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Abstract

Monitoring of SARS-CoV-2 variants is crucial to efforts in combating
the COVID-19 pandemic. Lineage level abundance estimates for SARS-
CoV-2 can be obtained from viral material present in domestic wastewater.
The abundance predictions can be made at different levels of granularity-
individual lineage level(high granularity) or variant level(low granularity).
The question this paper answers is to what extent abundance predictions
are more accurate at lower granularity. Here we show that when wastew-
ater samples contain only one lineage low granularity predictions are in
general more accurate than high granularity for all lineages across Alpha,
Delta and Mu variants. No variant level overestimation was observed for
this experiment, which was thought to be something that could have made
low granularity predictions less accurate than those at high granularity.
When lineages of a variant were combined into a wastewater sample, the
prediction error rose because of the smaller relative abundances of the
genome sequences. Overestimation due to predictions of all lineages be-
ing pooled into one lineage was observed here with the overestimated high
granularity lineage being more accurate than the low granularity predic-
tions. If samples are expected to contain a very small amount of lineages
then it is better to make predictions at low granularity. On the other
hand, as the relative abundances of lineages decrease in a sample due to
a large number of lineages, the chances of lineage level predictions having
a smaller relative prediction error rate increases- making high granularity
the better choice for more accurate predictions.

1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first
discovered in Wuhan, China in December 2019[1]. It is an RNA virus and it is
responsible for causing the disease known as COVID-19. Over the course of the
pandemic, the virus has undergone numerous changes in its genetic code which
are termed mutation. Mutations produce different versions of the original virus
which are considered “variants” of the parent virus.
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Groups of viruses that have mutated from a common ancestor and which are
closely related to each other are called lineages[2]. In [3] a method of naming
the different SARS-CoV-2 lineages is outlined. At the root of the SARS-CoV-2
phylogeny are 2 lineages denoted as A and B. The names of the lineages begin
with a letter and the lineages descending from these root lineages are assigned
numerical values (for example A.1). According to the rules of [3] these lineages
can further act as ancestors for other lineages resulting in lineages like A.1.1.

Genome sequences of the virus are represented by a string of letters with each
letter representing a nucleotide, which is essential for DNA replication among
other functions[4].

Not all mutations change the characteristics of the virus but some give rise
to variants that are designated as ’Variants of Concern’ that may require public
health action. Some variants are more transmissible, cause more severe dis-
ease, or cause vaccines and other public and social health measures to be less
effective[5]. The Delta variant, for example, originating in India in December
2020, is characterized by an increase in transmission compared to the original
SARS-CoV-2 genome and has been reported in 187 out of 194 World Health
Organization member countries as of 2021-11-23[6].

Given the fact that differences in the characteristics of variants affect the
epidemiology of the coronavirus, it is of prime importance to ascertain which
variants of the virus are prevalent in a specific region.

Following reports of detection of SARS-CoV-2 in feces in January 2021, a [7]
that SARS-CoV-2 detection through wastewater surveillance could be used for
viral tracking. This method is especially useful in areas where clinical estimates
are unreliable or impractical to obtain.

Proceeding this study an experimental study by Baaijens et al. in Septem-
ber 2021 showed that quantitative analysis of the RNA material present in
wastewater provides reliable abundance estimates for the different Variants of
Concern(VoCs) of the SARS-CoV-2 virus[8]. Baaijens et al. introduced a novel
method to estimate SARS-CoV-2 variant abundances from wastewater using an
algorithm for RNA-Seq quantification. RNA-Seq(RNA-Sequencing) is a next-
generation technique that can be used to identify and examine the sequences of
RNA from wastewater samples.

In [8] since the sequencing reads(see methodology) obtained from wastewa-
ter are predicted at a particular level of the hierarchy of virus classification, for
example-lineage or Variant of Concern/Interest, it is important to think about
the level in the hierarchy at which predictions should be made since the predic-
tion accuracy changes with the level under consideration. This level is one of
the many aspects of the Baaijens pipeline that affects prediction accuracy with
some others being reference set design, sequencing errors and genome region
being sequenced. This level is indicated by the output granularity with the out-
put referring to the output of the Baaijens pipeline- for example lineages, and
granularity referring to how granular(specific) the output level is in terms of the
hierarchy of classification. Understanding the effect of output granularity on
prediction accuracy for the Baaijens pipeline is the research gap that this paper
aims to fill. High granularity predictions correspond to abundance predictions
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being made at the individual virus lineage/sub-lineage level. On the other hand,
low granularity predictions correspond to predictions being made for a combina-
tion of lineages or at the even broader variant level. The predictions at different
granularities can provide additional information about the presence of specific
lineages of the virus from the wastewater samples. With improvements to this
pipeline, we can make better predictions about new variants and have a more
accurate idea of which variants are prevalent in a region. The insights from this
algorithm open up the possibility to undertake variant-specific measures to curb
the spread of the virus in a particular region.

