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Abstract

A refactoring is a program transformation that improves the design of the source
code, while preserving its behavior. Most modern IDEs offer a number of automated
refactorings as editor services. The RENAME refactoring is the most-commonly applied
refactoring and is used to change the identifier of a program entity such as a variable, a
function, or a type.

Correctly implementing refactorings is notoriously complex and these state-of-the-
art implementations are known to be faulty and too restrictive. When developing a
new programming language, it is both difficult and time-consuming to implement sound
and complete automated refactoring transformations. Language-parametric definitions
of refactorings that can be reused by instantiation with the syntax and semantics of a
language, allow the development effort of refactorings to be amortized across language
implementations.

In this thesis, we developed a language-parametric RENaME refactoring algorithm
that works on an abstract model of a program’s name binding structure. We implemented
the algorithm in the Spoofax language workbench, building on the language-parametric
representation of name binding with scope graphs and using generic traversals in the
Stratego transformation language. We evaluated the algorithm with five different lan-
guages implemented in Spoofax, which uses both NaBL2 and Statix to declare their static
semantics and name binding rules. As a result, Spoofax now provides an automated Re-
NAaME refactoring that works for any language developed with the language workbench
using NaBL2/Statix.
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Chapter 1

Introduction

A refactoring is a set of transformations on the source code of a program that changes its
structure without affecting its observable behavior. The main goal of refactoring a program
is to improve its code quality and thus, its maintainability. The term was coined by Martin
Fowler [20] in his well-known book “Refactoring - Improving the Design of Existing Code”.
Performing refactorings is an essential skill for every software developer.

Numerous refactorings of various complexity exist for all kinds of programming lan-
guages. For example, moving a field from a class to its parent class in Java, inlining a local
variable in C, or extracting a function from an expression in Haskell. The ReNaME refactoring,
the most used refactoring across programming languages [47], changes all name occurrences
of a name identifying a program entity, such as a variable or a type.

Executing the steps necessary for a refactoring by hand is laborious and prone to intro-
ducing errors into the code. Manual refactorings also require the developer to re-test the pro-
gram after completing the code modification, to ensure that the behaviour is still the same.
Clearly, it would be advantageous to have tool support for refactoring, or as Erich Gamma
puts it: “To avoid digging your own grave, refactoring must be done systematically.” [20].

Modern IDEs, like Intelli] IDEA or Visual Studio, offer automated refactorings as editor
services. Automated refactorings should give a programmer the guarantee that the transfor-
mation is behaviour preserving and therefore, should remove the need to test the program
after the change. It is also significantly faster than doing it by hand. This allows the refactor-
ings to be integrated more dynamically into the overall software development workflow.

While providing refactorings as an editor feature makes applying them convenient and
easy, the transformations themselves are notoriously complex and time-consuming to de-
velop. When not implemented correctly, they can introduce bugs into the code that are diffi-
cult to detect. For example, through inadvertent name capture or by accidentally introducing
multiple evaluation of expressions with side effects. In fact, the refactoring engines of many
popular IDEs have been shown to be both flawed and too restrictive [14, 38, 37].

In this paper we focus on the ReNnaMmE refactoring, which allows a programmer to rename
an identifier and all its related occurrences to be renamed automatically. This may seem to
be a trivial operation, which might be performed using a simple textual search-and-replace
edit. However, not all occurrences of a name necessarily correspond to the entity to be re-
named. Furthermore, renaming a program entity can alter the behaviour of a program if
it leads to name capture. Name capture occurs when a reference inadvertently resolves to
a different declaration after the renaming which can unforeseeably change the output of a
program. Thus, a sound implementation of RENAME refactoring must preserve a program'’s
name binding structure.

How names are bound in a program differs substantially across programming languages.
Since name binding patterns such as, lexical scoping or qualified names, are part of a lan-
guage’s static semantics, most renaming algorithms only work on programs of one specific
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programming language. There exists sound renaming algorithm for almost all established
languages such as Java [44], Scheme [24] or Smalltalk [43]. However, their implementations
are not reusable across programming languages.

In this thesis we develop a language-parametric RENaME refactoring that preserves a pro-
gram’s static semantics. Language-parametric in this context means that the implementation
of the rename refactoring takes the name binding rules of the programming language as a
parameter. Given a uniform representation of abstract syntax and of name binding across
languages, the algorithm generically transforms a program and verifies the absence of name
capture using the detection method of the name-fix algorithm [18].

We develop our language parametric renaming algorithm in the context of the Spoofax
Language Workbench [28], a platform for developing (domain-specific) programming lan-
guages. The syntax and semantics of a language are defined through declarative specifi-
cations in meta-languages. Based on these specifications Spoofax generates a parser, type
checker, and interpreter/compiler for a language.

The platform also offers features to generate common editor services such as, syntax high-
lighting and code completion. In this work, we extend Spoofax with a generic RENaME refac-
toring that can be applied in any language developed with Spoofax using its generic name
binding approach. Having this editor feature available out of the box, when developing a
new DSL would arguably be a welcome commodity for language engineers. This new fea-
ture should turn Spoofax into an improved and more complete tool to research and develop
programming languages.

In Spoofax, a programming language’s name binding rules can be specified through the
meta-languages NaBL2 [1] and its successor Statix [2]. Based on such a specification, the
automatically generated type checker constructs a scope graph [39], which is a language-
independent representation of a program’s name binding structure. Both NaBL2 and Statix
come with a deterministic name resolution algorithm that allows to find the declaration(s)
to which a reference points that works on these graph representations.

We implement the RENaME transformation using generic traversals and term rewrite rules
in the Stratego transformation language [9, 10], another meta-language provided by Spoofax.
From these rewrite rules, we can query the scope graph to gather the name binding informa-
tion of a term.

To evaluate the completeness of our RENaME refactoring, we tested the transformations
on several languages, featuring a variety of name binding patterns including let-bindings in
ML, qualified names in Java, and overloaded functions in C#. We implemented regression
tests in the SPT [27] testing meta-language which executes the renaming algorithm on code
fragments of the test languages in order to support the integrity of our evaluation. The refac-
toring is packaged as an interactive editor service that is integrated into the IDEs generated
by Spoofax, providing an adequate user experience.



1.1. Contributions

1.1 Contributions
The technical contributions of this thesis are the following;:

e We develop a renaming algorithm that is parameterized with a name resolution algo-
rithm and that is safe for name capture.

e We implement the renaming algorithm as an editor service in the Spoofax language
workbench for languages defined with the Statix or NaBL2 static semantics specifica-
tion languages. We implement the renaming transformation using a transformation
thatis generic in the abstract syntax structure and takes binding information as a param-
eter. The implementation supports multi-file transformations and is layout-preserving.

e We evaluate the renaming algorithm with respect to correctness, performance, and
scalability on five programming languages which supports a variety of name binding
patterns.

e We extend the SPT language with the capability to run the renaming implementation.

1.2 OQOutline

We structured this master thesis as follows. In Chapter 2, we describe the common problems
and challenges when implementing the RenaMme refactoring. In Chapter 3, we present our
language-parametric renaming algorithm and describe it step by step. Chapter 4 contains
the details of how we implemented the RenaMme refactoring for the Spoofax language work-
bench. We tested our implementation on five different languages and report on those tests
in Chapter 5. We evaluate our renaming solution in Chapter 6. The related work we discuss
in Chapter 7. We outline future work and conclude this thesis in Chapter 8.



Chapter 2

On the Difficulty of Renaming

2.1 The RenamE Refactoring

Choosing the right name for a program entity such as, a variable or a function can be tricky
to get right on the first try. A proper name should accurately abstract the entity it represents
whilst being both concise and comprehensive. Long enough to describe what it stands for
but not too long to be easily remembered. It needs to follow language, organization and
project conventions. The name needs to describe the same thing consistently across source
code files but avoid introducing ambiguity [35].

The difficulty in this seemingly simple matter is reflected by the popularity of Phil Karl-
ton’s quote “There are only two difficult problems in computer science: cache invalidation,
naming things, and the one-off error” [21]. Even if the name was expressive at first, a change
in its context can make it ambiguous or misleading. And of course, there are always typos
to consider. Given the complexity of the naming problem, changing a name in a computer
program is a rather common operation.

Consider applying the refactoring REnamE FIELD in Java: we want to rename the field ctr
in Listing 2.1 to counter, resulting in the program in Listing 2.2. In order to do so, we need
to change the name of the field’s declaration on line 2 and both references that point to it on
lines 4 and 7.

The process of renaming program entities is captured by the REnaME refactoring [20]. In
practice, there is a whole family of RenaME refactorings that concern themselves with renam-
ing different program entities, such as ReNaME TyPecLAss in Haskell or RenNaME METHOD in
C#. The RenaME refactoring is arguably the most basic refactoring and also the most-used
one by far [47]. It can be applied to almost all programming languages.

1 class Counter { 1 class Counter {

2 int ctr = 0; 2 int counter = 0;

3 void inc() { 3 void 1inc() {

4 ctr++; 4 counter++;

5 } 5 }

6 int read() { 6 int read() {

7 return ctr; 7 return counter;
8 } 8 }

9 1} 9 1

Listing 2.1: Before Renaming the Field ctr Listing 2.2: After Renaming the Field ctr
in Java to counter in Java

The main challenge in performing a ReNaME refactoring is to find all the name occur-
rences that belong to the same program entity. An occurrence in this context can either be



2.2. Basics of Name Binding

the declaration of an entity or a reference to that entity. This is rather trivial in the simple
example above and could easily be done by hand. In this chapter we consider the problems
we encounter when renaming more complex programs, which prompt the automation of the
renaming process.

2.2 Basics of Name Binding

Naming is a powerful mnemonic tool for designing and implementing computer programs.
It allows a developer to give a declaration of a program entity (such as a variable, a function, or
a class) an alphanumeric identifier that can be referenced from another locations within the
program. The procedure of finding the declaration to which a reference points to is called,
name resolution. How names are bound to declarations and from where in a program refer-
ences can access these declarations is an aspect of a programming language’s static semantics,
referred to as name binding.

Names are part of almost all computer programs but, there exists a large variety of name
binding patterns across programming languages. The most prevalent binding pattern is lexi-
cal scoping, which makes a name accessible within the program region it was defined. An
example program showing this pattern can be seen in Figure 2.1a, where the blue arrows
point from reference to declaration. Non-lexical bindings relate names to non-hierarchically
related occurrences, such as declarations in other modules.

let * °
var a =1
et | SO,
let vy
var b =1
OO )
| Bclelolo

(a) Source Code (b) AST with Name Binding Edges

*

Figure 2.1: Example Tiger Program with Lexical Scoping

We define scope as a program region that behaves uniformly with respect to name reso-
lution [39]. In the example program, the variable a is defined in the scope of the outer let
binding and the variable b is defined in the scope of the inner let binding. Variable b’s decla-
ration is accessible from the inner let binding because nested program regions have a parent
relationship to the scope of the surrounding region in lexical scoping.

While names are such a pervasive feature in programming languages that are just taken
for granted, they add a remarkable complexity to a language’s static semantics. The first step
in the compilation process of a program is usually to parse the textual interpretation into
an abstract syntax tree (AST) according to the grammar of the language. Trees offer a well-
suited interface for program transformations that happen in subsequent compilation steps,
such as optimization or code generation. Adding edges from reference to declaration nodes
to the AST effectively turn the data structure into a graph, complicating those transforma-
tions. The AST for the program shown in Figure 2.1 can be seen in Figure 2.1b, where the
name binding edges are depicted as blue arrows.
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2.3 Categories of Name Binding Patterns

What makes developing a language-parametric renaming algorithm so difficult is the vari-
ety of name binding patterns that exist across programming languages. In this section, we
attempt to identify name binding pattern categories that our renaming algorithm needs to
handle correctly.

2.3.1 Single-Declaration Binding

Most name binding patterns allow for a reference to point to a single declaration. We have
encountered such a pattern already in Figure 2.1a, where a reference to alocal variable always
points to exactly one variable declaration.

The name binding pattern of fields in Java also falls into this category. In Listing 2.1, the
two field references on line 4 and 7 both resolve to the single field declaration on line 2. In
essence, name binding patterns in this category impose a many-to-one cardinality on the
relationship between references and declarations.

2.3.2 Multi-Declaration Binding

A more complex category of name binding patterns allow to define a many-to-many rela-
tionship between references and declarations. The dynamic polymorphism supported in C#
employs such a pattern. It allows child classes to declare a method that has the same signa-
ture as a method declared in a parent class, a pattern known as method overriding.

class Parent {
virtual String getName() {
return "Parent";

O OO Ul bk WDN -
-

class Child : Parent { 1 class Main {
override String getName() { 2 static void logName(Parent p) {
return "Child"; 3 Console.WriteLine(p.getName();
10 } 4 1
11 3 5 13
Listing 2.3: Class Hierarchy in C# Listing 2.4: Dynamic Dispatch in C#

In Listing 2.3, the getName method declaration inside the child class overrides the identical
method declaration from the parent class. Now on line 3 in Listing 2.4, there is a call to
a getName method on an object of type Parent. Due to polymorphism, it is not possible to
resolve the call to a single declaration at development time, as the type of object p can only
be determined at runtime.

Since renaming happens at compile time, we can only rely on the result of the static name
binding analysis. Therefore when renaming a call to an overridden method, all declarations
that the call might resolve to needs to be changed.

2.4 Informal Name Binding

So far we have concerned ourselves with formal name binding, which is encoded into a lan-
guage’s static semantics and is enforced by the type checker. However, there are forms of
informal name binding which we need to consider when developing our solution.
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1 class Employee { 1 public class Calculator {

2 private: 2 %k

3 int salary; 3 * This method adds integers.
4 public: 4 * @param a first number

5 void setSalary(int s) { 5 * @param b second number

6 salary = s; 6 * @return int sum of a and b.
7 } 7 */

8 int getSalary() { 8 public int addNum(int a, int b) {
9 return salary; 9 return a + b;
10 } 10 }
11 3, 11 3%

Listing 2.5: Getter & Setter in C++ Listing 2.6: Javadoc

2.4.1 Binding between Entities

Formal name binding relates any name occurrence to a specific program entity. Relations
between different kinds of entities are usually also somehow reflected in the name of the
entities, but are usually not checked statically. A prominent example in object-oriented pro-
grams is the use of getters and setters to achieve encapsulation.

In the C++ program in Listing 2.5, we see that the name of the getter and setter method
are directly dependent on the name of the field they encapsulate. Therefore when renaming
the field salary, the methods getSalary and setSalary should also be renamed, in order not
to break the naming convention.

2.4.2 Names in Comments

Most programming languages allow for developers to include comments to further explain
or document their code. It is common for these comments to contain the names of the pro-
gram entities they describe. The renaming transformation would ideally also change the
occurrences in the comment. The JavaDoc comment in Listing 2.6 contains references to the
function arguments numA and nums.

The main difficulty with identifying names in comments is that parsers usually com-
pletely ignore comments and thus, they are not represented in the AST. Therefore, the trans-
formation either needs to work on the textual representation of the program or the comments
need to become part of the AST.

Another issue with finding occurrences in comments is the fact that there are little syntac-
tic restrictions on their content and no context available apart from its location in the source
code. This makes it hard to link an occurrence inside a comment to an entity with certainty,
especially in the presence of ambiguous names.

2.5 Ambiguity

The principal problem with renaming is the existence of ambiguous names, i.e. scenarios in
which the same name is used to identify multiple entities in a program. For example, in Java it
is allowed to give a field and a method the same name inside the same class. Similarly, a local
variable declared in a method body may shadow a method parameter with the same name.
Such lexical ambiguity precludes the application of textual find-and-replace to renaming,
since all occurrences in the text would be replaced.
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1 1let 1 tlet
2 type foo = { 2 type bar = {
3 : string 3 : string
4 } 4 }
5 function foo (foo: foo) = ( 5 function foo (foo: bar) = (
6 let 6 let
7 var foo := foo. 7 var foo := foo.
8 in 8 in
9 print(foo) 9 print(foo)
10 end 10 end
11 ) 11 )
12 in 12 -in
13 foo(foo{ = "foo"}) 13 foo(bar{ = "foo"})
14 end 14 end
Listing 2.7: The Foo Challenge in Tiger Listing 2.8: Renaming Type foo to bar

A more complex instance of this problem can be seen in Listing 2.7. While this is arguably
an extreme and artificial case, we constructed this program to serve as a baseline benchmark
and dubbed it the Foo Challenge. Given an occurrence, a sound renaming algorithm should only
change the occurrences that belong to the same entity. There are five entities in the Foo Challenge
program:

1. The type foo declared on line 2
The foo inside the type foo declared on line 3
The function foo declared on line 5

The function argument foo of the function foo declared on line 5

AR R

The local variable foo inside the function body declared on line 7

A correct renaming of type foo would change the declaration on line 2, the reference
occurrence that gives the function argument its type on line 5, and the reference occurrence
on line 13 that is used to construct an instance of the type.

The Foo Challenge is written in the Tiger programming language. Tiger is a functional,
statically-typed language developed to educate students about compiler construction [3]. We
have used Tiger as our primary target language during the development and implementation
of our language-parametric refactoring.

2.6 Name Capture

Name capture occurs, when a renaming unintentionally changes the name binding structure
of a program. It happens when a renaming introduces a declaration with an ambiguous
name that captures a reference, which used to point to another declaration with the same
name as the new name of the renamed entity.
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1 1let 1 tlet

2 var bar := 10 2 var bar := 10

3 1in 3 dn

4 let 4 let

5 var foo := 100 5 var bar := 100
6 in 6 in

7 bar + foo 7 bar + bar

8 end 8 end

9 end 9 end

Listing 2.9: Capture-Prone Tiger Program Listing 2.10: Tiger Program with Capture

This is easier to understand when looking at an example. In the program shown in List-
ing 2.9, we rename the local variable foo to bar. The output of the program before this re-
naming is 110. However, after the renaming the output is 200. This happens because the
reference to bar on the left side of the plus operator is captured by the declaration of the
local variable formerly named foo, see Listing 2.10.

Since refactorings are defined as behaviour-preserving transformations, capture should be
avoided. Ergo a sound renaming transformation should prevent name capture. What makes cap-
ture so hard to detect is that the new version of the program will still pass all static name
binding checks. Fortunately, we can detect capture statically [18], a technique we will em-
ploy in the next chapter.

2.7 Multi-file Programs

The examples we have looked at so far were all confined to a single module. However most
meaningful programs consists of multiple modules, such as classes in Java, and occurrences
are spread across these modules. Usually, each module is persisted in its own file and the
renaming transformations need to correctly deal with programs that are partitioned in such
a way that leave all the files intact.

As an added difficulty, some of the modules are read-only and references to declarations,
that are part of these modules, cannot be renamed. An example of this can be seen in Listing
2.7 on line 3, where there is a reference to the builtin type string, which as a core part of the
Tiger language clearly cannot be renamed.

Complex programs often have external dependencies to third-party libraries. A popular
example is the Google Guava collections library that is part of many Java applications. Usu-
ally these libraries are tied into a program in a compiled format and cannot be changed either.
A sound renaming algorithm needs to correctly distinguish between modules that are open
for modification and modules that cannot be changed.

