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PREFACE 
 
 
Patients with Duchenne Muscular Dystrophy (DMD) gradually lose their ability to use their muscles as they grow older. 

Consequently, arm function decreases to the point that no movement is possible. The disease affects approximately 1 in 
every 3,500 live male births and with increasing life expectancy, the preservation of functional arm abilities in boys with 
DMD becomes crucial. Although some devices aiming to compensate for the loss of muscle function exist, they are only 
useful during the early stages of the disease and are highly stigmatizing. 

 
The Flextension A(bility)-Gear project aims to develop an inconspicuous body-bound assistive device that can be worn 

underneath clothing and supports the arm for the independent execution of essential activities of daily living, adapting the 
support to the needs and capabilities of the user. In order to achieve this goal, several subprojects have been defined, one of 
them focusing on the control of the active orthosis, which must allow adaptive, intuitive and safe operation of the assistive 
device. The present work is one of the first steps to accomplish the goal of these subproject. 

 
In March 2012, I was hired to work on the Flextension A-Gear project at the Department of Biomechanical Engineering 

from the University of Twente (Enschede, The Netherlands), while still carrying out my MSc. degree in Biomedical 
Engineering at the Delft University of Technology. This dissertation describes one of the research studies I carried out at 
the aforementioned department which holds a very close collaboration with the Delft University of Technology.  The 
different parties involved in my supervision decided that I could carry out my MSc. graduation project in the framework of 
the Flextension project in order to accomplish both tasks. 

 
 The aim of the work described in this Dissertation was to evaluate different control interfaces to identify their limitations 

and capabilities. This knowledge will be used on the selection of the most suitable control interface for operating the 
aforementioned A-Gear. This work gave me the opportunity to become familiar with several sensors, data acquisition 
systems and signal processing methods as well as applying a significant part of the theory given during my MSc. degree. 

 
Overall, I think I have provided to the scientific community relevant knowledge on the area of control interfaces for 

active upper-extremity movement-assistive devices that complement the existing literature. However, the reader should 
judge on his own. What I do know for sure is that the success of this work is the result of the collaboration with a 
multidisciplinary team. Therefore, I would like to express my deepest gratitude to my advisors, Dr. Arno Stienen, Edsko 
E.G. Heckman, Prof. Peter H. Veltink, Prof. (Bart) H.F.J.M. Koopman and Prof. Just L. Herder. I would equally like to 
thank my office-mates especially Arvid Q.L. Keemink, Serdar Ates, Israel Mora Moreno and Claudia J.W. Haarman, and 
all the memebers of the Flextnesion Research Group, for their support and encouragement. I would also like to thank Dr. 
Alfred Schouten, for his advice on system identification and Dr. Edwin van Asseldonk for his support on the statistical 
analysis. Grateful thanks as well to subjects 01, 02, 03, 04, 05, 06, 07 and 08 for their patience, predisposition and interest. 
Thanks to Diana Pavia Moreira and Joao Ramalhinho who provided crucial help for the development of the experimental 
set-up and assisted me during the measurements. Last but not least, thanks to Sara Busquets and my family for their help 
and moral support. 

 
 
 
 
 

Joan Lobo Prat 
 

10th July 2013  
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 

Abstract— Currently, many different control interfaces for the 
operation of active movement-assistive device exist but their 
respective performance capabilities and limitations remain unclear. 
The goal of this study was to quantitatively evaluate the performance 
and learning characteristics of EMG-, force- and hand joystick-based 
interfaces. The human operator abilities were assessed in 8 healthy 
subjects using a screen-based one-dimensional position-tracking task, 
where the interface signal was mapped to the velocity of the cursor 
and the target was moving according to a multi-sine signal with a flat 
velocity spectrum. The performance of the control interfaces was 
evaluated in terms of tracking error, human-operator bandwidth, 
information transmission rate and effort. Results showed significant 
differences between the control interfaces in all the performance 
descriptors: the joystick-based interface presented significantly 
higher tracking error compared to EMG- (p<0.001) and force-based 
(p<0.005) interfaces; the EMG-based control interface showed a 
significantly higher bandwidth (p<0.001) than the force- and the 
joystick-based interfaces; the force- and joystick-based interfaces 
provided significantly higher information transmission rates 
(p<0.001) than the EMG-based interface; the force-based interface 
presented significantly lower effort than EMG- (p<0.001) and 
joystick-based (p<0.005) interfaces. None of the evaluated interfaces 
was superior in all four performance descriptors, but the force-based 
interface presented more positive results than the EMG- and 
joystick-based interfaces. However, in practice, the performance 
descriptors should be weighted according to the requirements of the 
specific application to determine which interface is the most suitable 
for the control of a particular active upper-extremity movement-
assistive device. 
 

Index Terms— control interface, electromyography, force, 
joystick, performance evaluation, learning curve, human-operator. 
 

I. INTRODUCTION 
everal active upper-extremity movement-assistive devices 
are currently available and used to increase the 

independence and the quality of life for patients suffering from 
severe neuromusculoskeletal disorders [1], [2], [3]. The 
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operation of these active devices is mediated by a control 
interface. The design of the control interface in response to 
specific user needs and capabilities – which may change over 
time – is crucial for the usability and success of the device. 

 Electromyography-based interfaces are by far the most 
common method used for the control of active prostheses and 
orthoses. Myoelectric prostheses are controlled by measuring 
electromyographic (EMG) signals from two independent 
residual muscles or by distinguishing different activation 
levels of one residual muscle. Switching techniques such as 
muscle co-contraction or the use of mechanical switches or 
force-sensitive resistors are implemented for the sequential 
operation of several degrees of freedom (DOF) [4]. In the case 
of active orthoses, these are controlled trough proportional 
myoelectric control using the EMG signals from the muscles 
that are associated with the supported motion [5]. Recently, 
innovative pattern recognition algorithms [6] and surgical 
procedures such as targeted muscle reinnervation [7] are being 
developed in order to improve the functionality of EMG-based 
interfaces. 

 Force-based interfaces have been used in assisted-
powered wheelchairs [8] where the wheelchair detects and 
amplifies the force applied by the user. Additionally, recent 
studies implemented six-DOF force-torque sensors or simple 
force sensor resistors for the control of active upper-extremity 
orthoses [9], [10], [11], [12] and prosthesis [13]. Force-based 
interfaces generally implement admittance control strategies 
where the input is force and the output is velocity or position 
[14]. 

 Joysticks are used for the control of powered wheelchairs 
[15] and external robotic arms [16], [17]. Recent studies also 
investigated the performance of controlling prosthetic arms 
with the residual shoulder motion measured with a two-DOF 
joystick [13], [18]. Furthermore, Johnson et al. [2] developed a 
five-DOF upper-extremity orthoses, in which the position of 
the end point was controlled with a joystick operated by the 
contralateral hand. 

 While there is a large variety of control interfaces under 
development, only a few studies have focused on their formal 
performance evaluation and comparison. As a consequence, 
there is  a considerable confusion as to which one is the most 
suitable for each type of impairment and task. Currently, there 
is no consensus on how to evaluate the performance of control 
interfaces which prevents their objective evaluation and 
comparison (see Appendix A for further information on 
existing non-invasive control interfaces). 

Evaluation of EMG, Force and Joystick as 
Control Interfaces for Active Upper-Extremity 

 Movement-Assistive Devices 
Joan Lobo-Prat, Arno H. A. Stienen and Just L. Herder 
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 We think that a better understanding of the limitations 
and capabilities of the different control interfaces, through 
objective and quantitative evaluations during functional tasks, 
can provide relevant information for the selection of the most 
suited control interface for a specific application. One example 
of this approach was the study by Corbett et al. [19], which 
evaluated the performance of EMG-, force- and position-based 
control interfaces in terms of tracking error, information 
transmission rate and human-operator bandwidth during a one-
dimensional screen-based position-tracking task. Moreover, 
Guo et al. [20] compared sonomyography-, EMG-, force- and 
wrist angle-based interfaces during a series of screen-based 
discrete tracking tasks with and without a simultaneous 
auditory attention task. Even though these two studies do not 
evaluate the interface performance during functional tasks, 
they can provide a first insight on their potential value as 
control interfaces for active movement-assistive devices. 
 The goal of our study was to quantitatively evaluate the 
performance and the learning characteristics of force-, EMG- 
and hand joystick-based interfaces. The human operator 
abilities were tested in 8 healthy subjects using a screen-based 
one-dimensional position-tracking task. The performance of 
the control interface was evaluated in terms of tracking error, 
human-operator bandwidth and information transmission rate. 
The learning characteristics were evaluated by analyzing the 
tracking error along a series of training trials. The eight 
participants were also asked to list the control interfaces in 
order of preference. Finally a model of the human-interface 
system was fitted to its estimated frequency response function 
to evaluate the delay and gain parameters of each control 
interface. 

II. METHODS  

A. Subjects 
A total of eight healthy males aged between 22 to 29 years 

participated in this study. All participants gave written 
informed consent, were right-arm dominant and had no 
experience with EMG- or force-based control interfaces (see 
Appendix B for an example of the information letter and 
consent form). The experimental protocol was in accordance 
with the Research Ethical Guidelines of the Department of 
Biomechanical Engineering from the University of Twente 
(Enschede, The Netherlands). 

