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ABSTRACT

Millimeter-wave radar is a common sensor modality used in
automotive driving for target detection and perception. These
radars can benefit from side information on the environment
being sensed, such as lane topologies or data from other
sensors. Existing radars do not leverage this information to
adapt waveforms or perform prior-aware inference. In this
paper, we model the side information as an occupancy map
and design transmit beamformers that are customized to the
map. Our method maximizes the probability of detection in
regions with a higher uncertainty on the presence of a tar-
get. Simulation results on the nuScenes dataset show that the
designed beamformer achieves substantially higher detection
rates than a conventional omnidirectional beamformer for the
same transmitted power.

Index Terms— Automotive radar, situation-aware trans-
mit beamforming, occupancy grid, cognitive radar.

1. INTRODUCTION

Millimeter-wave radars are currently employed in automo-
biles to achieve enhanced perception, even in challenging
weather conditions [1–4]. These radars often operate along-
side other sensors, such as cameras, GPS, and LiDARs, that
provide useful information on the environment being sensed.
For example, location information from GPS can be used
together with lane topology maps to determine static ob-
structions in the environment, such as lamp posts, buildings,
and guardrails. An automotive radar can make use of such
side information to dynamically adjust the waveforms at the
transmitter and adapt detection algorithms at the receiver.
By leveraging the side information available at the vehicle,
radars can significantly enhance their sensing capabilities.

A common approach to model the information from dif-
ferent sensors is to use an occupancy grid map [5–7], which
is a function defined over a grid of cells in the environment.
Each cell can represent a range-angle-Doppler bin of interest,
and the occupancy map value at a cell is the probability that
the cell is occupied by an object. An occupancy map is typi-
cally generated by processing point cloud data obtained from

various sensors, using predictive models that track objects, or
by a combination of both. With the knowledge of an occu-
pancy map, a good sensing strategy is one that emphasizes
target detection at cells associated with higher uncertainty. A
radar can realize such a sensing strategy by adapting its trans-
mitted waveforms and its algorithms to the map.

Prior work has studied the use of side information in both
waveform design and algorithm design for radars. For in-
stance, clutter covariance information was used in [8] and
[9] to maximize target detection performance under clutter.
Specifically, space-time beamformers were designed in [8],
and the transmit waveform and the receive filter were op-
timized in [9]. This paper assumes that the clutter is non-
dominant and it can be treated as noise. In [10] and [11],
receive algorithms were developed to exploit the angle-of-
arrival statistics for localization. The transmit processing in
[10] and [11], however, was agnostic to the angle-domain
statistics. In [12], an airborne radar was used to search and
track a swarm of targets. In particular, a beam with a fixed
pattern and fixed beamwidth was continuously steered in az-
imuth and elevation to the region of maximum uncertainty.
Several metrics, including entropy, are discussed in [12] to
quantify uncertainty in a region. The approach in [12], how-
ever, does not fully harness the potential of typical antenna ar-
rays, which have the ability to dynamically adjust the beam’s
size and pattern. Furthermore, as the beams in [12] only cover
a fixed angular region, the method in [12] requires multiple
beam scans even for static environments. Such a beam scan-
ning approach might result in a substantial scanning overhead
in typical automotive driving scenarios.

This paper proposes a method to dynamically adapt the
transmit beamformer to a probabilistic occupancy map, as-
suming a standard detector at the receiver. The beamformer
is obtained by maximizing a weighted sum of detection prob-
abilities, where the weights are the entropies derived from the
probabilistic map. Our designed beamformer focuses higher
power in cells where the occupancy uncertainty is higher, thus
enhancing detection in regions with higher uncertainty. Fi-
nally, we demonstrate, using the nuScenes dataset, the supe-
rior detection performance of our method over the omnidirec-
tional operation that does not leverage occupancy maps.
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2. SYSTEM MODEL

We consider an automotive radar with a co-located transmitter
(TX) and receiver (RX). We assume half-wavelength spaced
uniform linear arrays at the TX and the RX. Furthermore,
we consider an analog beamforming architecture with Ntx

isotropic antennas at the TX and a digital array with Nrx

isotropic antennas at the RX, as shown in Fig. 1.
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Fig. 1: The TX applies a beamformer w to its Ntx-element analog
array. Our design adapts w to the occupancy map.

