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Abstract

Autonomous drone racing has taken a turn for the better in recent years. Drones are becom-
ing faster and implementing better state-of-the-art control techniques to overcome different
challenges. With advancements in the fields of computer vision, machine learning, and arti-
ficial intelligence, the final goal of autonomous drones is to be quicker than human-piloted
racing drones. Increasing the speed of autonomous drones increases the risks associated with
flying them. Time-optimal control algorithms have been identified as a method of imple-
menting aggressive maneuvers to fly drones at high speeds throughout the course of the race.
These methods require precise state-estimates. This research work identifies a model for the
controller. The work also includes an implementation of a state estimation model with drag
compensation, also merging a pre-existing refined thrust model with Coriolis effects. With
the idea of developing a state estimation model for a racing drone, the model is improved to
include flight envelopes involving motor saturations.
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Chapter 1

Introduction

In the present world, UAVs are finding applications in the fields of recreation (aerial pho-
tography), commercial (delivery drones), industrial (inspection drones) and even the military
(search and rescue operations). For better portability and lower costs, the demand for smaller
and lighter UAVs has led to increased research in MAVs. Owing to their small size, the quality
of the sensors being used, and limitations in the processing capabilities, autonomous flights
are a challenge for MAVs.

In the recreational field, an e-sport known as FPV drone racing is becoming increasingly
popular. The objective of a drone race is similar to any other race - to complete a pre-set
course in the fastest time possible. The scientific advancements in research areas like artificial
intelligence, computer vision, control systems and machine learning have raised the challenge
of designing an autonomous drone that can complete a race course faster than a human pilot.

Several challenges are involved in autonomous drone racing (Moon et al. [2019]). The drone
needs to perform short and agile flight maneuvers using only on-board sensors. The drones
are required to pass through several gates and therefore, require good state estimates and
control strategies. While GPS combined with on-board inertial sensors is a useful way of
estimating the pose of the drone and detecting the gates whose positions are unknown, it is
not an option for indoor drone racing. Therefore, a front-facing camera is used as the primary
on-board sensor along with IMUs to detect the gates as well as provide a pose estimate for
the MAV along with data obtained. Some races might also include moving gates and other
obstacles for which the implemented control strategy should be more robust and the sensors
and state estimates, more accurate.

A major difference between a human pilot and current autonomous control strategies is the
capability to perform aggressive maneuvers. Aggressive maneuvers are important to take
quick actions at high speeds. Time-optimal control problems have been identified as a solution
to performing aggressive maneuvers similar to human pilots. This requires estimates of the
states of the drone which can be calculated by modelling the dynamics of the quadrotor.
While there are a multitude of theoretical dynamic models for quadrotors (Das et al. [2009],
Pounds et al. [2010]), assumptions are made to simplify the system, due to which the state
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1-1 Motivation and Research Objectives 2

estimates are quite inaccurate when compared to the measured states. Assumptions like the
exclusion of drag forces and near-hover conditions cannot be used in the case of drone racing.
An alternative method of modelling considered is system identification. System identification
principles can be used to create a dynamic model directly from the flight data by measuring
the control inputs and the resulting kinematic response of the MAV (Gremillion and Humbert
[2010]). A motion tracking system can be used to obtain the position, velocity and attitudes
of the drone in real-time. The data can be studied and used to correct the state estimates
and design a more accurate state estimation model.

The only way to change the thrust or the attitude of the drone is to alter the speed of the
motors. The motors have their physical limits and thus get saturated at a certain point. The
models mentioned above is generally for low speed flights. Therefore, the thesis modifies the
estimation model obtained to include saturation-based flights of the quadrotor

1-1 Motivation and Research Objectives

The MAVLab conducts extensive research in the field of autonomous control for MAVs. This
ensures that any research within this lab allows one to work with a combination of hardware
and software, polishing the basic skills in both these areas. The team of students, faculty and
researchers also participates in various drone racing leagues around the world, completing a
podium finish in a few. In order to win a race, the trajectory generated by the quadrotor
must be time-optimal. This requires accurate state estimates to ensure the drone does not
crash into a gate in its path. Improving the estimation by combining real-time in-flight
measurements with theoretical principles could provide the required accuracy.

Time-optimal trajectories might also require a drone to saturate its motors. Using the motors
at saturation might lead to unwanted changes in altitude and unnecessary drifts from the path.
If the response of the quadrotor can be calculated for motor saturations in the form of thrusts
and rotation rates, it could be used to estimate its velocity.

From this motivation, the research goal is framed as the following question.

Can system identification principles be used to obtain a model using real-time
flight data to estimate the states of the drone with a higher accuracy than existing
methods?

This question can be further divided into a set of sub-questions to be answered in this study.

• What kind of estimation model is best suited for high-speed flights?

• How accurate is the predicted data when compared with the groundtruth?

• Does the dependency of certain parameters change as the speed of the quadrotor in-
creases?

• Are the estimations obtained from this model better than previously implemented state
estimation methods and why?

The idea of this study is to implement a state estimation method based on real-time flight
data. The estimation model must account for the dynamics of the drone as well as the
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1-2 Structure of this work 3

implemented rate controller. Finally, the state estimates of the model will be compared for a
quadrotor flying at saturations.

1-2 Structure of this work

The scientific paper, consisting of the main contributions of the thesis, is presented in Part I.
It can be read as an independent paper with its own introduction, description of quadrotor
dynamics and aerodynamic effects, state and parameter estimation models, and the results
obtained including a comparative study with pre-existing state estimation models.

Part II includes a detailed study of the relevant literature. Chapter 2 describes quadrotor
dynamics and the aerodynamic effects experienced by a quadrotor in flight. An overview of
system identification is presented in chapter 3. The basic idea of this research along with
examples of research work relevant to this thesis are described in chapter 4. Chapter 5 goes
into detail about a specific method of system identification known as parameter estimation.
A summary of the literature study is provided in chapter 6.

Part III consists of the appendix to support various aspects of the study. Appendix A provides
a detailed description of the general approach in a system identification study.
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Position Estimation of a Racing Drone with
compensated Aerodynamic Effects

Nishant N. Patel*, Yingfu Xu†, Guido C.H.E. de Croon†
Department of Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology, The Netherlands

Abstract—Drone racing is a popular e-sport where drones
fly through a pre-set course at high speeds. With rapid im-
provements in technology, autonomous drone racing is beginning
to challenge experienced human pilots. Time-optimal control
algorithms have been identified as a method of enabling the
drone to perform aggressive maneuvers to increase its speed
throughout the race. This requires good state estimates for the
drone to ensure that it does not crash into a gate at high
speeds. This paper identifies models for the rate controller and a
state estimator. The estimator uses a pre-existing “refined thrust
model” to estimate the accelerations. The results depict that
using a refined thrust model could reduce the errors in position
estimation as compared to a “standard thrust model” or using
raw accelerometer measurements. The position estimations are
further improved by compensating for drag and Coriolis effects.

I. INTRODUCTION

In the present world, UAVs are finding applications in
recreation (aerial photography), commerce (delivery drones),
industry (inspection drones) and even the military (search and
rescue operations). For better portability and lower costs, the
demand for smaller and lighter UAVs has led to increased
research in MAVs. Owing to their small size, the quality of
the sensors being used, and limitations in their processing
capabilities, autonomous flights are a challenge for MAVs.

In the recreational field, an e-sport known as FPV drone
racing is rapidly gaining popularity. The objective of a drone
race is similar to any other race - to complete a pre-set course
in the shortest possible time. The scientific advancements in
research areas like artificial intelligence, computer vision, con-
trol systems, and machine learning have raised the challenge of
autonomous drone racing. While research has enabled drones
to complete race courses, the new challenge is competing with
experienced human pilots.

Several challenges are involved in autonomous drone racing
[1]. The drone needs to perform short and agile flight maneu-
vers using only on-board sensors. They must pass through
several gates and therefore, require good state estimates and
control strategies. While GPS combined with on-board inertial
sensors is a useful way of estimating the pose of the drone
and detecting the gates whose positions are unknown, it is not
an option for indoor drone racing. Therefore, a front-facing
camera is used as the primary on-board sensor along with
IMUs to detect the gates as well as provide a pose estimate

*MSc. student, †Supervisors

for the MAV along with data obtained. Some races might
also include moving gates and other obstacles for which the
implemented control strategy should be more robust and the
sensors and state estimates, more accurate.

A major difference between a human pilot and current
autonomous control strategies is the capability to perform
aggressive maneuvers. Aggressive maneuvers are the result of
quick actions like sudden large accelerations or high rotational
rates. Time-optimal control problems have been identified as a
method of performing aggressive maneuvers. Optimal control
techniques rely on the estimates of the states of the drone,
computed by modelling the dynamics of the quadrotor.