2.8 Performance & Scalability

In order to build a truly useful tool, our renaming transformation needs to work on industry-
size applications that have thousands of lines of codes spread across hundreds of files. It is
therefore not enough to just provide a sound algorithm. That algorithm also needs to execute
within the time frame of a few seconds on large programs, in order to deliver an acceptable
user experience.

For this we largely depend on a deterministic and performant name resolution algorithm,
which we use to find all occurrences we have to rename. We also need to consider how to
effectively detect name capture, as it will require to re-analyze the name binding structure of
a program after the renaming transformation was completed in order to find any differences.
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2.9 User Interface Integration

In addition to developing a sound renaming algorithm, we need to wrap the transformation
in an editor service that delivers a satisfying user experience. The renaming needs to be
applicable at the push of a button in order to seamlessly tie into a developer’s programming
workflow. In case the refactoring leads to an error (for example, if name capture occurs) we
need to display a descriptive error message that provides all the information the user requires
to understand and fix the problem.

It is also important that the renaming leaves the formatting of the code intact. The trans-
formation should really only change the name occurrences of the selected program entity and
leave the layout, namely line breaks, white spaces and comments, unchanged. In essence, the
user should not have to perform any changes by hand after executing the renaming in order
to make the code look the same.

There exists a plethora of code editors and integrated development environments (IDEs),
which support an array of general-purpose and domain-specific programming languages.
Since we aim to develop a language-parametric transformation, we need to identify the pro-
gram model requirements that an editor needs to fulfil in order to successfully integrate the
renaming, making our solution editor-agnostic.

210 Renaming Requirements

To summarize, we have identified the following requirements for a renaming transformation.
A sound and complete ReNaMmE refactoring should:

e Given an occurrence, only change the occurrences that correspond to the entity identi-
fied by that occurrence

e Prevent name capture

e Rename all occurrences across all files in a project

e Identify program entities that cannot be renamed

e Scale to large programs/projects

e Provide an effective interactive user interface for applying renaming

e Preserves the layout and comments of a program
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Chapter 3

A Language-Parametric Solution

3.1 A Language-Parametric Foundation

Asname binding and name resolution lay at the center of the difficulty in renaming, it clearly
must be an important part of its solution. In order to develop a language-parametric renam-
ing algorithm, we need both a way to express name binding rules in a language-parametric
manner as well as a language-parametric name resolution algorithm. Mature solutions to
both these problems already exist and we will discuss some of this related work in Chapter 7.
Spoofax offers two solution to these concerns, Statix [2] and NaBL2[1], which we will inves-
tigate in detail in Chapter 4. Many of the observations described in this chapter are based on
the research of Neron et al.[39] on name-binding and a-equivalence.

As the focus of this work is the renaming algorithm, we expect that a language-parametric
name resolution algorithm, which encapsulates the language-specific name binding rules,
exists as the foundation of our solution. This algorithm needs to be deterministic and we
presume it takes an arbitrary name occurrence as an input and returns the declaration(s)
this occurrence resolves to. As our solution is designed to work on the tree representation
of a program, we also require a parser, which abstracts away the language-specific syntax.
Lastly, we expect the static name binding analysis to annotate the tree nodes with name bind-
ing information. Thus, we can determine which nodes are reference occurrences and which
nodes are declaration occurrences.

3.2 A Generic Representation for Name Bindings

The versatility of name bindings across different programming languages is the main reason
for the complexity of developing a language-parametric solution. To tackle this, we need
a generic representation of a program’s name binding structure that is independent of the
language it is written in.

As a first step, the algorithm needs to identify all the name occurrences in a program and
enumerate them, so it can refer to them by an index. A program’s textual representation is
clearly too verbose, as we are not interested in all the indentation that makes it easier to read.
Parsing the source code to an AST gets rid of all the white space and gives us a nice tree data
structure to work with. Traversing the AST in a deterministic way allows us to give each
occurrence a unique name index. In Figure 3.1, the name indices are shown as subscripts of
the identifiers. It is important to mention that a name index is not attached to the identifier
itself but rather to the AST node that represents the identifier. This means that the name
index is preserved if the name changes.

We pair up the name index of a reference occurrence z* with the name index of the
declaration occurrence 2 to create a resolution pair (zf,zP). The set of all resolution pairs
found in a program gives us the resolution relation R. The resolution relation is a binary

11



3. A LANGUAGE-PARAMETRIC SOLUTION

let °
var a; = 1
in
let e (9
var b, = 1
08 &
az + by

end
end OO

(a) Source Code (b) AST

Figure 3.1: Example Tiger Program with Name Indices

relation on the set of all occurrences (2 and represents the complete name binding structure of
a program in a simple mathematical format. We denote (2 as the set containing all reference
occurrences and {)p as the set containing all declaration occurrences, both being subsets of
(2. The program shown in Figure 3.1 yields the resolution relation R = ((3,1), (4,2)).

It is noteworthy that we only consider occurrences that are tied to identifiers and leave
out ones that are tied to keywords. A prominent example for such a keyword is this, which
appears in object-oriented programming languages and represents a reference to the object
on which a method was called. Such a reference occurrence cannot be changed by renaming
and thus our transformation does not need to handle it.

3.3 Finding What Belongs Together

After extracting the name binding structure of a program in the form of a resolution relation,
the next challenge is to find out which occurrences (declarations and references) that identify
the same entity. For example, consider again the Foo Challenge from Section 2.5.

1 tlet

2 type foo; = {

3 foog : string

4 1}

5 function fooz (foos: foos) = (
6 let

7 var foog := foor.foog
8 in

9 print(foog)
10 end
11 )
12 1in
13 foo1g (fooq1{fooia = "foo"})
14 end

Listing 3.1: The Foo Challenge with Name Indices in Tiger
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Listing 3.1 shows the program with all the occurrences carrying their name indices as sub-
scripts. The programs name binding structure in the form of the sets and relations described
in the previous section are shown in Figure 3.2.

Q=1{1,2,3,4,5,6,7,8,9,10,11,12}

QOp = {1,2,3,4,6)
Or = {5,7,8,9, 10,11,12}
R = {(57 1)7 (77 4)7 (87 2)7 (97 6)7 (107 3)7 (117 1)7 (127 2)}

Figure 3.2: Name Binding of the Foo Challenge (Listing 3.1)

To visualize the name binding structure of a program, we represent the resolution relation
as a name graph [18]. In this graph the nodes represent occurrences labeled with their name
index and the relations from references to declarations are represented as directed edges.
The name graph of the Foo Challenge is shown in Figure 3.3.

Figure 3.3: Name Graph of the Foo Challenge

Through this visualisation, we can observe that the name graph is disconnected. It con-
sists of multiple sub-graphs, separated in the figure by dotted lines, where each sub-graph
contains all the occurrences of one specific program entity. As an example, the leftmost sub-
graph in the figure contains the node labeled 1, representing the declaration of the type foo,
as well as the two nodes 5 and 11, representing the references to that type. If we wanted to
rename the type foo, we need to change the identifiers at the name indices 1, 5 and 11.

We generalize this observation to the assumption that the name graphs of all non-trivial
programs are disconnected and that the sub graphs it contains represent one named program
entity each. From the perspective of set theory, each sub-graph corresponds to an equiva-
lence class e;, which is a partition of 2. This view is in line with the observation of Neron et.
al [39], that the reflexive-transitive closure of the resolution relation R forms an equivalence
relation E over (). Figure 3.4 shows the equivalence classes of the Foo Challenge including
the entity type of each class.

For a correct renaming of a program entity, we need to change all the identifiers in the
program that carry the name indices present in the corresponding equivalence class.

While we do not provide a formal proof for this statement, we can evaluate it by examin-
ing the effect on renaming if it was reversed. If a program with multiple entities would result
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3. A LANGUAGE-PARAMETRIC SOLUTION

type: e; = {1,5,11}

function argument: ey = {4, 7}
variable: e3 = {6, 9}
field: eq = {2,8,12}

function: e5 = {3, 10}

Figure 3.4: Equivalence classes of the Foo Challenge

in a fully connected name graph, there would be no way of deciding which occurrences be-
long to one specific entity. Changing all the identifiers carrying the name indices in the same
equivalence class would lead to changing all names in the program, which would only be
correct in two trivial cases.

Programs without any names result in an empty name graph and are not interesting, as
they do not allow for any renaming. If a program only contains one named entity, the name
graph will be fully connected, however changing all the identifiers will result in a correct
renaming, as all the names in the program belong to the same entity anyway.

To rename an entity in a program, it suffices to select one occurrence of the name of the
entity, regardless whether the selected element represents a declaration or a reference. By
identifying the equivalence class in the name graph of the identifier, we can find all other
occurrences to rename (and not more). We can rely on the union-find algorithm [23] to
solve this problem for us. The time complexity of this algorithm is O(ma«(n)) [46, 45] for m
operations and n equivalence classes, which was proven to be optimal [22]. With its near-
constant performance it is definitely suitable to be the backbone of a fast renaming algorithm.

3.4 Changing the Names

With the ability to find all the name occurrences of a specific program entity we can now
progress to perform the actual renaming by changing the identifiers in the program.

(a) Before (b) After

Figure 3.5: Example Renaming on AST
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We do this by traversing the AST and inspecting each node. If the node represents an
identifier in the source code, we check if its name index belongs to the equivalence class of
the entity to be renamed and if so, change the identifier to the new one. We call this the
renaming transformation T .

While certain name binding patterns can be characterized by the proximity of the identi-
fier nodes in the AST, we are not exploiting this fact and instead require a complete traversal
of the AST in an arbitrary order. We leave the optimization of the tree traversal based on the
name binding pattern to future work.

As an example, assume we want to rename the local variable b in the program shown
in Figure 3.6a to c by selecting the occurrence by. The selected name index n, = 4 is in the
equivalence class es, as can be seen in Figure 3.6b. To rename b to ¢, we can traverse the AST
and change the identifiers in the nodes that carry the name indices contained in ey, which is
displayed in Figure 3.5. Note that the name indices of the renamed local variables stayed the
same, even though the identifiers changed.

let
var a; = 1
in 0 =1{1,2,3,4}
let
~var by =1 R={(3,1),(4,2)}
n b e1 = {1,3)
aAa: +
end3 ’ es = {2,4}
end —

(a) Source Code (b) Sets

Figure 3.6: Example Tiger Program for Renaming

3.5 Ensuring Preservation of Behavior

We expect that the renaming is semantics preserving, as all refactorings are by definition [20].
Thus the changing of the name of a program entity should not alter a program’s observable
behaviour. We take a static approximation to semantics preservation.

As a baseline, we define two programs P and P’ to be equivalent if their ASTs are identical.
We expect two equivalent programs to exhibit the same behavior. If we apply the renaming
transformation T to a program P it will result in a new non-equivalent program P’. The only
trivial case where T'(P) = P arises if the new name of the entity to be renamed is the same
as the old one.

If we examine our renaming transformation 7" with focus on its effect on program equiv-
alence, we observe that it does not change the structure of the AST. It does not create, delete
or move any of the nodes. It only changes the content of certain leaf nodes that represent the
identifiers of the entity to be renamed. We define two programs P and P’ to be structurally-
equivalent if their ASTs are identical with the exception of leaf nodes which represent iden-
tifiers. The ASTs of two structurally-identical programs can be seen in Figure 3.5. Since
the rename transformation only replaces names with new names, it produces a structurally
equivalent program by definition.
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3. A LANGUAGE-PARAMETRIC SOLUTION

Our intuition might tell us that two structurally-equivalent programs would also exhibit
the same behavior, thus making our renaming transformation behavior-preserving. For a
large class of programs this assumption actually holds true. If each program entity’s name is
unique and the new name being introduced also doesn’t introduce a duplicate, 7" is indeed
behavior-preserving. The example program in Figure 3.5 belongs to this class of programs
with entirely singular names.

Even if a program has duplicate names, T is behavior preserving for most renamings.
However there are certain cases where a renaming changes the name binding structure of
a program by introducing a duplicate name, a problem referred to as name capture (see Sec-
tion 2.6). Changing the name binding structure of a program might also change its semantics
and therefore making 7" a behavior-altering transformation.

Two structurally-equivalent programs that also exhibit the same name binding structure
are defined to be a-equivalent. This concept was introduced by Alonzo Church’s foundational
work on the lambda calculus [13]. Expressed using this well-known term, our goal is for
T(P) to produce an alpha-equivalent program P’. That is, each reference in P’ points to
the same declaration (as identified by its name index) as in P and therefore the resolution
relation of P and P’ are equal. Unfortunately, this is not the case for each application of the
rename transformation. A rename transformation that produces a program with a different
resolution relation suffers from name capture.

However, that two a-equivalent programs exhibit the same runtime behavior can not be
guaranteed, when working with languages more complex than the lambda calculus. As an
example, Java’s Reflection API allows for runtime instrumentation of programs running in
the Java Virtual Machine. The API allows to access a member of an object through its name
given as a string literal. If we were to rename the method getone in Listing 3.2, the literal on
line 5 would remain unchanged, resulting in an error at runtime.

1 class A {

2 public int getOneReflection() {
3 B b = new B();

4 Class cls = b.getClass();

5 Method getOne = cls.getDeclaredMethod('"getOne");
6 getOne.invoke(b);

7 }

8 3

9
10 class B {
11 public int getOne() {
12 return 1;
13 }
14 3

Listing 3.2: Java Program using Reflection

This is a manifestation of the problem of informal name binding, which we described in
Section 2.4. The string literal is not recognized as a reference to the method getone and is
therefore missing in the resolution relation. As a conclusion of this observation, we need
to declare a limitation to our solution: 7" is only behavior preserving if R contains all occur-
rences appearing in P.
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3.6. Detecting Name Capture

3.6 Detecting Name Capture

To avoid changing a program’s semantics by our refactoring transformation 7', we need a way
to detect if a renaming leads to name capture. Our approach to this is simple but effective:
we just compare the name binding structure of the program before and after the renaming.
If the structure changed, name capture occurred and the transformation needs to be aborted.
Expressing a program’s name binding structure as a resolution relation R basically reduces
the problem of capture detection to checking two binary relations for equivalence.

1 1let 1 1tlet

2 var barjp := 10 2 var bary := 10

3 1in 3 1in

4 let 4 let

5 var fooy := 100 5 var barp := 100
6 in 6 in

7 barg + fooy 7 barg + bary

8 end 8 end

9 end 9 end

Listing 3.3: Capture-Prone Tiger Program Listing 3.4: Tiger Program with Capture

Revisiting the example from Section 2.6, we can demonstrate that name capture leads
to an unintended change of a program’s name structure. Listing 3.3 shows a program that
is at risk of name capture if a duplicate name bar is introduced through renaming. If we
were to rename the local variable foo, the reference barz would be captured by the renamed
declaration bars.

Q=1{1,2,3,4} Q=1{1,2,3,4}
R:{(37 1)7(472)} R:{(3>2)a(472)}
N1:{1,3} le{l}

Ny = {2,4} Ny = {27374}
(a) Before (b) After

Figure 3.7: Name Binding Structure

The resulting program, shown in Listing 3.4, would output 200 as a result instead of 110,
clearly violating the behavior-preserving property of 7. By comparing the resolution rela-
tions of two programs P and P’ = T(P), we can however detect this violation statically,
without the need to execute them. Figure 3.7a and Figure 3.7b show the name binding struc-
tures of the programs next to them and we can see that the resolution pair (3, 1) was altered
to (3, 2) by the transformation, resulting in different equivalence classes.

There are cases where name capture does not alter a program’s behavior. Going back to
Listing 3.4, if both variables were assigned the value 10, the output of the program would stay
unchanged. However, this is generally undecidable at compile time and our algorithm there-
fore always aborts with an error if name capture is detected. By definition (see Section 2.6)
name capture introduces an ambiguous name, which makes it harder to understand a pro-
gram and is considered to be bad programming style [35]. Since refactoring is a tool meant
to improve code quality, it makes little sense to allow name capture anyway, even if it were
behavior-preserving.
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3. A LANGUAGE-PARAMETRIC SOLUTION

Simply aborting the transformation with an error might seem like a blunt solution to the
name capture problem. Clearly it would be much more elegant if the transformation some-
how would repair the name binding structure of the program and thus avoid the change in
behavior. For example, the renaming transformation Schaefer[44] developed for Java can
automatically rectify certain cases of name capture by using qualified names. Since this so-
lution relies on a specific language features, it does not fit our goal to create a solution that
is as language-agnostic as possible. Therefore we did not consider it further in our research.

3.7 The Algorithm

We now have all the pieces in place to assemble our language-parametric, behavior-preserving
renaming algorithm. From a top-level view, the algorithm consists of four steps:

1. Extracting the resolution relation from the AST
2. Calculate the equivalence class the selected occurrence belongs to
3. Changing the identifiers in the AST

4. Checking for capture

The first step extracts the resolution relation from the AST through a name resolution al-
gorithm which encapsulates the target language’s name binding rules. From the resolution
relation we can then find which occurrences describe the same program entity by calculat-
ing the equivalence classes. Finding the class to which the occurrence selected by the user
belongs to then allows us to find all the occurrences that need to be changed by the renaming.

The third step actually changes the identifiers in the AST, targeting all the nodes with
name indices belonging to the selected equivalence class. Lastly, the algorithm checks for
capture to ensure the binding structure hasn’t changed. This is done by extracting the reso-
lution relation of the renamed AST and comparing it to the resolution relation of the initial
one. If they are equal, the algorithm succeeds and returns the renamed AST. It aborts with
an error otherwise. A pseudo-code implementation of the algorithm is displayed in Algo-
rithm 1 on the following page. We are going to discuss its implementation, both the Statix
and NaBL2 version, in the next chapter.
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Algorithm 1: Language-parametric renaming

def rename(ast, name-resolution-algorithm, selected-occurrence, new-name):
resolution-relation := calc-resolution-relation(ast, name-resolution-algorithm)
target-occurrences := find-equivalence-class(resolution-relation, selected-occurrence)
renamed-ast := rename-ast(ast, target-occurrences, new-name)
check-capture(resolution-relation, renamed-ast, name-resolution-algorithm)

return renamed-ast
def calc-resolution-relation (ast, name-resolution-algorithm):

var resolution-relation

for reference in ast do
(declaration, reference) := name-resolution-algorithm(reference)
resolution-relation += (declaration, reference)

end

return resolution-relation

def find-equivalence-class(resolution-relation, selected-occurrence):

| return union-find(resolution-relation, selected-occurrence)
def rename-ast(ast, target-occurrences, new-name):
for term in ast do

if term.nameindex in target-occurrences then
| term = new-name

end
end
return ast
def check-capture(resolution-relation, renamed-ast, name-resolution-algorithm):
var new-resolution-relation := calc-resolution-relation(renamed-ast,
name-resolution-algorithm)
assertEquals(resolution-relation, new-resolution-relation)
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Chapter 4

Implementation in Spoofax

4.1 Introducing Spoofax

We put the theoretical solution we presented in the previous chapter to the test and create a
working implementation. For that we need an implementation of the language-parametric
foundation we established in Section 3.1. Specifically, we need to be able to extract the
name binding structure of a program written in an arbitrary language along with a name-
resolution algorithm that works on top of that structure. Additionally, we need the means
to perform the renaming transformation 7" on an actual program.