We assume that the TX periodically transmits linear fre-
quency modulated continuous wave over a unit-norm analog
beamformer w ∈ CNtx , i.e., ∥w∥2 = 1. The beamformer w
is fixed within a coherent processing interval, during which
the occupancy grid map is assumed to be constant. We define
Ptx as the power transmitted by the TX. The transmitted sig-
nal impinges P point targets within the radar’s field of view.
We define θp as the direction of departure associated with the
pth target. The array response vector at the TX for direction
θ is defined as
aNtx(θ) = [1, e−jπsinθ, e−2jπsinθ, · · · , e−jπ(Ntx−1)sinθ]T .

(1)
The TX can control the beamforming gain along direction θ,
i.e., |wTaNtx(θ)|2, by designing the beamformer w.

At the radar receiver, the reflected echoes are downcon-
verted, dechirped, and sampled. The ℓth sample of the signal
observed at the nth receive antenna in the mth slow-time slot
is given by

y[ℓ,m, n] =
√
Ptx

P∑
p=1

(
αpaNtx

(θp)
Tw

r2p

× ej(2πℓµp+2πmγp−πnsinθp)

)
+ v[ℓ,m, n], (2)

where rp is the range associated with the pth target. Further,
αp and γp are proportional to the radar cross section (RCS)
and the Doppler shift dp, and µp is the discrete-time beat
frequency which is proportional to rp. Finally, v[ℓ,m, n] is
additive white Gaussian noise in the observed sample. The
received measurement in (2) encodes the range, angle, and
Doppler information of all the P targets.

The received measurements are arranged in a 3D data
cube defined by (2), and then processed using a 3D-discrete
Fourier transform (DFT) to detect targets. We consider a dis-
crete grid of NR range bins, Nrx angle bins, and ND Doppler

bins for the 3D-DFT. We assume that the P targets are posi-
tioned on this discrete grid, resulting in orthogonal received
responses from the targets. Under this assumption, θps are
such that πsinθp is an integer multiple of 2π/Nrx. The bins
within the 3D-DFT cube are indexed as (i, j, k), and its en-
tries indicate the presence of a target in a range-angle-Doppler
bin of interest. When the (i, j, k)th range-angle-Doppler bin
contains a target indexed p, the corresponding entry within
the 3D-DFT cube is

ỹ(i, j, k) =
√
Ptx

αpaNtx
(θp)

Tw

r2p
+ ṽ(i, j, k), (3)

where ṽ(i, j, k) is Gaussian noise with zero mean and vari-
ance σ2. When there is no target in the (i, j, k)th bin, the
3D-DFT entry ỹ(i, j, k) is just the noise ṽ(i, j, k). The RX
can detect the presence of a target based on the strength of the
3D-DFT cube entry ỹ(i, j, k).

The beamformer w can potentially boost or attenuate
αpaNtx(θp)

Tw, i.e., the effective RCS of the pth target. In
the absence of any kind of side information on the scene,
an omnidirectional beamformer that results in a uniform
gain across all directions is a reasonable choice for w. Such a
beamformer, however, is suboptimal in typical automotive ap-
plications where side information is available. Beamformers
that use side information can intelligently focus the available
power to enhance radar detection in regions of interest, as
will be discussed in the following section.

3. PROPOSED BEAMFORMING TECHNIQUE

To design the beamformer w at the TX, we assume that the
3D occupancy map P, defined over the range-angle-Doppler
bins, is known. Here, P(i, j, k) is the probability that there is
a target in the (i, j, k)th bin.

Now, we discuss a binary hypothesis testing problem and
analyze the probability of detecting a target in the (i, j, k)th

bin as a function of w. Let (Ri,Θj ,Ωk) denote the range, an-
gle and Doppler corresponding to the (i, j, k)th bin. We drop
the target index p in (3) to write down the received signal un-
der two different hypotheses, i.e., the presence or the absence
of a target. We define hypotheses H0 and H1 as

H0 : ỹ(i, j, k) = ṽ(i, j, k)

H1 : ỹ(i, j, k) =
αi,j,k

√
Ptx

R2
i

a(Θj)
Tw + ṽ(i, j, k).