While there are a multitude of theoretical dynamic models
for quadrotors [2], [3], assumptions are made to simplify the
system. These assumptions use data from flight regimes where
aerodynamic effects like drag, blade flapping, thrust variation
are minimal and can result in linear models. Since race drones
fly at high speeds, ignoring these aerodynamic effects lead to
inaccurate estimates when compared to the measured states.
System identification principles can be used to understand
the dynamics better and create a dynamic model using the
measured control inputs and the kinematics of the MAV ( [4]).
Since the flight tests are performed indoors, a motion tracking
system is used to obtain the position, velocity and attitudes of
the drone in real-time. The data from the on-board sensors and
the motion capture system can be studied and used to obtain
a more accurate state estimation model.

The estimation model implemented in this paper is divided
into two subsystems. The first subsystem maps the inputs and
states of the drone (measured by on-board sensors) to the
rotation speeds of the motors. The sub-system identified uses
the inputs and measured states to calculate the possibility of
motor saturations and corrects the estimates to provide values
within the physical limits of the motors. The second subsystem
uses the motor speeds and current state of the drone to estimate
the position of the quadrotor. This technique uses a refined
thrust model as well as compensates for Coriolis effects to
reduce the errors in estimation. The results from the proposed
model are compared to different estimation methods in order
to depict how each additional change makes an improvement.

The outline for the rest of the paper is as follows. Section II
describes the dynamics of the quadrotor as well as the different
aerodynamic effects on it. Section III gives a brief overview
of the quadrotor used in the experiments, and describes the
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data acquired through the set of flight tests. In section IV, the
unknown parameters in the model are computed. The results
of the estimation model are validated on several datasets in
section V.

II. QUADROTOR MODELLING

The coordinates of the system are described with an or-
thonormal basis in either the world frame Ew or in the body
frame Eb. The position vector is described by the vector
ξ =

[
x y z

]T ∈ Ei. The orientation vector is described as
η =

[
φ θ ψ

]T ∈ Ei. The linear and angular velocity vec-
tors are defined in the body frame as V =

[
u v w

]T ∈ Eb
and Ω =

[
p q r

]T ∈ Eb. The relations between these
parameters is depicted in Equation 1, where R and J are
the rotational and angular velocity transformation matrices
respectively.

ξ̇ = RV
η̇ = JΩ

(1)

J =




1 0 −Sθ
0 Cφ SφCθ
0 −Sφ CφCθ


 (2)

R =



CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ CφSθ CφCθ


 (3)

where Ci and Si represent cos(i) and sin(i) respectively. The
rotation matrix R is orthonormal and therefore, its transpose
transforms linear velocities or accelerations in the body frame
to the world frame.

The equations of translational motion for the quadrotor are
[5]

V̇ =
T
m
− RT g−Ω× V− D (4)

where T is the thrust, g is the acceleration due to gravity, and
D is the drag force. The third term in the equation represents
the Coriolis accelerations.

A. Concept of induced velocity

The induced velocity (also known as downwash) is the
airflow perpendicular to the rotor caused by the deflecting of
air by a blade. It alters the aerodynamics around the blade,
thereby causing an effect in the lift as well as the drag of
the system [8]. Figure 1 depicts a blade element where α
denotes the angle of attack, α∞ the effective incidence, w
is the induced velocity or downwash, V is the free stream
velocity, and q is their resultant vector.

When the induced flow w increases, ε increases, thereby
reducing the effective incidence angle and in turn, the lift.
Similarly, a reduction in the induced flow would increase the
effective incidence and subsequently, the lift. By definition,
the lift L is perpendicular to the oncoming air flow. But due
to the effect of downwash, the oncoming air flow is at an

Fig. 1: Aerodynamics of a blade element [8]

angle, thereby altering the lift vector to Γ. The horizontal
component of the resultant “Lift”, represented as D, is termed
as the induced drag.

B. Thrust model

Using momentum theory [6], the relationship between the
thrust generated by a rotor and the square of the angular speed
of the rotor ωi is derived as

Ti = CtρArir
2
i ω

2
i = Ktω

2
i (5)

where for the ith rotor, ri is the radius and Ar is the rotor
disk area, ρ is the air density, and Ct is the thrust coefficient
influenced by the rotor geometry and profile. From hereon,
this will be referred to as the ”standard” thrust model [7].

A more accurate thrust model is derived using blade element
moment theory [9].

Ti = c1ω
2
i

(
c2

(
1 +

3

2
µ2
i

)
− λi

)
(6)

where the advanced ratio µi is related to the horizontal
component of velocity Vhi and induced velocity vhi , and the
inflow ratio λi is related to the vertical component Vzi of
velocity and induced velocity vzi , as depicted in the equations
below.

µi =
Vhi

+ vhi

rωi
(7)

λi =
Vzi + vzi
rωi

(8)

With the assumption that the propeller is sufficiently rigid
(the flapping angle is very small), vhi ≈ 0. By rewriting vzi
as a function of ωi and Vzi , equation 6 can be simplified to

Ti = ktω
2
i − kzVziωi + khV

2
hi

(9)

where the constants kt, kz , and kh are computed from exper-
imental data.

C. Drag model

The drag force acting on the system is in different forms
such as the induced drag, parasitic drag, profile drag, and
translational drag. With the assumption that all flight experi-
ments are performed indoors in an area without the influence
of external wind, the different types of drag forces, excluding
parasitic drag, can be lumped into a single linear function

2



(a) Eachine X220s FPV racing drone (b) Diatone GT-M540 FPV racing drone

Fig. 2: The quadrotors used in this research

proportional to the linear velocity of the quadrotor in the body
x-y plane [10]. Parasitic drag is considered to be negligible in
the flight regime used in this research.

D = kdωsPRT ζ̇ (10)

where kd is the drag coefficient, ωs is the mean of the speed
of the four rotors, and P is a projection matrix

P =




1 0 0
0 1 0
0 0 0


 (11)

III. EXPERIMENTAL SETUP

Two quadrotors, depicted in Figure 2, are used in this
research. The first quadrotor used in this experiment was the
Eachine Wizard X220s. An Omnibus F4SD controller board
was used for its faster CPU, and the availability of an SD
card slot used for logging data from the on-board sensors.
The second quadrotor used was the Diatone GT-M540 FPV
racing drone, equipped with a Mamba F405 flight controller.
Both the flight controllers were uploaded with the Betaflight
flight controller firmware.

The reason for using two different quadrotors was that the
ESCs of the Eachine would not allow the drone to saturate the
motors using a 4S battery. Therefore, in order to obtain data
for motor saturations, a different drone and micro-controller
combination was required.

Betaflight is a rate controller, and therefore operates as the
innermost loop of an autonomous flight controller. It accounts
for the attitude rate measurements as well as the user inputs
for rate and throttle, and returns a command (analog or digital
signal) for the motor ESC (electronic speed controller).

A. Data acquisition

Betaflight records the values for the attitude rates and
linear accelerations from the on-board IMUs. It also logs the
user inputs, motor command values sent to the ESCs and
in certain cases, the rpm of each rotor. The flight tests are
performed indoors at the Cyberzoo in the faculty of Aerospace
engineering at TU Delft, allowing the use of the Optitrack
motion capture system to obtain the position coordinates and
orientation of the quadrotor.

Two subsystems are drawn from the experimental data
obtained. The inputs for the first subsystem are the measured
states and the control inputs, and the output is the speed of
each rotor. The second subsystem uses the rotor speeds as
inputs to the dynamics of the quadrotor to provide estimates
for the position. To validate the model, the resulting state
estimates are compared to the groundtruth from Optitrack, as
well as results from different estimation models.

B. Sensor fusion

Fusing the on-board measurements from Betaflight and the
Optitrack data is essential to obtain more accurate and reliable
parameters to model the quadrotor dynamics. Optitrack posi-
tion measurements are highly accurate (less than 1mm errors)
and do not degrade with time.

An obstacle in sensor fusion is the different sampling rates
for the two sets of data. The on-board data is recorded at a
frequency of 1kHz while the frequency for recording Opti-
track data is 120Hz. Since the lowest possible frequency for
Betaflight is 500Hz and the highest capture rate for Optitrack
is 360Hz, it is not possible to directly obtain the two datasets
at the same frequency.

Both these datasets measure the attitude angles and there-
fore, the roll angle for both is compared. While Betaflight be-
gins recording the data on arming the quadrotor, the Optitrack
logs have to be manually triggered. This results in a time lag in
one of the datasets which must be compensated for, before re-
sampling. The arm and disarm times for Betaflight are denoted
by tinBF and tendBF . Since Optitrack datasets start recording
earlier and stops later, the values tinOT and tendOT denote the
arm and disarm values on the Optitrack time range. These two
values are unknown and must be computed to compensate for
the time lag. Figure 3a depicts the aforementioned time values
in order to have a better understanding of this process.