The Spoofax Language Workbench [28] is a platform to develop domain-specific and
general-purpose programming languages. The aspects of a language, such as its syntax or
type system, are implemented as declarative specifications written in meta-languages. From
these specifications, Spoofax can generate parsers, type checkers, and other tools commonly
found in language SDKs.

Spoofax stands out through its interactivity, as it allows to develop and test a language
within one tool. Changes made to a language’s definition are hot-loaded into the running
Spoofax instance and have immediate effect on programs written in the language under de-
velopment. As an example, we assume a language engineer would change the syntax defi-
nition to use the keyword let instead of var to declare local variables. Spoofax will generate
a new parser from the syntax definition, which would then promptly mark all the loaded
programs as faulty which still contain the old keyword. This short feedback loop greatly
increases productivity when developing a new programming language.

The Eclipse IDE is the basis on top of which Spoofax runs, packaged as a plugin. As a
state-of-the-art development tool, Eclipse provides a user-friendly GUI, integration points for
collaboration tools like Git or build tools like Maven, and a host of other useful features. This
makes developing a new programming language with Spoofax as convenient as developing
a Java program in Eclipse. An experimental plugin for Intelli] IDEA is also available [42].

The renaming algorithm will be implemented in Stratego [9], a DSL in which program
transformations are expressed as term rewrite rules. These rules can be applied when travers-
ing an AST through programmable rewrite strategies and allow us to express the refactoring
in a concise way. To remodel a program to an AST, we can rely on the SGLR [48] parser
Spoofax generates from a language’s SDF3 [29] syntax definition. The parser produces a
tree in the language-agnostic ATerm [7] format, on which Stratego can execute a language-
agnostic transformation. Spoofax also produces a pretty printer based on the syntax defini-
tion, which turns the AST back into source code.

Name binding and typing information of a program are represented as a scope graph [39]
in Spoofax. This graph is built based on the results of the static analysis, which is defined in
the constraint language NaBL2 [1] or its successor Statix [2]. Spoofax includes a language-
agnostic name resolution algorithm which works on top of scope graphs and can be accessed
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through an API from a Stratego transformation. In other words, Spoofax provides us with
the language-parametric foundation we need in order to build our renaming tool.

While it already offers certain editor services, such as syntax highlighting and syntactic
code completion, Spoofax is still missing a renaming refactoring. The implementation of this
refactoring, which we describe in this chapter, is one of the main contributions of this Master
thesis.

4.2 Name Binding with Scope Graphs

As name binding and resolution are of principal concern when developing a renaming al-
gorithm, we describe first how Spoofax handles these matters. Scope graphs are a formalism
to represent a program’s name binding structure [39]. The scope graph abstracts away all
unnecessary details from the AST and aggregates all the information needed for name reso-
lution into a concise model. This model is language independent an can represent an array
of different name binding patterns. Scope graphs consist of the following components:

e A scope represents a program region that behaves uniformly with respect to name res-
olution. Graphically, they are depicted as circles that are labeled with a number that
identifies the scope.

e A declaration represents the introduction of a name into a scope. In text we represent
them as aP, where a is the identifier and i refers to the location in the AST. In diagrams
we represent them as rectangles labeled with their names. A declaration is associated
with a scope through a directed edge pointing from the scope to the declaration.

o A reference represents the use of a name that refers to a declaration with the same name.
Formally we write aR for a reference to name a at position i. Graphically, they are
represented the same as declarations, except the the arrow points from the the reference
to the scope.

o A labeled edge is a directed connection between scopes. The labels can be used to distin-
guish different connections, e.g. I for imports or P for parent relations. Graphically,
they are represented as pointed arrows with their label on them. In text we write s -I->

7

S.

Figure 4.1a shows the AST of a simple Tiger program, which we use to showcase a scope
graph. The nodes representing names are highlighted blue and the identifiers carry their
name index as a subscript. Figure 4.1b shows the scope graph diagram of the example pro-
gram. The name index relates nodes in the AST to the corresponding nodes in the scope
graph.

The outer let binding introduces scope 1, in which the variable a? is declared. The inner
let binding introduces scope 2, which connects to the scope of the outer let binding through
a parent(P) edge. This has the effect that declarations from the parent scope are accessi-
ble from the child scope. Scope 2 introduces the variable b2 and contains the two variable
references aX and bR.
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i
P

b,

(a) AST

(b) Scope Graph Diagram

Figure 4.1: Scope Graph Example

Consider how we can perform name resolution within this scope graph. Specifically we
look at how we can find a} from aX. To resolve a name, the scope graph is traversed following
the directed edges starting from the reference node. Looking at our example in Figure 4.2, we
first take an R step from aX to scope 2. Next we look for declarations in that scope, taking step
D to bP. Since the names don’t match, this is clearly not the right declaration. As there are
now other declarations in that scope, we take a step along the P-edge to scope 1. Her we look
again for declarations, reaching aP through another D step to find the correct declaration.

While traversing the scope graph, the situation can arise where there are multiple directed
edges that can be followed. In the example after taking the R step, we can either take a D
step to b or an P step to scope 1. To resolve such ambiguous situations, we impose a strict
partial specificity ordering on resolution paths, which defines which step to take. In our case
this ordering is R < D < P, meaning reference steps have priority over declaration steps,
which in turn have priority over a parent relation step. This explains why in our example we
first check the declaration b2 before taking the parent step. Note however that this specificity
ordering is language specific and might range over more edge labels. For example, many
languages also include I steps to model imports.

Besides the specificity ordering, path’s also need to adhere to a path well-formedness
predicate WFP. This predicate is a regex expression that disallows certain resolution paths.
WEFP = R.P*.D determines that a valid path always has to start with a reference step, may
take 0-n parent steps after that and ends in a single declaration step.
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Figure 4.2: Name Resolution Example

4.3 Defining the Name Binding Rules

We've seen how scope graphs can represent a program’s name binding structure in an ab-
stract way. Now, let’s discuss how we actually construct a graph from an input program.

As mentioned before, manipulation programs in their textual form can be cumbersome
and therefore we first parse the program and represent it as an AST. Given a language’s
grammar as an input, Spoofax can generate a parser for that language [30], that we can
use for this first step. The grammar must be declared using the meta-language SDF [29],
an example syntax definition is shown in Listing 4.1. On line 1 of the example program
we define the sorts Dec, Exp and Name. Sorts are abstract syntactic categories that can be
instantiated through the application of constructors, which are defined below the keyword
context-free-syntax.

The constructor on line 4 is called varbec and it creates instances of the Dec sort. The
textual pattern to define a variable can be seen on the right side of the equals sign in angle
brackets. It starts with the keyword var, followed by a name, the assignment operator : =, and
an expression that initializes the variable. The constructor var on line 5 represents a variable
reference as a name. When revisiting the AST in Figure 4.1a, we can see that the names of
the constructors appear as labels on the AST nodes, where the parser applied them.

sorts Dec Exp Name

context-free syntax
Dec.VarDec = <var <Name> := <Exp>>

Gl W N =

Exp.Var = Name

Listing 4.1: Example SDF Specification

When developing a language in Spoofax, we use the NaBL2 meta-language [1] to declara-
tively specify name binding and typing rules, i.e. the static semantics. We do this by declaring
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rules that match on nodes in the AST, based on the constructors from the syntax definition,
and mapping these nodes to constraints. A constraint is a logical assertion that needs to hold
in order for the static analysis to pass.

In Listing 4.2 we define rules to statically check variable declarations and references. The
rule on line 2 matches the varbec constructors, binding its two children name and init-exp.
The matching clause also contains a scope, in which the variable declaration will be intro-
duced. On the lines 3-5 are the constraints that need to hold in order for the type checker to
not complain.

The first constraint invokes a rule that checks the expression that initializes the variable
and yields the expressions type as a return value. The second constraint assigns the type of
the initializer expression to the declaration. The last constraint adds a declaration node to
the scope graph in the current scope. This declaration is part of the var namespace.

NaBL2 allows for the definition of multiple namespaces within a scope graph, allowing
the same name to be declared in the same scope without a name clash, given the declara-
tions belong to different namespaces. In C# for example, it is not possible to define multiple
fields with the same name in the same class. It is however possible to have a method and a
field in the same class that have an identical name. This can be modeled through separate
namespaces for fields and methods.

1 rules

2 [[ VarDec(name, 1init-exp) * (scope) ]] :=
3 [[ init-exp A (scope) : type 11,

4 Var{name} : type !,

5 Var{name} <- scope.

6

7 [[ Var(name) " (scope) : type 1] :=

8 Var{name} -> scope,

9 Var{name} |-> d,

10 d : type.
Listing 4.2: Example NaBL2 Specification

The rule for evaluating variable references starts on line 7. The match-clause for this
rules determines that the evaluation yields a type as the result. The first constraint adds the
reference to the scope graph and the second constraint says that this reference must resolve
to some declaration d. The third constraint asserts that the type of the declaration equals the
type of the reference.

Given a NaBL2 specification and an AST, Spoofax can now check the static semantics of
the program. It does so in two phases: constraint generation and constraint solving. First the
AST is traversed and every node is evaluated according to the rules defined in the NaBL2
specification, yielding a set of constraints as a result. In the second phase, a generic solver
algorithm tries to find a solution for that set of constraints by means of unification [5]. If a
solution is found this generally means the program type checks and does not contain any
unbound references.

The results of the static analysis are linked to the nodes in the AST through annotations.
These annotations can be queried by later compilation steps, such as desugaring or code
generation. For example when generating byte code for the JVM, we can query a variable
reference for its type, from which we derive the corresponding load instruction. In case of
our renaming transformation, he name indexes are added to the AST nodes as annotations,
which we can use to query the scope graph and perform name resolution.
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4.4 Introducing Stratego

Spoofax includes the Stratego [9] transformation language which we used to implement
our renaming transformation 7. In Stratego, program transformations are expressed as term
rewrite rules which match on certain terms in a program’s AST and then add, delete or mod-
ify terms in order to manifest the transformation. In this section we give a brief overview of
Stratego that should help the reader understand the code in the rest of this chapter. If some
part of the code remains unclear, a more extensive introduction of the language can be found
in its official documentation [15].

An example of a program transformation expressed in Stratego is shown in Listing 4.3.
There we implemented the law of De Morgan [36] in the form of the rewrite rule de-morgan.
The rule matches on the boolean And and Or operators, which are nested inside a Not oper-
ator, expressed as terms on the left-hand side of the arrow. If the match succeeds, the term
is then transformed into the form given on the right-hand side of the arrow, thus applying
De Morgan’s law in our example.

1 rules
2 de-morgan : Not(And(x, y)) -> Or(Not(x), Not(y))
3 de-morgan : Not(Or(x, y)) -> And(Not(x), Not(y))

Listing 4.3: Applying De Morgan’s law in Stratego

The terms Stratego operates on are formulated in the Annotated Term Format [7], or ATerm
for short. The ASTs that are produced by Spoofax’s generated JSGLR parser, are also ex-
pressed in that format, which facilitates a seamless workflow when parsing, transforming
and then pretty printing a program. A term ¢ in the ATerm format can have one of the fol-
lowing forms:

e An integer constant

A string literal

A constructor application, where the constructor c is an arbitrary identifier which has
0-n terms ¢,, as arguments, expressed as c(to, ..., t5)

A list of terms, expressed as [to, ..., tn]

A n-tuple of terms, expressed as (to, ..., t,)

Optionally, each term ¢ in the ATerm format can be annotated with a list of other term
ttq, ...t to provide additional semantic information. This can be used, for example, to pro-
vide type information on an expression such as Or(z, y){Type(”bool”)}. We use these anno-
tations to implement the name indexes described in Section 3.2.

To express more complex program transformation, rewrite rules can be combined to pro-
duce rewrite strategies, which can selectively apply rules during an AST traversal. The ex-
ample in Listing 4.4 was taken from the official Spoofax documentation [15] and shows the
strategy cnf, which rewrites a boolean expression into its conjunctive normal form.

It does so by traversing the AST bottom up, using the builtin innermost traversal strategy.
During the traversal it tries to apply the 7 rules defined on lines 2-8 on each node. The rules
are applied using the deterministic choice combinator s; < +s2. This combinator first tries to
apply s to the current term, but backtracks if s; fails and applies s> to the original term.
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4. IMPLEMENTATION IN SPOOFAX

1 rules

2 DefI : Impl(x, y) -> Or(Not(x), y)

3 DefE : Eq(x, Yy) => And(Impl(x, y), Impl(y, x))

4 DN  : Not(Not(x)) -> x

5 DMA : Not(And(x, y)) -> Or(Not(x), Not(y))

6 DMO : Not(Or(x, y)) -> And(Not(x), Not(y))

7 DOAL : Or(And(x, y), z) -> And(Or(x, z), Or(y, z))
8 DOAR : Or(z, And(x, y)) -> And(Or(z, x), Or(z, y))
9
10 strategies
11 cnf = innermost(DefI <+ DefE <+ DOAL <+ DOAR <+ DN <+ DMA <+ DMO)

Listing 4.4: Rewrite Boolean Expression to Conjunctive Normal Form

4.5 The Implementation in Detail

We implemented the algorithm we described in Section 3.7 as the Stratego strategy in List-
ing 4.5. We will explain each of the steps in detail in the following subsections by reference
to the NaBL2 version of the implementation. The Statix implementation works mostly the
same, but there are some differences between the respective Stratego APIs which we detail in
Section 4.6. The implementation discussed in this section only works on single-file programs,
the version for multi-file programs is detailed in Section 4.7.

In the rest of this chapter, we present the code as we developed it going from NaBL2 to
Statix and from single-file to multi-file. In some cases we took the liberty to leave out certain
uninteresting implementation details for the sake of brevity. The final implementation of
the refactoring exists in two versions, one using NaBL2 and one using Statix. Both versions
can deal with single- and multi-file programs. We opted to describe the implementation in a
step-by-step manner to make it easier to understand and follow along. In Appendix A.1 we
list all the repositories where our source code can be found as well as all our code changes
in the form of pull request.

One thing we need to do before we can start the algorithm is to access the result of the
static analysis of the program. In the strategy get-analysis, we extract the analysis object,
which contains all the name binding information our algorithm needs, through the API call
nabl2-get-ast-analysis

rename( |selected-term, new-name, path): ast -> renamed-ast
where
analysis := <get-analysis> ast
; resolution-relation := <calc-resolution-relation> analysis

; target-indices := <find-all-related-occs> (selected-occ, res-rel)
; renamed-ast := <rename-ast(|target-indices, new-name)> ast

1

2

3

4

5 ; selected-occ := <find-occurrence(|analysis)> selected-term
6

7

8 ; check-capture(|renamed-ast, resolution-relation, path)

9

10 get-analysis: ast -> analysis
11 where
12 analysis := <nabl2-get-ast-analysis> ast

Listing 4.5: Rename Strategy
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4.5.1 Calculating the Resolution Relation

The first step of the algorithm is to build the resolution relation as an abstract representation
of a program’s name binding structure. The strategies for this step are shown in Listing 4.6.
We start by extracting all the reference and declaration occurrences in the program from the
analysis object. We can do that by using the strategies nabl2-get-all-refs and nabl2-get-
all-decs which are part of NaBL2’s Stratego APL

Having all the occurrences we can start building the resolution relation. Using the make
-resolution-pair strategy, we loop through all references and pair them with their corre-
sponding declarations. To make these resolution pairs we use NaBL2’s name resolution al-
gorithm to by calling the strategy nabl2-get-resolved-name on the reference occurrence.

References and declarations are represented through ATerms in the form Occurrence(
namespace, name, term-index). The namespace and name are not relevant for us, as we form
the resolution relation out of pairs of term indices. Therefore we use the strategy get-term-
index-from-occ to extract the TermIndex subterm from the oOccurrence term.

The constructor TermIndex(path, index) is an implementation of the name index concept
we described in Section 3.2, which we use to identify occurrences in the AST. The first subterm
path refers to the file path of the program and the second subterm index is used to enumerate
AST nodes within a file.

1 calc-resolution-relation: analysis -> user-defined-relation
2 where
3 refs := <nabl2-get-all-refs(|analysis)>
4 ; decs := <nabl2-get-all-decls(]|analysis)>
5 ; ref-dec-pairs := <map(make-resolution-pair(|analysis))> refs
6 ; decs-reflexive-pairs := <map(make-reflexive-pair)> decs
7 ;3 relation := <conc> (decs-reflexive-pairs, ref-dec-pairs)
8 ; user-defined-relation := <filter(is-user-defined)> relation
9
10 make-resolution-pair(|analysis) : ref -> (ref-index, dec-index)
11 where
12 (dec, _) := <nabl2-get-resolved-name(|analysis)> ref
13 ; ref-index := <get-term-index-from-occ> ref
14 ; dec—index := <get-term-index-from-occ> dec
15
16 make-reflexive-pair: dec -> (term-index, term-index)
17 where
18 term-index := <get-term-index-from-occ> dec
19
20 ds-user-defined: (ref, dec@TermIndex(path, num-index)) -> <id>
21 where
22 <not(eq)> (num-index, 0)
23
24 get-term-index-from-occ: Occurrence(_, name, term-index) -> term-index

Listing 4.6: Calculating the Resolution Relation

Pairing all references to their declaration however doesn’t necessarily collect all occur-
rences into the resolution relation. If a program contains declarations which are never re-
ferred to, it would not be gathered that way and thus the name binding structure would be
incomplete. Therefore we simply add a reflective resolution pair for each declaration to the
relation through the strategy make-reflexive-pair.
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4. IMPLEMENTATION IN SPOOFAX

As we described in Subsection 2.3.2, a program might contain references to language en-
tities that are declared outside the program itself. For example in Listing 4.6 we call multiple
strategies from NaBL2’s Stratego API. Clearly we cannot rename an entity declared in an ex-
ternal assembly, therefore we remove all the resolution pairs that contain foreign declarations
from the resolution relation.

When resolving a reference that leads to an external declaration the NaBL2 name res-
olution algorithm outputs a TermIndex with the same path as the reference and the index
0. Therefore we can filter all resolution pairs where the declaration’s index is 0 out of the
resolution relation, using the strategy is-user-defined. Ergo the return value of the calc-
resolution-relation strategy contains the name binding information of all the user-defined
language entities in the program.

4.5.2 Checking The Selected Name

In the second step of the algorithm we need to find a name occurrence in the users selection
and check if it is possible to rename the program entity it belongs to. The strategies we use for
this are shown in Listing 4.7. We traverse the selected term in the strategy find-name-index
and check if any of the nodes have a TermIndex that occurs in the resolution relation.

1 find-name-index(|res-rel): term -> occ-index

2 where

3 occ-index := <collect-one(get-name-index(|res-rel))> term

4 <+ add-error(|"The selected entity cannot be renamed.")

5

6 get-name-index(|res-rel): term -> occurrence

7 where

8 if (<is-list> term) then

9 <map(get-occurrence(|res-rel))> term
10 else
11 <is-string> term
12 ; term-index := <nabl2-get-ast-index> term
13 ; occurrence := <fetch-elem(res-pair-contains(|term-index))> res-rel
14 end
15
16 res-pair-contains(|term-index): (ref-index, dec-index) -> term-index
17 where
18 <eq> (term-index, ref-index) <+ <eq> (term-index, dec-index)

Listing 4.7: Find Selected Name Index

We use the strategy get-name-index to check if a term is part of the user-defined name
binding structure of a program. If the strategy is called on a list, we simply recursively apply
the strategy to every element of the list. If it is not a list, we first check if the term is a string,
as we expect all names to be alphanumeric identifiers. If it is a string, we extract its TermIndex
and then check if that TermIndex appears in the resolution relation.

