

Nd:YAG laser at 532 nm to directly illuminate the sample.

The pulsatile flow has been studied in three different experi-

mental settings which are associated with different phantoms

as will be explained in more details at each measurement

section.

FIG. 1. Box counting for a typical speckle image which has been converted to a fractal image. Three different values of the box size are shown.

FIG. 2. (a) Raw speckle image of pul-

satile flow in the cylindrical phantom.

(b) The speckle image converted to

corresponding fractal image.
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The results of the measurements are summarized in three

different sections, to study the influence of: the static scatter-

ers, a complex pulsatile flow, and in-vivo measurements.

A. Static scatterers

These experiments were carried out using a semi-

rectangular channel phantom. As shown in Figs. 3(a) and

3(b), the flow cell consists of a semi-rectangular channel

with a length of 20 mm and a depth of 1 mm to represent a

homogeneous, thin layer of flow. The top membrane of the

cell can be interchanged to be a glass or a non-transparent

skin phantom made of Delrin
VR

(polyoxymethylene, POM) to

mimic the scattering properties of skin.28 In this experiment,

we used a roller pump (Minipuls
VR

3) to generate a pulsatile

flow with a controlled frequency in our sample. The fluid

used with this phantom was milk, which like blood is a bulk

scatterer and has fat particles which have similar scattering

properties to red blood cells (RBCs) in blood.29,30 The meas-

urements aimed to observe the influence of a top membrane

and consider the effect of additional static scatterers besides

the scattering along the flow on the dynamic speckle images.

The three configurations considered included a top mem-

brane of glass, Delrin with 1 mm thickness and 2 mm thick-

ness. The dynamic speckle images were then analyzed, and

the results of the time series can be seen in Fig. 4. The analy-

sis using the standard speckle contrast can be seen in Figs.

4(a)–4(c) and using the fractal dimension of the images can

be seen in Figs. 4(d)–4(f).

FIG. 3. The different phantoms which

have been used for the experiments. (a)

Flow cell which can be fitted with dif-

ferent top membranes to introduce

static scatterers. (b) The insert into the

flow cell to mimic a homogeneous thin

layer of flow. (c) Cylindrical phantom

showing the effect of index matching

using glycerol solution. (d) Carotid

artery phantom showing the bifurcation.

FIG. 4. The time series signal measured for pulsatile flow in the rectangular flow channel with different top membranes. (a) Glass membrane, images analyzed,

with speckle contrast. (b) 1 mm thick Delrin membrane, images analyzed, with speckle contrast. (c) 2 mm thick Delrin, images analyzed, with speckle contrast.

(d) Glass membrane, images analyzed, with fractal dimension. (e) 1 mm thick Delrin membrane, images analyzed, with fractal dimension. (f) 2 mm thick

Delrin membrane, images analyzed, with fractal dimension.
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The effects of changes in the velocity of the scatterers

and the changes in the particle density in the pulsatile fluid

signal leave a different imprint on the contrast and fractal

dimension of the images. This can be seen clearly in Fig. 4.

The frequency spectrum of the time series data in Fig. 4 is

shown in Fig. 5. In the absence of static scatterers in Figs.

4(a) and 4(d), we can see that the time series data are simi-

lar, though the bulk scattering in the milk does make the

time series of the fractal dimension more noisy. The fre-

quency spectra seen in Figs. 5(a) and 5(d) are very similar.

The addition of the extra static scattering layer adds to

complexity, but the time series data with laser contrast

analysis can still monitor the pulsating flow. The fractal

dimension of the images changes more rapidly with the

thickness of the layer of static scatterers, to the extent that

for thicker layers, they are not able to monitor the pulsating

flow. This also reflected in the frequency spectra of the re-

spective time series, though both techniques could deter-

mine the primary frequency of pulsation of the pump

which was at 1.25 Hz.

B. Pulsatile flow in different phantoms

The second case we studied was with the pulsatile flow

generated using the Medos Ventricular Assist Device (VAD),

which bears a strong resemblance to a pulsating heart. For the

VAD settings, we used a systolic pressure of 270 mmHg and

the diastolic pressure of �30 mmHg with a systolic time

interval of 35% with a ventricular pump of 60 cm3. The fre-

quency of the cardiac pulsation is set for 40 beats per min.