Although occupancy map information can be leveraged in
the detection rule and beamformer design, we use a stan-
dard Neyman-Pearson detector in this paper and focus only
on beamformer design. The probability that a target in the
(i, j, k)th bin can be detected with this detector is [13]

Pd,w(i, j, k) =Q

(
Q−1(PFA)−

√
Ptx

R4
i σ

2
|αi,j,ka(Θj)Tw|2

)
,

(4)
where PFA is the false alarm rate and Q(·) denotes the com-
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plementary cumulative distribution function of the standard
normal random variable. Due to the decreasing nature of the
Q(·) function, we notice that Pd,w(i, j, k) is large at cells
where a high beamforming gain is achieved.

Our beamforming technique aims to maximize the prob-
ability of detection at cells where there is a high uncertainty
on the occupancy. Here, we use entropy as the measure of
uncertainty, which can be expressed as a function of the oc-
cupancy probability. For the cell indexed (i, j, k), the entropy
associated with the occupancy probability of P(i, j, k) is

H(P(i, j, k)) = −P(i, j, k) log2(P(i, j, k))
− (1− P(i, j, k)) log2(1− P(i, j, k)). (5)

We observe from (5) that the entropy achieves its maxi-
mum at cells where P(i, j, k) = 0.5. We also notice that
H(P(i, j, k)) = 0 when P(i, j, k) = 0 or P(i, j, k) = 1. This
is because there is no uncertainty associated with cells that
are known to be free or those that are known to be occupied.
Radars that scan cells with zero uncertainty do not provide
any useful information.

A good sensing strategy is one that distributes the avail-
able power in a way that maximizes detection at cells asso-
ciated with high uncertainty. To achieve this objective, we
maximize a cost function that is a weighted sum of the prob-
ability of detections across all the cells. Here, the weights
are set to the entropy values derived from the occupancy map.
Our objective is a function of the beamformer w, as the prob-
ability of detection in (4) depends on w. The objective is
maximized under the unit-norm constraint on w as shown in
the formulation below.

max
w

NR∑
i

Nrx∑
j

ND∑
k

H(P(i, j, k))Pd,w(i, j, k)

s.t. ∥w∥2 ≤ 1.

(6)

It can be shown that the maximization problem in (6) is non-
concave. To solve the problem, we adopt the projected gradi-
ent ascent-based approach [14] to arrive at a locally optimal
solution. In each iteration of this method, the TX computes
the gradient of the cost function. Subsequently, it updates the
beamformer in the direction of the gradient and projects the
resultant vector onto the unit ℓ2 ball. These steps are repeated
until the beamformer converges to a stationary point or when
the number of iterations exceeds a predefined limit.

4. SIMULATION RESULTS

To evaluate the proposed approach, we solve the optimiza-
tion problem in (6) and compare detection performance with
the proposed beamformer against an omnidirectional beam-
former. We use Ntx = 16 antennas at the TX and Nrx = 16
antennas at the RX, assuming perfect amplitude and phase
control at all the elements of the TX array. We consider a
bandwidth of 300MHz, which results in a range resolution of
0.5m. The maximum range of interest is set to 200m, which

corresponds to NR = 400 range bins. The parameter α is set
to −68 dB for all the targets. Finally, the noise variance σ2 is
set to −138 dB and the false alarm rate in (4) is 10−4.

In our evaluation, we use lane topology maps from the
nuScenes dataset [15] to construct occupancy grid maps. The
nuScenes topology maps contain labels for the plausible driv-
able space in different driving scenarios. We sample 500 dif-
ferent driving scenarios and use the labels within each scene
to construct an occupancy map P(i, j, k) that is faithful to the
lane topology. Specifically, we set the occupancy probabili-
ties of the cells in the drivable space to 0.5 and the cells in
the non-drivable space to 1. This is because the cells in the
non-drivable space are guaranteed to be occupied. Further,
we assume that the number of Doppler bins is ND = 1 for
computational tractability. The occupancy map is hence a 2D
map in the range-angle domain. An example of the occupancy
map derived from the nuScenes dataset is shown in Fig. 2a.
Although we use maps that are just based on the lane topol-
ogy, our beamformer design technique can also be applied for
more realistic occupancy maps. Such maps can be estimated
from a history of sensor point cloud data and vehicle motion
models. The maps derived from the nuScenes dataset are used
in (6) to design the beamformer for each scene.