For this we use the fetch-elem(s) strategy, which calls the argument strategy s on each
element of a list until the strategy succeeds. In our case, we loop through all resolution pairs
and check if the TermIndex of either the declaration or the reference is equal current term’s
TermIndex. If thatis the case on any resolution pair, we conclude that the user selected a term
which we can rename.
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4.5.3 Finding All Related Occurrences

At this point, we aggregated the program’s name binding structure and identified the name
occurrence that the user has selected. The next step in our renaming algorithm is to find all
the other occurrence that belong to the same program entity which the user wishes to change.
We do that by building a name graph from the resolution relation and partitioning it in a way
that all the occurrences which belong together are part of the same sub-graph. We describe
the theory behind this process in Section 3.3.

We use a basic version of the union-find [23] algorithm to store the name graph in a
disjoint-set data structure. It is important to note that our variant of union-find is a lot sim-
pler than any reference implementation and does not share their algorithmic complexities.
However, adapting the concept of the algorithm to our specific problem domain made it
easier to understand and test.

Since Stratego’s collections library is not very extensive and because the name graph lends
itself to be modeled in an object-oriented fashion, we opted to implement this step of the
algorithm in Java. Also the JUnit testing framework made it convenient to test our union-
find implementation.

ResolutionPair Namelndex
+ reference: Namelndex + numindex: int
+ declaration: Namelndex + path: String
‘ J + termindex: IStrategoTerms
NameGraph

- clusters: Set<Set<Namelndex>>

+ addResolutionPair(pair: ResolutionPair) void
+ find(index: Namelndex): Optional<Set<Namelndex>>
+ union(decCluster: Set<Namelndex>, refCluster: Set<Namelndex>)

Figure 4.3: Class Diagram of Union-Find Implementation

Figure 4.3 shows the UML class diagram of our implementation. The class NameIndex
represents a node in the name graph and the class ResolutionPair represents an element
of the resolution relation. Both are immutable value classes which have their equals and
hashCode methods overridden in order for them to behave correctly when stored inside a
Java collection. The algorithm itself is implemented in the NameGraph class which is displayed
in Listing 4.8. The graph state is represented as a set of sets of NameIndex objects using the
HashSet implementation of the Java Collections APL

We build the name graph by calling the addResolutionPair method with every pair from
the resolution relation. In that method we first check if either the declaration or the reference
are already in the name graph by calling find on both NameIndex objects. The find method
just loops through all the graph’s partitions and returns the one the node is in, given it exists.

Knowing whether the declaration and the reference node are already in the graph allows
us to select one of four possible branches through which the algorithm continues. If neither
of them are part of the name graph yet, we create a new partition containing both nodes and
add the partition to the graph. In the case one node is already in the graph but the other
one is not, we add the missing node to the partition of the included one. If both nodes are
already in the graph, we call the union method to merge the two partitions.
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4. IMPLEMENTATION IN SPOOFAX

1 public void addResolutionPair(ResolutionPair pair) {

2 Optional<Set<NameIndex>> decCluster = find(pair.getDeclaration());
3 Optional<Set<NameIndex>> refCluster = find(pair.getReference());
4

5 if (! (decCluster.isPresent() || refCluster.isPresent())) {

6 Set<NameIndex> cluster = new HashSet<>();

7 cluster.add(pair.getDeclaration());

8 cluster.add(pair.getReference());

9 clusters.add(cluster);

10 } else if (decCluster.isPresent() && !refCluster.isPresent()) {
11 decCluster.get().add(pair.getReference());

12 } else 1if (!decCluster.isPresent() && refCluster.isPresent()) {
13 refCluster.get().add(pair.getDeclaration());

14 } else if (decCluster.isPresent() && refCluster.isPresent()) {
15 union(decCluster.get(), refCluster.get());

16 }

17 3

18

19 public Optional<Set<NameIndex>> find(NameIndex index) {
20 return clusters.stream()
21 .filter(cluster -> cluster.contains(index))
22 .findFirst();
23 3
24

25 public void union(Set<NameIndex> decCluster, Set<NameIndex> refCluster) {
26 if (decCluster != refCluster) {

27 decCluster.addAll(refCluster);
28 clusters.remove(refCluster);
29 }

30 3

Listing 4.8: Union-Find Implementation

To call this Java code from a Stratego strategy, we need to wrap in a primitive which is a
delegate object that relays the strategy call and transforms the Stratego terms into Java objects
if necessary. We call the union-find algorithm through the primitive shown in Listing 4.10
which is a subtype of AbstractPrimtive. It overrides the call method, which is executed
when the primitive strategy shown in Listing 4.9 is called.

1 find-all-related-occs = prim("FindAllRelatedOccurrences")

Listing 4.9: Union-Find Primitive Strategy

The way our ReNaME refactoring uses the union-find algorithm. to find all name occur-
rences of a specific program entity, is implemented in the private method findcluster. There
we grab the resolution relation and the selected occurrence from the term the primitive strat-
egy is called with. We then build the name graph by passing the resolution relation to the
constructor of the NameGraph class.

Once we have the name graph we can simply call the find method on it to retrieve all the
occurrences related to the one the user selected. To return the target term indices from the
primitive strategy we need to convert them from domain objects back to Stratego terms. This
is why each NameIndex object retains a reference of type IStrategoTerm to the TermIndex term,
from which it was created.
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In the call method of the primitive, we check if we found the equivalence class of the

selected occurrence. If so we set the list term returned by findCluster as the contexts current
term and return true. If not so we return false which lets the strategy fail.
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public class FindAllRelatedOccurrencesPrimitive extends AbstractPrimitive {
@Override
public boolean call(IContext env, Strategy[] svars, IStrategoTerm[] tvars) {
IStrategoTerm targetIndices = findCluster(env.current(), env.getFactory());
if (targetIndices != null) {
env.setCurrent(targetIndices.get());
return true;
}

return false;

private IStrategoTerm findCluster (IStrategoTerm current, ITermFactory fac) {
NameIndex selectedOccurrence = new NameIndex(current.getSubterm(0));
List<IStrategoTerm> resRel = TermUtils.toJavaList(current.getSubterm(1l));
NameGraph nameGraph = new NameGraph(resRel);

Set<NameIndex> cluster = nameGraph.find(selectedOccurrence).get();
List<IStrategoTerm> targetIndices = cluster.stream()

.map(term -> term.getTermIndex())

.collect(Collectors.toList());
IStrategolList targetIndicesTerm = fac.makelList(targetIndices);
return targetIndicesTerm;

Listing 4.10: Union-Find Primitive Class

4.54 Changing The Names

Now that we know which name occurrences we need to change, we can actually modify the
program to rename the selected program entity. We do that by traversing the whole AST
and replacing the terms representing the old name with terms representing the new name
chosen by the user. The source code of this step is shown in Listing 4.11. We implemented
this in the strategy rename-ast, where we traverse the AST from the bottom up and try to
apply rename-term on each node.

O O NI ONUT LN -

rename-ast(|target-indices, new-name): ast -> renamed-ast
where
renamed-ast := <bottomup(try(rename-term(|target-indices, new-name)))> ast

rename-term( |target-indices, new-name): t -> new-name
where
<is-string> t
;5 term-index := <nabl2-get-ast-index> t

; <elem> (term-index, target-indices)

Listing 4.11: Changing The Name Terms
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The rename-termstrategy basically checks if a term is a name occurrence that is targeted by
the ReNaME refactoring. It first checks if the term is a string, because we expect a name to be
a textual identifier. It then checks if the TermIndex of the node is part of the target indices that
are passed into the strategy as a term argument. If that is the case, then the term represents
a name that needs to be changed and it is replaced with the new name.

4.5.5 Checking for Capture

After performing the renaming transformation on the AST, what remains is to check for name
capture. As described in Section 3.6, we do this by comparing the name binding structure
of the program before and after the renaming. We implemented this as the strategy check-
capture shown in Listing 4.12.

To extract the name binding structure of the new program, we need to rerun the static
analysis. We do this by calling the nab12-analyze-ast strategy from the NaBL2 API, which
returns a new analysis term that contains the name binding information of the renamed
program. From this analysis we can calculate the resolution relation in the same way we did
before we executed the renaming. For that we call the strategy calc-resolution-relation
again, which we described in subsection 4.5.1.

Before we can compare the old and the new resolution relation, we need to make sure
that the list terms, which represent the relations, are ordered the same. We use the gsort(s)
strategy from the Stratego standard library, which is an implementation of Quicksort [25], to
sort the lists. The strategy that gsort expects as an argument is used to compare the elements
in the list that is to be sorted.

Since we are trying to sort a list of resolution pairs, we implemented the strategy res-
pair-gt which passes judgment which one is “greater” when comparing two pairs. We can
do this by only comparing the TermIndex terms of the reference occurrence, as each reference
only appears once in the resolution relation.

We compare TermIndex terms with the strategy term-index-gt. The strategy orders the
resolution relation first lexicographically by the path and second by the numerical index.
We compare the subterms using the built-in string-gt and gt strategies.

1 check-capture(|renamed-ast, res-rel, path) =

2 (_, new-analysis, _, _, _) := <nabl2-analyze-ast(|path)> renamed-ast

3 ; new-res-rel := <calc-resolution-relation; qgsort(res-pair-gt)> new-analysis
4 ; old-res-rel := <gsort(res-pair-gt)> res-rel

5 ; <eqgq>(old-res-rel, new-res-rel)

6 <+ add-error(|"This renaming leads to name capture")

7

8 res-pair-gt: ((ref-1, dec-1), (ref-2, dec-2)) -> <id>

9 where
10 <term—index-gt> (ref-1, ref-2)
11
12 term-index-gt: (TermIndex(path-1, num-1), TermIndex(path-2, num-2)) -> <id>
13 where
14 if <eq> (path-1, path-2) then
15 <gt> (num-index-1, num-index-2)
16 else
17 <string-gt> (path-1, path-2)
18 end

Listing 4.12: Detecting Capture
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Now that we have the name binding structure of the program before and after the re-
naming represented as two sorted list terms, we can simply compare the terms using the eq
strategy. If they differ, we detected a case of name capture and abort the transformation with
an error. If they are the same, the renaming was successfully and the algorithm terminates.

4.5.6 User Interface

Since a refactoring is triggered by the developer, we implemented a user interface to make
our renaming solution accessible from the Eclipse IDE. We added a new entry to the Spoofax
menu to allow programmers to execute the renaming. We implemented that menu using the
Editor SerVice (ESV) meta-language [28], which is part of Spoofax. ESV allows the declar-
ative configuration of various editor services in an editor-agnostic way. Besides a way to
define menus, ESV also supports editor feature such as syntax highlighting, hover tooltips,
code completion and file outlines.

We added the menu for renaming using the ESV module shown in 4.13. Here we created
a whole new menu for refactorings, hoping that renaming might soon be joined by other
refactorings (see the future work section 8.1). It would also be possible to just add the menu
item for renaming (line 4) to a menu already existing within the language project. Figure 4.4
shows how this menu looks like in the Eclipse IDE.

Spoofax Spoofax (meta) Window Help

| Transform > r v ¥a o -
Syntax >
NaBL2 Analysis > [19 ¥
Refactoring > Rename
i ‘»;;125 Inline This Function Call
time * / Inline Function
5 Extract Function
1 module Refactoring 6let
7  wvar msg := "Hello World"
2 menus 8in
3 menu: "Refactoring" ‘_zenzf‘i“t(
4 action: "Rename" = rename-menu 11

Listing 4.13: Renaming Menu in ESV ) _ )
Figure 4.4: Menu to Trigger Renaming

When the user clicks on the Rename menu, the language-specific renaming strategy rename
-menu is executed which is shown in Listing 4.14. Both the menu and the strategy it calls
need to be part of the Spoofax language project. The rename-menu strategy simply calls the
builtin language-parametric rename-action strategy, passing it a language-specific strategy
for pretty-printing the result of the renaming transformation. We describe how the RENaME
refactoring can be added to a language in detail in subsection 4.8.2.

Spoofax generates a strategy for pretty printing from the syntax definition of a language,
which we could use to turn the renamed AST back into source code. However, this strategy
does not preserve the layout of the original program and inline comments are lost as well.
Since renaming only should result in a few local changes to the source code by replacing some
specific identifiers, having the whole program formatted after each refactoring is clearly a
major inconvenience.

Jonge and Visser[26] developed an algorithm for “automatic source code reconstruction
for source-to-source transformations” which we use to solve that problem. Their solution
tracks the textual origin of each AST node which they use to compute the change to the
source code by comparing the AST before and after the transformations. They implemented
their research in Spoofax and their algorithm generates the layout-preserving pretty-printing
strategy construct-textual-change for each language project.
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1 rename-menu: menu-terms ->

2 <rename-action(construct-textual-change|)> menu-terms

Listing 4.14: Language-specific Renaming Strategy

The entry point for our language-parametric renaming algorithm is the rename-action
strategy shown in Listing 4.15. It wraps the algorithm strategy and deals with all the user
interface aspects of our solution. That way we achieve a separation of concern between the
transformation and the user interaction.

If a strategy is called from a menu, the editor composes a 5-tuple that gets passed to the
strategy. This tuple contains the term that corresponds to the users selection, the analyzed
AST of the currently open file and the relative path of that file. The menu strategy is expected
to return a pair consisting of a file path and an arbitrary term. When the strategy returns,
the editor then persists that term at the location of the given path.

The construct enveloping the body of the strategy (line 5 - 7) is part of our algorithm'’s
error handling which we discuss in detail in the following subsection 4.5.7 and thus will
ignore for now. Before we can execute the renaming algorithm, we need to ask the user for
the new name of the selected program entity. The strategy read-new-name returns the name
the user types in the modal form shown in Figure 4.5a. It uses the the builtin show-input-
dialog strategy to display the modal.

1 rename-action(construct-textual-change|)

2 (selected-term, _, ast, path, _) -> (path, result)

3 where

4 {| ErrorMessage:

5 new-name := <read-new-name>

6 ; renamed-ast := <rename(|selected-term, new-name, path)> ast
7 s (_, _, result) := <construct-textual-change> (ast, renamed-ast)
8 <+ show-errors |}

9
10 read-new-name: _ -> new-name
11 where
12 new-name := <show-input-dialog(|"Rename")> "Enter a new name"

Listing 4.15: Rename-Action Strategy

After the user chooses the new name, we then execute the renaming algorithm, as we
described it in the previous subsections 4.5.1 - 4.5.5. The algorithm returns the AST with the
changed identifiers, which we feed into the construct-textual-change strategy together with
the original AST. This call returns the refactored source code of the program which we pass
back to the editor to be persisted.

Rename x

Enter a new name

‘ Capture detected X

e This renaming leads to name capture

(a) Enter New Name (b) Error Message

Figure 4.5: User Interface Modals
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4.5.7 Error Handling

There are multiple cases in which our renaming transformation needs to abort. For example,
if we detect name capture. To handle such error cases gracefully, we integrated an explicit
error handling in our transformation. This allows us to notify the developer in a user friendly
way in case something went wrong. An example error message is shown in Figure 4.5b.

We’ve already come across the add-error strategy in previous subsections, for example
in Listing 4.12 on line 6. There we use the deterministic choice operator to call add-error, in
case the comparison of the old and the new resolution relation fails. We pass the strategy
an error message as a term argument and then add-error stops the execution of the strategy.
This has a similar effect to throwing an exception in a object oriented language like C++.

The add-error strategy, shown in Listing 4.16, is implemented as a scoped dynamic rule [8].
Rewrite strategies are context-free in general, but these dynamic rules allow us to track
context-sensitive information during term rewriting without explicitly passing it. We use
this to add error messages to the ErrorMessage context. This context is valid within a certain
scope that is defined in the rename-action strategy shown in Listing 4.15. The delimiters for
the scope are on line 4 and 8, and any strategies called within that scope have access to the
named context.

If any of the strategies inside the scope fail, which they do if add-error is called, the show-
errors strategy is called. So this basically catches the “exception” thrown by add-error. Then
show-errors reads the first error message from the ErrorMessage context and displays it as an
error modal using the builtin show-dialog strategy.

add-error (|message) =
rules(
ErrorMessage :+ () -> (message)
); fail

show-errors =
[(message) | _] := <bagof-ErrorMessage> ()

1
2
3
4
5
6
7
8

; <show-dialog(|"ERROR")> message

Listing 4.16: Error Handling Strategies

4.6 Using Statix

In the preceding section, we described the implementation of our renaming solution which
works for projects that use NaBL2 to define their static semantics. However NaBL2 is becom-
ing deprecated and is being replaced by its successor Statix. Therefore we implemented a
version of our renaming transformations that works with languages that use Statix.

Since NaBL2 and Statix are directly related, they are very similar. However, there are cer-
tain differences that have an effect on the renaming algorithm which we will outline through-
out this section. The Statix API is completely separate from the NaBL2 API. So, the main dif-
ference between the two implementations is that all the API calls are different, even though
they often do the same.

4.6.1 The Renaming Algorithm with Statix

The basic structure of the algorithm is the same for the Statix implementation as it is for the
NaBL2 implementation. Therefore, the rename strategy shown in Listing 4.17 is almost the
same as its NaBL2 counterpart from Listing 4.5.
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However, the Statix version expects an additional strategy argument analyze. This strat-
egy is used to re-analyze the program in the capture detection step. The strategy contains
some language specific parameters and thus has to be passed into our language-parametric
algorithm, similar to how we pass the pretty-printing strategy into the rename-action in List-
ing 4.15. In the NaBL2 version these language parameters are passed implicitly.

1 rename(analyze | selected-term, new-name, path): ast -> renamed-ast

2 where

3 analysis := <get-analysis> ast

4 ; res-rel := <calc-resolution-relation(|ast)> analysis

5 ; selected-index := <find-name-index(|ast, res-rel)> selected-term

6 ; target-indices := <find-all-related-occs> (selected-index, res-rel)
7 ; renamed-ast := <rename-ast(|target-indices, new-name)> ast

8 ; check-capture(analyze|renamed-ast, res-rel, path)

Listing 4.17: Rename Strategy in Statix

The first step of the algorithm is to aggregate the program’s name binding structure into
a resolution relation. Since we extract the name binding information from the result of the
static analysis, this step heavily depends on whether the Statix or NaBL2 solver was used to
perform the analysis. Therefore the Statix version of this algorithm step substantially differs
from the NaBL2 version. We explain the Statix implementation of this step in detail in the
following subsection 4.6.2.

The resolution relation that results from the first step is represented as a list of pairs
of TermIndex terms. Ergo the name binding structure of the program is represented in the
same form in both implementations of the algorithm and therefore is agnostic to whether a
language employs Statix or NaBL2. Since the following steps of the algorithm work on the
resolution relation they are implemented in the same way as their NaBL2 counterparts.