For pulsating flow conditions, the Reynolds number was

between 16 and 512, for diastolic and systolic pressure,

respectively. The pulsatile flow results in a lower Reynolds

number compared to the steady flow.30,31

With this pump, we used two transparent phantoms of

different geometry, a cylindrical tube and a carotid artery

phantom. This will be described next.

1. Cylindrical phantom

The cylindrical tube phantom, as shown in Fig. 3(c),

made of cured Polydimethylsiloxane (PDMS), with outer

diameter of 20 mm was used with the VAD as the pumping

source. The fluid in this case was an aqueous glycerol solution

with the same refractive index, n¼ 1.413, as the phantom

housing. This was done for refractive index matching as can

be seen in Fig. 3(c). The glycerol solution is non-toxic and can

easily dissolve in water. This eliminates any extra scattering

from the phantom itself. To create a scattering fluid which

mimics blood flow, we use seeding particles. The hollow glass

particles with the diameter size ranging from 4 to 20 lm are

main source of scattering of the incoming laser light to create

the speckle patterns. If the flow is seeded sufficiently, a speckle

pattern will be formed by the collectively scattered light field

from the seeding particles. In Fig. 6(a), the time series gener-

ated using the speckle contrast analysis on the measured

images with a cylindrical phantom can be seen, and in Fig.

6(b), the time series generated using the fractal dimension

analysis using the cylindrical phantom can be seen. The rate of

pulsation was set to be 0.6 Hz. In comparison to the experiment

with the bulk scattering fluid, milk, we observe that in the case

of the transparent phantom and low seeding, the change in the

fractal dimension has a stronger signature. Again, in both

cases, the frequency analysis of the time series reveals the pri-

mary frequency of pulsation of the pump of 0.6 Hz.

2. Carotid artery phantom

The carotid artery phantom, Fig. 3(d), was made from a

3D wax print of the artery of a patient suffering from athero-

sclerosis, using computed tomography (CT) scan images.32 In

this case, we also use an aqueous glycerol solution with the

same refractive index (n¼ 1.413) as the phantom. Due to its

complex geometry, the measurements from the phantom

of the carotid artery have been analyzed at different locations

as indicated in Fig. 7. These locations are the bifurcation in

FIG. 5. The spectral analysis of the time series measured for pulsatile flow in the rectangular flow channel with different top membranes. (a) Glass membrane,

images analyzed, with speckle contrast. (b) 1 mm thick Delrin membrane, images analyzed, with speckle contrast. (c) 2 mm thick Delrin, images analyzed,

with speckle contrast. (d) Glass membrane, images analyzed, with fractal dimension. (e) 1 mm thick Delrin membrane, images analyzed, with fractal dimen-

sion. (f) 2 mm thick Delrin membrane, images analyzed, with fractal dimension.
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common carotid artery (zone 1), stenosis (zone 2) and exter-

nal carotid artery (zone 3). These are the most common loca-

tions for the plaque formation along the carotid artery.33

Therefore, it is advantageous to study the full system with

multiple zones for data analysis, to provide an insight into the

flow dynamics. We observe that the flow dynamics is very

complicated in this scenario as seen in Fig. 7. The speckle

contrast time series as seen in Figs. 7(a)–7(c) and the fractal

FIG. 6. The time series signal of

speckle images from pulsatile flow in

the cylindrical phantom. (a) Images an-

alyzed with speckle contrast. (b)

Images analyzed with fractal dimen-

sion. Spectral decomposition of images

analyzed with (c) speckle contrast and

(d) fractal dimension, respectively.

FIG. 7. The time series of speckle images from the three (1, 2 and 3) locations along the carotid artery phantom as shown above. Images analyzed using speckle

contrast (a), (b), and (c) for zones 1, 2, and 3 as seen above. Images analyzed using fractal dimension (d), (e), and (f) for zones 1, 2, and 3 as seen above.
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dimension time series as seen in Figs. 7(d)–7(f) reflect dif-

ferent aspects of this complexity. The frequency spectrum

of the time series seen in Fig. 7 is shown in Fig. 8. The fre-

quencies contributing to the pulse are reflected with differ-

ent amplitudes in the speckle contrast time series and the

fractal dimension time series. It is noted that the spectra

using both techniques largely reflect the major contributing

frequencies.