The main research question is ’Do predictions become more accurate at lower
granularity? IF so, to what extent?’ Results from this research are expected to
provide an insight into which granularity is ideal for a variety of variants and
how to interpret predictions at different granularities.

• Sub-question 1 - What are the differences in prediction accuracy at differ-
ent granularities?

• Sub-question 2 - What do the results at different granularities theoretically
indicate about the prediction pipeline’s strengths and weaknesses?

2 Methodology

The effect of output granularity on prediction accuracy is analyzed through ex-
periments with different configurations like different reference sets and wastew-
ater sample compositions. The results at different granularities are compared
are used to obtain an answer the research question.

The input to the pipeline consists of a data set of wastewater sequencing files
and a reference set. The pipeline uses quantification software to identify and
calculate the abundances for each lineage. The output is a list of abundances,
in the percentage of the whole sample for each lineage the user is interested in
observing.

The first data set contains the actual wastewater sequencing reads that need
to be quantified for variant abundance. Sequencing reads are the result of RNA-
Seq quantification on wastewater samples containing viral RNA and they include
what genome sequence strings were identified from the wastewater. This data set
can be of 2 different kinds. One option is to use a real-life data set of sequencing
reads extracted from an actual wastewater sample taken from a sewage plant.
The advantage of using this type of data is that it represents a real-life instance
of wastewater so the experiment results are grounded in reality and are more of
a reality check for the pipeline. The disadvantage however is that the user has
no control over what the composition of the wastewater sample is and therefore
cannot perform a wider range of experiments- concerning lineages that happen
to not be present in the sample.

The other option is to artificially construct a data set where the user has com-
plete control over which genome sequences are present in the wastewater(file)
and in what specific abundances and then test how well the pipeline performs
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on the data. Simulated data is used for experiments over real-life data because
to analyze the effect of output granularity on prediction accuracy as a function
of true frequency, not only is simulating the data much more convenient because
the abundances simulated are known precisely but the abundances can also be
adjusted as needed with ease, which would have been difficult if real samples
were used. Simulation tools like ART(see below) offer excellent functionality
to fine-tune aspects of the data making simulated data the obvious choice for
benchmarking data.

The reference set acts as a dictionary of ’identifiable’ genome sequences. An-
other purpose the reference set fulfills is that some of the reference set sequences
are used as background sequences in a wastewater sequencing file i.e. sequences
other than the ones we are interested in simulating and testing for abundance.
For example in a wastewater sequencing file with 50% simulated abundance of
a genome sequence from the B.1.1.7 Delta lineage, the other 50% of the file is
made up of background sequences from the reference set.

To perform tasks like RNA-seq quantification and creating simulated data
sets for experiments external tools are used. Kallisto is an RNA-seq quantifica-
tion program [9]. It is responsible for analyzing the wastewater sequencing reads
and classifying the RNA sequences found within into specific lineages and cal-
culating final counts for each lineage the user is interested in. Kallisto extracts
k-mers, which are substrings of length ’k’ of the sequencing read genome string.
These k-mers are compared them with the k-mers extracted from the reference
genomes using pseudoalignment. Pseudoalignment is a concept where instead
of matching sequencing reads to genome sequences that most closely resemble
the reads in terms of genome sequence characters, the focus is on identifying
which genome sequences in the reference set the reads could have potentially
originated from[9] to identify which lineage is most likely present in the sam-
ple/data set. Kallisto was used over other similar tools such as TopHat2[10] or
Cufflinks[11] because of its lower runtime and comparable accuracy[9].

ART is used as a simulation tool for experiments using simulated wastew-
ater sequencing reads, [12]. ART needs as input an input genome sequence to
be simulated and then it mimics the actual sequencing read process including
sequencing errors that occur in real-life to produce next-generation sequencing
reads.