A peak value for roll angle in both datasets is identified. The
corresponding time values tpeakBF and tpeakOT are noted. The
time difference from the arm and disarm points to the peak
value on Betaflight is noted. With the safe assumption that
the time scale is the same for both the datasets, it can be
said that this time difference would also be the same. With
two unknown variables and Equation 12, the arm and disarm
points on Optitrack are computed and the time lag is accounted
for.

tpeakOT − tinOT = tpeakBF − tinBF
tendOT − tpeakOT = tendBF − tpeakBF

(12)

The RMSE for the roll angle after synchronisation is 1.592
degrees. This can be attributed to the measurement error
between the two sensors.

C. Smoothing Noisy Data

Optitrack only measures the attitude and position coor-
dinates. Computing the linear and rotational velocities and
accelerations would involve computing the derivatives of the
Optitrack data. This would amplify the noise by a factor of
( 1

∆t )
n, where n is the order of the derivative [11], and therefore

3



(a) Before time shift

(b) After time shift

Fig. 3: Roll angle measurements plotted against time for Betaflight and
Optitrack, before and after synchronisation

the data must be smoothened before it is used to calculate
various parameters.

Betaflight allows for an internal calculation and compensa-
tion of sensor biases if the drone is left still for a few seconds
after powering it up. While it corrects for the sensor bias, it
is unable to filter out the noise due to vibrations. Therefore,
the data obtained from the IMUs must be rid of this noise
before they are used to compute the estimations. Since the
estimations use dead-reckoning, the inclusion of sensor noise
would add to the errors during integration and cause higher
drifts in the position estimations.

A method used to smooth both datasets is to use a low-
pass moving average filter using a window of fixed length.
Figure 4 depicts this method implemented on the roll rate
obtained from the gyroscope. If the window length selected
is too large, it could result in lower peak values and in turn,
a loss of data. However, if the window length is too small,
it would not be able to filter out the noise. Therefore, the
window length must be selected appropriately for each dataset.
In order to incorporate this method online, the window was
selected with only past values included in the calculation of the
average value. The window in Figure 4 is selected to be 0.2s
or 25 values, therefore a small noise is seen in the beginning
as the filter does not work until the 25th value is obtained.

IV. SYSTEM IDENTIFICATION

To estimate the behaviour of the quadrotor, it is important to
map the control inputs and the current states of the drone to its
future states. Hence, the first subsystem identified in this paper
is the rate controller that takes the control inputs provided by

(a) Noisy data

(b) Smooth data

Fig. 4: Noisy data obtained directly from the gyroscope smoothened by
computing a moving average in a fixed window

the pilot, and provides the motor speeds as the output. The
next step involves modelling the dynamics. For this step, the
drag and thrust coefficients described in section II must be
identified first.

A. Identification of the Rate Controller

Being a rate controller, the control inputs are commands for
the rotation rates and thrust (throttle command). A schematic
representation of the input-motor system is depicted in Fig-
ure 5. Since it is a closed loop control system, Betaflight uses a
feedback for the gyroscope measurements to obtain the error in
the rotation rates. The errors are input to a PID controller. The
throttle input Tr is recorded as a percentage value (between 0
and 1). From hereon, the throttle value and the scaled output
of the PID block are sent to the mixer block.

Fig. 5: Rate control block diagram for a quadrotor using Betaflight
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Fig. 6: Direction of spin for each motor of the quadrotor

The mixer values are generally set between 0.0 and 1.0 for
throttle and -1.0 to +1.0 for the three rate inputs. The mixer
value indicates how much authority the motor has to each
specific input and the sign indicates the direction. For example,
+1.0 for yaw rate indicates a counterclockwise rotation while -
1.0 indicates a clockwise rotation. Figure 6 depicts the number
and direction of spin for each motor, which determine the
signs for each input used in the mixer. The mixer used in this
experiment is depicted in Table I where the row corresponds
to the mixer values for throttle, roll rate, pitch rate, and yaw
rate respectively, of the ith motor.

Motor T R P Y
m1 1.0 -1.0 1.0 -1.0
m2 1.0 -1.0 -1.0 1.0
m3 1.0 1.0 1.0 1.0
m4 1.0 1.0 -1.0 -1.0

TABLE I: Motor mixer M for the quadrotor

The equation to obtain the rate mix value of each motor is:

Mi =
Yr ∗Mri + Yp ∗Mpi + Yy ∗Myi

1000
(13)

where Mi is the total rate value for the ith motor, Y represents
the PID output along a specific axis in deg/s, Maxisi represents
the mixer value along the axis for the ith motor from Table I,
and r, p, y stand for roll axis, pitch axis, and yaw axis
respectively. Mi is usually a value between -1.0 and 1.0.

Betaflight has a setting known as airmode which checks for
motor saturation commands and alters the throttle setpoint if
required. This is to ensure that if the input command for the
motor exceeds 100%, higher preference is given to the execu-
tion of rate commands over throttle commands. If the throttle
input is over 50%, the throttle setpoint is restricted. From 4
rate mix values (for each motor of a quadrotor), the throttle
is constrained in the interval [−min(Mi), 1 − max(Mi)].
For example, if the throttle setpoint is 0.8 and mix values
of the motors are 0.2, 0.3, -0.5, -0.1, the throttle is set to
1− 0.3 = 0.7.

This ensures that the motor commands are neither saturated
(greater than 1.0) nor under-valued (less than 0.0). Therefore
the motor command for each motor can be obtained using
Equation 14.

Mcmd = Mi + Tadj (14)

where Mcmd is a vector corresponding to the motor command
for each motor in order, Mi is the total rate mix for each motor,
and Tadj is the adjusted value of the throttle.

In order to scale it to the actual motor command value,
the motor protocol used to communicate commands from the
flight controller to the ESCs must be known. In this case, the
D-shot protocol is used.

In D-shot (digital protocol), the flight controller sends a 11-
bit packet (211 = 2048). 0 indicates the drone is disarmed,
1-47 are reserved for special commands, 48 and 2047 are
the minimum and maximum commands used for control
respectively. The drone can be set to have an idle speed (IS),
which is the speed when the quadcopter is armed with the
rest of the inputs at zero. For example, using Equation 15, an
idle speed of 5.5% for D-shot would correspond to a motor
command of 158 on arming. An idle speed is usually set to
avoid motor desynchronisation.

IS = cmdmin + idle% ∗ (cmdmax − cmdmin) (15)

With the idle speed known, the digital value to be sent to
the ESCs can be obtained using Equation 16.

Mop = IS +Mcmd (cmdmax − IS) (16)

While this provides the commands sent to the ESCs, it still
does not provide the speed of each motor. The speed of each
rotor is measured in the form of ERPM (electric RPM), that
is related to the mechanical RPM using Equation 17.

RPM = ERPM × np (17)

where np stands for the number of magnet pole pairs. In
the drones used in this experiment, each motor has 14 magnets
and therefore np = 7. The range of ERPM is dependent on
the voltage source. A two-cell (2S) battery would provide ap-
proximately half the ERPM when compared to a four-cell (4S)
battery for the same quadrotor setup. Figure 7 shows the plot of
the motor commands and ERPM for the Eachine Wizard drone
using a 4S battery. Assuming a linear relationship between the
motor commands and ERPM (and correspondingly the RPM),
linear regression is used to compute the correlation between
the two terms. The coefficient is found to be krpm = 2.23 with
an R2 fit is 0.867 for the Eachine drone and krpm = 0.467
with an R2 fit is 0.915 for the Diatone drone.

Using the above equations, the RPM of the drone is es-
timated for various flight experiments. Figure 9 depicts the
estimated RPM to the measured RPM values for a flight
without any saturation. The RMSE for several flights for each
motor is depicted in Table II.

B. Identification of the Drag Coefficients

The drag coefficients in the x and y direction in the body
frame are identified using the accelerometer data obtained
from Betaflight, and the velocity data obtained from Optitrack.
With the assumptions that there is no wind in the indoor flying
arena, and the accelerometer bias has already been corrected
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Fig. 7: Linear regression used to compute the ERPM coefficient for the
Eachine Wizard drone (4S battery)

Fig. 8: Linear regression used to compute the ERPM coefficient for the
Diatone drone (2S battery)

Fig. 9: Estimated ERPM vs Measured ERPM for a flight with no saturations

Flight Dataset Motor 1 Motor 2 Motor 3 Motor 4
1 4.0067 3.5311 1.0434 1.0781

No 2 2.5957 5.9795 2.9641 2.5881
Saturation 3 3.7711 4.5426 5.3978 1.2587

4 7.2332 1.5678 2.1929 3.0357
5 10.7754 12.5235 11.9000 12.8743

Saturation 6 5.8668 5.0154 10.1764 9.6069
7 7.4061 8.6456 7.5253 8.2602

TABLE II: RMSE for the estimated RPM of each motor for
four different flight tests

(a) Full flight

(b) Zoomed in to show a part where the motor reaches saturations

Fig. 10: Estimated ERPM vs Measured ERPM for a flight reaching motor
saturations

for by Betaflight, a linear relationship between the specific
acceleration (sum of the quadcopter accelerations and the
acceleration due to gravity in the body frame) measured by
the IMU and the product of velocity in the body frame and
motor speed can be obtained. To obtain the velocity values in
the body frame, the product of the rotation matrix (Equation 3)
and derivative of the position coordinates is computed.