B. Experimental Setup 
A one-dimensional position-tracking task was presented to 

the subjects on a computer screen by means of a MATLAB 
(MathWorks Inc; Natick, Massachusetts) graphical user 
interface. The subjects remained in a sitting position during all 
the experiment with the arm immobilized as shown in Fig. 1. 
With the elbow flexed at 90 degrees, the forearm was securely 
strapped to a rigid structure using a padded brace around the 
styloid processes. During the experiment, the participants were 
asked to keep the cursor (yellow circumference in Fig. 1) as 
close as possible to the center of a dynamic target (magenta 
square in Fig. 1), which moved according to a predefined 

multi-sine signal with a flat velocity spectrum. The 
experimental task is represented in a block diagram form in 
Fig. 2. The subject visually perceived the error (e) between the 
target (w) and cursor (x) position. In order to minimize this 
error, the human generated a control signal (u), using one of 
the control interfaces, which was mapped to the velocity of the 
cursor and subsequently integrated to obtain the cursor 
position (x). 

C. Experimental Protocol 
Before starting the tracking task, subjects were asked to 

perform three maximal voluntary contractions (MVC) of three 
seconds for both biceps and triceps muscles. Both EMG and 
force signals were measured simultaneously during the MVCs 
and their mean values were used to normalize the EMG and 
force signals respectively. Normalizing the signals with the 
subject specific MVC provided a relative measure of muscle 
activation and force that made possible intra-subject 
comparison. 

After performing the three MVCs, the subjects were asked 
to execute the tracking task with the three different control 
interfaces. The order in which the subjects tested each 
interface was randomized. For each interface, 10 training trials 
of 30 seconds and 3 evaluation trials of 3 minutes were 
performed. Training trials allowed the subjects to become 
familiar with the control interface and to get as close to their 
maximum performance as possible before starting the 
evaluation trials. A performance plateau was identified before 
the 10th training trial for all subjects. The researchers informed 
the participants after each training trial about the tracking error 
and encouraged him/her to improve it (see Appendix C for 
further information on the experimental protocol). 

D. Signals Acquisition and Conditioning 
The input signal of the moving target was generated from 

10 sinusoidal signals with (i) logarithmically distributed 
frequencies between 0.1 and 3 Hz; (ii) amplitudes 
logarithmically decreasing with frequency; (iii) and randomly 

 
 
Fig. 1.  Experimental Setup. The forearm of the participants was securely 
strapped to a rigid structure using a padded brace around the styloid 
processes. The EMG electrodes were placed at the biceps and triceps muscles. 
The resulting forces from the biceps and triceps activation where measured at 
the wrist. The joystick was located in front of the subject. 
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assigned phases for each trial (Fig. 3). The design of the input 
signal was adapted from the early work by D. McRuer [21] 
who did extensive research on the modeling of human-
machine systems. The multi-sine signal was designed with a 
duration of 30 s. 

 The isometric EMG signals were measured from the 
biceps and the triceps brachii, where the activation of the 
biceps moved the cursor up and the activation of the triceps 
moved the cursor down. Two single differential-surface EMG 
electrodes (Bangoli DE-2.1., Delsys; Boston, Massachusetts) 
were placed parallel to the muscle fibers according to the 
European SENIAM recommendations [22]. The signals were 
amplified with a sixteen-channel Delsys Bagnoli-16 Main 
Amplifier and Conditioning Unit with a bandwidth of 20 to 
450 Hz and a gain of 100. 

Force was measured at the wrist, using a custom made one 
DOF load cell attached between the padded brace and the 
ground. Subjects were asked to use biceps and triceps muscles, 
avoiding the generation of force from shoulder or trunk 
movements. A force upwards moved the cursor up and a force 
downwards moved the cursor down. For each subject, the 
offset force resulting from the weight of the arm was corrected 
at the beginning of the experiment. 

Both analog EMG and force signals were sent to a real-time 
computer (XPC Target 5.1, MathWorks Inc; Natick, 
Massachusetts) by means of a National Instruments card (PCI-
6229; Austin, Texas), which performed the analog-to-digital 
conversion with a sampling frequency of 1000 Hz with 16-bits 
signal resolution. 

For the joystick-based control interface we used the joystick 
of the PlayStation 3 controller (Sony Computer Entertainment; 
Miniato, Tokyo, Japan). A forward tilt of the joystick moved 
the cursor up and a backward tilt of the joystick moved the 
cursor down. The digital signal was sent to the real-time 
computer by means of a USB interface. 
 
E. Signal Processing 
 

In order to obtain the EMG envelope, a full wave 
rectification was performed by filtering the signal with a 
second order low-pass Butterworth filter with a cutoff 
frequency of 5 Hz. 

For the tracking task, the velocity of the cursor was set to 
zero if the EMG or force signals were below a threshold of 2.5 
% of the MVC. This threshold prevented that measurement 

noise could move the cursor. In the case of the EMG-based 
control interface, after the envelope detection and 
normalization of each EMG signal, the channel that presented 
higher amplitude was used to control the cursor. Therefore, 
when the most active channel was the one corresponding to 
the biceps muscle, the cursor moved up, whereas a higher 
activation of triceps muscle moved the cursor down. In the 
case of the force-based control interface, positive forces 
(upward forces) where normalized using the mean measured 
force during the MVC of the biceps and negative forces 
(downward forces) were normalized using the mean measured 
force during the MVC of the triceps. 

To ensure appropriate velocity control of the cursor and to 
prevent fatigue, the EMG and force signals were amplified by 
a fixed gain of 20 after all the aforementioned signal 
processing. The value of this fixed gain was chosen to ensure 
that the subjects had to produce a maximum of 25% of their 
MVC at the peak velocity of the target. In the case of the 
joystick-based interface the angle signal was normalized to its 
maximum output and amplified with a gain of 5. With these 
gain settings the subjects were able to reach the target at its 
peak velocity without experiencing fatigue. 

F. Data Analysis 
A quasi-linear model of the human-interface system  for the 

performance analysis of the control interfaces was assumed. 
The control interfaces were evaluated analyzing the 
characteristics of the closed-loop system which can be 
approximated by a linear transfer function. These 
characteristics will vary according to the operator’s ability to 
adapt to the dynamic characteristics of the controlled 
elements, influencing the stability and performance of the 
entire closed-loop system. The target (w) and cursor (x) 
position signals were used to evaluate performance of the 
three control interfaces. The Frequency Response Functions 
(FRF) of the closed-loop system (Hwx) were estimated for the 
frequencies (fk) of the aforementioned 10 sinusoidal signals 
(Fig. 5) using the following formula [23]: 

 

ˆ ( )ˆ ( ) ˆ ( )
wx k

wx k
kww

S fH f
S f

 , (1) 

 

where Swx is the estimated cross-spectral density of the cursor 
position signal (x) and target position signal (w), and Sww is the 
estimated auto-spectral density of the target position signal. 

 
 

 
Fig. 2.  Block Diagram of the position-tracking task. The subject visually perceived the error (e) between the target (w) and cursor (x) position. In order to 
minimize this error, the human generated a control signal (u), using one of the control interfaces, which was mapped to the velocity of the cursor and 
subsequently integrated to obtain the cursor position (x). 
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As a measure of linearity and presence of noise, the 
coherence function of the closed-loop system (Fig. 5) was 
estimated according to [23]: 

2

2
ˆ ( )

ˆ ( ) ˆ ˆ( ) ( )ww x

wx k
wx k

k kx

S f
f

S f S f
  , (2) 

where Sxx is the estimated auto-spectral density of the cursor 
position signal. 

Four performance descriptors were chosen to evaluate the 
control interfaces: tracking error, human-operator bandwidth, 
effort and information transmission rate. Furthermore, a model 
of the human-interface system was fitted to its estimated 
frequency response functions to evaluate the delay and gain 
parameters of each control interface. The reader is referred to 
Appendix D for further information on the Matlab functions 
used for the data analysis. 

1) Tracking Error 
The tracking error was calculated as the area under the 

auto-spectral density of the error signal (See) from 0 Hz to 
10 Hz using the following equation: 

10

0

ˆˆ ( ) ( )eee
f

eF f S f


 . (3) 

A high value of Fee indicates that the frequency content 
of the target and the cursor signals are different, while a 
low value of Fee indicates that the frequency content of the 
target and the cursor signals are similar. This measure of 
tracking error is independent of any assumptions about the 
human-interface system. The tracking error was also used 
to study the learning characteristics during the training 
trials. 

 
2) Information Transmission Rate 

The information transmission rate quantifies the amount 
of information that is contained in the output signal of a 
communication channel, relative to the input signal [24]. In 

this study the human-interface system can be conceived as 
a communication channel where the human has to transmit 
a movement intention through the interface. We calculated 
the information transmission rate ( I ) of the human-
interface system for each evaluation trial by integrating 
Shannon’s channel capacity over the perturbed frequencies 
(fk) using the following equation: 
 

2 2

ˆ ( )1ˆ
ˆ ˆˆ( ) | ( ) | ( )

xx k

xx k wx k ww k

S fI log
NT S f H f S f

 
  
 




 , (4) 

 

where N is the number of samples, T is the sampling time, 
Sxx is the auto-spectral density of the cursor position signal 
(x), Sww is the auto-spectral density of the target position 
signal (w) and Swx is the cross-spectral density of the cursor 
and target position. A similar method to calculate the 
information transmission rate was used in [19], [25], [26]. 