3 Experimental Setup and Results

The next subsections describe the experimental configurations used and the
results obtained.

3.1 Experimental Setup

Multiple reference sets are used for the different experiments performed. When
choosing a reference set it is important to consider the location and time frame
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to ensure that the specific variants or lineages being analyzed in experiments
are present in the reference set so Kallisto can recognize them.

A reference set comprising of genome sequences of SARS-CoV-2 lineages
downloaded from GISAID[13] found in Connecticut between October 2020 and
September 2021 is used. The reference set was chosen from Connecticut because
there is a wastewater treatment plant in New Haven, Connecticut which can
be used to obtain real samples which can be used in a later experiment to
compare with simulated samples from the same location and provide insights
into prediction accuracy at different granularities for simulated versus real-life
data.

In addition to a Connecticut reference set, a much larger reference set of
sequences from all over the United States from GISAID, collected between Oc-
tober 2020- September 2021 is used to include contrast in sizes of reference sets
between a local and global reference set. The results with the two reference
sets are expected to differ as the bigger reference set offers a larger and more
diverse set of reference sequences for Kallisto, but now the reference sequences
are not necessarily found from the same geographic location to where the simu-
lated sequences were found, which offers an interesting interplay to observe the
effect of output granularity under. The expectation is that for the US refer-
ence set Kallisto would generally perform better for both granularities as with a
larger set of reference sequences the Transcriptome-De Bruijn Graph(T-DBG)
will have many more reference sequences for the same lineage so it has a higher
chance of making correct predictions for lineages. The T-DBG is a graph with
k-mers as nodes and vertices which connect different k-mers to form different
genome sequence strings which are then used for pseudoalignment.

All experiments are performed with simulated data and 3 variants area
analyzed- Alpha(B.1.1.7), Delta(B.1.617.2) and Mu(B.1.621). These variants
were chosen because genome sequences belonging to these variants were present
in abundance in the Connecticut reference set constructed from GISAID, whereas
variants such as Beta were not present in the reference set. The experiments aim
to find and analyze the differences in prediction accuracy at different granularities-
specifically lineage(high granularity level) versus variant (low granularity level),
for all variants at different simulated abundances. It is important to know that
since Kallisto can only make predictions at the lineage level, the predictions at
high granularity for a variant were obtained by summing up the predictions for
the simulated lineages.

A wastewater sample containing 50% abundance of a single genome sequence
from a lineage out of all sequences present contains 50% the genome sequence
and the remaining 50% is comprised of background sequences.

For every variant, only selective lineages are analyzed. This is because some
variants, like Delta, have hundreds of associated sub-lineages and it is imprac-
tical to construct a benchmarking dataset containing multiple sequences from
each of the lineages, especially since many of the lineages are emerging recently
and do not have ample sequences on GISAID at the time the experiments were
performed. Additionally, it is also the case that the results are expected to not
differ significantly across every lineage, which would make many of the lineages
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simulated redundant in terms of results. The genome sequences for every lin-
eage are simulated at 33 different abundances ranging from 0.05% to 100% of
the sequencing file.

Delta variant corresponding to lineage B.1.617.2 which was discovered in
India in late 2020 has become a dominant strain globally. It is considered one
of the most transmissible respiratory viruses known and it has over 200 hun-
dred sub-lineages for the B.1.617.2 lineage as of 2021-12-19. The Delta lineages
and sub-lineages simulated are B.1.617.2, AY.3, AY.14, AY.25 and AY.26 and
they correspond to a realistic wastewater sample that could have been taken
from Connecticut between 1 July-8 July 2021 as the sequences simulated were
collected between those dates.

The Alpha variant was first discovered in November 2020 and is character-
ized by an increase in transmissibility compared to the wild-type SARS-CoV-2.
The following lineages and sub-lineages of the Alpha variant were simulated -
B.1.1.7(root), Q.1, Q.4 and Q.3. The wastewater sample corresponds to a real-
life sample that could have been taken from Connecticut between April 1 and
April 30, 2021.

The Mu variant was detected in Columbia, in January 2021 and was consid-
ered as a Variant of Interest. The Mu variant corresponds to the lineage B.1.621
and has a sub-lineage B.1.621.1 as of December 2021. The genome sequences
simulated were from Connecticut collected between 2021-01-01 and 2021-05-31.