[
aIMUx

aIMUy

]
=

[
kdx 0
0 kdy

] [
vbx
vby

]
ωs (18)

Two flight experiments are performed; one forward flight
and one lateral flight. This is done to maximise excitation in
the body frame x and y-directions to obtain more accurate
drag coefficients. Figure 11 depicts the plot of the IMU
measurements against the product of velocity and the average
speed of the four motors (in rad/s). The R2 fit for the two
figures is found to be 0.889 and 0.881 respectively. The
coefficients computed are kdx = −7.674 × 10−4rad−1 and
kdy = −7.78× 10−4rad−1

C. Identification of the Thrust Coefficients

The first step taken in this case is recording a dataset with
the drone hovering over the ground. At near-hover conditions,
it can be assumed that the body velocities do not have an
effect on the thrust generated. For the standard thrust model,
thrust is assumed to be a linear function of the square of
the motor speed. The IMU measurements in the z-direction
are plotted against the sum of the squared motor speeds as
depicted in Figure 12. Using least squares linear regression,
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(a) Drag coefficient in the x-direction

(b) Drag coefficient in the y-direction

Fig. 11: Linear regression used to compute the drag coefficient

the value of the coefficient Kt in Equation 5 is found to be
5.23× 10−6Ns2/rad2, with an R2 fit of 0.718.

Fig. 12: Linear regression used to compute the coefficient relating the square
of motor speeds to thrust

To include the effect of the body velocities and induced
velocity, it is important to excite the system appropriately.
Therefore, a forward flight dataset is used to calculate the
thrust coefficients. It is important to note that the previously
calculated value of kt cannot be used in this case. Looking
back at Equation 9, and summing it up for all 4 propellers, with
the assumptions that vertical velocity Vzi = Vz and horizontal
velocity Vhi

= Vh,

T =

4∑

i=1

Ti = kt

4∑

i=1

ω2
i − kzVz

4∑

i=1

ωi + khV
2
h (19)

where Vh =
√
V 2
x + V 2

y Therefore, the coefficients to be
computed are kt, kz , and kh.

Since there are 4 parameters in this equation, it is difficult
to depict the variation of thrust with the other 3 parameters.
The coefficients are computed using multi-variable linear
regression. The computed coefficients are kt = 5.22 ×
10−6Ns2/rad2, kz = 9.12× 10−4Ns2/m.rad, kh = 2.23×
−3Ns2/m2, with an R2 fit of 0.953. Figure 13 depicts the
thrust estimated using these coefficients on a validation dataset
with a fit of 0.914.

Fig. 13: Comparison of estimated and measured thrust for a vertical flight
dataset

V. RESULTS

The model is complete with the computed drag and thrust
coefficients. Therefore, validation datasets are to be created.
Different types of maneuvers are attempted to understand
how reliable the estimation models are and how long can
the estimations have lower errors before they have large drifts
from the groundtruth.

A. Maneuvers

Two different types of maneuvers are used to follow three
different shaped paths to create validation datasets for the
estimation model. The three different paths are a L-shaped
path, a U-shaped path and a square shaped path, thereby
increasing the length of the dataset with each attempt. The
first maneuver uses maximum pitch and roll movements, and
as less yaw movements as possible to follow the path. The
second maneuver also includes yaw so that the drone always
faces the direction in which it is moving. This is done with
the idea that the inclusion of yaw inputs decreases the speed
with which a quadrotor can follow the same path due to slower
rotations.

B. Estimation Models used for comparisons

The results for the model are compared to the groundtruth
but also to three other estimation models. The first model
makes use of the accelerometer readings to compute the body
frame accelerations [12]. Drag is compensated for in the x- and
y-directions, with no compensation in the z-direction. This is
referred to as the “Acceleration-based model”.

The second model is one that uses the standard thrust
model (Equation 5) [6]. This model compensates for drag
along the x- and y-axes. However, it has no compensation
in the z-axis, neither with drag nor with the thrust. It also
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does not take the Coriolis accelerations into account during
the acceleration computations. Therefore, the only difference
between the first two models is the use of standard thrust to
compute accelerations as opposed to accelerometer readings.
This is referred to as the “Base model” in this section.

The third model uses the refined thrust model (Equation 9)
to determine the accelerations [13]. This model does not
include the effects due to the Coriolis accelerations. It is
referred to as the “Thrust Compensated model”. The proposed
estimation model is referred to as the “Coriolis compensated
model”. As the name suggests, it accounts for Coriolis effect.
This is the only difference between the Thrust compensated
model and the Coriolis compensated model.

Fig. 14: Groundtruth positions (x-axis) compared to the accelerometer-based
estimation, base model, refined thrust model, and Coriolis compensated model

Fig. 15: Groundtruth positions (y-axis) compared to the accelerometer-based
estimation, base model, refined thrust model, and Coriolis compensated model

Fig. 16: Groundtruth positions (z-axis) compared to the accelerometer-based
estimation, base model, refined thrust model, and Coriolis compensated model

C. Comparative results

The Root Mean Square Errors (RMSE) for the position
estimates are represented in Table III.

Maneuver Method X Y Z
Accelerometer-based 0.4631 0.3947 0.2942

Yaw Base 0.4717 0.0975 0.2725
L-shape Refined Thrust 0.4137 0.0671 0.0980

Coriolis 0.3589 0.0195 0.0263

TABLE III: Comparison of the RMS position errors for
different methods

The results for the remaining maneuvers are depicted in
section A.

VI. CONCLUSIONS

The current smoothing filter might be computationally ex-
pensive as it requires a set of past values and the present
value in order to obtain the smoothened data. Using such an
algorithm on-board during a race might prove to slow the
controller down and a more computationally viable filter must
be implemented.

The model for estimating the rate controller is quite reliable
with a fit of over 0.9 in 7 datasets, 4 with slower flights and the
motors at about 30% of their capacity, and 3 with saturations,
each at least 30 seconds long. The two kinds of datasets also
represent two separate drones and therefore shows that this
model is robust for different quadrotor designs as long as they
are working with the Betaflight controller firmware.

From the position estimation results, it is seen that thrust
compensation indeed improves the estimations vastly in the
x- and z-directions. Compensating for the Coriolis acceleration
further reduces the estimation errors by about 5cm. The model
also has some shortcomings. It has not yet been verified for
aggressive flights where the physical limits of the motors are
tested. This is further explained in section A.

The model estimations for the position coordinates be-
ginning from take-off are extremely erroneous. The model
estimations are comparable when the estimation is started from
a near-hover position, which is not possible during a drone
race. The use of dead-reckoning implies that the estimations
have errors lower than 1m for datasets that are less than
15 seconds. For longer datasets, the drifts add up and the
trajectory generated by the estimator is no longer similar to
the groundtruth.

The estimations are also dependent on the gyroscope mea-
surements for the attitudes and their rates. The biases are
assumed to be negligible in the case of attitude measurements,
which could lead to certain drifts in the long run. The position
estimations could improve further if the attitude measurements
could be substituted with more accurately estimated attitudes.

These issues must be compensated for estimating the states
of a racing drone because the races could be longer, and may
not provide the groundtruth to be able to find an initialisation
point.
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APPENDIX A
RESULTS AND TABLES

The appendix explains why the position estimator was not
verified for motor saturations. It also depicts the results for
various maneuvers described in section V, with the quadrotor
flying at lower speeds.

A. Estimation during Motor Saturations

To estimate the position, it is important to correctly estimate
the accelerations. For this, the thrust and drag parameters must
be identified with a certain confidence. Being a different drone
than the one used to estimate the results depicted in section V,
the thrust and drag parameters could not be the same. To obtain
the thrust parameters, the reference used was the accelerometer
measurements. However, a comparison of the accelerometer
measurements with the measurements obtained from Optitrack
showed an interesting case.

Figure 17 depicts that the double differentiation of position
measurements has varying peaks, some of which are even
up to 180 m/s2, seemingly unlikely in an area such as the
Cyberzoo. On the other hand, the accelerometer measurements
are so heavily filtered for this particular drone that none of the

expected peaks are depicted in this figure (a very smooth plot
for a quadrotor flying aggressively).

(a) Full flight envelope

(b) Zoomed in to depict a portion of the flight involving more peaks

Fig. 17: Comparison of acceleration measurements along the z-axis obtained
from Optitrack and Betaflight (accelerometer readings)

This makes it difficult to obtain the required parameters
for the position estimation model. The position estimation
model has not been verified for motor saturations due to
insufficient/erroneous data.