 
3) Human-Operator Bandwidth  

The human-operator bandwidth indicates the maximum 
frequency at which the human can properly track the 
target. The human-operator bandwidth was defined as the 
first frequency where the gain of Hwx dropped below -3dB 
from its maximum value. We calculated the maximum 
value as the mean value between 0.1 and 1.5 Hz of the 
FRF of Hwx. A similar method to calculate the human-
operator bandwidth was used in [19]. 

 
4) Effort Measure 

The root-mean-squared (RMS) of the velocity signal (u) 
was used to compare the required average velocity signal 
during the control task between interfaces. The RMS value 
was interpreted as a measure of effort assuming that if the 
subject had to produce less EMG, force or joystick 
movements the effort was lower. The increase in RMS of 
EMG in relation to the level of effort has been reported in 
several studies [27], [28]. This measure of effort is also 
independent of any assumptions about the human-interface 
system. 

(A)                        (B) 

   

 
Fig. 3.  Input and output signals. (A) Power spectral density (PSD) of the target position signal. The multi-sine signal was generated with 10 frequencies 
logarithmically distributed between 0.1 and 3 Hz and with amplitudes logarithmically decreasing with frequency. For each trial, a random phase was computed. 
(B) Target and cursor position along time. The subject was asked to track the target with a cursor that was controlled either with EMG-, force- or joystick-based 
interfaces. 
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5) Learning Characteristics 
The learning characteristics were analyzed calculating the 

tracking error for each training trial. An exponential 
function was fitted to the mean tracking error values. We 
selected the 1st training trial as a reference to identify 
significant reduction of the tracking error and a 
performance plateau was identified when no significant 
reduction of the tracking error was found in subsequent 
trials. 
 

6) Human-Interface Model 
According to the models proposed by McRuer [21] the 

human-interface system (Heu), during a velocity-controlled 
task, can be modeled with the following equation: 

 

mod e sH k  ,        (5) 
 

where k and τ represent a gain and a delay respectively, 
and s is the Laplace transform variable. The values of these 
two parameters were estimated for each subject and 
interface from the mean FRF of the human-interface 
system by solving a non-linear squares optimization 
problem using the following error cost function [23]: 
 

2

mod

ˆ ( )ˆ | ln |
( )

eu k

k

H fE
H f


 

  
 

, where 
ˆˆ
ˆ
wu

eu
eu

SH
S

   (6) 

 

and where 2̂  is the coherence squared, Swu is the cross-
spectral density of the velocity signal (u) and target 
position signal (w), and Seu is the cross-spectral density of 
the error signal (e) and velocity signal. 

The fidelity of the model of each interface was evaluated 
calculating the variance accounted for (VAF; eq. 7) in the 
time domain using the mean estimated parameters of each 
interface. 

ˆvar( - )1- ·100%
var( )

y yVAF
y

 
  
 

,    (7) 

 

where var(i) indicates variance of i, y indicates the 
measured output and ŷ indicates the simulated output using 
the model [23]. 

G. Statistical Analysis 
We carried out a two-way repeated measures analysis of 

variance (RMANOVA) for each performance measure, 
defining the interface and the order in which the control 
interfaces were tested as fixed factors. The order was not 
significant for any of the performance descriptors (p>0.78) 
suggesting that the training protocol was effective. The 
influence of the order was further investigated with a 
correlation analysis between EMG and force signals during 
EMG and force tasks. The correlation coefficients showed a 
mean value of 23% (±10% SD) which suggested that the EMG 
and force tasks were considerably different. 

Since the order did not show significant influence on the 
evaluation, one-way RMANOVAs were performed for each 
performance measure. A Benferroni test was applied for 
pairwise comparisons. We used α=0.05 (probability of Type I 
error) as the level of significance in all statistical comparisons. 

(A) 

 
(B) 

 
(C)  

 
(D) 

 
 
Fig. 4.  Performance Evaluation. (A) Boxplots of the tracking error for each 
interface. (B) Boxplots of the human-operator bandwidth for each interface. 
(C) Boxplots of the information transmission rate for each interface. (D)
Boxplots of the RMS of velocity signal (u) for each interface. Stars indicate 
statistically significance differences. (*) indicates p<0.05, and (**) indicates 
p<0.001. 

* ** 

** 
** 

** 
** 

** 
* 
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III. RESULTS 
 

A. Performance Evaluation 
All the performance descriptors presented significant 

differences for the RMANOVA test. However, not all 
pairwise comparisons between interfaces were significant (fig. 
4). The joystick-based interface presented significantly higher 
tracking error compared to EMG- (p<0.001) and force-based 
(p<0.005) interfaces (Fig. 4A). Furthermore, the EMG-based 
control interface showed a significantly higher (p<0.001) 
bandwidth than the force- and the joystick-based interfaces 
(Fig. 4B). We also found that force- and joystick-based 
interfaces provided significantly higher information 
transmission rates (p<0.001) than the EMG-based interface 
(Fig. 4C). Finally, we found that the force RMS values were 
significantly lower than the RMS values of the EMG- 
(p<0.001) and the joystick based control interfaces (p<0.005; 
Fig. 4D). Table 1 summarizes the results of the performance 
evaluation. 

 

B. Learning Characteristics 
In order to evaluate the learning characteristics, we 

performed a one-way RMANOVA where each training trial 
was defined as a fixed factor. The influence of the order was 
tested for the first training trial in a similar way than in the 
performance evaluation and did not show any significant 
difference. Figure 7 shows the learning curves obtained from 
fitting an exponential function to the mean values of the 
tracking error for each training trial. For the EMG-based 
control interface there was a significant improvement in 
tracking error relative to the 1st training trial at the 6th trial, 
while the force-based interface presented a significant 
improvement in the 3rd trial. The joystick-based interface did 
not show any significant improvement of the tracking error. 
Finally, the same figure shows that all interfaces reached a 
performance plateau before the end of the training. 

 

C. Human-interface Model 
The results of the parameter estimation of k and τ are shown 

in fig. 6. While we did not find a significant difference 
between the gains, the EMG-based interface presented 
significantly lower delay than the force- and the joystick-
based interfaces (p<0.001). We found a VAF of 98.8%, 96.7% 
and %82.9 for the EMG-, force- and joystick- based interfaces 
respectively. 

 

D. Subject’s Opinion 
At the end of the experiment the participants were asked to 

list the control interfaces in order of overall preference. The 
results from the questionnaire show that six out of eight 
subjects preferred the force-based interface followed by EMG- 
and joystick-based interfaces. The other two subjects preferred 
EMG-based interface the most, followed by force- and 
joystick based interfaces. 

The reader is referred to Appendix E and F which compiles 
the results of the pilot study and the output of the statistical 
analysis respectively. 
  

(A) 

 
(B) 

 
Fig. 6.  Estimated parameters of the human-interface model (Heu) for the 
EMG-, force- and joystick-based control interfaces. (A) Boxplots of the gain 
parameter. (B) Boxplot of the delay parameter. Stars indicate statistically 
significance differences. (**) indicates p<0.001. 

** 

** 

[s
] 
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Fig. 5.  Estimated Frequency Response Functions of the Closed-Loop System 
(Hwx) for the EMG- (blue), force- (green) and joystick-based (red) control 
interfaces. The solid lines indicate the mean values and the area in faded 
colors indicate ±1 SD. The vertical lines in the gain plot indicate the mean 
estimated bandwidths of each interface. 
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IV. DISCUSSION 
Researchers have explored a wide variety of invasive and 

non-invasive control interfaces for active movement-assistive 
devices. In order to identify which interface is the most 
suitable for a specific application it is necessary to know the 
limitations and capabilities of each method. The present 
evaluation provides objective and quantitative information in 
terms of performance and learning characteristics that is 
relevant when selecting a control interface for active upper-
extremity movement-assistive devices. 

We found that the tracking error of the joystick-based 
interface was higher compared to the one of the EMG- and 
force-based interfaces (Fig. 4A). Additionally, the results from 
the questionnaire showed that the joystick was the least 
preferred interface for all subjects. We think that the smaller 
amplitude of the joystick interface compared to the other two 
interfaces, for which the amplitude limits where set according 
to the maximum force or EMG signal that the subject could 
generate, is the cause of its poor accuracy and user acceptance. 
Note that, in studies where larger movement amplitudes were 
used as control signal, the authors report very low tracking 
errors [19], [29]. Our motivation behind testing an interface 
with small input range, such as the hand-joystick, is that in 
general, people with severe movement impairments cannot 
perform larger displacements than those that are possible with 
a small hand-joystick. It should be noted, that the importance 
of the tracking error is task dependent and that one can 
improve precision by decreasing the reaching velocity [30]. 
We conjecture that subjects with movement impairments 
might actually have a different opinion about the hand-
joystick than the healthy individuals of this study.   

Regarding the measure of human-operator bandwidth, we 
found that the participants were able to track frequencies up to 
2.8 Hz when using the EMG-based control interface, while 
they were able to track frequencies up to 2 Hz only with the 
other two interfaces (Fig. 4B). From the parameters estimation 

of the human-interface system we can conclude that the larger 
bandwidth of the EMG interface is due to its low delay (Fig. 
6B). Note that the EMG interface is bypassing the muscle and 
skeleton dynamics and therefore it can be detected earlier than 
its resultant force or motion. Despite having a higher 
bandwidth, the EMG-based interface presented lower 
information transmission rate (Fig. 4C) due to its low signal to 
noise ratio, which is also reflected by its lower coherence in 
Fig. 5. 