For constructing a benchmarking dataset 2 genome sequences are simulated
for every lineage under consideration. Since lineages contain multiple genome
sequences, including only one sequence would not necessarily sufficiently repre-
sent the variety existing within a lineage and could lead to worse performance.
In general, the more sequences simulated per lineage the better the performance
is expected to be, the downside being an increase in runtime. So two is cho-
sen as the bare minimum. Additionally, having the same number of genome
sequences simulated for every lineage is important as it ensures that the results
are normalized so no lineage has an advantage over another with lesser genomes
simulated which may result in more inaccurate predictions.

As a key performance indicator accuracy is used and not precision because
precision concerns how close different measurements for the same true value are
to each other, which is not relevant here because there is only one measure-
ment(abundance prediction) for every true value(true abundance). Accuracy,
however, indicates how close the predicted abundance is to the true abundance
which is more meaningful as it only concerns the true and predicted abundance.
The measure of accuracy being utilized here is relative prediction error(RPE).
This measure calculates the error of the model without concern for what the
true abundance the error was made at. This is an appropriate measure for this
pipeline because there is no reason to punish the RPE depending on what true
abundance the error was made at. This is especially important for errors at
high true abundance to be normalized by abundance. This would not have been
the case if measures such as root mean square error or Mean Absolute error
was used instead of Relative Prediction error and error rates from those metrics
would have been much higher. The formula for relative error is:
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RPE = |(T − E)|/T ∗ 100

where T is the true abundance of a lineage/variant and E is the estimated
abundance.

3.2 Results

The following experiments are carried out with the Connecticut Reference set.
Figures 1, 2 and 3 show the plots for the Delta, Alpha and Mu variants

respectively for samples with one genome sequence simulated at a time(Single
lineage experiment). Sub-figures (a) and (b) correspond to prediction accuracy
plots at high and low granularity respectively, as a function of true abundance.
Figure 4 shows the RPE plot for the Delta and Alpha variants.

(a) High Granularity (b) Low Granularity

Figure 1: Delta Variant, Single Lineage Sample(Connecticut)

For the Delta variant although both AY.14 and B.1.617.2 have roughly the
same number of genome sequences representing them in the reference set, at
all abundance levels Kallisto classifies a B.1.617.2 sequencing read as an AY.14
sequence, therefore leading to the high granularity curve for the root lineage in
Figure 1(a) to stagnate at 0% for all abundances. Results for B.1.617.2, AY.3
and AY.26 are better when considering lower granularity compared to their high
granularity results. The biggest improvement with low granularity was observed
for the root lineage B.1.617.2 with the relative prediction error(RPE) decreasing
to 40% at most abundances above 0.1% (Figure 4(a)).

Figure 2(a), 2(b) indicate that Alpha is one of the variants that benefit
greatly in terms of prediction accuracy when considering low granularity pre-
dictions. Lineages B.1.1.7 and Q.3 see significantly improved results at low
granularity with the biggest improvement being for Q.1 from 100% RPE to
only 20-30% at most abundances greater than 0.1%(Figure 4(b)).

The B.1.621.1 sub-lineage was consistently more accurate than the root lin-
eage, and it was noted that sequences from B.1.621 were being misclassified as
B.1.621.1 leading to more inaccurate predictions for B.1.621. At low granularity
RPE for B.1.621 improved from 60%(at high granularity) to about 20% at most
abundances above 0.1% true abundance(see Appendix).
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(a) High Granularity (b) Low granularity

Figure 2: Alpha Variant, Single Lineage Sample(Connecticut)

(a) High Granularity (b) Low granularity

Figure 3: Mu Variant, Single Lineage Sample(Connecticut)

(a) RPE for Delta. (b) RPE for Alpha

Figure 4: High Granularity RPE Plots, Single Lineage Sample(Connecticut)

The same experiment was then carried out with a US reference set to analyze
to what extent the results specifically Q.1(Alpha) and B.1.617.2(Delta) were
influenced by the size and diversity of the reference set.

Figures 5, 6 and 7 are granularity plots for the single lineage experiments
using a US reference set and sub-figures (a) and (b) are high and low granularity
plots respectively. Figure 8 is the RPE plot for Delta(8(a)) and Alpha(8(b))
variants respectively.