B. Position Estimation Results

The results have been tabulated in the form of RMSE of
the errors.

Maneuver Method X Y Z
Accelerometer-based 0.4859 0.1764 0.4876

Yaw Base 0.4311 0.2057 0.0953
U-shape Refined Thrust 0.3650 0.1442 0.0643

Coriolis 0.1858 0.0761 0.0391
Accelerometer-based 0.5610 0.1151 0.7810

Yaw Base 0.5160 0.2452 0.1198
Square shape Refined Thrust 0.4557 0.1901 0.0424

Coriolis 0.2720 0.1523 0.0144
Accelerometer-based 0.3258 0.1756 0.2792

No yaw Base 0.2555 0.1366 0.2053
L-shape Refined Thrust 0.2252 0.1057 0.0653

Coriolis 0.2094 0.0766 0.0087
Accelerometer-based 0.2698 0.2131 0.4348

No yaw Base 0.2098 0.1206 0.2953
U-shape Refined Thrust 0.1907 0.1007 0.0828

Coriolis 0.1817 0.0895 0.0136

TABLE IV: Comparison of the RMS position errors for
different methods
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(a) X-axis

(b) Y-axis

(c) Z-axis

Fig. 18: Different estimation models compared to the groundtruth (Yaw
maneuver for a U-shaped track)

(a) X-axis

(b) Y-axis

(c) Z-axis

Fig. 19: Different estimation models compared to the groundtruth (Yaw
maneuver for a square-shaped track)
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(a) X-axis

(b) Y-axis

(c) Z-axis

Fig. 20: Different estimation models compared to the groundtruth (No yaw
maneuver for a L-shaped track)

(a) X-axis

(b) Y-axis

(c) Z-axis

Fig. 21: Different estimation models compared to the groundtruth (No yaw
maneuver for a U-shaped track)
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Chapter 2

Quadrotor Modelling

Drone racing involves quadrotors flying at high speeds. If not performed in a right manner,
this poses a risk to the drone itself as well as the people and property in the vicinity of the
testing area. Therefore, it is very important to verify the control strategy of a drone using
simulations before testing it in the real world.

Mathematical models of a quadrotor can be designed in two different ways - using the theo-
retical principles of dynamics and aerodynamics to model the equations of motion, or using
system identification methods on real flight data (chapter 3). System identification makes
use of statistical methods to provide a relationship between the inputs and the outputs, and
may not require an understanding of the working of the system. Modelling the system using
equations requires an understanding of its working.

2-1 Dynamic modelling

The quadrotor is modelled as a rigid body with under-actuated dynamics as four inputs
are used to control six DOF (three translational and three rotational). A dynamic model
helps describe the motion of the quadrotor in response to the actions of the propellers, and
aerodynamic effects such as wind and drag. The simplest model of a quadrotor represents
the UAV as a rigid body with inertia. Aerodynamic effects are neglected and gravity is the
only external force acting upon the body (Pounds et al. [2010]).

To begin modelling the quadrotor dynamics, the inertial and body reference frames Ei and
Eb are first defined (Wang et al. [2016]). The position vector is described by the vector

ξ =
[
x y z

]T ∈ Ei. The orientation vector is described as η =
[
φ θ ψ

]T ∈ Ei. The

linear and angular velocity vectors are defined in the body frame as V =
[
u v w

]T ∈ Eb
and Ω =

[
p q r

]T ∈ Eb. The relations between these parameters is depicted in Equation 2-
1, where R and J are the rotational and angular velocity transformation matrices respectively.

ξ̇ = RV

η̇ = JΩ
(2-1)
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J =




1 0 −sinθ
0 cosφ sinφcosθ
0 −sinφ cosφcosθ


 (2-2)

R =



cosθcosψ sinφsinθcosψ − cosφsinψ cosφsinθcosψ + sinφsinψ
cosθsinψ sinφsinθsinψ + cosφcosψ cosφsinθsinψ − sinφcosψ
−sinθ cosφsinθ cosφcosθ


 (2-3)

Different mathematical techniques can be used to derive the dynamic equations of a quadro-
tor. Two common methods include using the Newton-Euler method and the Euler-Lagrange
method. The Newton-Euler method focuses on the rigid body equations based on Newton’s
second law of motion (Bolandi et al. [2013], Deif et al. [2014]). The Euler-Lagrange method
uses kinematics and energy equations to obtain the mathematical model (Bouabdallah [2007],
Carrillo et al. [2012]). Ideally, the same mathematical model must be obtained using either
technique. The equations obtained can be represented in the state-space form as depicted in
Equation 2-4, where X is the state vector of the system, U is the input vector and Y, the
output vector of the system.

Ẋ = A(X) +B(X,U)

Y = C(X,U)
(2-4)

The states of the quadrotor system are usually the vectors for the position, the translational
velocities, the attitude (Euler) angles and the rates of these angles. The following equation
describes the dynamics of each rotor with the assumption that aerodynamic effects such as
blade flapping and ground effect are neglected.

fi = kfω
2
i

τi = kmω
2
i

(2-5)

where kf and km are the force and moment constants and ωi is the speed of the ith motor.

The inputs are the total thrust and the torques generated, given by Equation 2-6, where l is
the length of the quadrotor arm, from the center of mass to the center of one rotor.

u1 = T = kf

4∑

i−1
w2
i

u2 = τφ = lkf [(ω2
2 + ω2

3)− (ω2
1 + ω2

4)]

u3 = τθ = lkf [(ω2
1 + ω2

2)− (ω2
3 + ω2

4)]

u4 = τψ = km[(ω2
1 + ω2

3)− (ω2
2 + ω2

4)]

(2-6)

Assuming a symmetrical quadrotor, the equation of motion is described in Equation 2-7,
where I is a diagonal matrix of the inertia along the three axes.

Iη̈ × Iη̇ =



u2
u3
u4


 (2-7)
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On simplifying Equation 2-7, we get the non-linear state space equation for the rates of the
euler angles (Equation 2-8).

φ̈ =
u2
Ixx

+ θ̇ψ̇
(Iyy − Izz)

Ixx

θ̈ =
u3
Iyy

+ φ̇ψ̇
(Izz − Ixx)

Iyy

ψ̈ =
u4
Izz

+ φ̇θ̇
(Ixx − Iyy)

Izz

(2-8)

Newton’s second law of motion provides the equation for the acceleration for translational
motion of the quadrotor.

mẍ =




0
0
mg


+ RFb (2-9)

where Fb is the sum of the forces acting on the quadrotor

Fb =




0
0
−u1


 (2-10)

Solving equations 2-9 and 2-10, the accelerations are obtained as seen in Equation 2-11.

ẍ = −u1
m

(cosφsinθcosψ + sinφsinψ)

ÿ = −u1
m

(cosφsinθsinψ − sinφcosψ)

z̈ = g − u1
m

(cosφcosθ)

(2-11)

2-2 Linearisation

The model obtained is non-linear, making it difficult to transform the model from the time
domain to the frequency domain. This also makes it difficult to implement classical control
techniques like PID control (Musa [2018]). Linearisation is performed using the first-order
Taylor series approximation around a point of interest, usually selected as the point of hover
(Wang et al. [2016], Gonzalez-Sanchez et al. [2013]). The most common point of interest is
the hover state because the pitch and roll angles are maintained at zero degrees (allowing
the use of small angle approximations). This state also maintains its altitude and has limited
translational movement, since translation can only occur with a change in the pitch and roll
angle.
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The simplified equations for the translational and rotational accelerations are depicted in
Equation 2-12

ẍ = −gθ
ÿ = gφ

z̈ = g − u1
m

φ̈ =
u2
Ixx

θ̈ =
u3
Iyy

ψ̈ =
u4
Izz

(2-12)

Three other equilibrium points can be used for linearising the dynamic model; vertical move-
ments at a fixed velocity, and horizontal movements at a fixed pitch or a fixed roll angle
(Zhang et al. [2014]).

While linearisation simplifies the model dynamics, it eliminates the gyroscopic effects as well
as effects of drag on a drone, even if they were incorporated in the initial non-linear dynamics
Musa [2018].

2-3 Aerodynamic Effects

In order to model the rotor with more theoretical accuracy, some studies also take the different
aerodynamic effects such as drag forces, rotor blade flapping, thrust variation, and ground
effect into account.

Drag Forces

Initial attempts at including drag forces in the dynamics considered it as a damping force
opposing translational and rotational motion. Therefore the damping force was considered
to be proportional to velocity and quite small (Derafa et al. [2006]). While this is enough to
develop models for steady-state forward flight conditions, it is not accurate enough to predict
the dynamic response for an actual drone. Further studies derived models taking into account
the various kinds of drag forces affecting a quadrotor (Bristeau et al. [2009], Bangura et al.
[2012]).