The results of the effort comparison show that the force-
based interface requires a significantly lower RMS value 
compared to the EMG- and joystick-based interfaces (Fig. 
4D). Further analyzing the EMG data we could conclude that 
this difference was caused by the presence of co-contraction. 
Moreover, EMG presented a higher variability of the RMS 
between subjects than the force- and joystick-based interfaces 
due to the fact that EMG signals are highly susceptible to 
sensor placement, changes on skin impedance and fatigue 
among others factors. 

The VAF measures indicate that the parameters found for 
the EMG- and force-based interfaces describe the human-
interface system with high fidelity. However, this is not the 
case for the joystick-based interface, for which the model can 
only explain 83% of the measured data. This results suggest 

 
Fig. 7.  Learning curve of each interface. An exponential function was fitted to the mean tracking error of each training trial. The first training trial was used as a 
reference to identify significant reductions of tracking error. The grey markers indicate significant reduction of tracking error relative to the first trial. The black 
markers indicate non-significant  reduction of tracking error relative to the first training trial. The vertical lines indicates the trial in which the performance 
plateau was identified. The error bars indicate ± 1 SD. 

 

TABLE I 
PERFORMANCE EVALUATION 

Interface Tracking 
Error Bandwidth ITR Effort 

EMG - + - + 

Force - - + - 

Joystick + - + + 
 

(+) and (-) indicate significantly higher and lower values of each 
performance descriptor. ITR: Information Transmission Rate. 
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that a different model should be used to describe the joystick-
based interface more precisely. 

With regard to the learning curves, we can observe, as 
expected, that as the training proceeded, the subjects learned 
and Fee became smaller indicating that the frequency content 
of the target and the cursor became increasingly similar. The 
results show that despite the fact that the EMG-based interface 
is far from the natural means to interact with the environment 
while the force-based interface is closer, the difference in 
terms of learning cost was small: the participants were able to 
reach a performance plateau with the EMG-based interface 
after the 6th training trial, which is only three trials after the 
same plateau was reached with the force-based interface. (Fig. 
7). Regarding the joystick-based interface, we did not find any 
significant improvement of the tracking error after the 10th 
training trials. We conjecture that the lack of learning gain 
with the joystick could be a consequence of the extensive prior 
experience of the participants with these type of devices, thus 
no further detectable improvement was achieved during the 
experiment. 

While the methodological approach of this study is similar to 
the one of Corbett et al. [19], the specific methods present 
notable differences which leaded to significantly different 
results. The frequency content of the input signal, the visual 
feedback, or the gain settings of the control signals are some 
critical differences of the experimental method, which added 
to the typical nonlinearities of the human movement control 
system might have been the cause of the different results. 

None of the evaluated interfaces was superior in all four 
performance descriptors. However, the force-based interface 
presents more positive results than the EMG- and joystick-
based interfaces. In general, the performance descriptors 
should be weighted according to the requirements of the 
specific application to find out which interface is the most 
suitable in a particular case. It is also worth noting that apart 
from the performance criteria evaluated in this study, 
additional requirements, such as ease of use or portability, 
should be taken into account when identifying the most 
suitable control interface. 

There are some limitations in this study that must be 
acknowledged and addressed in the future. The first limitation 
concerns the fact that all the participants of this study were 
healthy subjects. Considering that clear differences exist 
between healthy individuals and patients with movement 
impairments in terms of motor control capabilities, the 
evaluation of control interfaces with specific patient’s groups 
would provide more ad hoc results. The second limitation 
relates to the fact that the control task used in this study is too 
simple compared to the upper-extremity movements during 
activities of daily living. Nevertheless it must be noted that a 
simple experimental task was required for an initial robust 
analysis providing a first practical insight on the potential 
value of the control interfaces for active movement-assistive 
devices. Once this stage has been completed, our future work 
will involve testing the interfaces within a more realistic 
context, with patients suffering movement impairments, and 
using a functional task closer to the activities of daily living, 
such as two- or three-dimensional reaching-retrieving task. 

V. CONCLUSIONS 
This study evaluated and compared three control interfaces 

that derived the motion intention of the user from signals 
measured at three different levels of the human movement 
control system. We found significant performance differences 
in terms of tracking error, human-operator bandwidth, 
information transmission and effort between EMG- force- and 
joystick-based control interfaces using a one-dimensional 
screen-based position-tracking task. None of the evaluated 
interfaces was superior in all four performance descriptors. 
The precision and acceptance of the joystick-based interface 
appears to be limited by the small amplitude of movement. 
The force-based interface presents high accuracy, high 
information transmission rate, low effort and is the most 
preferred interface by the users. The EMG-based interface 
presents high accuracy and bandwidth despite the low 
information transmission rate.  

The analysis of the tracking error along the training trials 
provided relevant information on the learning characteristics 
of the tested control interfaces. While EMG- and force-based 
interfaces present a clear learning curve, the joystick- based 
interface did not find any significant improvement along the 
training trials. 

The modeling of the human-interface system revealed 
significant differences in terms of delay between interfaces. 
The lower delay found in the EMG-based interface should be 
considered in interfaces where high bandwidths are required. 

Finally, we can conclude that the force-based interface 
presents more positive results than the EMG- and joystick-
based interfaces. However, in practice the performance 
descriptors should be weighted according to the requirements 
of the specific application to determine which interface is the 
most suitable for the control of the particular active upper-
extremity movement-assistive device. 
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Abstract— Active movement-assistive devices can increase 
the independence and quality of life for patients with severe 
neuromusculoskeletal disorders. This technology requires 
interaction between the user and the device for its control, 
which is mediated by a control interface. An essential 
function of the control interface is the detection of the user’s 
movement intent. The selection of the control interface in 
response to specific user needs and capabilities -which may 
change over time- is a crucial determinant of the usability of 
the assistive device. Researchers have explored a wide 
variety of invasive and non-invasive methods to derive the 
movement intent of the user, and there remains considerable 
confusion on which strategy is the most suited to each 
specific type of impairment and task. With the goal of 
clarifying the suitability of the current range of strategies for 
the detection of motion intention, this article presents a 
critical and systematic review of non-invasive control 
interfaces used in active movement-assistive devices. 

Keywords— control interface, active movement-assistive device, 
motion intention detection, biomechatronics, prosthesis, orthosis. 

 
Introduction 

The ability to move in a controlled and stable manner is an 
essential trait of the human body. This quality enables the subject 
to interact with the environment during the activities of daily 
living. From the biomechatronics perspective, the Human 
Movement Control System (HMCS) has been modeled as a 
controlled dynamic system (Fig. 1) that consists of a mechanical 
structure (the plant), which represents the skeleton and passive 
tissues with possible external loads (i.e. the environment); the 
actuators, that represent the muscles; and a controller, that 
represents the central nervous system and receives sensory 
feedback from the physiological sensors (Veltink, 1999; Veltink 
et al., 2001). The HMCS might be impaired due to disease or 

trauma (some examples are shown in Fig. 1). Impairments can 
occur at various levels of the HMCS, affecting one or several 
components of the system. In the case of amputations the plant is 
affected, while in the case of muscular dystrophy (e.g. Duchenne 
muscular dystrophy) the affected components are the actuators, 
and in the case of blindness (e.g. retinitis pigmentosa) the sensory 
system is affected. Spinal cord injury (SCI) or myelitis affect the 
control of the spinal circuits, and stroke, Parkinson’s or cerebral 
palsy (CP) directly affect the control function of the brain. 

Movement-assistive devices play a crucial role in increasing 
the independence and quality of life for patients with severe 
neuromusculoskeletal disorders. Assistive devices have been 
classified by the International Organization for Standardization 
(ISO) in the standards catalogue ISO 9999:2011 according to 
their main function. In general, a device acting as a functional 
replacement of a part of the human body is classified as a 
prosthesis, while if the device supports a bodily function it is 
classified as an orthosis. Movement-assistive devices that are not 
directly connected to the missing or dysfunctional body part (e.g. 
wheelchairs, walkers, external robotic arms or crutches) are 
classified as external movement-assistive devices in this paper. 

Advances in neuroscience, engineering and computer science 
have led to an acceleration in the development of biomechatronic 
systems that are capable of actively assisting the impaired motor 
functions of patients affected by severe neuromusculoskeletal 
disorders (Dollar and Herr, 2008; Pons, 2008; Veltink et al., 
2001). 

From the biomechatronics perspective, the Assistive 
Movement Control System (AMCS) consists (as in the HMCS) 
of a plant representing the mechanical structure and the passive 
elements (e.g. springs or dampers), actuators that represent the 
motors, and an artificial controller that receives the measured 
data from the sensors and generates control signals to operate the 
actuators (Fig. 2). Note that an AMCS functions in parallel to the 
impaired HMCS. 
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Figure 1. Schematic block diagram of the Human Movement Control System. Note that the interaction between the actuators and the plant 
is pictured with a bond graph which represents the energy exchange between them (i.e. movement and force in this particular case). The 
reader is referred to Borutzky (2010) for further information on bond graphs. Modified from Veltink et al. (2001). 