In step two we find a name occurrence in the users selection. The only difference there is
that we use stx--get-ast-index instead of nab12-get-ast-index to read the TermIndex from
a terms annotations. Step three calls the exact same primitive in the exact same way as the
NaBL2 implementation to find all related name occurrence. Changing the identifier terms
in step 4 also works like its NaBL2 counterpart, but like in step two we use the strategy from
the Statix API to read the term indices.

To check for capture in the last algorithm step we need to reanalyze the changed AST.
Executing the static analysis from Stratego is done different in Statix than it is in NaBL2,
so we explain this step in detail in subsection 4.6.3. The error handling as well as the user
interface integration are equal in both the Statix and NaBL2 implementation.

4.6.2 Calculating the Resolution Relation with Statix

One of the main differences between NaBL2 and Statix is that the scope graph built from a
Statix specification doesn’t contain references and declarations. This is somewhat inconve-
nient for us and makes it more difficult to gather the name binding information of a program
and assemble it into a resolution relation. Since we cannot just get all occurrences from the
static analysis result through a simple API call like we did in the NaBL2 implementation, we
need to traverse the AST and find the occurrences ourselves. Listing 4.18 shows the strategies
we implemented for this algorithm step.

We traverse the AST using the collect(s) strategy which applies its strategy argument
to every node an collects the result in a list if the passed strategy succeeds. We are passing
collect the two strategies get-dec-ref-pair and get-dec-reflexive-pair linked with the de-
terministic choice combinator. Ergo we first check if a term is a reference and resolve it to a
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declaration to create a resolution pair. If the term is not a reference we check if its a declara-
tion to create a reflexive resolution pair.

1 calc-resolution-relation(|ast): analysis -> relation
2 where
3 relation := <collect(get-dec-ref-pair(|analysis)
4 <+ get-dec-reflexive-pair(|analysis))> ast
5
6 get-dec-ref-pair(|analysis): t -> (ref-index, dec-index)
7 where
8 <is-string> t
9 ; dec := <stx--get-ast-property(|analysis, Ref())> t
10 ; ref-index := <stx--get-ast-index> t
11 ; dec—index := <stx--get-ast-index> dec
12
13 get-dec-reflexive-pair(|analysis): t -> (dec-index, dec-index)
14 where
15 <is-string> t
16 ; dec := <stx--get-ast-property(|analysis, Prop("decl"))>
17 ; dec—index := <stx--get-ast-index> dec

Listing 4.18: Calculating the Resolution Relation with Statix

Both strategies first check if the current term is a string, as we expect any name to be
an alphanumerical identifier. Statix adds properties to AST nodes which contain information
from the result of the static analysis and can be accessed through the stx--get-ast-property
API strategy. In get-dec-ref-pair we extract the builtin Ref property, which contains the
TermIndex of the corresponding declaration.

For declarations there exists no builtin property, therefore we extract the custom prop-
erty represented by Props("decl") from a term to check if it is a declaration. In order for the
Statix solver to add the decl property to declaration nodes, we need to extend the Statix spec-
ification. In Listing 4.19 we display the declareType predicate of the Tiger language where
we added the decl property on line 3.

1 declareType(scope, name, T) :-

2 scope -> Type{name} with typeOfDecl T,

3 @name.decl := name,

4 typeOfDecl of Type{name} 1in scope |-> [(_, (_, T))].

Listing 4.19: Setting the Declaration Property

4.6.3 Checking for Capture with Statix

The basic process of capture detection is the same for NaBL2 and Statix: we compare the
program’s name binding structure before and after the renaming transformation. For that,
we need to trigger the static analysis on the changed AST and calculate the resolution relation
again. Executing the analysis from Stratego is slightly more complex using the Statix API
than when using the NaBL2 API, so we encapsulated the interaction with the API in the
strategy rerun-analysis, shown in Listing 4.20.

Unlike when using the NaBL2 API, we need to explicitly provide some language-specific
parameters when executing the static analysis through the Statix API. That is why we need to
pass that API call into our language-parametric algorithm as the strategy argument analyze.
Stratego automatically generates the strategy editor-analyze for every language project that
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uses Statix which calls the API with the language-specific parameters. The editor-analysis
for the Tiger language can be seen on line 18 as an example.

To start the analysis, we need to create an AnalyzeSingle term which contains the file
path to the program and a changed term which in turn contains the new AST and the old
analysis object. This term then serves as an input for the language-specific analyze strategy.
From the term returned by the analysis we then gather the newly analyzed term and the
new analysis object which we use to recalculate the resolution relation. The rest of the check
-capture strategy works the same as its NaBL2 equivalent. We sort both the old and the new
resolution relation and compare them to check for name capture.

1 check-capture(analyze|renamed-ast, res-rel, path) =

2 (new-ast, new-analysis) := <rerun-analysis(analyze)> (path, renamed-ast)

3 ; new-res-rel := <calc-res-rel(|new-ast); qgsort(res-pair-gt)> new-analysis
4 ; old-res-rel := <gsort(res-pair-gt)> res-rel

5 ; <eq>(old-resolution-relation, new-resolution-relation)

6 <+ add-error(|"Capture detected", "This renaming leads to name capture")
7

8 rerun-analysis(analyze): (path, renamed-ast) -> (new-ast, new-analysis)

9 where
10 input := <make-analysis-input> (path, renamed-ast)
11 ;3 Full(new-ast, FileAnalysis(_, new-analysis), _, _,_) := <analyze> qinput
12
13 make-analysis-input: (path, renamed-ast) -> AnalyzeSingle([(path, change)])
14 where
15 old-analysis := <stx--get-ast-analysis> renamed-ast
16 ; change := Changed(renamed-ast, old-analysis)
17
18 editor-analyze = stx-editor-analyze(pre, post|"statics", "programOk")

Listing 4.20: Capture Detection in Statix

4.7 Renaming over Multiple Files

The two Rename implementations we’ve presented in the previous two sections only work
on programs that are confined to a single file. However, most computer programs are dis-
tributed over multiple modules which usually are persisted in separate files on disk. To make
our solution really practical we need to extend it to so it can deal with multi-file programs. In
this section we describe how we further developed our Statix implementation so it can per-
form renaming across multiple files. We also extended our NaBL2 version with the capability
to deal with multi-file program but omit a detailed description as it works similarly.

While the multi-file capability adds some complexity to our solution, it does not change
the fundamental algorithm flow. Therefore the rename strategy shown in Listing 4.21 looks
similar to the single-file version shown in Listing 4.17. The main difference is that we now
work with multiple ASTs instead of just one, as the source code in each file is represented as
a separate AST.

Since we only get passed the AST of the file currently open we need to first load all the
ASTs present in the project from the solvers’s context using the get-project-analyzed-asts
API call. This returns a list of pairs where the left subterm is the path of the file and the right
subterm the AST of the file.

The solver creates an analysis object for each file and one analysis object which contains
the analysis result for the whole project. The project analysis object specifically contains in-
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formation of name bindings that span multiple files and therefore we query that object when
building the resolution relation. To build the resolution relation for a multi-file program we
execute the calc-resolution-relation on each AST in the project and concatenate the results.

Finding a name occurrence in the user’s selections works exactly the same as in the sin-
gle file versions of the algorithm. Finding all the occurrences to rename also works nearly
identical since the TermIndex terms contain the path of the file where they occur. However,
we additionally assemble all the paths of the files where we need to change identifiers in the
strategy find-rename-target.

1 rename(analyze|selected-term, new-name): selected-ast -> renamed-asts

2 where

3 asts := <get-analysed-asts>

4 5 analysis := <get-project-analyzed-asts>

5 ; res-rel := <calc-resolution-relation-project(|analysis)> asts
6 ; selected-index := <find-name-index(|selected-ast, res-rel)> selected-term
7 ;5 (paths, target-indices) := <find-rename-target> (selected-occ, res-rel)
8 ; renamed-asts := <rename-asts(|target-indices, paths, new-name)> asts
9 ; check-capture(analyze|renamed-asts, resolution-relation)

10

11 calc-resolution-relation-project(|analysis): asts -> res-rel

12 where

13 res-rels := <mapconcat(calc-resolution-relation(|analysis))> asts

14

15 find-rename-target: (selected-occ, res-rel) -> (paths, target-indices)

16 where

17 target-indices := <find-all-related-occs> (selected-occ, res-rel)

18 ; paths := <get-paths-to-rename> target-indices

19

20 get-paths-to-rename: target-indices -> paths

21 where

22 paths := <map(get-paths);make-set> target-indices

Listing 4.21: Multi-File Renaming

Step four of our algorithm, where we actually perform the program transformation, is
marginally more complex when dealing with multi-file programs. The implementation of
this step is shown in Listing 4.22. Like when building the resolution relation we process
each AST separate by mapping the rename-ast strategy over the list of all ASTs in the project.

1 rename-asts(|target-indices, paths, new-name): asts -> renamed-asts

2 where

3 renamed-asts := <map(rename-ast(|target-indices, paths, new-name))> asts
4 rename-ast(|target-indices, target-paths, new-name):

5 (path, ast) -> (path, ast, renamed-ast)

6 where

7 if (<path-in(|target-paths)> path) then

8 renamed-ast := <bottomup(try(rename-term(|target-indices, new-name)))> ast
9 else

10 renamed-ast := ()
11 end

12 path-in(|paths): path -> <elem> (path, paths)

Listing 4.22: Multi-File Renaming Transformation
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In order to not needlessly traverse every AST in the project we first check for each AST
if its path is in the list of paths to rename which we gathered in the previous step. If that is
the case, we change the identifiers through the same traversal that we use in the single-file
version of the algorithm. The rename-ast strategy returns a triple of the file path, the original
AST and the renamed AST. If the AST of a file was unaffected by the renaming we return an
empty term in place of the renamed AST.

4.7.1 Checking for Capture in Multi-File Programs

As in the single file version, we reanalyze the program after the renaming transformation and
check for capture by detecting changes in the name binding structure. However, performing
a complete static analysis of the whole project would be quite wasteful, since the renaming
likely only affected a few files. The Statix solver supports a minimal incremental analysis
which caches and reuses a small part of the previous analysis result. This does add some
complexity to this algorithm step which we show in Listing 4.23.

1 check-capture(analyze|renamed-asts, res-rel) =
2 (new-asts, new-analysis) := <rerun-analysis(analyze)> renamed-asts
3 ; new-res-rel := <calc-resolution-relation-project(|new-analysis)
4 ; gsort(res-pair-gt)> new-asts
5 ; old-res-rel := <gsort(res-pair-gt)> res-rel
6 ; <eg>(old-res-rel, new-res-rel)
7 <+ add-error(|"This renaming leads to name capture")
8
9 rerun-analysis(analyze): renamed-asts -> (new-asts, new-analysis)
10 where
11 input := <make-analysis-input> renamed-asts
12 ; analysis-result := <analyze> qinput
13 ; new-asts := <get-new-asts(|renamed-asts)> analysis-result
14 ;5 new-analysis := <get-new-analysis> analysis-result
15
16 make-analysis-input: renamed-asts -> AnalyzeMulti(project-changes, file-changes)
17 where
18 project-analyses := <get-project-constraint-analyses>
19 ; analysis := <get-project-entry> project-analyses
20 ; project-changes := (".", Cached(analysis))
21 ; file-changes := <map(make-file-change(|project-analyses))> renamed-asts
22
23 make-file-change(|analyses): (path, ast, renamed-ast) -> (path, file-change)
24 where
25 (_, analysis) := <fetch-elem(get-entry(|path))> project-analyses;
26 if (<eq> (renamed-ast, ())) then
27 file-change := Cached(analysis)
28 else
29 file-change := Changed(renamed-ast, analysis)
30 end

Listing 4.23: Capture Detecion for Multi-File Programs

Like in the single-file version, we need to create a term to call the language-specific analyze
strategy with. Instead of an AnalyzeSingle term we built an AnalyzeMulti term in the strategy
make-analysis-input. The API strategy get-project-constraint-analysis returns a list that
contains the analysis object of all files as well as one object for the whole project.

40



4.8. Integrating Our Solution

We create a Cached term for the project analysis to signal the solver we want to perform
an incremental static analysis. We then loop trough all the ASTs and create a Cached term for
the files that have not changed or a Changed term if a file has been affect by the renaming and
thus needs to be reanalyzed.

From the new result of the solver we then extract the project analysis object and the rean-
alyzed ASTs inside the rerun-analysis strategy. We then pass these to the calc-resolution
-relation-project strategy the same way did in step one of the algorithm. After that we
compare the old and the new resolution relation to detect name capture like we did in the
single-file implementation.

4.7.2 Reconstructing the Source Code

We need to pretty-print the renamed ASTs back into source code before we persist the files to
disk. The rename strategy from Listing 4.21 returns a list of all the ASTs in the project. More
specifically, each entry in the list is a triple consisting of the file path, the AST before the
renaming and the AST after the renaming. However, we only want to change the content of
a file if its corresponding AST was actually affected by the renaming.

We filter out all the unchanged ASTs in the strategy construct-renamed-program shown in
Listing 4.24. To distinguish unchanged ASTs we simple check if the renamed AST is equal to
an empty term. On the ones that have changed we construct the new source code using the
language-specific construct-textual-change strategy which takes the old and the new AST
as arguments.

1 construct-renamed-program(construct-textual-change): asts -> program

2 where

3 changed-asts := <filter(has-changed)> asts

4 5 program := <map(construct-file(construct-textual-change))> changed-asts
5

6 construct-file(construct-textual-change): (path, ast, renamed-ast)->(path, text)
7 where

8 (_, _, text) := <construct-textual-change> (ast, renamed-ast)

9
10 has-changed: (_, _, renamed-ast) -> <id>

11 where
12 <not(eq)> (renamed-ast, ())

Listing 4.24: Reconstruct Source Code

4.8 Integrating Our Solution

During development, we kept the source code of our algorithm in the language project. This
allowed us to just rebuild the project after any change and tests its effect immediately on a
program in the target language. Although this was very convenient while the implementa-
tion was still under construction, it also made it necessary to copy the source code into every
language project that we used to test our solution.

Since it is our goal to provide a comfortable user experience to language engineers using
Spoofax, we aim to make the integration of our renaming refactoring into a language project
as easy as possible. We integrated the source code, both the Java and Stratego part, directly
into Spoofax. Thus, our solution can be rolled out as part of the Eclipse plugin.
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4.8.1 Making It Part of Spoofax

Spoofax is a very big and complex software project and describing its architecture in detail
would go beyond the scope of this thesis, we refer the interested reader to the official Spoofax
documentation [15] and the paper by Kats and Visser[28]. Instead, we give a brief overview
of its composition and focus on the parts that we had to extend in order to add renaming
capability to Spoofax.

Looking from the top, Spoofax consists of 21 modules. We had to change the following
three modules in order to integrate our solution. The nabl module contains the implementa-
tion of Statix and NaBL2, as well as everything else related to name binding and type check-
ing. Naturally this is the module where we placed the body or our solution. The spoofax
module contains the core functionality of Spoofax and manages the dependencies between
the other modules. The spoofax-eclipse module packages all relevant modules and rolls
them out as an Eclipse plugin.

Within the nabl module are two projects that contain the Stratego API used to interact
with the name binding and type analysis: nabl2.runtime and statix.runtime. We added the
Stratego code of our Statix and NaBL2 implementation into the respective project.

The primitives for NaBL2 and Statix are contained in the projects nab12.solver and statix
.solver respectively. However, these primitives libraries are only usable within their respec-
tive languages. This meaning it is not possible to call a primitive defined in statix.solver
from an NaBL2 language project and vice-versa. Therefore, we had to create a new library
that would be accessible from both languages.

To achieve this, we created a new Maven module renaming.java and placed the imple-
mentation of the union-find algorithm and the accompanying unit tests in there. To make
it accessible from both languages, we registered this module as a dependency in both nab12.
build and statix.build.

public class RenaminglLibrary extends GenericPrimitivelLibrary {
public static final String name = "RenamingLibrary";
public static final String REGISTRY_NAME = "RENAMING";

@Inject
public RenamingLibrary(@Named(name) Set<AbstractPrimitive> primitives) {
super (primitives, RenaminglLibrary.REGISTRY_NAME);

O O N ONUl WL -

Listing 4.25: RenamingLibrary

We also registered the dependency in the org.metaborg.spoofax.core module, in which
all the primitives libraries are bundled. Within this module, each library is represented
as a sub-type of I0OperatorRegistry, so we created the class RenamingLibrary shown in List-
ing 4.25. Further, we bound the particular primitive we added to the library in the method
SpoofaxModule.bindAnalysis with the statements shown in Listing 4.26.

Multibinder<AbstractPrimitive> renaminglLibrary = Multibinder.newSetBinder(
binder(), AbstractPrimitive.class, Names.named(RenaminglLibrary.name));

bindPrimitive(renamingLibrary, FindAllRelatedOccurrencesPrimitive.class);

Listing 4.26: Bind Primitive to Library

Lastly, we included the new library in the Eclipse plugin through which Spoofax gets
integrated into the IDE. While there exists an Intelli] plugin for Spoofax as well, it is not
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actively maintained. Therefore, we omitted to integrate our solution into it. How the plugin
is built is defined in the module org.metaborg.spoofax.eclipse.feature this is an Eclipse
Feature Project. To have the library loaded into eclipse, we extended this projects feature.
xml as shown in Listing 4.27.

1 <plugin id="renaming.java" version="2.6.0.qualifier" unpack="false"/>

Listing 4.27: Registering Library in Eclipse Plugin

4.8.2 Adding Renaming to a Language

With our language-parametric refactoring now integrated into Spoofax, it can be added to
any language project in a few simple steps. The language project needs to implement a
language-specific renaming strategy that calls the the integrated rename strategy. Listing 4.28
shows such a strategy for a language that uses NaBL2. The language-parametric strategy
nabl2-rename-action is imported from the NaBL2 runtime. It gets passed the language-
specific strategies construct-textual-change and editor-analyze for pretty-printing and static
analysis. The third strategy parameter needs to be set to id if the language supports multi-file
analysis or failif it does not.

module renaming

imports
nabl2/runtime
analysis
pp

rules

NN OOl W IN =

my-rename = nabl2-rename-action(construct-textual-change, editor-analyze, id)

Listing 4.28: Language-specific Renaming Strategy NaBL2

Adding the RenaME refactoring to a language using Statix works almost identical and
an exmaple is shown in Listing 4.29. The only difference is that the integrated renaming
strategy is called rename-action and is imported from the module statix/runtime/renaming.
To integrate the refactoring into the UI, the language-parametric strategy needs to assigned
to a menu item as we have shown in subsection 4.5.6.

module renaming

imports
nabl2/runtime
analysis

pp
rules

N O Gl W IN =

my-rename = rename-action(construct-textual-change, editor-analyze, -id)

Listing 4.29: Language-specific Renaming Strategy Statix
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Chapter 5

Testing Renaming

5.1 Test Approach

Since our solutions is designed to be language-parametric, it is only logical to test our im-
plementation on an array of different programming languages. However, we are limited to
languages for which Spoofax implementations already exist, although they do not need to
be complete. We need at least a syntax definition in SDF3 to parse test programs to an AST.
Then, we run the static analysis according to either an NaBL2 or Statix specifications.

The languages we chose to test are shown in Table 5.1. This set of languages covers a
sizeable spectrum of paradigms, purposes, and features. Therefore, they can evaluate the
completeness of our language-parametric solution to a satisfying degree.