The induced drag is associated with rotor rigidity and is represented as

Dinduced = KIVp (2-13)

where Vp is the velocity of the rotor in the x-y plane

The translational drag is described using different equations for modelling at low
speeds(Equation 2-14) and high speeds, when Vp > ω (Equation 2-15)

Dtranslational = KT1Vp (2-14)
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Dtranslational = KT2(−Vz + vi)
4Vp (2-15)

The profile drag affects the transverse velocity of the rotor blades.

Dprofile = KPVp (2-16)

Parasitic drag is induced by the non-lifting surfaces (airframe, motors, microcontrollers) of
the quadrotor.

Dpar = Kpar|V |V (2-17)

where V is the three dimensional translational velocity vector and Kpar = 1
2ρSCDpar . For

velocities lower than 10m/s, parasitic drag is often ignored.

Thrust variation

Analysing thrust variation for quadrotors gives us more information on two dependent effects
- effective translational lift and the change in the angle of attack (AOA) leading to a change
in the thrust (Huang et al. [2009]). An increase in lift is caused due to the relative momentum
of the air stream when a rotor moves translationally.

The induced velocity (vh) is related to the thrust at hover (Th) by Equation 2-18, where ρ is
the air density and A is the area covered by the rotor blades.

vh =

√
Th

2ρA
(2-18)

The induced velocity in translational flight and hover are related by Equation 2-19, where α
is the angle of attack of the rotor plane with respect to a free stream flow v∞

vi =
v2h√

(v∞cosα)2 + (vi − v∞sinα)2
(2-19)

Similar to the behaviour of aircraft wings, an increase in the AOA of the rotor with respect
to the air stream causes an increase in the thrust for a given power input P.

T =
P

vi − v∞sinα
(2-20)

For a hover state, the nominal power can be derived using Equation 2-21.

Ph =
T
3/2
h√
2ρA

(2-21)

Considering equations 2-20 and 2-21 allows for the derivation of a relationship between the
nominal thrust at hover and the actual thrust produced in forward flight for a given motor
command.
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Blade Flapping

Blade flapping occurs due to a difference in the inflow velocities on the advancing and re-
treating blades (Hoffmann et al. [2007]). The advancing blade experiences higher lift due to
an increase in the tip velocity and the retreating blade experiences a decrease in lift due to
a reduction in the tip velocity. This induces a flapping (up and down oscillation) moment
in the blades, causing roll and pitch moments as well as changing the direction of the thrust
vector (Bangura et al. [2012]). Blade flapping effects are important for more accurate attitude
control schemes.

Ground Effect

Ground effect is an aerodynamic effect where rotors produce more thrust per unit power
when flying near a surface (Powers et al. [2013]). It is often neglected owing to the fact
that this effect is negligible if the quadrotor is flying above a certain altitude (more than
twice the rotor radius) (Johnson [2012]). While this effect causes the quadrotor to push away
from the ground, it pulls the quadrotor towards a ceiling when it gets too close. Therefore,
it plays an important role in thrust calculations and in building the altitude controller for
flights performed close to a surface. The ratio of the thrust in and out of the ground effect is
described in Equation 2-22. Ground effect is negligible when the ratio r

|z| > 0.1

Tg
T∞

=
1

1−
(

r
4|z|

)2
{

1

1+
(

|V |
vi

)2

} (2-22)

Drone racing can be quite aggressive and autonomous drone racing requires a more precise
model in order to perform more accurate control. For a high level of accuracy between
simulations and reality, it would be necessary to include all the aerodynamic effects that take
place. This is certainly a very complex and tedious task. Therefore, system identification is
considered as an alternative method to simplify the process of simulating the input-output
relationship for the MAV.
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Chapter 3

System Identification in UAVs

System identification is a method of developing a mathematical model using experimental
data (Morelli [2002]). The task is to represent the physical system as a dynamic model, using
time-series data observations of the inputs and outputs of the real-world system. The goal is
to have a model that can estimate the states (position, translational velocities, attitudes and
body rates) of the drone, with minimum error when compared to the actual drone response.

Process of UAV System Identification

The overview of the system identification process is depicted in Figure 3-1. The main elements
for obtaining a mathematical model using system identification principles, discussed in detail
in Appendix A, are mentioned below(Hoffer et al. [2014]). These steps ensure that a balance
between the model accuracy and complexity can be achieved.

• selecting the parameters (input and output signals)

• collecting the test data

• selecting a model structure

• choosing the method for system identification

• validation of the model.

Model Types

Unlike dynamic modelling, system identification principles have the ability to model the
input-output relationship without any information about its physical working. This depends
on the type of model to be used in the process. Different model types are classified based
on the method of derivation. A white box model would be derived using the understanding
of its underlying dynamics, as discussed in chapter 2. For a system with a partial or no
understanding of its dynamics, the two model types are discussed.
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Figure 3-1: An outline of the system identification process (Hoffer et al. [2014])

Gray-Box Model

Gray-box models are somewhere in between the white-box and black-box models, i.e, they
are based on a combination of physical principles and experimentally measured values. A
gray-box model could be used to map the states and rotor speeds of the quadrotor to the
resulting forces and moments Sun et al. [2018]. This model could further be used to predict
the outputs of a controller that provides a specific set of inputs.

Black-Box Model

Black-box modelling is important when the idea is to fit data without understanding the
underlying physical structure of the model (Simidjievski et al. [2020]). A simple example
would be finding a transfer function for a SISO (single input single output) system. Depending
on the complexity of the system, more complex methods like neural networks or multivariate
splines could be used to determine the input-output relationship (Kerschen et al. [2006]).
Since these models do not provide a model structure, it is difficult to verify the performance
of the model.

The following chapter looks into some examples of system identification principles applied to
quadrotors, with a focus on the type of model and data to be designed in this research.
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Chapter 4

Examples of Quadrotor Identification

A general control loop structure for a MAV is depicted in Figure 4-1.

Figure 4-1: Control Loop Structure for a Micro-Aerial Vehicle

The aim of this research is to use system identification principles to model a quadrotor
system that uses the Betaflight flight control software. Betaflight is used to control the rate
(innermost) loop. Therefore it takes into account the actual rates of the attitudes of the
quadrotor and the setpoints (or inputs provided) and returns a command (analog or digital
signal) for the motors. The electronic speed controller (ESC) receives these commands and
accordingly varies its voltage to induce the required RPM in the motor. The spinning motors
provide the thrust and torque for the quadrotor as per its dynamics and the flight controller
can record the values for the attitudes, and rates. A GPS (outdoor) or an external motion
capture system (indoor) can be used to note down the values of the position, translational
velocities and attitude angles of the quadrotor. This research makes use of the Optitrack
motion capture system.

The idea in this study is to break down the system into several sub-systems to be identified.
The first one is the system with the input as the inputs of the controller and the output as
the response of the motor (or motor speed). The second sub-system uses the motor speed
as inputs to obtain the dynamic states of the quadrotor (more specifically the rate of the
attitude angles and the translational velocities and position in 3D). The chapter looks into
the different system identification techniques used by researchers to model similar aspects.
The information obtained from this chapter will be used to understand the model structures, a
possible set of parameters, the identification methods used, and different experimental set-ups
previously used in different studies.
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Figure 4-2: Thrust test stand (Hoffmann et al. [2007])

4-1 Motor-Rotor System Identification

The research performed by Bangura et al. [2012] focuses on making a mathematical model for a
quadrotor using dynamic and aerodynamic equations. However, a small section of the research
also focuses on identifying a relationship between the motor parameters and the thrust and
torque coefficients using experimental data as well as some theoretical fundamentals.

For the experimental values, a thrust test stand is set up as shown in Figure 4-2. A load cell
is used to measure the thrust, side force, and the torque. The voltage and current values are
measured using a battery monitoring circuit (Hoffmann et al. [2007]). To measure the effects
of wind, an external fan is placed and the speed of the wind is measured using a Kestral wind
meter.

The equation for the mechanical power (Pm) of the motor is described in Equation 4-1. Kq

and Ke are motor parameters while Ra is the electrical resistance. These three parameters
are determined using linear regression, a method of parameter estimation further explained
in chapter 5.

Pm =
Kqωi
Ra

(Va −Keωi) (4-1)

The thrust coefficient is determined using a second order polynomial fit. The relation de-
scribed in Equation 4-2 is used to obtain the torque coefficient. κ has also been determined
beforehand using linear regression from the static thrust experiment.

Cq =
Ct
κ

(4-2)

The results obtained during these tests are comparable to the results obtained during a near
hover condition. However, the values determined from these thrust experiments differ when
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a quadrotor is performing aggressive dynamic maneuvers. To incorporate these values for
a dynamic maneuver, it is important to include the effects of induced momentum due to
changes in the airflow. This is an important note for the current research, as it focuses on
aggressive flights rather than near-hover conditions.