Figure 2. Schematic block diagram of the Human Movement Control System in parallel with the Artificial Movement Control System. 
Both the human and artificial systems are depicted as dynamic systems, in which both the human muscles and artificial actuators generate 
forces to transfer power and hence move the combined plant composed of the mechanical structure of the assistive device and the human 
musculoskeletal system. The power 1-junction states a common velocity of all components. The reader is referred to Borutzky (2010) for 
further information on bond graphs. Modified from Veltink (1999). 
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Three kinds of interactions between the human and the active 
movement-assistive device can be distinguished: (1) detection of 
the motion intention of the user; (2) provision of feedback to the 
user regarding the state of the AMCS or of the environment; and 
(3) exchange of mechanical power. Note that providing 
feedback to the user is especially relevant in those cases in 
which the user has lost proprioceptive feedback (e.g. 
amputates). This article focuses on the first type of the 
interaction defined above: motion intention detection. 

Several physiological phenomena take place in every 
subsystem of the HMCS. Some of these phenomena can be 
measured and associated to the motion intention of the user, and 
therefore can be exploited for the effective control of the 
AMCS. Neural signals from the central nervous system [e.g. 
electroencephalography (EEG)], neural activation of the muscle 
[e.g. electromyography (EMG)], muscle interaction forces and 
body movements are some common examples of signals that are 
implicitly related to the motion intention. Motion intention can 
also be derived from the explicit commands of the user, for 
example by pressing command switches, through speech and 
through head or eye movement. 

The high percentage (23%-33.7%) in published studies 
(Biddiss and Chau, 2007; Datta et al., 2004; Meurs et al., 2006) 
of arm amputees that abandon their prosthetic device is a clear 
indication that the design of intuitive control interfaces that meet 
the daily needs of the users remains challenging. The 
personalization of the control interface in response to specific 
user needs and capabilities, which may change over time, is a 
crucial determinant of the usability of the assistive device. 
Researchers have explored a wide variety of invasive and non-
invasive methods to derive the movement intent of the user, and 
there remains considerable confusion on which strategy is the 
most suitable for each specific type of impairment and task. 

With the goal of clarifying the suitability of the current range 
of strategies for the detection of motion intention, this article 
presents a critical and systematic review of non-invasive control 
interfaces used in active movement-assistive devices. 

 

Existing Control Interfaces 

Classification Method 
The inventory of control interfaces for motion intention 
detection resulting from the literature search was stratified 
through a classification at four levels (see Table 1). The 1st level 
was defined according to the subsystems that are present in the 
HMCS (controller, actuators, plant and parallel systems), and 
 

the 2nd level was defined according to the physiological 
phenomena that takes place in every subsystem. The set of 
signals that can be measured for every physiological 
phenomenon defines a 3rd level of classification and the sensors 
used to measure these signals define a 4th level. For each 
sensor/signal its transduction principle, interface with the body, 
area of application and key references were indicated. 
 
Interfacing with the Controller: Brain Computer Interfaces 
(BCIs) 
Current noninvasive brain-computer interfaces (BCIs) derive the 
movement intention of the user from electrical and/or 
hemodynamic signals from the brain. 

Electrical Brain Activity 
Electroencephalography (EEG) and magnetoencephalography 
(MEG) are well established non-invasive methods that measure 
the average dendritic currents of a large proportion of cells from 
the scalp (Wolpaw et al., 2002). Several brain signals have been 
used for BCIs including slow cortical potentials, low frequency 
changes in filed potentials (such as P300) and α and β rhythms. 
Even though MEG provides a much higher signal quality than 
EEG and does not require the attachment of scalp electrodes, the 
latter is portable (i.e. does not require a shielded room) and is 
both less expensive and less cumbersome than MEG. 
Consequently, EEG-based BCIs are currently commercially 
available (e.g. intendiX®, g.tec medical engineering GmbH, 
Schiedlberg, Austria) for personal use to operate spelling and 
domestic devices. 

While the majority of current research on EEG- and MEG-
based BCIs focus on providing basic communication control to 
people suffering from severe motor impairments (Kübler and 
Birbaumer, 2008; Mellinger et al., 2007), researchers have been 
also exploring their capabilities for providing movement control 
of orthotic (Fig. 3; Buch et al., 2008; Pfurtscheller et al., 2000), 
prosthetic (Muller-Putz and Pfurtscheller, 2008) and external 
movement-assistive devices, such us robotic arms and 
wheelchairs (Galán et al., 2008; McFarland and Wolpaw, 2008). 
The main drawbacks of current EEG-based BCIs include the 
long training periods to learn to modulate specific brain 
potentials (generally in the order of several months), the need to 
attach multiple electrodes to the scalp –both a time and 
appearance issue–, and the low information transmission rate 
due to the filtering properties of the skull. In addition, control 
signals generated through EEG-based BCIs lack of speed, 
accuracy and reliability which limits their applicability as 
control interfaces of active movement-assistive devices 
(McFarland and Wolpaw, 2008). 
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____________________________________________________ 
Figure 3. A SCI patient controlling a hand orthosis with an EEG-based 

BCI. Adapted from Pfurtscheller et al (2000). 

 
Brain Hemodynamics 
Beyond electric activity, hemodynamic signals from the brain 
are also used in BCI. These signals are measured by functional 
magnetic resonance imaging (fMRI) or near infrared 
spectroscopy (NIRS). Both methods rely on the measurement of 
the task-induced blood oxygen level-dependent (BOLD) 
response which has been proved to be strongly correlated to the 
electrical brain activity (Sitaram et al., 2009). Most studies 
using fMRI- and NIRS-based BCIs focused on their application 
to neurofeedback (Kanoh et al., 2009; Weiskopf, 2012; 
Weiskopf et al., 2003), and only a few studies have aimed to 
develop interfaces for communication (Naito et al., 2007; Sorger 
et al., 2009), cursor control (Yoo et al., 2004), environmental 
control (Ayaz et al., 2011; Sagara and Kido, 2012) and external 
robotic arm control (Lee et al., 2009; Misawa et al., 2012). As 
for EEG, NIRS is also portable and both less expensive and less 
cumbersome than fMRI. Furthermore, in contrast to fMRI, when 
using NIRS subjects can be examined under normal conditions 
(e.g. sitting or standing), without movement constraints. On the 
other hand, the depth of brain tissue that can be measured using 
NIRS is only 1 to 3 cm (i.e. cortical regions; Sitaram et al., 
2009). While these functional imaging methods are promising 
for non-invasive recording of activity across the entire brain (or 

cortex in the case of NIRS) at high spatial resolution (i.e. 
millimeter range;  Sitaram et al., 2009), fMRI- and NIRS-based 
BCIs are still in the early phases of research and development, 
and therefore their potential value as interface remains uncertain 
(Shih et al., 2012). Furthermore both fMRI and NIRS methods 
suffer from poor information transfer rate (Ward and Mazaheri, 
2008; Power et al., 2011) which limits their functionality. 

Interfacing with the Actuators: Muscle Activation Interfaces 
(MAIs) 
The recording of the electrical signals from muscle activation is 
known as electromyography (EMG). From a biomechatronic 
perspective the muscle can be conceived as a biological signal 
amplifier of the low amplitude electric potential that comes from 
the efferent nerves. The large majority of active orthoses and 
prosthesis existing today, including commercially available 
devices (e.g. DynamicArm®, Otto Bock HealthCare GmbH, 
Duderstadt, Germany; HAL-5 Cyberdyne Inc., Tsukuba, Japan), 
are controlled using  surface EMG signals (Asghari Oskoei and 
Hu, 2007; Fougner et al., 2012). Furthermore, EMG-based 
interfaces have also been used to control powered wheelchairs 
(Felzer and Freisleben, 2002; Han et al., 2003; Moon et al., 
2005). 

Myoelectric prostheses are generally controlled by measuring 
EMG from two independent residual muscles or by 
distinguishing different activation levels of one residual muscle. 
Switching techniques such as muscle co-contraction or the use 
of mechanical switches or force-sensitive resistors are 
commonly implemented for enabling the sequential operation of 
several degrees of freedom (DOF; Muzumdar, 2004). In the case 
of active orthoses, these are generally controlled trough 
proportional myoelectric control using the EMG signals from 
the muscles associated to the supported motion. 

EMG-based control interfaces are widely used because of its 
easy access and generation, and its direct correlation to the 
motion intention. However, EMG-based interface presents 
several drawbacks: requires significant signal processing before 
it can be used as control signal due to its broad bandwidth and 
low voltage amplitude; the relation between EMG and force or 
torque is highly non-linear (Lenzi et al., 2012), which makes the 
control challenging for the users; many patients have difficulties 
generating isolated and repeatable contractions which are in 
most prosthesis required for their control (Schultz and Kuiken, 
2011); and finally, the filtering properties of the limb tissue and 
the movement of the skin beneath the electrode notably affect 
the long term recordings (Muzumdar, 2004). In order to 
overcome some of these limitations, innovative pattern 
recognition algorithms and surgical procedures such as targeted 
muscle reinnervation (TMR) are being developed. 
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Pattern recognition techniques are based on the assumption 
that humans can generate different yet repeatable muscle 
activation patterns that are associated to specific movements 
such us different grasping configurations. This technique has the 
potential to eliminate the need for isolated muscle activation and 
allow for a more natural control of the assistive device (Schultz 
and Kuiken, 2011). The pattern recognition algorithms first 
extract features of the EMG signal from one or multiple 
adjacent muscles and then search for activation patterns which 
are subsequently assigned to a “class” of movement. Many 
different variations of each of these steps have been investigated 
trying to find a fair tradeoff between speed and performance 
(Asghari Oskoei and Hu, 2007; Fougner et al., 2012). Pattern 
recognition is currently not commercially available but 
considerable efforts, such as developing practical adaptive 
algorithms (Sensinger et al., 2009), are being made to bring this 
technology into clinical practice. 