Name Description Static Semantics

Meta-Language
Tiger Functional Toy-Language NaBL2 & Statix
Chicago | Functional Multi-Module Toy-Language Statix
MiniJava | General-Purpose Object-Oriented Language NaBL2
WebDSL | Domain-Specific Language to Develop Web Applications Statix
Statix Declarative Meta-Language to Define Static Semantics NaBL2

Table 5.1: Test Languages

Since our renaming transformation is self-contained, it is perfectly suitable to evaluate
its soundness through unit testing. The fact that unit tests can be automated contributes to
the integrity of our solution as it makes our results easily reproducible. The simple structure
of unit tests allows them to be developed quickly. This requires little effort to add more test
cases in case we wish to test more languages or name binding patterns in future work. Each
renaming unit test is composed of the following four elements:

1. A source program in which we want to rename an entity
2. A selected occurrence of the name of the entity we want to rename
3. A target name to which we want to change the entities current name to

4. A target program in which the target entity was correctly renamed

A unit test case passes if the source program and the target program are a-equivalent.
An exception to this definition are test cases that target the name capture detection. In this
instance, the test passes if the transformation aborts with an error.
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5.2 Test Case Implementation

5.2.1 Introducing SPT

We implemented our unit tests using the Spoofax Testing Language (SPT) [27]. SPT is a
declarative meta-language specifically designed to test certain language aspects, such as pars-
ing or type checking, and allows for the test-driven development [6] of programming lan-
guages. An SPT test case consists of an input program fragment and an output expectation. Test
cases that target similar features of a language can be grouped into a test suite.

1 module name-resolution 1 module optimization
2 language Java 2 language Assembler

3 3

4 test param name resolution [[ 4 test optimize inc [[
5 public class Foo { 5 mov 12(fp), ril

6 int id(int [[param]]) { 6 add r1, 1, ri1

7 return [[param]]; 7 mov rl, 12(fp)

8 } 8 1] run optimize to [[
9 } 9 inc 12(fp)
10 1] resolve #2 to #1 10 1]

Listing 5.1: Name Resolution Test Case Listing 5.2: Optimization Test Case

An example test case param name resolutionis shown in Listing 5.1. The input program
fragment which is under test is delimited by double square brackets on line 4 and 10 respec-
tively. Inside that code fragment, we see that both occurrences of the param name are also
enclosed by double square brackets, which represents a selection. The expectation resolve

#2 to #1 invokes the name binding analysis on the code fragment and then checks if the
reference at selection 2 resolves to the declaration at selection 1, determining the outcome of
the test case.

The test case optimize to incin Listing 5.2 shows how SPT can trigger a transformation,
in the form of a Stratego strategy, and then compare the result to another given program
fragment, using the run expectation. In this particular case, we run the optimize strategy on
the code fragment consisting of the three assembler instructions on the lines 5 - 7 and then
check if the resulting program is equal to the instruction on line 9.

5.2.2 Extending SPT

To evaluate our renaming solution, we need two kinds of test cases. The first case calls the
renaming strategy and then compares the renamed program to a target program, as shown
in Listing 5.3. The second case is used to test capture detection, which manifests as the
renaming strategy resulting in an error, as shown in Listing 5.4.

Unfortunately, there was no test expectation available yet that was suitable for evaluat-
ing our renaming transformation. Luckily, the modular architecture of the SPT language
definition and runtime environment made it easy to extend the language to suit our needs.

Specifically, we extended the run expectation that is shown in 5.2. It was not possible
to pass term arguments to a strategy. Since the rename strategy takes a selected identifier
occurrence and a new name as arguments, we developed an extension to allow this.

It was also not possible, that a strategy returns an error as the expected result of a test
case. With our extension, it is possible to allow strategies to be able to fail, while still letting
the test case pass, using the output-part fails of the expectation. The implementation of the
extension is explained in detail in Section 5.3.
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1 module renaming

2 language Haskell

3

4 test rename function [[

5 [[plus]] :: Num -> Num -> Num
6 plus x y = x + vy

7 11 run rename(|#1, "add") to [[
8 add :: Num -> Num -> Num

9 add x y = x +y
10 11

Listing 5.3: Renaming Test Case
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5.3 Developing the SPT Extension

module capture
language Tiger

test name capture [[

let
var bar := 10
in
let
var foo := 100
in
bar + [[foo]]
end
end

11 run rename(|#1, "bar") fails

Listing 5.4: Capture Test Case

In this subsection, we outline the changes we had to make to the SPT implementation in
order to use it for the evaluation of our renaming implementation. However for the sake of
brevity, we only present a simplified view of the modifications we made. The source code of
SPT is open source and we refer the interested reader to look at the implementation details

on GitHub!.

5.3.1 Expanding the Syntax

As a first step, we extend the syntax in order for the parser to allow strategy calls with ar-
guments via the run expectation. The parser also needs to recognize the fails part of an
expectation, so we can express that a test is designed to check whether a strategy fails in
the context of a specific test case. SPT is implemented in Spoofax and therefore its syntax is
declared in SDF3 [29]. For an introduction to SDF3 see Section 4.3.

<Fragment>
11 <Expectation>>

SResult = ToPart
SResult.Fails = <fails>

O O N ONUT WD -
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(@]

TermArgs.TermArgs = <(|<{Arg ","}*>)>
Arg.Int = INT

Arg.String = STRING

Arg.Ref = SelectionRef

[ G G Gy
Ql = WO N =

SelectionRef.SelectionRef = <#<INT>>

TestDecl.TestDecl = <test <Description> [[

Expectation.Run = <run <STRAT><TermArgs?> <OnPart?> <SResult?>>

Listing 5.5: SPT Syntax Extension

1https://g'ithub.com/metaborg/spt
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5.3. Developing the SPT Extension

Listing 5.5 shows an excerpt of SPT’s syntax definition which is relevant to our modifica-
tion. On line 1 we see the definition of a test case, starting with the test keyword followed
by an arbitrary description. The fragment enclosed by the double square brackets holds the
program under test. At the end of the test case is the expectation, which the test is declared to
tulfill. This is the part extended to make it possible for the renaming algorithm to be called.

On line 5 we can see the modified Run constructor that allows calling strategies with term
arguments. The question mark ? next to the sort names indicate that they are optional. After
the run keyword and the name of the strategy the parsers accepts now an TermArgs sort. The
onpPart sort was already part of the definition and allows the strategy to be executed on a
specific snippet of code instead of the whole program inside the test case. As this feature is
not relevant to testing our refactoring we just leave it as is.

Lastly, the parser expects a term that determines what result we expect after running
the strategy. This can be term of sort ToPart, which allows us to compare the test program
after the application of the strategy with a specific target program. This feature was already
present as well and fulfills our requirement without any modification. Instead of ToPart, the
parser also accepts the string literal fails, to express that the strategy is expected to abort
with an error.

In place of the TermArgs sort, the parsers accepts a comma-separated list of term argu-
ments that is prefixed by the pipe operator | and enclosed in brackets. As arguments, it
excepts integer numbers, string literals or selection references. A selection reference is used
to point to a segment of the test case program fragment by enclosing it in double square
brackets and referring to it with the pound sign and a one-based index. An example can
be found in Listing 5.3 on line 5. We use this feature to simulate how a programmer would
select an identifier in the text editor before triggering the renaming.

Selection
Ref

Figure 5.2: Run Expectation Term
Figure 5.2 shows the term that the parser produces for the expectation in Listing 5.4. The

Some and None terms are generate for all the child nodes which are defined to be optional. The
subterm that stem from our syntax expansion are highlighted in green.
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5.3.2 Adapting the Runtime

From the syntax definition we wrote in SDF, Spoofax generates a SGLR [48] parser, which
transforms SPT source code into an AST. This AST is then fed into the SPT runtime, which
executes the test cases and determines whether they failed or passed. Since we expanded
the syntax, the parser is going to produce different terms for the run expectations and we
adapted the runtime so it can handle them.

The SPT runtime is implemented in Java. Its entry point is in the SPTRunner class in the
method test. Here the .spt text files are read from disk and passed to the generated parser,
which is also implemented in Java. The AST generated by the parser, where each node is
of a sub-type of IStrategoTern, is then fed into the SpoofaxTestCaseExtractor, where it is
transformed into a list of TestCase objects. This extraction had to be adapted in order to
consider the changed run expectation term.

Each test case is then passed on to the method TestCaseRunner.run, where they are evalu-
ated isolated from each other, as unit tests should be. The outcome of the test cases are then
collected in a TestResult object and passed back to the sPTRunner. This process is visualized
in Figure 5.3 as a sequence diagram.

SPTRunner. SpoofaxTestCaseExtractor TestCaseRunner

\/

Extract

A

Test Cases

Loop

For each test case

y

A

Test Results

Figure 5.3: Sequence Diagram of Test Suite Execution

Inside the method TestCase.evaluateExpectations the actual execution of the test case
happens, where a value object representing the expectation is handed to an evaluator ser-
vice, which assesses whether the expectation is met or not. In case of the run expectation, a
RunStrategoExpectation object is handed to the RunStrategoExpectationEvaluator. We mod-
ified both these classes, so that they accept a list of term arguments to call the strategy with.
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Inside of RunStrategoExpectationEvaluator.evaluate, the test case fragment and the strat-
egy call are then passed to the method StrategoCommon.invoke. StrategoCommon is an adapter
class which relays the strategy calls to the Java implementation of the Stratego interpreter.
We modified the adapter as well so it would be able to deal with strategy calls with term argu-
ments. The output of the interpreter is then returned to the RunstrategoExpectationEvaluator
, where it is inspected and the expectation is determined passed or failed. We adjusted this
part, so that the test would still pass, even if the strategy failed, in case the test case was
expecting it to fail. The sequence diagram for the evaluation is shown in Figure 5.4.

TestCase RunStrategoExpectationEvaluator StrategoCommon Interpreter.

Evaluate

Invoke

\/

Invoke

Strategy Output

A

Strategy Output

Test Case Result

Figure 5.4: Sequence Diagram of Test Case Evaluation

5.4 Test Cases in Detail

In this section, we will look at some interesting test cases in detail and explain how they con-
tribute to the evaluation of our refactoring. The listings of all test cases used in the assessment
of our solution can be found in Appendix A.3.

5.4.1 Tiger

We will start by looking at some test cases in Tiger, a functional, statically-typed toy lan-
guage developed to educate students about compiler construction [3]. Its simplicity makes
it a prime candidate to test our algorithm against very basic name binding patterns. The
implementation of Tiger’s name binding rules are available both in NaBL2 as well as Statix.
This allows us to test both implementations of our renaming tool.
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Lexical Scoping

Tiger is lexically scoped and offers five different named language entities, that our tests need
to cover: variables, functions, function arguments, types and fields. The let bindings in Tiger
are sequential, which means that entities can only be used after they are declared.

To check whether our renaming algorithm can deal with lexical scoping, we devised the
test shown in Listing 5.6. In this test case, we rename the function plus to add, where the
scopes of the function declaration and the function call are adjacent. A correct renaming
should change both the function declaration and the function call.

test rename function from declaration [[

let

function [[plus]](a : int, b:int) : dint = (
a+b

in

plus(1,1)

end

11 run rename(|#1, "add") to [[

let
function add(a : int, b:int) : int = (
at+b

)

O O N ONUT WD -
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in
add(1,1)

Y
o Q1

end

1]

—_
N

Listing 5.6: Renaming Function from Declaration

The test case in Listing 5.7 also targets the Lexical Scoping name binding pattern, this
time for the language entity Variable. Another aspect of our solutions this test covers is that
the selected occurrence can be either a declaration or a reference. No matter which one is
selected, both the variable declaration and reference should be changed.

1 test rename variable from reference [[
2 let

3 var msg := "Hello World"

4 dn

5 print([[msg]])

6 end

7 11 run rename(|#1, "message") to [[
8 1let

9 var message := "Hello World"
10 dn
11 print(message)
12 end
13 17

Listing 5.7: Renaming Variable from Reference

To see if our solution also works on more complex programs we revisit the Foo Challenge,
see Listing 5.8. In this example we have multiple program entities with the same name and
a correct renaming would only change the identifiers of the selected entity. In this test case
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we attempt to rename the type foo, which would require a change of its declaration on line

18, as well as the two references on lines 21 and 29.

1 test Foo Challenge [[
2 let
3 type foo = {
4 foo : string
5 }
6 function foo (foo: [[fool]) = (
7 let
8 var foo := foo.foo
9 in
10 print(foo)
11 end
12 )
13 din
14 foo(foo{foo = "foo"})
15 end
16 1] run rename(|#1, "bar") to [[
17 et
18 type bar = {
19 foo : string
20 }
21 function foo (foo: bar) = (
22 let
23 var foo := foo.foo
24 in
25 print(foo)
26 end
27 )
28 in
29 foo(bar{foo = "foo0"})
30 end
31 11
Shadowing

Listing 5.8: Renaming Variable from Reference

As we have discussed at length previously, the presence of ambiguous names is one of the
principal challenges when developing a sound refactoring algorithm. In case a reference
could resolve to two nearby declarations, it is usually bound to the declaration which is
“closer” to that reference. This name binding pattern is referred to as Shadowing.

An example of this pattern can be seen in Listing 5.9. There we have two declarations of a
variable scope which are both reachable from the lone reference. A correct renaming would
only change the variable that is declared closer to the selected reference and leave the outer

declaration, the one that is being shadowed, as is.
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1 test rename variable with shadowing [[
2 let
3 var scope := "Outer"
4 in
5 let
6 var scope := "Inner"
7 in
8 print([[scopel])
9 end
10 end
11 1] run rename(|#1, "innerScope") to [[
12 let
13 var scope := "Outer"
14 in
15 let
16 var innerScope := "Inner"
17 in
18 print(innerScope)
19 end
20 end
21 11

Listing 5.9: Shadowing

Instance Scoping

Many programming languages offer the feature of declaring user-defined types, which en-
capsulate a set of fields. Prominent examples would be classes in Java or structures in C.
Usually each instance of such a user-defined type has its own scope, from which the popu-
lated values of the fields are accessible.
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test rename field [[
let
type student = {
[[name]] : string, age : 1int
}
var studentl: student := student{name = "Alan Turing", age = 109 }
in
studentl.name
end
11 run rename(|#1, "fullName") to [[
let
type student = {
fullName : string, age : int
}
var studentl: student := student{fullName = "Alan Turing", age = 109 }
in
studentl. fullName
end

1]
Listing 5.10: Renaming Field



5.4. Test Cases in Detail

In Tiger we have the entity type Type which exhibits such a name binding structure. In
Listing 5.10, we are renaming the field name of the type student to fullName. For this to result
in an a-equivalent program, the declaration and both the references need to be changed. One
is part of the constructor on line 7 and the other is a the field access on line 9.

Inadvertent Name Capture Detection

A sound renaming algorithm needs to make sure that no name capture is introduced through
the program transformation, as this might alter the program’s behaviour. We described this
problem in detail in Section 2.6 and are going to revisit the example from Listing 2.9 to check
if our renaming algorithm handles this correctly.

For this we use the extension for SPT we developed that allows us to check if a strategy
fails, which in the case of capture would be the correct behavior. In Listing 5.11 the renaming

of the variable bar should fail, as it would lead to capture when the reference on line 8 would
change.

1 test rename variable with capture [[
2 let

3 var [[bar]] := 10

4 in

5 let

6 var foo := 100

7 in

8 bar + foo

9 end
10 end

11 1] run rename(|#1, "foo") fails

Listing 5.11: Capture Detection

Invalid User Input

We aim to build a robust solution, that can deal with invalid user input. To test this, we
can also use the fails extension we developed for run expectation. In Listing 5.12, the user
attempts to rename the function print, which is built into the Stratego runtime library. Since
this library is tied into the language project as a compiled dependency, that is clearly not
possible and needs to result in an error.

test rename built-in function [[
let
var msg := "Hello World"

[[print]](msg)
end

1
2
3
4 in
5
6
7 1] run rename(|#1, "println") fails

Listing 5.12: Renaming Built-in Function

Another example of a term that cannot be renamed is a string literal, see Listing 5.13.
Literals are not part of a program’s name binding structure and thus our algorithm has no
way of dealing with them, leading it to abort with an error.
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1 test select literal [[

2 let

3 var msg := [["Hello World"]]

4 in

5 print(msg)

6 end

7 1] run rename(|#1, "Hi World") fails

Listing 5.13: Renaming Literal

There are some cases of an invalid user input however, which we cannot cover through an
SPT test case. In Listing 5.14, the user selected the keyword var, which as a builtin part of the
language’s syntax clearly cannot be changed. We cannot detect this in the run expectation,
because it works with the AST representation of the test fragment, in which the keywords are
not present anymore. This leads to this test case being marked as failed by with the message
”Could not resolve this selection to an AST node.”.

test rename keyword [[
let
[[var]] msg := "Hello World"
in
print(msg)
end
1] run rename(|#1, "println") fails

N O W N -

Listing 5.14: Renaming Keyword

5.4.2 Chicago

Chicago is a simple functional programming language which was developed to test and
showcase the capabilities of Statix. The language supports multi-module programs and
therefore we chose it to test if our renaming algorithm behaves correctly if the name occur-
rences of a language entity are spread out over multiple files. Since it is not possible to spread
a SPT test case over multiple files, we had to execute these tests by hand.

Chicago is very similar to Tiger in terms of language features and name binding patterns.
Therefore, we wrote test cases very resembling to the ones we wrote for Tiger to evaluate
if the multi-file version of our renaming algorithm works properly. Since these test cases
are very similar, we are not going to discuss them again here. The module-spanning name
binding is the only pattern that Chicago uses and Tiger does not.

Module-Spanning Name Binding

While SPT doesn’t work with multi-file programs, we can define multiple modules in the
same file to simulate a multi-file program. This allows us to at least test our solution on a
module-spanning name binding pattern, just without the multi-file persistence aspect.

In Listing 5.15, we show a test case targeting a module-spanning name binding. Module
Alpha defines a variable a which we want to rename to x. Module Beta imports module Alpha
and thus can access all its declarations. Therefore, when renaming a we need to change the
references in all other modules that import the variable’s enveloping module.
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1 test rename variable across modules [[
2 module Alpha {
3 def [[a]] = 1
4 1}
5 module Beta {
6 import Alpha
7 def b = a + 1
8 1
9 11 run rename(|#1, "x") to [[
10 module Alpha {
11 def x = 1
12 }
13 module Beta {
14 import Alpha
15 def b = x + 1
16 }
17 11

Listing 5.15: Renaming Variable Across Modules

Having a renaming algorithm with name capture detection is even more valuable when
working with multi-file programs. In a small single-file program, an attentive developer
might spot name capture by himself. However in a big multi-file project, it becomes virtually
impossible to manually detect the problem.