For the Delta variant, predictions for the B.1.617.2 lineage were significantly
better at high granularity compared to the Connecticut experiment. The RPE
consistently decreased from a 100% at 0.6% true abundance to 40% at 100%
abundance(Figure 8(a)). At low granularity, results were not appreciably better
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compared to higher granularity which implies that genome sequences from one
lineage were not misclassified into another lineage for the Delta variant. For the
Alpha variant except for lineage Q.3, the predictions are worse for all variants
for the US reference set(Figure 8(b)), which is not as expected with a larger
reference set. For the mu variant, results at both granularities with the US set
were better for both lineages as expected but not by a very huge margin and
the relative prediction errors are in a comparable range as their Connecticut
counterparts(see Appendix).

(a) High Granularity (b) Low granularity

Figure 5: Delta Variant, Single Lineage Sample(United States)

(a) High Granularity (b) Low granularity

Figure 6: Alpha Variant, Single Lineage Sample(United States)

(a) High Granularity (b) Low Granularity Plot

Figure 7: Mu Variant, Single Lineage Sample(United States)

For the US reference set, a second set of experiments were performed with all
lineages/sub-lineages of a particular variant present together in a single wastew-
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(a) RPE for Delta. (b) RPE for Alpha

Figure 8: High Granularity RPE Plots, Single Lineage Sample(United States)

ater sample. This configuration was very different from how lineages had been
simulated for the previous experiments as previously there was only one genome
sequence of one lineage in one wastewater sample. This combined lineage experi-
ment compelled Kallisto to not only detect which variant was present singularly,
like in the previous experiments but now it had to also differentiate between
different lineages/sub-lineages of a variant. This is where simulating multiple
genome sequences for every lineage offers utility as this better arms Kallisto
to derive more complex and detailed T-DBGs to better distinguish between
different lineages in the same sample. This simulated data-set is more realistic
compared to the previous experiments and the results offer an interesting insight
into as to how they vary from single lineage samples.

An example composition of a wastewater sequencing sample with 50% abun-
dance comprises 50% of the file consisting of background sequences, just like a
sample with a single genome sequence simulated, but the remaining 50% is now
divided over all the genome sequences simulated for a variant. For the Mu
variant which has lineage B.1.621 and sub-lineage B.1.621.1, with 2 genome se-
quences per lineage simulated, each lineage was present in 25% abundance with
each genome sequence within a lineage comprising of 12.5% of the sample, which
for a total of 4 genome sequences makes up the 50% of the simulated sequences.

Figures 9, 10 and 11 detail the results obtained for the combined lineage ex-
periments. Figures 9(a), 10(a) and 11(a) correspond to the estimated frequency
on the y-axis and true frequency on the x-axis and show estimated frequency
curves for high and low granularities for Delta, Alpha and Mu variants respec-
tively. Figures 9(b), 10(b) and 11(b) detail the comparative performance of high
and low granularities to evaluate which performed better in terms of RPE.

Since in this experiment the estimated abundance of a specific lineage at
a simulated abundance should be equal to simulated abundance divided by
the number of lineages simulated for that variant there are separate reference
lines for high and low granularity values. The reference line for low granularity
values(dotted blue line) remains the same as previous experiments but this ex-
periment includes an additional reference line for high granularity values(dotted
green line) which indicates what the actual frequency should be for the lineages.

Results for the combined lineage experiment were quite surprising. For the
Delta variant, sequences from all sub-lineages were misclassified into the root
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(a) Low versus High Granularity (b) RPE for Low and High granularity

Figure 9: Delta Variant, Combined Lineage Sample

(a) Low versus High Granularity (b) RPE for Low and High granularity

Figure 10: Alpha Variant, Combined Lineage Sample

(a) Low versus High Granularity (b) RPE for Low and High granularity

Figure 11: Mu Variant, Combined Lineage Sample

lineage B.1.617.2 with the predictions for B.1.617.2 being 57.88% at a 100%
true abundance where B.1.617.2 was expected to be at a maximum abundance
of 20%. It also means the remaining 38.88% of predictions were from the other
sub-lineages all of which were simulated at 20% abundance each. For the alpha
variant- lineages B.1.1.7, Q.1 and Q.3 had an RPE of 100% for all abundances.
It was observed that for Delta and Alpha the best RPE curve for actually for
B.1.617.2 and Q.4(respectively) at most abundances(Figure 9(b), 10(b)) and
not the low granularity curve as seen before. For the Mu variant, the results at
high granularity were much better compared to Delta and Alpha. The relative
prediction error for B.1.621.1 was in the 30-80% range (averaging at 60%),
for frequencies between 4 and 100%. B.1.621. had a similar prediction error
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although slightly larger in magnitude. At 100% abundance, B.1.621 overtook
B.1.621.1.