MTR was developed by Kuiken et al. (2007) and consists on 
rerouting the nerves that originally innervated the amputated 
limb to muscles on the chest wall (Fig. 4). TMR is a one-time 
invasive method that allows a more intuitive control of a larger 
number of DOF (Miller et al., 2008) than standard EMG 
methods, since the myoelectric prosthesis is controlled by the 
same nerves that previously controlled the amputated limb. 
Moreover, there is evidence that cutaneous sensory feedback of 
the amputated hand can be regained through stimulation of the 
reinnervated muscles (Kuiken et al., 2007). In contrast to pattern 
recognition techniques, TMR seems most suitable for high-level 
amputations (Bueno Jr et al., 2011). Current implementations 
still experience some difficulties separating the EMG signals 
from the different chest muscles. Therefore, recent studies try to 
combine MTR with pattern recognition techniques (Kuiken et 
al., 2009). 

Interfacing with the Actuators: Muscle Contraction Interfaces 
(MCIs) 
Several signals derived from the muscle contraction phenomena 
have been used to detect motion intention detection: muscle 
vibration, dimensional change, stiffness and force. Most of these 
methods have only been used for the control of prosthetic 
devices. 

Muscle Vibration 
The mechanical vibration that is generated when the muscles 
contracts can be measured with microphones (Barry et al., 1986; 
Posatskiy and Chau, 2012a), accelerometers (Antonelli et al., 
2009) or a combination of both (Silva and Chau, 2003; Silva et 
al., 2005). This method is known as phonomyography (PMG), 
acoustic myography (AMG) or mechanomyography (MMG). 

________________________________________________ 
Figure 4. A targeted reinnervation patient performing a 
functional manipulation task with an active prosthetic arm. 
Adapted from Kuiken et al (2009). 

Orizio et al. reported a linear relationship between the root-
mean-square (RMS) values of MMG signals recorded from the 
biceps brachii and the force of the contraction between 20% to 
80% of the maximum voluntary contraction (MVC; Orizio, 
1993), which makes MMG potentially suitable for prosthesis 
control. MMG offers several advantages over conventional 
EMG, including no need of direct contact with the skin, 
robustness to changes on skin impedance, less specific sensor 
placement and reduced sensor cost (Barry et al., 1986; Silva et 
al., 2005). However, microphones and especially 
accelerometers are highly prone to dynamic noise (i.e. limb 
movement artifacts) which compromises signal detection and 
classification (Posatskiy and Chau, 2012a). To overcome this 
major problem, Silva and Chau (2003) developed a coupled 
microphone-accelerometer sensor (embedded in silicone) that 
fuses data from both transducers to reduce dynamic noise. In 
their design, the accelerometer is used as a dynamic reference 
sensor to determine the source of the measured vibration 
(muscle contraction or limb movement). Recently, Posatskiy 
and Chau (2012b) developed a novel microphone with 
cylindrical and conical acoustic chambers that prevents the 
recording of limb movement artifacts. 

Muscle Dimensional change 
When the muscle contracts, dimensional changes also occur: the 
muscle shortens and consequently its cross section area 
increases. The measured signals resulting from this phenomenon 
are known as myokinemetric (MK) signals. 

Evidence from Heath (2003) and Kenney et al. (1999) 
suggests that MK signals are inherently low in noise and that its 
magnitude can be directly used for control avoiding any kind of 
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signal processing. MK signals have been measured with Hall-
effect sensors (Heath, 2003; Kenney et al., 1999) or tendon 
activated pneumatic (TAP) foam sensors (Abboudi et al., 1999; 
Curcie et al., 2001). The study of Kenny et al. (1999) developed 
a Hall-effect sensor that measured radial displacements of the 
muscle bulge. They found that the MK signals of 6 upper-limb 
amputees could be generated with sufficient accuracy to perform 
a one-dimension tracking tasks with errors averaging 10%, and 
therefore had potential for the control of active upper limb 
prosthesis. However, it was also found that MK signals recorded 
with the Hall-effect sensor were susceptible to socket slippage 
with time, as well as socket re-donning. The study of Heath 
(2003) improved the Hall-effect sensor interface and proved the 
feasibility of using MK signal for the proportional position 
control prosthetic fingers. 

The TAP sensors developed by Abboudi et al. (1999) 
measured pressure differential at the skin surface generated by 
tendon displacements when finger flexors or extensors muscles 
contracted. TAP sensors presented a linear relation to force, 
allowing proportional force control. Trials on 3 upper-limb 
amputees showed that the TAP sensors could provide effective 
control of voluntary flexions of individual fingers and grasping 
motions. Since the performance of the TAP control interface is 
highly dependent upon accurate sensor placement and specific 
movement resolution at each sensor location, Curcie et al. 
(2001) developed a pressure vector decoder (PVD) able to 
discriminate specific finger flexion commands in real-time. The 
PVD decreased the dependence upon sensor location offering a 
more robust and reliable controller of the TAP-based interface. 

Recent studies propose the use of ultrasound scanners (Chen et 
al., 2010; Shi et al., 2010; Zheng et al., 2006) to measure 
changes in muscle thickness for the control of prosthetic 
devices. This method is known as sonomyography (SMG). 
SMG presents similar profiles of wrist angle for non-disabled 
subjects and amputees (Zheng et al., 2006), suggesting that 
simple proportional control could be implemented. Furthermore 
a recent study from Shi et al. (2010) shows that SMG can be 
implemented in real-time using a two-dimensional logarithmic 
search algorithm. While it has been demonstrated that SMG 
could be potentially used for the control of active prosthetic 
devices, the current system used for the SMG measurements 
(i.e. standard ultrasound scanner) is not suitable for its practical 
implementation because it is expensive and cumbersome (Chen 
et al., 2010). 

Another signal derived from dimensional changes of the 
muscle was examined in the early 1970s by Kadefors and 
Olsson (1972). The study investigated electrical impedance as a 
measure of motion intent for the control of an artificial hand. 

The electrical impedance measured on the skin above a muscle 
varied (among other factors) when the dimensions of the muscle 
changed due to its contraction. To our knowledge this method 
has not been developed further since then without any specific 
reason. 

Muscle Force 
Direct muscle force control by muscle tunnel cineplasties (Fig. 
5) was first performed in the early 1900s, becoming popular 
after the World War II (Childress, 2002; Weir et al., 2001). The 
major advantage of this one-time invasive method is that is 
capable of providing tactile and proprioceptive feedback from 
the terminal device back to the user complying with the concept 
of extended physiological proprioception (EPP; Simpson, 1974; 
Weir et al., 2001). However, such procedures lost favor in the 
1970s due to the advent of clinically available myoelectric 
prostheses, which do not require any surgery, and lack of 
sufficient muscle force to power the prosthesis (Childress, 
2002). 

 
____________________________________________________ 
Figure 5. Schematic of the modified Otto Bock Hand that is controlled 
by two muscle tunnel cineplasties. Adapted from Wier et al. (2001). 

While traditionally tunnel cineplasties provided 
simultaneously the control and the actuation of the prosthetic 
prehensor (Brava et al., 1957), recently, Wier et al. (2001) 
proposed a hybrid method where the tunnel cineplasty provides 
the control signal for the prosthetic prehensor but where the 
grasping force was supplied by an external power source. The 
authors of the study suggested that the implementation of 
multiple miniature forearm tunnel cineplasties could be 
potentially used as control signals for independent multi-finger 
control. However, to our knowledge no further advancements on 
this method have been made up to date. 

Muscle Stiffness 
The stiffness of muscle tissue increases when this contracts. The 
measured force signals resulting from this phenomenon are 
known as myotonic (MT; Heath, 2003) or myokinetic (MKT; 
Wininger et al., 2008) signals. These signals have been 
measured using arrays of force-sensitive resistors (FSRs; 
Wininger et al., 2008) or pressure sensors (Moromugi et al., 
2004). MKT signals have been used for proportional force 
control using a simple summation of the recorded forces 
(Moromugi et al., 2004). 
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Recently, a study from Han et al. (2012) presented a novel 
muscle stiffness sensor –that could be worn over clothing– 
based on the measure of the muscle resonance frequency. This 
sensor measured muscle stiffness by generating and sensing 
resonance vibrations using piezoelectric transducers: as the 
muscle became stiffer, the resonance frequency became higher. 

Muscle stiffness-based interfaces are still in the early phases 
of research and development, and therefore their potential value 
as control interfaces for active movement-assistive devices 
remains uncertain. 

 
Interfacing with the Plant: Movement Interfaces (MIs) 
The human body moves as a result of the interaction between 
the forces generated by the muscles and the configuration of the 
skeletal system. Measurements of angular displacement between 
two adjacent body segments and of translations of one body 
segment (linear displacement) have been used to detect motion 
intention. It is worth noting that the implementation of 
movement-based interfaces requires very light mechanical 
plants in order to not constrain the movement of the user. 