We demonstrate the detection achieved by the proposed
beamformer for scene 971 of the nuScenes dataset using Fig.
2. The scene in Fig. 2a shows that the drivable space extends
up to about 80m along the boresight direction and is limited
to about 10m towards the endfire. A good beamformer in
this situation is one that focuses a higher power around the
boresight than the endfire. We notice from Fig. 2a that such
a beamformer is achieved with our design. We also observe
from Fig. 2b that the proposed beamformer enhances target
detection at cells with a higher entropy in the occupancy.

Next, we use scene 915 of the nuScenes dataset to ex-
plain the advantage of our approach over [12]. We notice from
Fig. 3 that the drivable space spans two contiguous bands of
directions. The method in [12] employs a beamformer that
illuminates only the first band of directions, which is then
steered to illuminate the second band. In contrast, our ap-
proach constructs a single beamformer such that the TX can
illuminate both bands over the entire CPI. With the method
in [12], the TX can look at each band for only half the CPI.
Due to a higher effective CPI, the Doppler resolution with our
approach is twice the resolution with [12] for this scene. Also,
distributing the transmit power over the two bands reduces the
beamforming gain. Therefore, a high Doppler resolution with
our approach is achieved at the expense of a reduction in the
probability of detection when compared to the use of a beam-
former that covers just one band.

Finally, we assess the performance of the proposed ap-
proach for 500 scenes chosen at random from the nuScenes
dataset. Our metric, called weighted average probability of
detection, is obtained by performing a weighted average of
the probability of detection at the cells associated with a non-
zero uncertainty. The weights are proportional to the entropy,
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(a) Occupancy grid map (top) and the designed beamformer (bottom)

(b) Probability of detection achieved with the designed beam (left) and
an omnidirectional beam (right)

Fig. 2: For Ptx = 5dB and Nrx = 16, we show the occupancy grid
map and the designed beamformer for scene 971 of the nuScenes
dataset in (a). The probability of detection Pd,w(i, j) achieved with
our design and an omnidirectional beamformer are shown in (b). We
observe that the proposed beamformer enhances detection in the re-
gion of interest defined by the occupancy map in (a).

and our metric is given by

η =

∑
i,j,k H(P(i, j, k))Pd,w(i, j, k)∑

i,j,k H(P(i, j, k))
. (7)

We observe from (7) that the detection probability at cells
where the entropy is zero does not contribute to η. Fig. 4
shows a boxplot of η obtained at different values of the trans-
mitted power Ptx. Our designed beamformer consistently
achieves a higher median weighted average probability of de-
tection across different values of Ptx. At lower levels of Ptx,
the performance of our beamformer approaches that of an om-
nidirectional beamformer, as the available power is spread
more widely across the drivable space near the vehicle. We
also observed that our method achieves similar performance
as the standard beamformer when Ptx > 25 dB. This is be-
cause an omnidirectional beamformer is sufficient to achieve
good detection at high power levels.

Fig. 3: We show the occupancy grid map and the designed beam-
former for scene 915 of the nuScenes dataset. Here, the transmit
power Ptx = 5dB. We observe that our method can generate multi-
armed beam patterns that are well-suited to the occupancy map.

Fig. 4: Boxplot of the weighted average detection probabilities ob-
tained for 500 scenes in the nuScenes dataset. The designed beam-
formers achieve a higher detection probability in the regions of in-
terest than the omnidirectional beamformer.

5. CONCLUSION AND FUTURE WORK

We developed a transmit beamforming method for automo-
tive radar applications to incorporate prior information on the
scene being sensed. The prior information, in the form of an
occupancy map, was used to determine the entropy at differ-
ent cells in the scene. By using entropy-based weighting over
the detection probabilities, our method optimizes the transmit
beamformer to achieve a higher probability of detection in
regions with high uncertainty than the omnidirectional beam-
former. Simulation results over the nuScenes dataset indicate
that our adaptive beamforming technique performs well for
different lane topologies. In the future, we will extend our
technique by relaxing assumptions such as known noise vari-
ance and a clutter-free environment.
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