4 Discussion

To evaluate the effect of output granularity on prediction accuracy, we have
conducted experiments using the Baaijens pipeline for Alpha, Delta and Mu
variants. The true abundances for genomes simulated range from 0.05% to 100%
of a wastewater sample. The experiment with the Connecticut and US reference
set, as well as the combined lineage experiment have provided an insight into
how accurate predictions are at different granularities. Additionally, the results
have revealed the strengths and weaknesses of the prediction pipeline regarding
its ability to calculate abundances accurately.

For the Connecticut Reference set, the delta variant sequencing reads from
genome sequences from root lineage B.1.617.2 were misclassified as AY.14. This
misclassification is mitigated when a US reference set is used which has 4 times
as many reference genome sequences for the two lineages. Therefore part of the
problem causing this misclassification seems to be a lack of diversity in reference
sequences which can cause the sequences simulated to be more easily misclas-
sified. For the delta variant using the US reference set yields more accurate
results for all lineages observed.

For the Connecticut reference set, results for Q.1(Alpha) are interesting as
even though in the reference set Q.1 has more reference sequences than Q.4, in
some cases all lineages other than Q.1 seem to be favored for classification for
a sequence that was from Q.1. Just like Delta’s B.1.617.2 for the Connecticut
reference set, the high granularity predictions for Q.1 are consistently almost 0
because of these misclassifications. Lineage Q.4 is also interesting as it seems
to be predicting the abundances exactly with an unnoticeable margin of error
indicating the pipeline is very accurate for this lineage.

For the Connecticut reference set, for the Mu variant, it is interesting to
note that Kallisto seems to favor predictions for sub-lineage B.1.621.1 with
high granularity predictions for B.1.621, the root lineage being about twice
as errorsome on average than the sub-lineage B.1.621.1. The results improve
significantly when using a US reference set for Mu for both lineages although
B.1.621.1 was still a lot more accurate. The results using a combined lineage
data-set get better exponentially the higher simulated frequency with the results
having a very small error margin at 100% true abundance

A hypothesis for why B.1.617.2 and Q.1 predictions at high granularity are
so low for Connecticut is as follows. For lineages that like B.1.617.2 and AY.14
which are very closely related, the T-DBG will have fewer branches between the
path covers of the of the two lineages making it more likely that a sequencing
read from one lineage would be assigned to another, causing the B.1.617.2 flat
curve observed in Figure 1(a) and Q.1 flat curve in Figure 2(a). With the US
reference set, which has more genome sequences for both AY.14 and B.1.617.2
the T-DBG constructed has more diversion for the B.1.617.2 and AY.14 branches
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so they are not misclassified as much anymore as seen in the results. This also
explains the observation that the root lineage performance is comparatively
worse than the sub-lineages in variants like Mu. All variants considered, the
pipeline does reasonably well at differentiating between lineages/sub-lineages
regardless of the sub-lineage bias when the lineages are simulated separately in
wastewater samples and are not combined into one sample.

It is also interesting to note that not all lineages necessarily seem to bene-
fit from low granularity predictions for example for Delta lineages AY.14 and
AY.25, the low and high granularity curves overlap almost perfectly. This indi-
cates that Kallisto is very accurate at predicting these lineages at high granu-
larity.

Using the US reference set revealed some interesting results for the Alpha
variant. Firstly, the predictions at both granularities for lineage B.1.1.7 were
worse compared to the Connecticut reference set, which may be due to the
genome sequences simulated from Connecticut not bearing as much resemblance
to the reference sequences from the US reference set. More in-depth analysis,
which is out of the scope of this project is required to confirm if this hypothesis
is true.