In Listing 5.16, we show an example of name capture that happens in another module
than the one from which the renaming is triggered. Renaming the variable a to b would
cause the reference to a on line 8 to be captured by the declaration on line 7.

test capture detection across modules [[
module A {
def [[a]] =1
}
module B {
import A
def b = 2
def c = a + 1
}
10 1] run rename(|#1, "b") fails

IO G WIDN -
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Listing 5.16: Name Capture Detection Across Modules

5.4.3 MiniJava

Java is an object-oriented general-purpose programming language developed by Oracle. Itis
one of the most popular programming languages, ranking second in both the TIOBE [11] and
PYPL [12] index at the time of writing. Its wide user base alone would be reason enough to
consider it in our tests, but Java also exhibits some interesting name binding rules which are
rooted in its underlying object-oriented paradigm. Specifically, the inheritance relationship
between classes and the use of qualified names led us to some compelling test cases. We
used a subset of Java called MiniJava [4] for our tests.
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Classes

One of the landmark features of object-oriented programming languages is the use of classes.
A class is a user-defined type that encapsulates state as fields and provides methods that oper-
ate on those fields. Classes can be organized into class hierarchies and are polymorphic types,
which means any child class provides the same interface as its parent class. As a result, any
object of the child type can be used in place of an object of its parent type.

In Listing 5.17, the parent class Foo is renamed to Bar. A correct renaming needs to find
all type references in the program and change them to the new identifier. The access modifier
public declares that the class can be used from anywhere in the program. This is an example
of a name binding pattern that has no restrictions on the locality of its occurrences and thus
makes a complete search of the program necessary. As unit tests are limited to small single-
module programs, admittedly this test is of limited significance in showing that.

1 test rename class from declaration [[
2 public class [[Foo]] {

3 public Foo create() {

4 Foo foo;

5 foo = new Foo();

6 return foo;

7 }

8 }

9

10 public class KidFoo extends Foo {
11 private Foo parent;

12

13 public Foo setParent(Foo foo) {
14 parent = foo;

15 return parent;

16 }

17 }

18 J1 run rename(|#1, "Bar") to [[
19 public class Bar {

20 public Bar create() {

21 Bar foo;

22 foo = new Bar();

23 return foo;

24 }

25 }

26

27 public class KidFoo extends Bar {
28 private Bar parent;

29

30 public Bar setParent(Bar foo) {
31 parent = foo;

32 return parent;

33 }

34 }

35 11

Listing 5.17: Renaming Class
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Method Overriding

A child class can override a method of its parent class by providing a different implementation
of a method with the same method signature, i.e. the same name, return type, and parameter
list. So if a method is called on a reference of the parent type, the overridden implementation
of one of its child types might actually be executed. The exact method implementation is
chosen at runtime.

This feature is called dynamic dispatch. On line 16 of Listing 5.18 the method getx is called
on a reference of type Foo. Both the class Foo and its child class Bar provide an implementation
for this method. If this reference points to an object of type Foo or Bar is generally undecidable
at compile time, hence the name dynamic dispatch.

This case is very interesting, as it is allows us to test if our solution works with multi-
declaration binding pattern (see Section 2.3.2). The static name binding analysis will find
two possible declarations for the reference represented by the call of getx. However even in
the case of a multi-declaration binding, the name binding structure must remain intact to
ensure behavior preservation. Therefore, both declarations need to be renamed.

test rename overridden method from ref[[
public class Foo {

public int getX() {

return 1;

}

public class Bar extends Foo {
public int getX() {
return 2;
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public class Main {
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13 public static int getNumber(Foo foo) {
14 return foo.[[getX()]]1;

15 }

16 1

17 11 run rename(|#1, "getY") to [[
18 public class Foo {

19 public int getY() {

20 return 1;

21 }

22 }

23 public class Bar extends Foo {
24 public int getY() {

25 return 2;

26 }

27 }

28 public class Main {

29 public static int getNumber (Foo foo) {
30 return foo.getY;

31 }

32 }

33 11

Listing 5.18: Renaming Overridden Method
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Qualified Names

Some programming languages allow names to be qualified. This means that additional infor-
mation is provided at a reference site in order to make the name resolution unambiguous. In
Java, the qualifier this points to the scope of the current object, forcing the name resolution
to start from that scope instead of the scope the qualified reference occurs in.

In Listing 5.19, we can see an example of the common Setter pattern where both the
function argument and the field have the same name value. The field reference is qualified
with this to make it clear that it should resolve to the field declared on line 4.

As we can see on line 15, the renaming left the qualifier in place and only changed the
identifier. In this example, keeping the qualifier would not be necessary, as the function
argument and the field now have different names, making the name resolution unambigu-
ous anyway. However, this is not trivial to detect and it is unclear how this could be done
language-parametric. Thus, we leave it to future research. By just keeping the qualifier, we
can at least ensure the name binding structure stays the same, even if it leaves some unnec-
essary code behind.

1 test rename qualified name [[

2 public class Foo {

3 private int value;

4

5 public Foo setValue(int value) {
6 return [[this.value()]] = value;
7 }

8 1

9 11 run rename(|#1, "number") to [[
10 public class Foo {
11 private int number;
12
13 public Foo setValue(int value) {
14 return this.number = value;
15 }
16 }
17 11

Listing 5.19: Renaming Qualified Name

5.4.4 WebDSL

General-purpose programming languages, such as Python or PHP, benefit from a sizable
user base which results in good tool support. Offering a language-parametric refactoring for
such a language would yield limited benefit, as there already exist a number of language-
specific solutions. However, for less popular or domain-specific languages which are not
backed by big communities or corporations, our solution provides a plug-and-play feature
to automate one of the most common tasks when developing software.

WebDSL [49] is a domain-specific language to develop web-applications with rich data
models. It provides abstractions for common components of web-application such as rela-
tional queries, web pages and e-mail templates. WebDSL is an interesting target language
for our tests as it is a fairly big DSL that has been used to develop multiple web-application
which are used productively by thousands of users.

In the tests we have described in this chapter, the renamings always targeted general-
purpose program entities, such as variables or functions, which occur in most programming
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languages. DSLs usual provide program entities that are specific to the target problem do-
main and it is interesting to test our renaming algorithm on such domain-specific program
entities.

1 test rename item [[

2 entity [[Item]] {

3 text : String

4 3

5

6 page grocery-list {

7 var newitem := Item{}

8 form {

9 input( newitem.text )

10 submit action{ newitem.save(); }{ "Add text" }
11 }

12 for( i: Item ){

13 div {

14 output( i.text )

15 submit action{ i.delete(); }{ "Remove" }
16 }

17 }

18 }

19 1] run rename(|#1, "Grocery") to [[
20 entity Grocery {
21 text : String
22 }

23
24 page grocery-list {

25 var newitem := Grocery{}
26 form {
27 input( newitem.text )
28 submit action{ newitem.save(); }{ "Add text" }
29 }

30 for( i: Grocery ){

31 div {

32 output( 1i.text )

33 submit action{ i.delete(); }{ "Remove" }
34 }

35 }

36 1
37 11

Listing 5.20: Renaming Entity

Listing 5.20 shows a simple web-application written in WebDSL that allows the user to
add items to a grocery list. It contains the entity Item, which represents a domain object, that
can be persisted in a relation database in the backend and displayed on a webpage in the
frontend. This is a good example of an abstraction that a DSL offers to make programs more
expressive. Renaming the entity to Grocery should also change all references in the page
grocery-list. This test shows that our renaming solution can deal with program entities
both domain-specific and general-purpose.
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Function Overloading

Function overloading is a name binding pattern that uses the function’s parameter list, addi-
tionally to the name, for name resolution. Specifically, the types of the function arguments
are needed to resolve a call to the correct declaration.

In Listin 5.21, we test our renaming algorithm on the overloaded function ret. One dec-
laration of ret expects a string as an argument and the other declaration expects an integer.
When renaming the function from a call, the name resolution algorithm needs to evaluate
the type of the parameters passed to the function in order to find the correct declaration.
Similarly, the refactoring should only change the name of one of the function declarations.

test rename overloaded func from ref [[
built-in
page root {}
function ret(s: String) { }
function ret(i : Int) { }

function testRet() {
[[ret]](1);

}

10 11 run rename(|#1, "retInt") to [[

11 built-in
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12 page root {}

13 function ret(s: String) { }
14 function retInt(i: Int) { }
15

16 function testRet() {

17 retInt(1l);

18 }

19 11

Listing 5.21: Renaming Entity

5.4.5 Statix

We chose Statix [2] as another DSL to evaluate our solution against. Testing a renaming
algorithm on a name binding language exhibits an interesting quasi-recursive quality. Since
Statix’s static semantics are implemented in its predecessor NaBL2 [1], it was an obvious
candidate for testing our solution.

The test in Listing 5.22 shows a simple Statix specification with one predicate typeofExp
that, as the name suggests, checks the type of an expression. A predicate with that purpose
can likely be found in every Statix specification, as expressions are a concept used in virtually
every programming language.

While our test specification only has one rule for the predicate, a complete implementa-
tion will have many more and thus have many name occurrences of type0fExp. For example,
Chicago’s specification contains 75 occurrences of the predicates name distributed over 12
modules/files. Changing the name of the predicate to typeofExpr would require quiet a bit
of manual editing.

Our automated RenaME refactoring gets this change done in a few seconds. This case per-
fectly exemplifies how our language-parametric solution can increase the usability of DSLs
like Statix that are developed with limited resources. Our refactoring can be added to any
Spoofax language with little effort and provides a helpful tool for developers using the DSL.
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However, this test case also shows one of the limitations of our solution. Our refactor-
ing ignores the implied name binding between the sort Exp and the predicate typeofexp. It
would make sense to also rename the sort to Expr in order to consistently use the same ab-
breviation for the word “expression” within the specification. Since this kind of cross-entity
name binding is not specified in Statix’s name binding rules, our renaming ignores it.

1 test rename typeOfExp [[

2 module m

3 signature

4 sorts Exp constructors

5 Add: Exp * Exp -> Exp

6 sorts Type constructors

7 INT : Type

8

9 rules

10 typeOfExp : scope * Exp -> Type

11

12 [[typeOfExpl] (s, Add(el, e2)) = INT() :-
13 typeOfExp(s, el) == INT(),

14 typeOfExp (s, e2) == INT().

15 1] run rename-test(|#1, "typeOfExpr") to [[
16 module m

17 signature

18 sorts Exp constructors

19 Add: Exp * Exp -> Exp
20 sorts Type constructors

21 INT : Type
22

23 rules
24 typeOfExpr : scope *x Exp -> Type
25
26 typeOfExpr (s, Add(el, e2)) = INT() :-
27 typeOfExpr(s, el) == INT(),
28 typeOfExpr (s, e2) == INT().
29 1]

Listing 5.22: Renaming Predicate
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Chapter 6

Evaluation

To evaluate our solution, we will revisit the common problems of implementing the RENAME
refactoring and check if and to what degree we were able to solve them. We described those
problems at length in Chapter 2.

Our solution relies on a language-parametric name resolution algorithm to solve some of
the problems for us. For example, a text search-and-replace approach to renaming struggles
when encountering duplicate names. The name resolution algorithm can clear up such an
ambiguity and allows us to change the correct identifiers.

However, more important is the name resolution algorithm completely encapsulates the
complexity of language-specific name binding. Therefore, we achieve a separation of concern
between name resolution and renaming, resulting in a rather simple renaming algorithm.

6.1 Coverage of Name Binding Patterns

One of the main challenges of developing a language-parametric renaming algorithm is there
exists a theoretically infinite amount of different name binding patterns across programming
languages. We solved this problem by abstracting a program’s name binding structure to a
resolution relation which contains all reference occurrences paired with the declaration occur-
rence they resolve to. Our implementation uses the solvers of NaBL2 and Statix to perform
name binding analysis.

Language | # Test Cases | Program entities Name binding patterns
Tiger 13 Variables, Functions, Types, | Lexical Scoping, Shadowing,
Fields, Arguments Instance Scoping
Chicago 20 Variables, Functions, Types, | Lexical Scoping, Shadowing,
Fields, Arguments, Modules | Instance Scoping, Module-
Spanning Scoping
MiniJava | 22 Variables, Methods, Classes, | Lexical Scoping, Shadowing,
Fields, Arguments Instance Scoping, Type Hier-
archies, Method Overriding,
Qualified Names
WebDSL 16 Entities, Pages, Variables, | Lexical Scoping, Module-
Functions Spanning Scoping, Function
Overloading, Shadowing
Statix 14 Sorts, Constructors, Names- | Lexical Scoping, Module-
paces, Labels, Predicates, | Spanning Scoping
Variables

Table 6.1: Test Coverage Summary
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6.2. Tool Integration & Usability

To evaluate the coverage of various name binding patterns in practice we tested it on
five different languages. For each language, we wrote multiple unit tests in SPT to check
if our implementation can deal with the language’s name binding patterns. These tests are
described in detail in Chapter 5. We summarize the coverage of our test cases in Table 6.1.

We adapted the approach of the name-fix [18] algorithm to detect capture. Specifically,
we recalculate the resolution relation after the renaming transformation is done and compare
it to the original one. If we detect a difference, the name binding structure of the program
was inadvertently altered which may lead to a different runtime behavior. The test suites
include test cases that would lead to name capture when applied in order to test detection of
name capture.

The experiments confirm that renaming applies out of the box to a wide range of name
binding patterns and correctly addresses name capture.

6.2 Tool Integration & Usability

We integrated our renaming algorithm into the Spoofax Language Workbench [28] which is
deployed as a plugin for the Eclipse IDE. Every language engineer using Spoofax can add the
RenaME refactoring to their project in a few simple steps(see subsection 4.8.2). The main re-
quirement for using our renaming feature is that the target language needs a Statix or NaBL2
specification that declares its name binding structure.

In a way, developing the refactoring was also a test for Spoofax’s maturity and capability.
Many of Spoofax’s pieces had to work together properly to build such a complex editor ser-
vice and we were able to fix a handful of bugs in the process. Starting with the parser which
turns source code into ASTs and is also used to recognized what term a user has selected to
be renamed. As we mentioned before, we heavily relied on the capabilities and interfaces of
the Statix and NaBL2 solver.

Further, we used Stratego to perform the transformation and depended on its correct
origin tracking in order to use the layout-preserving pretty printing. As we described in
Section 5.2, we extended SPT so that we could unit test our renaming algorithm. Lastly, we
used ESV to package our RENaME refactoring as an editor service with multi-file capability.

The user interface of our solution is certainly a lot cruder than the refactoring engines
of commercial products like Intelli] IDEA. While our UI only offers the basic functions of
entering a new name and displaying error messages, using our refactoring is still superior to
manual renaming as it guarantees absence of name capture. It is also faster than renaming
by hand, works on multi-file programs, and is layout-preserving.

6.3 Performance Analysis

One of the main advantages of automating refactorings is that it saves the developer time. To
see if our implementation of the RENaME refactoring provides this advantage, we conducted
a basic performance analysis. For that, we renamed arbitrary program entities in programs
of various sizes and measured the execution time of the refactoring. We tested the NaBL2 im-
plementation on Statix programs and the Statix implementation on Chicago programs. The
averages of the execution time measurements are summarized in Table 6.2. The measure-
ments were performed on a laptop with 16 GB of RAM and an Intel Core i7-7700HQ CPU
clocked at 2.8 GHz.

For programs smaller than 100 lines of code, the refactoring finishes without any notable
lag. Renaming something in programs with a couple hundred lines of code also finishes
within an acceptable time frame. Although, the lag becomes noticeable on the NaBL2 version.
When dealing with programs greater than 1000 lines of code, the renaming takes well over a
few seconds and becomes unacceptable in regards to usability. Based on these measurements,
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6. EvaLuation

we conclude that the performance results do not warrant application to large programs with
the current implementation.

Program Size | Execution Time NaBL2 | Execution Time Statix
< 100 LOC 0.19s 0.19s

< 1’000 LOC 248s 025s

< 107000 LOC 104.80 s 21.26s

Table 6.2: Execution Time Analysis

6.3.1 Execution Time Breakdown

To investigate why our refactoring performed so slowly on large programs, we recorded more
detailed measurements of the execution time. Specifically, we measured the time each of
the five steps of the algorithm took and put it into relation to the overall execution time of
the algorithm. The results of these in-depth measurements are summarized in Table 6.3.
Breaking down the execution time of the refactoring in that matter allowed us to identify the
bottleneck of the implementations.

Execution Time Share
Step NaBL2 Statix
1. Build Resolution Relation | 18.7 % 2.1 %
2. Find Selected Occurrence | 0.6 % 0.6 %
3. Union-Find 1.5 % 2.9 %
4. Change ASTs 0.7 % 0.5 %
5. Detect Capture 78.3 % 93.7 %

Table 6.3: Execution Time Breakdown per Algorithm Step

In the first step of the algorithm, we extract the resolution relation from the result of
the static analysis. The implementation of this step is very dependent on the format of the
analysis result and the APl available to read the necessary name binding data from that result.
That explains why there is a significant difference between the execution time share of NaBL2
version and the Statix version. It’s important to mention that Spoofax pre-analyzes a project.
Therefore, the initial static analysis on which the resolution relation is built is not included
in these measurements.

In the NaBL2 version, we read all the references from the scope graph and performed
name resolution for each of these occurrences to find the associated declarations. The time
complexity of the name resolution algorithm is not trivial and executing it for every reference
in a program comes at a significant cost, even if the solver uses a local cache for look-ups.

In Statix on the other hand, the declaration a reference resolves to is added to the reference
AST node as a property. While this requires us to traverse all the ASTs in the project in order
to build the resolution relation, we don’t have to call the name resolution algorithm on every
reference. Having the results of the name resolution cached in the form of AST properties
clearly saves us a lot of time. Extending the NaBL2 solver so it would also somehow cache
the resolution pairs would likely eliminate the aforementioned bottleneck.

In the second algorithm step, we check the users selection traversing the term he selected.
Since this term only consists of a few nodes in most cases, this takes almost no time. In
the next step, we find all name occurrences related to the users selection using the union-
find [23] algorithm. While our implementation of union-find is rather simple, it could be
optimized to run in O(ma(n)) [46,45] for m operations and n equivalence classes. However,
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6.4. Limitations

since that step only takes up 1.5 % and 2.9 % respectively of the entire execution time that
optimization would have little effect.

In step four we perform the actual renaming through transforming the AST. From the
previous step, we know which name indexes we have to change. Since the name indexes
contain the file path where they occur, it is easy to determine which files will be affected by
the renaming and we can avoid a traversal of all ASTs in the project. Most renamings only
affect a small number of files, regardless of the project’s size. Therefore, this algorithm step
scales rather well.

We check for capture in the last step of the algorithm. To do this, we rerun the static
analysis and recompute the resolution relation. We’ve already established that calculating
the resolution relation is slow in the NaBL2 version. Since we repeat that step as part of
the capture detection step, we pass that bottleneck twice making it more detrimental to the
performance of our refactoring.

From the execution time shares in Table 6.3, we see that both versions of the algorithm
spend the majority of their time in the capture detection step. This is because we execute
the static analysis again, which constitutes a bottleneck for both versions of our refactoring.
Since the solvers is only minimally incremental, it performs an almost complete analysis of
the program on every renaming.

We conclude that the poor scalability of our renaming implementation is mostly due to
the performance of the NaBL2 and Statix solver. This is out of scope of this thesis. We see
that the execution is mostly dominated by the cost of reanalysis. Improvement of the raw per-
formance of the solver and incrementalizing the reanalysis step should scale the algorithm
to larger projects. Alternatively, the algorithm we have presented in this thesis does work
with any type checker that produces a resolution relation.