 
Angular displacement 
Angular displacement between two adjacent body segments is 
measured using electro-goniometers, which are attached to the 
two adjacent body segments and produce an electrical signal 
proportional to the angle. Several kinds of electro-goniometers 
have been used to measure angular displacements. Early 
goniometers used simple angular potentiometers. Doubler and 
Childress (1984) and Gibbons et al. (1987) used these sensors to 
implement the EPP concept in the control of active upper 
extremity prostheses. Although potentiometers can measure 
rotations about only one axis and the accuracy of the 
measurements depend on their alignment with the human joint, 
these sensors are still a common component in active 
movement-assistive devices (e.g. Blaya and Herr, 2004; Herr 
and Wilkenfeld, 2003). Currently, more advanced goniometers 
are being implemented for the control of active prosthetic and 
orthotic devices, which are able to measure rotations about two 
axes simultaneously based on optic sensors (Herle et al., 2010; 
Shah et al., 2011) or strain gauges (Orengo et al., 2009; Takagi 
et al., 2009). Another common solution for measuring angular 
displacement to control active prosthetic and orthotic devices is 
angular encoders (Font-Llagunes et al., 2011; Martinez-
Villalpando et al., 2008; Yamada et al., 2001). It is worthy of 
note that there are no goniometers that can record three angles 
between two body segments, which naturally limits the 
applicability of this methods for control strategies that require 
information of three-dimensional joint rotations (Latash, 2012).  

Body segment translation 
Hall-effect sensors and potentiometers integrated in a joystick 
are the most common sensors used to measure body segment 
translations in movement interfaces. Joysticks are generally 
implemented for the control of powered wheelchairs (Dicianno 
et al., 2010) and external robotic arms (Maheu et al., 2011; 
Romer et al., 2005). However, recent studies also investigated 
the performance of controlling prosthetic arms with the residual 
shoulder motion measured with a two-DOFs joystick (Fig. 6A; 
Lipschutz et al., 2011; Losier et al., 2011). Additionally, the 
study from Johnson et al., 2001 developed a five-DOFs upper-
extremity orthoses, in which the end point position was 
controlled with a joystick at the contralateral hand (Fig. 6B). 

 

 
_________________________________________________ 

Figure 6. Joystick based interfaces. A) Two-DOF joystick for the 
control of a prosthetic arm with the residual shoulder motion. Adapted 

from Lipschutz et al. (2011). B) Five-DOF active upper-extremity 

orthosis controller with a hand 5-DOF joystick. Adapted from Johnson 
et al. (2001). 
 

Joysticks are commonly controlled with the hand but in some 
cases the interface is adapted to be controlled with other body 
parts (i.e. parallel systems). Some joysticks contain built in 
damping and stiffness features or digital filters to eliminate 
some human unintentional movement such as tremor, or 
environmental vibrations (Dicianno et al., 2010). 

 
Interfacing with the Plant: Force Interfaces (FI) 
The human plant can exert forces to the environment that can 
provide information about the motion intention of the user. 
Force-based interfaces have been used in assisted-powered 
wheelchairs (Cooper et al., 2002) where the wheelchair detects 
and amplifies the force applied by the user. Additionally, recent 
studies implemented six-DOFs force-torque sensors or simple 
force sensor resistors for the control of active upper-extremity 
orthoses (Abbruzzese et al., 2011, 2011; M. Baklouti et al., 
2008; Huo et al., 2010) and prosthesis (Lipschutz et al., 2011). 

A B 
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Force-based interfaces generally implement admittance control 
strategies where the input is force and the output is velocity or 
position (Yu et al., 2011). Recently, Ragonesi et al. (2011) 
published a study where they measured residual joint force and 
torques in patients with muscle weakness with the end goal of 
obtaining a robust model that could be used for the control of an 
active arm orthoses. The authors found that voluntary forces for 
weak individuals were very hard to measure since gravitational 
forces were much larger. Subject specific models were 
suggested to optimize the measurement of voluntary forces. 

The main advantage of force-based interfaces is that force 
sensors can be embedded in the mechanical structure of the 
assistive device, avoiding any preparation for the placement of 
the sensors on the user. Furthermore, the implementation of 
force-based interfaces do not specially require a light 
mechanical plant as in the case of position-based interfaces. 

Interfacing with Parallel systems 
A part from deriving the motion intention from signals that 
come from the supported systems, several methods have been 
proposed which use signals from parallel systems such as the 
eyes, the mouth or the head. This section reviews four relevant 
interfaces that derive the intent of the user through signals 
generated by parallel systems. 

Eye Movement Interface 
Eye tracking systems are a common method for the control of 
spelling devices or computer cursors in patients with severe 
movement-impairments. Several eye-trackers have been 
developed including camera-based methods, which measure 
changes in corneal reflection while infrared light is projected to 
the eye (Betke et al., 2002), and electrical-based methods that 
measure the electrooculagrphic (EOG) potential from surface 
electrodes. 

Duvinage et al., (2011) proposed an innovative system based 
on EOG and a programmable central pattern generator to control 
a lower limb prosthesis. The control method was composed of 
two steps: first, an EOG-based eye tracking system generated 
high-level control commands (such as faster, slower or stop), 
according to specific eye movement sequences executed by the 
user; and secondly, a pattern generator, following the high level 
commands derived from the user’s eye motion, provided the low 
level commands for the control of the actuators. 

In the study from Chen and Newman (2004), EOG was used 
to control two–dimensional movement of an external robotic 
arm that resembled the human arm configuration. Eye 
movement patterns such us saccades, fixation or blinks were 
detected from the raw eye gaze movement data by a pattern 

recognition algorithm and converted into control signals 
according to predefined protocols. The authors suggested that 
one option to extend the movement control to three-dimensional 
space was to switch between predefined action planes in which 
the EOG control would still be two-dimensional. 

While eye movement interfaces proved to be very accurate in 
two-dimensional space, three-dimensional gaze tracking is more 
challenging (Morimoto and Mimica, 2005). The three-
dimensional gaze tracking problem consists of mapping pupil 
coordinates for left and right eye to a three-dimensional point 
referenced to the user’s head coordinated. Recently, a study 
from Onose et al., (2012) investigated the feasibility of using a 
combined eye-tracking and EEG-based interface in tetraplegic 
patients for the control of a robotic arm. Two pair of head-
mounted cameras tracked the left and right pupil while a 
position and rotation of the head was measured using an 
optoelectronic system. The target point was calculated using the 
gaze-tracker while the different robot actions, such as grabbing 
the object and placing it on a drinking position, were controlled 
with the BCI. The authors conclude that the potential of the 
system was limited but real for self-assistance in tetraplegic 
patients. 

Tongue Movement Interface 
Tongue movement has been interfaced using electrical switches 
(Clayton et al., 1992), hall-effect sensors (Buchhold, 1995), 
pressure sensors (Masaki et al., 2005, commercially available) 
and by measuring changes in the inductance of an air-cored 
induction coil, by moving a ferro magnetic material attached to 
the tongue into the core of the coil (Huo et al., 2008; Struijk et 
al., 2009; Struijk, 2006). Tongue movement interfaces take 
advantage of high sensitivity and selectivity  of the tongue. 
Furthermore, in most designs the interface is placed inside the 
mouth being very inconspicuous. 

The tongue interface developed by Huo et al (2008) has the 
inductive coil mounted in front of the mouth and the user has to 
stick out the tongue to operate. This system was tested in 13 
high-level SCI patients during a navigation task with a powered 
wheelchair. The study reported that the subjects were able to 
perform the experimental task with 82% accuracy (Huo and 
Ghovanloo, 2010). 

The tongue interface developed by Struijk et al. (2009) 
integrated the induction coils under the palate where eighteen 
sensors allowed real-time proportional control of both speed and 
direction similar to a conventional joystick (Fig. 7). The 
system’s functionality was demonstrated in a pilot experiment 
with one healthy subject, where a typing rate of up to 70 
characters per minute was obtained with an error rate of 3%. 
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Recently, two alternative sensor designs based on the previously 
described system have been proposed in order to reduce the size 
of the sensor pad and increasing the easiness of wear of the oral 
interface (Lontis and Andreasen Struijk, 2012). 

___________________________________________ 
Figure 7. Tongue movement-based interfaces. Left: the inductive 
tongue control system. a: The activation unit, b: the palatal plate, c: the 
inductors. The tongue activates the sensors by placing the tongue-
mounted activation unit at or inside a coil. Right, top: the palatal plate 
with 5 sensors. a: the lead wires, b: the coils, c: the clamps keeping the 
plate in place. Right, bottom: the activation unit glued to the tongue. 

Adapted from Struijk et al. (2009). 

Head Movement Interface 
Head movements are generally measured using accelerometers 
and used to control powered-wheelchairs (Craig and Nguyen, 
2006; Fusco and Balbinot, 2011; Hinkel III, 2010; Joseph and 
Nguyen, 1998; Taylor and Nguyen, 2003). The direction of the 
inclination controls the wheelchair’s direction and the velocity 
of the wheelchair is proportional to the inclination angle. 
Artificial neural networks are usually implemented in the 
control interface to detect with higher accuracy (i.e. 97%; Craig 
and Nguyen, 2006) the movement intention of the user. 
However, all the research studies found were tested with healthy 
subjects which does not provide truly evidence of its actual 
usability in patients with severe movement impairments. 