For the combined lineage experiments, results for B.1.1.7 and Q.1 were not
unexpected as in the experiment where B.1.1.7 and Q.1 are simulated individu-
ally with the US reference set, their estimated abundances at 20% are essentially
0%. Results for Q.3 were much worse compared to the US reference set results
indicating that the accuracy does suffer in comparison when lineages are com-
bined into the same sample. The results at lower granularity had smaller RPE
rates implying that for combined lineage experiments, lower granularity is a
much better choice compared to high granularity especially since accuracy for
most Alpha and Delta lineages was quite poor because of their abundances being
a maximum of 25% or 20% respectively so the more lineages that were simu-
lated the worse the results as it meant a smaller abundance per lineage. It is
expected that the results for Mu were better compared to Alpha and Delta for
this very reason. For this experiment predictions of some lineages seem to be
pooled into a single lineage of the variant, resulting in overestimation for that
lineage. Also, because of the lower relative abundances of the lineages, the dif-
ference between the true high and low granularity curves could not be made up
for when considering low granularity even at higher abundances. This resulted
in the RPE of the overestimated lineage to being less than that of the lower
granularity curve from 5% to 90% abundances(x-axis). For this experiment
it was not expected that the aforementioned difference would not be made up
when considering lower granularity.
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5 Responsible Research

The code used for running the experiments can be found here1. The README
file in the repository provides an explanation on how to set up the code base
carry out the experiments in a step-by step-manner and instructions on how to
download the genome sequences simulated from GISAID along with all filters
used. Given GISAID’s privacy policy the data downloaded is not available in
the GitLab repository as GISAID registration is required for access to the data.

The analysis of the results was done in a disinterested manner and negative
results have not been ignored but pointed out and analyzed. The final results
are available to the public. Additionally, the principle of Independence from the
Netherlands Code of Conduct for Research Integrity holds as specific results do
not benefit the researchers materialistically.

It is important to note that GISAID is a secondary data source as the genome
sequences used are not acquired directly from the patients by the researchers for
this paper. Additionally, a limitation is that the credibility of the GISAID data
being used cannot be verified as it is outside the scope of this research which
has implications on how correct the conclusions drawn from this data can be.

6 Conclusion and Future Work

The purpose of this research was to evaluate and understand the effect of output
granularity on prediction accuracy of the Baaijens pipeline with a focus on the
research question “Do predictions become more accurate at lower granularity?”.

Prediction accuracy was analyzed for a variety of variants with different
reference sets and wastewater sample configurations. Results for single lineage
experiments confirmed that predictions at low granularity- specifically at the
variant level were consistently at least as accurate as high granularity results-
at the lineage level. An increase in prediction accuracy was observed for most
variants when granularity was lowered. Additionally, no overestimation was
observed for the single lineage experiments which is a potential downside to
considering results at lower granularity as the high granularity results are added
up to obtain low granularity results.

For the combined lineage experiments, the smaller relative abundances of the
lineages resulted in overestimation of a specific lineage of the variants in the case
of Alpha and Delta and this resulted in the RPE of the overestimated lineage
to be less than that of the lower granularity curve at some abundances leading
to the conclusion that in a wastewater sample with only a small abundance per
lineage it is ,therefore, better to consider results at higher granularity for better
accuracy.

All in all, as far the strengths and weaknesses of the pipeline are concerned,
the accuracy depends heavily on the reference set design, and granularity under

1https://gitlab.ewi.tudelft.nl/jbaaijens/CSE3000_wastewater_project/-/tree/

yash
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consideration. Lineages like Q.4 from Alpha have been observed to have near-
perfect accuracy at high granularity even for a small reference set whereas Q.1
and B.1.617.2 have an estimated abundance of 0% and results vary significantly
from variant to variant and in some cases even for the different lineages/sub-
lineages of the same variant. When a lot of lineages are combined into the
same sample the performance suffers considerably and results indicate the fewer
lineages that are combined the more predictable the results will be.

Future work includes running the experiment for a larger variety of reference
sets and variants to get a larger variety of plots to analyze. Another avenue
is using real-life wastewater samples instead of simulated data sets which the
results for which would be grounded in reality.
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7 Appendix

Relative Prediction Error Plots for Connecticut Reference Set:

(a) High Granularity RPE plot (b) Low Granularity RPE Plot

Figure 12: Mu Variant, Single Lineage Sample(Connecticut)

Relative Prediction Error Plots for US Reference Set:

(a) High Granularity RPE plot (b) Low Granularity RPE Plot

Figure 13: Mu Variant, Single Lineage Sample(US)
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