Al Al et al. [2019] also proposes a study to identify the order of different relationships in the
motor-rotor system. These include the relationship between the voltage source of the motor
and the velocity of the rotor; the rpm of the rotor to the inflow of the rotor; the lift produced
in the rotor to its velocity; and the rotor thrust to the inflow in the rotor.

The setup to obtain the experimental values is set-up as depicted in Figure 4-3. It consists
of the BLDC motor, an ESC (electronic speed controller), Arduino microcontroller, and an
LCD display for observing the applied voltage and the PWM value sent to the ESC from the
Arduino. A slit has been made in the two plastic screens to allow for vertical movement due
to the lift produced by the rotor.

Figure 4-3: Motor-Rotor Test Stand (Al Al et al. [2019])

A fixed load is added onto the system to identify the relationship between the voltage provided
and the speed of the rotor. A note is also made for the point (voltage) at which the device
starts moving upwards for each specific load. The rotor lift and the change in the rotor speed
are measured using the strain gauge and the tachometer respectively. An anemometer is used
to measure the change in the airflow produced by the spinning rotor.

The thrust coefficient (CT ) is computed using Equation 4-3, where ρ is the air density, r is
the radius of the propeller and v is the wind speed. The experiment is performed multiple
times and an average value of the thrust coefficient is obtained.

T =
CT ∗ ρ ∗ πr2v2

2
(4-3)
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While this study takes into account the airspeed due to the induced airflow, the anemometer
is fixed at the top of the stand, and therefore does not accurately measure the change in
the airflow. This causes erroneous airspeed measurements and is the reason for which the
thrust coefficient varies by a factor of over 0.9 in the results obtained. To understand the
dynamics of the quadrotor for more aggressive maneuvers, data obtained from a high-speed
flight experiment would be more suitable.

4-2 MIMO Quadrotor Identification Model

Reséndiz and Rivas-Araiza [2016] treats the quadrotor as a multi-input multi-output (MIMO)
system. The inputs are the 4 PWM signals sent to the ESCs while the outputs are the euler
angles as seen in Figure 4-4

Figure 4-4: Quadrotor block diagram (Reséndiz and Rivas-Araiza [2016])

The dynamics of the quadrotor are modelled in Matlab using equations 2-6, 2-8 and 2-11. The
test data used to obtain the model is represented in the time and frequency domains. The
MATLAB system identification toolbox is used to formulate the transfer functions between the
inputs and the outputs of the system. Since a quadrotor is a MIMO system, it is represented
as multiple SISO transfer functions as depicted in Equation 4-4. Y1(s), Un(s), G1n represent
the first output, nth input and the transfer function relating the first output to the nth input
respectively.

Y1(s) =
4∑

n=1

G1n(s)Un(s) (4-4)

The transfer functions obtained from the test data are then validated on a different dataset.

The study provides no information of the experiment performed to collect the data or the
parameters measured. Since the final obtained linear model has low errors compared to
the actual outputs of the non-linear quadrotor, it can be assumed that these results have
been obtained for near-hover conditions. However, it provides a good basis for writing a
simple mathematical model for the dynamics of a quadrotor as well as the use of the System
Identification Toolbox on MATLAB. Since the toolbox can also be used to model non-linear
systems in both the time and frequency domain, this study can serve as an example to obtain
a non-linear model for high-speed flights.
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4-3 Trajectory Alignment

While estimating the motor output from the provided input only requires the measurements
of the on-board sensors and the flight controller inputs, predicting the dynamics requires
more information. IMUs by themselves are prone to noise. Using the accelerometer data to
calculate the positions of the quadrotor requires numerical integration. Even a slight bias
in the acceleration measurements would be accumulated and over time, result in drifts in
the estimated position. An external motion capture system could provide more accurate
measurements of the position and orientation, and could be used to estimate the bias in the
on-board sensors.

The study aims to use the Optitrack motion capture system to obtain the bias in the mea-
surements. However the datasets obtained from Optitrack and the IMUs would have different
sample rates, sample lengths, start times, and therefore would need synchronisation.

Gremillion and Humbert [2010] focuses on estimating the parameters of a linearised state-
space model using a combination of the on-board sensors and the Vicon motion capture
system. In order to synchronise the sample rates, a series of fiducial yaw motions are manually
implemented on the quadrotor. To determine the time delay, a cross correlation is performed
on the yaw rates recorded by the Vicon system and the on-board gyroscope. Once the delay
is known, consistent sampling rates are obtained by linearly interpolating the time histories.

Sun et al. [2019] explores the aerodynamic effects on a quadrotor during a high-speed flight in
a wind tunnel. This study also uses a combination of on-board sensors and a motion capture
system (Optitrack) to model the quadrotor. In this case, the IMU bias is calculated using an
EKF. A Butterworth low-pass filter is used on the unbiased IMU measurements. The power
spectral densities of the accelerometer and gyroscope measurements are plotted to determine
filter cut-off frequencies for reducing the noise in the measurements. The final processed data
is used to calculate the forces and moments on the quadrotor.

Schubert et al. [2018] provides a novel dataset for evaluating VI odometry for SLAM appli-
cations. This study synchronises the information from a camera, a 3 axis IMU and a motion
capture system. To align the IMU and motion capture system, the time shift between the
two sensors must be computed.

To tackle the first problem, angular velocities computed from MoCap poses are compared to
the gyroscope measurements. A coarse alignment based on the measurement time is done
using a grid search algorithm. A parabola is fitted around the minimum of this search, and
the minimum of this parabola is taken to be the time offset. In this process, before comparing
the measurements it must be ensured that the two datasets are in the same frame of reference.
While the IMU measures the accelerations and rotations in the body frame, the motion sensor
measures the same in the world frame. Using the data without compensating for this would
also result in incorrect bias measurements. Calculating a time shift to align the datasets is
the preferred method in this study.
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Parameter Estimation

The system identification problem can be expressed as a cost function (Equation 5-1) that
compares the likeness of the derived model (y) and the actual physical system (z). Deriving
the best model based on this cost function could lead to long, tedious research on a huge
amount of model candidates. Therefore, the system identification problem is modified into
an optimisation problem where the goal is to find a model M such that it minimises the cost
function. The models could be such that they have the same structure but only different by
the values of the parameters, thereby reducing the system identification problem to one of
parameter estimation (Klein and Morelli [2006]).

J = J(z, y)

z = y + v

where v is the error between the physical system and the model

(5-1)

Parameter estimation is a process of finding the unknown parameter values in a model struc-
ture, from a set of noisy measurements. The technique for estimation depends on the noise
in the measurements, if the parameters are constants or variables, and the assumption of
linearity. This chapter is a discussion on the different methods of parameter estimation for
time-domain systems.

Regression is a statistical technique for modelling and studying the relationship between
variables. When discussing linear regression, the linearity refers to the equation for the
output with respect to the parameters and not the independent variables. In other words,
a linear regression model can have both linear and non-linear functions of the independent
variables (Klein and Morelli [2006]).

y = θ0 +

n∑

j=1

θjξj (5-2)

In Equation 5-2, the functions ξj are functions of the independent variables x1, x2, ..., xm, and
the model parameters θ0, θ1, ..., θm are constants describing the influence of each variable on
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the dependent variable y. However, in practice, noise must also be taken into account for the
measured values of the dependent variable, as depicted in Equation 5-3, where z(i) depicts
the output measurements and N is the number of data points.

z(i) = θ0 +

n∑

j=1

θjξj(i) + v(i) i = 1, 2, . . . , N (5-3)

The goal of regression methods is to find an estimate of the model parameters (θj). The
following sections describe some common methods of regression that have also been used for
modelling the systems in chapter 4.

5-1 Ordinary Least Squares

Equations 5-2 and 5-3 can be rewritten as

y = Xθ (5-4)

z = Xθ + v (5-5)

where
z is a vector of N measurements z(1), z(2), ..., z(N)
θ is a vector of size n+1 of the unknown model parameters θ0, θ1, ..., θn
X is a (N x n+1) matrix of ones and regressors [1 ξ1 ... ξn]
v is a vector of the measurement noise of size N v(1), v(2), ... ,v(N)
In this case, the vector v is assumed to have a zero mean and is uncorrelated, with a constant
variance σ2.

The best estimate in a least squares problem is obtained by minimising the sum of squared
differences between the measured values and the model values, depicted in Equation 5-6 (Klein
and Morelli [2006]).

J(θ) =
1

2
(z −Xθ)T (z −Xθ) (5-6)

To minimise the function J, the derivative of J with respect to θ at the minimum value θ̂
must be equal to zero.

∂J

∂θ
= −XT z +XTXθ̂ = 0 (5-7)

Therefore,

XT z = XTXθ̂ (5-8)
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XT (z −Xθ̂) = 0 (5-9)

The above equations are rewritten to obtain the formula for the ordinary least squares esti-
mator,

θ̂OLS = (XTX)−1XT z (5-10)

The covariance of the parameter estimate can also be obtained using Equation 5-11.