6.4 Limitations

One problem we were not able to solve is the consideration of informal name binding pat-
terns when renaming. For example, when renaming a private field foo to bar in C++, our
solution would not rename the associated setter to setBar. The reason being the name bind-
ing between the field and the setter is only implied by the convention of the setter pattern.
While such conventions are helpful for developers, they do not matter at runtime and are
therefore usually not encoded in a language’s static semantics.

Since our renaming algorithm operates on the result of the static analysis, we have no way
of adding informal name bindings to the resolution relation because those name bindings are
not recognized by the name resolution algorithm. One key limitation of our solution is that
it cannot deal with name binding patterns that are not explicitly part of a language’s static
name binding rules. In other words, our renaming algorithm is limited to the occurrences
that appear in the resolution relation.

Unfortunately, this limitation can lead to a RENaME refactoring not being behaviour pre-
serving. For example, in Java a method can be called through the Reflection API, where
the method’s name is passed as a string literal. Since there is no explicit name binding be-
tween that literal and the method itself, our renaming would fail to change the string literal.
This would result in the reflection call failing at runtime, effectively breaking the program
through the refactoring.

Another limitation of our implementation is it does not change occurrences which appear
in inline comments. Our solution works on the AST representation of a program, which does
not contain nodes for comments as they are ignored by the parser. Although even if inline
comments would be part of the AST, there would be no explicit name binding between the
comment text and the associated program entity. Therefore the name binding would not be
present in the resolution relation and the text in the comment would not change.
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6. EvaLuation

As we discussed in the previous section, the long execution time of our refactoring when
dealing with big programs is another limitation. However, that limitation is a shortcoming
of the implementation rather than the core renaming algorithm. Employing a faster imple-
mentation of the static analysis would remove this limitation.
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Chapter 7

Related Work

7.1 Refactoring

The topic of refactoring was made popular by Martin Fowler’s seminal book Refactoring: Im-
proving the Design of Existing Code [20]. He proposes the concept of improving the design
of existing code without altering a program’s behaviour as an important tool for software
developers to increase the quality and maintainability of software products. He describes
how to perform 68 refactorings manually in a step-by-step fashion, including Rexame FIeLD,
RenaME MeTHOD and ReNaME VariasLe. While the examples given in the book are in Java,
they could easily be applied in another language as well. Although, most of them are geared
towards object-oriented languages.

While the book focuses on performing the refactoring transformations manually, in Chap-
ter 14, Don Roberts and John Brant outline the benefits of automating refactorings. They state
six criteria which a refactoring tool needs to meet in order to be successful, which are fulfilled
by our implementation:

1. Perform Transformations on a Parse Tree
The textual representation of a program is ill-fitted to execute an automated refactoring
transformation upon. Formatting and white spaces obscure a programs structure and
make it difficult to define a transformation in a concise way. Stratego allows us to define
transformations on an abstract syntax tree which, is basically a simpler version of a
parse tree. As we described in Section 3.2, we use Spoofax’s generated JSGLR parser to
turn the source code into an AST.

2. Build a Program Database

Most refactorings require a way to find specific language entities in a program. To
fulfill this, the tool needs to build a program database (or program model), that can
be queried for the necessary information when executing the transformation.

One kind of program database used in Spoofax is a scope graph, which represents name
binding and typing information. The static analysis decorates the terms in the AST with
annotations that associate elements in the scope graph. The Stratego language has an
API for querying the program database through these annotations.

3. Preserve Behavior
That an automated refactoring transformation does not break the program is arguably
the most important criterion for a refactoring tool. We evaluated our solution on five
different languages through unit tests using SPT (see Chapter 5).
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4. Save Time
Refactoring by hand is not only error-prone but also time consuming. Using a tool to
refactor should save developers time and therefore money. The performance analysis
of our solution can be found in Section 6.3.

5. Undo a Renaming
As it is difficult to find a good name, it certainly can occur that a name needs to be
changed back. The change in the source code performed by the refactoring is registered
by the editor just like any other textual change. Therefore, the renaming can be reverted
through Eclipse’s standard Undo function.

6. Integration with Tools
Because refactorings occur quiet often, they should be easy to perform and integrate
seamlessly in the developer’s workflow. DSLs developed in Spoofax can be deployed as
plugins for the Eclipse IDE and programmers can make use of the platforms rich feature
set when writing code in the implemented language. The integration into Eclipse’s Ul
is described in Subsection 4.5.6.

Academically, the PhD thesis of Griswold[24] was one of the first major works on the
topic of refactorings. In his thesis, he shows how “meaning-preserving transformations can
restructure a program to improve maintainability” using various program transformations
that would nowadays be considered refactorings, including one to rename a variable.

Similar to our solution, his transformations operate on the AST representation of a pro-
gram. However, he uses a Program Dependence Graph (PDG) [34] as an abstract program
model instead of a scope graph. To ensure the transformations are behavior-preserving, he
postulates a set of allowed changes to the PDG which do not alter a program’s semantics.
While his model is language-agnostic, the prototype of his restructuring tool was imple-
mented language-specifically with Scheme as the target language.

As a part of his work, he also conducted an experiment to compare manual and tool-aided
restructurings, coming to the conclusion that “computer-aided restructuring is a potentially
valuable approach to reducing the overall cost of software evolution.”

The PhD thesis of Opdyke[41] was praised to be “the most substantial work on refactor-
ing” by Fowler [20] and was a major influence for Fowler’s famous book. His work focuses
on object-oriented programming languages, which are touted to lower the complexity of pro-
grams by facilitating the reuse of software components. In that regard, he finds that ”“object-
oriented software often needs to be restructured before it can be reused.” The large number
of refactorings that exist for object-oriented languages arguably confirms his statement.

Opdyke defines 26 low-level restructurings, such as Move MetHOD or RENAME VARI-
ABLE, from which he builds high-level refactorings, such as ExtracT Supercrass. To ensure
behaviour-preservation, each low-level transformation is associated with a set of 35 possible
preconditions, which cause the whole refactoring to be aborted and rolled back in case one
of them evaluates to false.

In his PhD thesis, Roberts[43] advanced the research of Opdyke, focusing on the Smalltalk
programming language. He extends Opdyke’s model with post-conditions that are expected
to hold after the refactoring transformation is complete. The way we implemented capture
detection in our solution is through such a post-condition. His work served as the basis for
the development of The Refactoring Browser!, which claims to be one of the first commercial
refactoring engines.

Building on Opdyke and Roberts work, Schaefer developed the refactorings ReNamE, IN-
LINE TeEmpP and ExtracT METHOD for Java [44]. His work contains a detailed description of

1https://refactory.com/refactoring—browser/
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7.2. Name Binding

Java’s name binding structures and the challenges they pose for a correct renaming. His re-
search covers complex name binding patterns such as nested types, method overloading, and
qualified names. He also extensively investigated the problem of name capture and provides
a solution that can fix capture in certain cases through qualifying names.

Schaefer implemented his refactoring engine on top of the JastAdd] compiler [17] that
extends Java with rewritable reference attribute grammars [16]. He implemented a name
lookup algorithm using an attribute grammar and built his REnaME refactoring on top of
that algorithm, similar to how our solution relies on name resolution information from the
Scope Graph.

Kniesel and Koch[31] further refined Opdyek’s approach of composing complex refac-
toring from small and basic program transformations. They developed ”a formal model
for automatic, program-independent composition of conditional program transformations.”
This is language-parametric in general, although most of their basic conditional transforma-
tions are limited to object-oriented languages. They implemented the refactoring browser
ConTraCT based on their model with Java being the target language. Their work served as
an inspiration to break down our renaming algorithm into small steps. This made it easier
to separate the generic steps from the steps specific to the name binding language in use.

A lot of the works discussed in this section present theoretical models which could be
considered language-parametric, most of them being focused on object-oriented languages.
However, none of them evaluated their models with multiple programming languages and
none of them have the plug-and-play ability of the Spoofax implementation of our solution.

7.2 Name Binding

There exists a substantial body of research considering name binding in formal languages
and multiple language-parametric solutions, such as symbol tables, attribute grammars [32]
or visibility predicates [40]. We opted to build our renaming transformation on top of the
solution provided by Spoofax using declarative name binding and scope graphs.

Konat et al.[33] started the work on this by developing “a declarative metalanguage for
the specification of name bindings in terms of namespaces, definition sites, use sites, and
scopes” that comes with a language-parametric name resolution algorithm. Neron et al.[39]
further developed that idea, introducing the concept of the scope graph and its accompany-
ing formal name resolution calculus. They outlined how a renaming could be implemented
on top of their framework. This served as a foundation for this master thesis.

The scope graph formalism was extended to ”a full framework for static semantic anal-
ysis” by Antwerpen et al.[1], through essentially “uniting a type checker with our existing
name resolution machinery.” They present a constraint-based approach to name and type
resolution and their work resulted in the meta-language NaBL2. One of our implementa-
tions uses the NaBL2 Stratego API to gather the necessary name binding information.

Antwerpen et al.[2] carried on the work on the scope graph framework to allow it to
deal with more complex type systems. They find that “viewing scopes as types enables us
to model the internal structure of types in a range of non-simple type systems”. They also
presented Statix as a successor to NaBL2 as part of their work, for which we built an imple-
mentation of our RENaME refactoring.
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7.3 Capture Detection

The Name-Fix algorithm of Erdweg et al.[ 18] can repair name capture that was caused by an
arbitrary program transformation as it “renames variable names to differentiate the captured
variables from the capturing variables, while preserving intended variable references”. Our
approach to detect capture was heavily influenced by their work.

Even though their solution focuses on code generation transformations rather than refac-
torings, we were able to adopt their capture detection approach as a key piece of our renam-
ing algorithm. Name-fix builds a name graph of the program as an abstract representation
of its name binding structure and detects capture by comparing the graphs before and after
the transformation is done.

7.4 Other Language Workbenches

Racket [19] is both a meta-programming language and framework to build domain-specific
languages. It has a powerful macro system and has been used to implement renaming for
local variables. Racket’s Resyntax library provides macros to build more complex refactoring.
However, it is still in an experimental development state.

JetBrains MPS (Meta Programming System) [50] is a commercial tool for developing
domain-specific languages. While MPS does provide an automated RENaME refactoring, it is
less sound and complete than our solution. Complex name binding patterns, such as method
overloading or qualified names, cannot be expressed in MPS. Thus, are also not covered by
its renaming algorithm. Renaming in MPS also doesn’t detect name capture and is therefore
not behavior-preserving.
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Chapter 8

Conclusion

Refactorings are a valuable tool for software developers to improve code quality. Develop-
ing automated refactorings as an editor service is notoriously complex and time-consuming.
Most existing implementations only target one specific programming language and therefore
need to be reimplemented when developing a new language. We built an automatic RENAME
refactoring that works on any programming language, achieving the goal of this thesis.

The main challenge of developing a renaming transformation that works on an arbitrary
programming language is that each language has its own unique set of name binding rules.
We delegate the complexity of dealing with these rules to a language-parametric name res-
olution algorithm [33]. This hides the details of a specific language’s name binding specifi-
cation from the renaming transformation, achieving a separation of concern between name
resolution and refactoring.

In the first step of our renaming algorithm, we build a language-independent represen-
tation of a program’s name binding structure. For this, we assign each name occurrence a
name index that uniquely identifies it. We then use the name resolution algorithm to asso-
ciate each reference occurrence with its respective declaration occurrence, representing each
name binding as a pair of name indexes. Collecting all resolution pairs into a resolution rela-
tion [39] creates an abstraction that contains all the name binding information of a program.

Next, we calculate the equivalence classes of the resolution relation with the union-find
algorithm [23], where each equivalence class contains all the name occurrences that repre-
sent one specific program entity. In order to rename a program entity, we just need to find
its equivalence class and then, change all the name occurrences it contains.

To ensure the transformation is behavior-preserving, we adapted the name capture de-
tection approach of the name-fix algorithm of Erdweg et al.[18]. In order to detect capture,
we recalculate the resolution relation after the transformation and compare it to the original
one, since name capture alters the name binding structure of a program.

We implemented our RenaME refactoring using the Spoofax Language Workbench [28].
The algorithm was implemented as rewrite rules in the Stratego [9] term transformation
meta-language and equipped with a user interface using the Editor Service Language (ESV)
of Spoofax. Spoofax offers the two meta-languages NaBL2 [1] and Statix [2] for declaring
a language’s static semantics. We developed two versions of the refactoring; one using the
NaBL2 solver and the second using the Statix solver for name binding and resolution.

To test our refactoring, we wrote a total of 85 unit tests in the testing meta-language
SPT [27]. We were able to show that our algorithm behaves correctly for a wide array of
name binding patterns on the basis of our tests with the languages Tiger [3], MiniJava [4],
Chicago, Statix, and WebDSL [49]. To test our renaming algorithm with SPT, we also ex-
tended its runtime with the ability to deal with more complex Stratego strategies.
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Our solution has two noteworthy limitations. First, the refactoring only changes names
that are explicitly bound together through the target language’s static semantics. For ex-
ample, renaming a field in Java would not change the name of the accompanying getter or
any occurrences of the field’s name in a JavaDoc comment. Second, our implementation
scales poorly when dealing with programs of several thousands lines of code. Executing a
renaming on program of that size takes on average 21 seconds using the Statix solver and
105 seconds using the NaBL2 solver. This long execution time restricts the usability of the
refactoring. We identified the solvers as the bottleneck of the algorithm and any speed-up of
the solver should improve the performance of the renaming proportionally.

Finally, we integrated our automated refactoring into the Spoofax Language Workbench,
providing a renaming editor service for every language out-of-the-box.

8.1 Future Work

To close out this thesis, we present a few ideas for improvements and extension to our RENAME
refactoring, on which we hope to work in the future.

8.1.1 Qualified Names

Some implementations of the ReNaME refactoring automatically repair the name binding
structure of a program in the event of name capture through injecting qualified names. For
example, when the renaming of a method argument would capture a reference to a field, the
name binding structure could be restored by qualifying the field reference with this. The
implementation of the Java RenaME refactoring by Schaefer[44] has this capability. Our re-
naming solution simply aborts upon detecting name capture.

While not all programming languages support qualified names, it is a name binding pat-
tern that appears in many object-oriented languages. It would certainly be interesting to
try and extend our language-parametric solution with an option to remedy capture through
qualified names, assuming the target language supports that name binding feature.

In case a reference resolves to a different declaration after renaming, it is possible to find
other declarations which are reachable from that reference within the scope graph. If the
original declaration which the captured reference was bound to is still reachable, we would
then need to modify the AST to qualify said reference. We would need to implement a func-
tion that would map the correct resolution path in the scope graph to a transformation that
inserts the name qualifier.

8.1.2 Binding-Specific Renaming

Our solutions requires a complete traversal of the AST in order to perform the renaming.
However, there is evidence that this may not always be required. For example, when renam-
ing an entity which is bound through lexical scoping, it is clear that all references are going
to be located on a lower level of the same AST branch as the declaration. Therefore, only
that sub-tree would have to be traversed instead of the entire AST, which we would expect
to result in a performance gain.

Implementing such an enhancement would require to survey common name binding pat-
terns and categorizing them with regards to their locality within the AST. Using the scope
graph framework, such a categorization could probably be done by inspecting the steps of
the resolution paths and their length. The renaming transformation would then need to ad-
just its traversal strategy based on the name binding pattern of the selected language entity.
This in turn would require the algorithm to analyze the name binding specification to find
such patterns whereas, our current solution is agnostic to that specification.
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It is very difficult to estimate how much such an enhancement would actually limit the
AST traversal, as this depends on a number of factors. It might vary greatly between different
languages, depending on which patterns they apply to what language entities. The size and
complexity of the target program is also expected to affect the extent of speed-up. Whether
the performance gains would warrant the complexity of such a solution is future work.

8.1.3 More Language-Parametric Refactorings

Besides RENAME, there exist dozens of other refactorings that would be interesting to imple-
ment language-parametrically. Move MeTHOD, INLINE METHOD, and ExtracT METHOD are the
next most commonly used refactorings [47]. It would be convenient to have those available
out of the box as well when developing a new language. As we describe in Subsection 7.1,
there exista number of theoretical approaches to implement more complex language-parametric
refactorings, as well as many language-specific implementations.

Our RenaME solution could most certainly serve as a starting point to implement more
complex refactorings in Spoofax. Most refactorings interface with the name binding structure
of a program in some way and some of our Stratego code could surely be reused in other
refactorings. Name capture is not just a concern for the RenamE refactoring. Therefore, our
capture detection implementation might serve as a foundation to spot this problem in more
complex transformations. Our SPT extension will definitely be useful when testing them.
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Appendix A

Source Code

This Appendix contains references to the source code we created or modified during the de-
velopment of our Rename refactoring. All of it is open source and publicly hosted on GitHub.

A.1 Renaming Integration

How we integrated our Rename refactoring into Spoofax is described in Section 4.8. The
changes to the source code are represented through the following pull requests:

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

1
2
3
4
5.
6
7
8
9

. https:
. https:
. https:
https:
. https:
. https:
. https:
. https:
10. https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

https:

//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.
//github.

//github.

. https://github.com/metaborg/spoofax/pull/76

com/metaborg/spoofax—eclipse/pull/20
com/metaborg/nabl/pull/36
com/metaborg/jsglr/pull/94
com/metaborg/nabl/pull/37
com/metaborg/spoofax/pull/79
com/metaborg/nabl/pull/42
com/metaborg/nabl/pull/43
com/metaborg/nabl/pull/45
com/metaborg/spoofax/pull/79
com/metaborg/spoofax/pull/79
com/metaborg/nabl/pull/46
com/metaborg/nabl/pull/47
com/metaborg/nabl/pull/48
com/metaborg/nabl/pull/49
com/webdsl/webdsl-statix/pull/2
com/metaborg/documentation/pull/50
com/MetaBorgCube/statix-sandbox/pull/3
com/MetaBorgCube/metaborg-tiger/pull/12

com/metaborg/spoofax/pull/83
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A.2. SPT Extension

A.2 SPT Extension

Our implementation of the SPT extension is described in Section 5.3. The specific code
changes were merged into the master branch through the following pull requests:

—_

. https://github.com/metaborg/spt/pull/34

. https://github.com/metaborg/spt/pull/35

2
3. https://github.com/metaborg/spoofax/pull/74
4

. https://github.com/metaborg/mb-exec/pull/10

A.3 SPT Unit Tests

In Section 5.4 we only described some of the unit tests we developed to evaluate our refactor-
ing. The links to the test projects containing all the SPT tests we wrote are shown in Table A.1.
The MiniJava repository is private, as it is used to grade assignments from the compiler con-
struction course. Therefore the tests for MiniJava are provided on request.

Language | Link to Test Folder

Tﬁger https://github.com/metaborg/metaborg-tiger/tree/renaming/org.metaborg.
lang.tiger.refactoring.test/test

C]ﬁcago https://github.com/metaborg/statix-sandbox/tree/renaming-integrated/
chicago/chicago.test/renaming

WebDSL https://github.com/webdsl/webdsl-statix/tree/renaming/webdslstatix.t
est/renaming

Statix https://github.com/metaborg/nabl/tree/master/statix.test/renaming

Table A.1: Links to Unit Test Folders
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