3. In vivo measurements

The flow pumps in the above two cases maintain a

steady pulsation rate; in contrast, a heart changes its pulsa-

tion rate. To investigate the feasibility of these techniques

for in vivo situations, we investigated the speckle dynamics

for blood flow in a volunteer for two different situations.

First, we captured the speckle images, in reflection geometry

from a volunteer with the laser light illuminating the finger.

The results are illustrated in Fig. 9. The time series from a

large network of capillaries which give rise to the dynamic

speckle in the images can be seen in Fig. 9(a) speckle con-

trast and Fig. 9(b) fractal dimension. There is a layer of static

scattering skin which also contributes to the speckle images.

The capillary network also has no unique direction of flow.

Thus, we see that though the speckle contrast time series

does seem to reflect the pulsating behavior of the underlying

blood in the fractal dimension time series, this is not very

clear. The frequency analysis of Figs. 9(c) and 9(d) on the

FIG. 8. The spectral analysis of the time series of speckle images from the three (1, 2, and 3) locations along the carotid artery phantom as shown in Fig. 7.

Spectra of images analyzed using speckle contrast (a), (b), and (c) for zones 1, 2, and 3 in the phantom. Spectra of images analyzed using fractal dimension

(d), (e), and (f) for zones 1, 2, and 3 in the phantom.

FIG. 9. The time series of speckle

images measured from the finger of a

volunteer analyzed with (a) speckle

contrast and (b) fractal dimension.

Spectral analysis of the times series

from (c) speckle contrast and (d) frac-

tal dimension.
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other hand shows that both techniques capture the principle

frequency, which is the heart rate.

The second situation was to record speckle images of

the right carotid artery of a volunteer, again in reflection ge-

ometry with laser illumination. The results are illustrated in

Fig. 10. In this case, again there is a layer of static scattering

skin, but the flow direction is unique. The time series for

both the speckle contrast and fractal dimension clearly reflect

the periodic pulsation in the flow. The frequency analysis of

using both time series is also quite similar and captures the

principle frequency in both cases. In both the in vivo cases,

the heartbeats of the volunteer were monitored with a wrist

heart rate monitor and correspond to our measurements.

Further work is necessary to investigate the possible condi-

tions for devices to work on this principle.

IV. RESULTS AND DISCUSSIONS

The multiscale analysis of time series of light scattered

from a sample can be a useful tool for better understanding

the complex underlying mechanisms of the medium. In this

paper, we studied the fractal dimension change of speckle

images of pulsatile flow and compared it to speckle contrast

analysis. We address the result of measured fractal dimen-

sion for the case of pulsatile flow using different membranes

on top of the bulk scattering fluid. We observe that in case of

a 2 mm thick layer of Delrin as the top membrane, which has

a high number of static scatterers, the fractal dimension does

not reflect the pulsation and changes in flow. In contrast to

that the laser speckle analysis can still capture the changes in

the pulsatile flow. We also studied the speckle images gener-

ated by pulsatile flow from a Ventricular Assist Device in a

transparent fluid where the scattering was only generated

through seeding particles. Here we observe that the two tech-

niques capture different aspects of the complexity of the

flow, though in a transparent setting the fractal dimension is

more sensitive than laser contrast. Measurements were also

performed on a realistic phantom where the flow becomes

complex due to the geometry of the channel. In this case, we

observed that even though the rapid changes in the flow

leave different imprints on the fractal dimension change and

the contrast, the essential frequencies were captured by both

techniques. We also attempted to test the method for in vivo
case and observe that the changes in the fractal dimension

and in the contrast of the speckle images manage to capture

the heart rate. The fractal dimension is a more sensitive mea-

sure than speckle contrast since it can measure the texture

of image. It is also extremely responsive to rapid changes

in the texture, and this can be exploited to study the time

evolution in more complex media just by observing the scat-

tering from it.
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