Cov(θ̂) = E[(θ̂OLS − θ)(θ̂OLS − θ)T ] = σ2(XTX)−1 (5-11)

5-2 Weighted Least Squares

In the OLS method, the noise vector is assumed to have a constant variance throughout. But
that is not the case for actual sensor measurements. Assuming that the variance for the sensor
measurements can be obtained, the weighted least squares (WLS) method would provide a
more accurate estimate of the parameters. Consider W to be a diagonal noise scaling matrix
of size NxN.

W = diag(σ21, σ
2
2, ..., σ

2
N ) =




σ21 0 · · · 0

0 σ22
. . .

...
...

. . .
. . . 0

0 · · · 0 σ2N




(5-12)

The error in Equation 5-5 would become W
1
2 v, from which the new equation for the mea-

surement error can be obtained

v = W−
1
2 (z −Xθ) (5-13)

On solving the equations in a similar manner as the OLS, the formula for the weighted least
squares estimate can be derived as seen in Equation 5-14.

θ̂WLS = (XTW−1X)−1XTW−1z (5-14)

The covariance matrix for WLS is given by

Cov(θ̂WLS) = E[(θ̂WLS − θ)(θ̂WLS − θ)T ] = (XTW−1X)−1 (5-15)
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5-3 General Least Squares

For more practical purposes, the assumption of homogeneous variances is also not valid.
Therefore, in this case let the covariance of the errors be V, such that V is a non-diagonal
matrix unlike W in the WLS method. V is non-singular and positive definite.

z = Xθ + v (5-16)

E(v) = 0, Cov(v) = E(vvT ) ≡ V (5-17)

The cost function to be minimised for the general least squares (GLS) method is

JGLS(θ) =
1

2
(z −Xθ)TV −1(z −Xθ) (5-18)

The formula for the minimum parameter estimate is

θ̂GLS = (XTV −1X)−1XTV −1z (5-19)

The covariance matrix for GLS is given by

Cov(θ̂GLS) = E[(θ̂GLS − θ)(θ̂GLS − θ)T ] = (XTV −1X)−1 (5-20)

5-4 Non-Linear Least Squares

It is not always possible to have a linear relationship between the dependent variable and the
regressors. In such cases, the model is formulated as described in Klein and Morelli [2006]

z = h(θ) + v (5-21)

As a regression model Equation 5-21 can be expressed as

z(i) = f [x(i), θ] + v(i) i = 1, 2, . . . , N (5-22)

In Equation 5-22, f is the non-linear function of x(i) and the model parameters θ, and xT (i)
refers to the row of regressors measured at the ith data point.

Similar to the method used in section 5-1, the cost function to be minimised can be obtained
by minimising the sum of squared differences between the model values and the measured
values.

J(θ) =
1

2

N∑

i=1

(z(i)− f [x(i), θ])2 (5-23)
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The minima of the cost function can be obtained by equating the derivative of the cost
function to zero at the point θ = θ̂

∂J

∂θ

∣∣∣∣
θ=θ̂

= −
N∑

i=1

(z(i)− f [x(i), θ])
∂f [x(i), θ]

∂θ

∣∣∣∣
θ=θ̂

= 0 (5-24)

where ∂J/∂θ is a row vector of the partial derivative of J(θ), and ∂f [x(i), θ]/∂θ is the vector
of sensitivity to change of the model parameters. Since Equation 5-24 is a set of non-linear
algebraic equations, obtaining the value of the parameter estimate θ̂ cannot be done using
simple algebra as done in linear regression methods. Therefore, an iterative non-linear op-
timisation technique like maximum likelihood estimation must be applied Klein and Morelli
[2006].
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Chapter 6

Synthesis of the Literature

Autonomous drone racing is becoming more agile but at the same time, it is also increasing
the risk for the drone. The aim of this research is to model a high-speed racing drone in order
to simulate the responses of the quadrotor with high accuracy. This will provide a basis for
simulating the response without risking any damage to the drone or any property or people
around the flying arena.

The literature begins with the concept of modelling a quadrotor using an understanding of
the dynamics and the equations that follow and system identification method to relate the
control inputs to the states and outputs of the quadrotor. In order to improve the accuracy
of predicting the states using a dynamic model, various aerodynamic effects must be taken
into account. However, this makes the system of equations long and complex. Therefore, for
more accurate modelling of a quadrotor’s response to its inputs, system identification is a
preferred method.

System identification makes use of real-time experimental data that can either be used to fill
in parameters in an equation (gray-box model) or establish a relationship between the inputs
and outputs with no understanding of the structure of the system (black-box model).

The idea of this research is to break down the quadrotor control system into several sub-
systems to be identified. The first subsystem is the rate controller with the RC commands
as the input and the motor response (speed of the motor) as the output. The second is the
motor speeds to the states of the system (position, orientation, translational and rotational
velocities) and their time derivatives (linear and rotational accelerations) using an under-
standing of quadrotor dynamics. Several researchers have performed system identification
experiments to identify these relationships. However, the experiments are either performed
on static set-ups or at slow speeds where the near-hover condition can be used to linearise
the identified model.

A way to obtain the actual states in this research is using a motion tracking system. The
rest of the data (control inputs, motor responses, and IMU data) can be obtained from the
on-board sensors. Since these two sets of data are obtained at different frequencies, a method
to align the data from different sensors must be employed. A simple solution employed by
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Schubert et al. [2018] involves the calculation of a time shift and the bias once the two datasets
are obtained in the same frame of reference.

Since this research aims to model a high-speed racing drone, aerodynamic effects cannot
be ignored and a linear model cannot be used to describe the system. Therefore, the data
to be used for system identification will be obtained from high-speed real-time free-flight
experiments. At very high speeds, motors do get saturated and cannot increase their speed
any further. In this case, controllers usually prioritise between the throttle commands and the
rate commands. The two ways in which this can be identified is understanding the software
of the controller, or analysing the real-time data obtained. In order to simulate an accurate
response of the quadrotor with its controller, it is important to understand its behaviour in
the case of motor saturations.
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Appendix A

Process of System Identification

The steps involved in the system identification process are discussed in this chapter. These
steps form a cycle and can be run through multiple iterations until a model of required
accuracy and complexity is achieved.

Selecting the Input Signals

The inputs are used to control the dynamic response of the system. Analysing the inputs
and the corresponding response of the system can help identify the model structure and the
model parameters. Appropriate inputs need to be selected for the test data such that all
the dynamic modes are excited and the maximum values are reached (or can be estimated
with high precision). But just exciting the dynamic modes might not provide the required
information. Sometimes, the signals need to be excited for a longer period of time in order to
identify the modes. Remple and Tischler [2006] have developed an automated frequency sweep
approach that are constant or varying, depending on the dynamic response being identified.
This helps separate information that can be used for system identification from the data that
could be caused by a minor disturbance (Mettler [2013]).

Collection of Test Data

The main challenges involved in this aspect are identifying the parameters to be used for
modelling as well as handling of the measured data obtained. The purpose of the model,
and the on-board and off-board (like motion capture systems) sensors could be the factors
involved in determining the output parameters to be used.

Depending on the sensors used, the measured data could be noisy. To tackle the issue of
noise, using simple filters like low-pass filters could provide an adequate solution Remple and
Tischler [2006]. If not, more complex methods such as Kalman filtering could be utilised.
The frequency rates of the sensors must also be taken into account. Some sensors could have
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sample rates lower than the dynamic modes of the system, and therefore would not be able
to identify the model parameters. In other cases, different sensors have different sampling
rates. Therefore, if multiple sensors are used, sensor fusion might be required in order to use
the measured data correctly.

Model Structure

This is an important element in system identification as the selection of an incorrect model
might lead to only partially describing the dynamics of the system. Selecting the model
structure is selecting the type of function that defines the output in terms of the input
parameters. The structure selected is based on whether the models are parametric or non-
parametric. Parametric models could either be polynomial functions like simple polynomials,
or a polynomial spline function. Examples of non-polynomial models would be neural network
or fuzzy logic models. For non-parametric methods, usually kernel models like support vector
machines are used.

Selection of the System Identification Method

System identification methods have been grouped into parametric and non-parametric meth-
ods (Remple and Tischler [2006]). Parametric methods require a structure for the dynamic
model, and the parameters are identified using the test data. Non-parametric methods do
not require any information about the system dynamics and can obtain a model from impulse
response or frequency responses, also obtained using the experimental values.

Parametric methods are further divided into groups as seen in Figure A-1. The figure does
not represent the different types of methods used for system identification. They are divided
into two methods - state estimation and parameter estimation. These are covered in more
detail in chapter 5.

Validation of the Model

The model obtained from system identification must be validated with the actual test flight
data. If the model is not able to predict the responses with minimal error when compared to
the real quadrotor, the collected data, model structure, or the method of identification must
be reconsidered.
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Figure A-1: Identifying the system identification method (Hoffer et al. [2014])
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