Alternative sensors include ultrasonic sensors (Coyle, 1995) and 
camera-based interfaces (M. Baklouti et al., 2008; Malek 
Baklouti et al., 2008). An important disadvantage of the camera-
based interfaces is that their functionality largely depends on the 
light conditions which results in the need of repetitive 
calibrations during the day (Bergasa et al., 2000). 

Speech Interface 
In speech-based interfaces the voice commands of the user are 
recorded using conventional microphones and translated into 

control signals through speech recognition algorithms. 
Generally speech recognition requires training which consists of 
the recording of the voice commands and their subsequent 
manual classification. It is worth noting that there is a tradeoff 
between the amount of trained voice commands and the 
recognition accuracy of the algorithm (Fan and Li, 2010). 

Fan and Li, (2010) developed a speech-based interface for the 
control of an upper-extremity prosthesis which could recognize 
15 different voice commands with an accuracy of 96% . Speech 
has been also used to control powered wheelchairs (Simpson 
and Levine, 2002) or external robotic arms (Rogalla et al., 
2002). The main drawback of speech-based interfaces is its high 
sensitivity to ambient noise which compromises signal detection 
and classification. The recognition accuracy of the speech-based 
interface developed by Lv et al. (2008) for the control a robot 
was decreased by 30% when ambient noise was present. 

Design Considerations 

A proper design of the control interface is a prerequisite for the 
usability and acceptance of the active movement-assistive 
device. Good functional performance of the control interface is 
not sufficient to justify its clinical implementation and the 
following design considerations should be taken into account. 

Intuitiveness 
A control interface should be intuitive, enabling the user to 
operate their active movement-assistive device subconsciously 
(i.e. the way healthy people control their limbs) with a short 
training period and to think about other things while using the 
device. This kind of control may require proprioceptive 
feedback (i.e. EPP; Simpson, 1974) in cases where normal 
sensory feedback has been lost (e.g. amputees) to not only rely 
on visual feedback which requires considerable mental effort 
(Farrell et al., 2005). Another control strategy that can reduce 
the user’s mental effort is the shared-control paradigm, which 
aims at combining the intelligence of the human and of the 
robot.  Providing a certain degree of autonomy to the robot has 
been proved to increase task performance (Galán et al., 2008; 
Kim et al., 2006).  

The reviewed literature shows that most control interfaces are 
tested in laboratory environments, in which users can 
concentrate on the experimental task with minimal distractions. 
However, users in the “real world” have to deal with much more 
complex situations, where mental effort cannot be entirely (or 
even primarily) dedicated to the control of the assistive device, 
as they have to interact with other people or the environment. 
Therefore, considering that many processes run simultaneously 
in the brain, it is plausible to conjecture that noninvasive-BCIs 
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would require a considerable effort of concentration to generate 
those specific brain signals required for the control of an active 
movement-assistive device. On the other hand, peripheral 
signals such as force, EMG or ENG are more closely linked to 
the control of movement. Consequently, one could reasonably 
speculate that control interfaces using these signals would 
appear to be more natural and intuitive for the user than 
noninvasive-BCIs. An obvious exception is the case of 
paralyzed patients, for whom peripheral signals are not 
available. 

It is worth noting that research using invasive BCIs shows  
potential to provide a faster and more intuitive interface for the 
control of active movement-assistive devices since the measured 
signals present higher signal-to-noise ratio  and are more 
selective that EEG-based BCIs (Hochberg et al., 2006; Schalk 
and Leuthardt, 2011; Yanagisawa et al., 2011). However, 
invasive BCIs face substantial clinical risk due to the need for 
the implantation of the electrode arrays in or on the cortex and 
therefore research in humans has been limited. Furthermore the 
electrodes require long-term stability and consistent 
performance which still remains a challenge (McFarland and 
Wolpaw, 2008). 

Information source for the control interface 
A second consideration in the design of a control interface 
required to gain both user and clinical acceptance of active 
movement-assistive devices, is that the control interface should 
avoid the sacrifice of a “useful” body function from parallel 
systems (e.g. eye, head or tongue movement) for deriving the 
motion intention of the user. Nevertheless, signals from parallel 
systems can be used for “supplementary control” such as tuning 
control settings or switching on and off control modalities. Note 
that supplementary control is used on occasional basis and 
therefore, does not require continuous attention of the user and 
never implies the sacrifice of the parallel system functionality. 

Response Time 
Another essential feature of the control interface that has a 
determinative effect on the performance of the assistive device 
is the response time or delay (Farrell and Weir, 2007). A 
tradeoff between speed and accuracy exists regarding the control 
delay. Large delays increase accuracy of the motion intention 
detection, but at the same time, decreases responsiveness (and 
therefore performance) of the active assistive device. Farrell and 
Weir (2007) concluded that control delays should be kept below 
100 ms for proper control of myoelectric prosthesis. 

Coordination of the DOF  
From a functional point of view, a control interface for active 
movement-assistive devices should be able to coordinate 

multiple DOF simultaneously in an effective way. Coordinated 
movements would give a more natural appearance than if every 
DOF was controlled separately. Nevertheless, it is worth noting 
that the user may also need to control an individual DOF when 
performing a precision task. 

Independence 
Ideally, an active movement-assistive device should be 
completely controlled by its user and should not require 
assistance from other people (e.g. caretakers or family). 
Unfortunately, most of the reviewed devices present control 
interfaces that require considerable assistance for the 
preparation of the equipment, such as placing the sensors in the 
correct location or sensor calibration. Therefore, control 
interfaces that use implantable sensors or sensors integrated on 
the artificial plant (e.g. force sensors) inherently offer a clear 
advantage in terms of user friendliness. 

Adaptability 
In cases where active movement-assistive devices are designed 
for patients suffering from degenerative diseases (e.g. DMD), 
the control interface (and the rest of the device) should be able 
to adapt to the varying needs and capabilities of the user. Note 
that changes can occur over the short term (during a day) as well 
as over long term (years) periods. The monitoring of specific 
biomechanical descriptors could give an indication of the 
changing needs of the user and adapt the control interface to the 
new situation. Moreover this information could be used by 
clinicians to evaluate a disease’s progression. 

Even if this might not be an exhaustive list of design 
requirements for the development of control interfaces, these 
recommendations do capture the fundamental aspects that are 
clearly worth analyzing when designing control interfaces for 
active movement-assistive devices. 

 
Discussion and Conclusions 

Despite the fact that many innovative control interfaces for 
active movement-assistive devices are rapidly being developed, 
passive systems, which are usually limited in functionality but 
highly effective and easy to use, still prevail in clinical practice. 
Active movement-assistive devices have the potential of 
offering a more flexible solution adapting their performance to 
the patient’s needs and capabilities, but it is clear from literature 
that the clinical application of these devices continues to lag 
behind initial expectations. 

All the reviewed control interfaces are still far below the 
performance of the physiological movement control which 
hinders their acceptance. Each of the methods described 
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previously present unique advantages and limitations and may 
eventually find a specific application for a specific patient’s 
group. However, the rate at which these technologies are 
advancing should provide hope for the development of better 
control interfaces for active movement-assistive devices. 

It is worth noting that while there is a large variety of control 
interfaces under development and a considerable confusion as to 
which one is the most suitable for each type of impairment and 
task, only a few studies have focused on their performance 
evaluation and comparison. Currently, there is no standard 
method to evaluated the performance of control interfaces which 
prevents their objective evaluation and comparison. 

We believe that a better understanding of the limitations and 
capabilities of the different control interfaces, through objective 
and quantitative evaluations during functional tasks, can provide 
relevant information for the selection of the most suited control 
interface for a specific application. One example of this 
approach is the study from Corbett et al. (2011) which evaluates 
the performance of EMG-, force- and position-based control 
interfaces in terms of tracking error, information transmission 
rate and human-operator bandwidth during a one-dimensional 
screen-based position-tracking task. Additionally, the study 
from Guo et al. (2011) compares SMG-, EMG-, force- and wrist 
angle-based interfaces during a series of screen-based discrete 
tracking tasks with and without a simultaneous auditory 
attention task. Even though these two studies do not evaluate the 
interface performance during functional movement-tasks, they 
can provide a first insight of their potential value as control 
interfaces for active movement-assistive devices. 
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Table 1. Stratified inventory of control interfaces used for motion intention detection in active movement-assistive devices. 
C: communication; P: prosthesis; O: orthosis; E: external devices; * indicates one-time invasive method. 

HUMAN SYSTEM 
PHYSIOLOGICAL PHENOMENA 

(INTERFACE) 
SIGNAL SENSOR TRANS. PRIN. 

INTERFACE WITH 
BODY 

APPLICATION REFERENCE

CONTROLLER 
Brain Activity 

(BCI) 

Electric current 

EEG Electrode - Skin contact C/P/O/E 

Kübler and Birbaumer (2008) 
Muller-Putz and Pfurtscheller (2008) 

Galán et al. (2008) 
Pfurtscheller et al. (2000) 

MEG MEG machine Induction No contact C/O
Mellinger et al. (2007) 

Buch et al. (2008) 

Hemodynamics 

fMRI MRI machine Induction No contact C/E
Sorger et al. (2012) 

Lee et al. (2009) 

NIRS Spectrometer Photoelectric 
Near-infrared illumination 

of the brain 
C/E 

Misawa et al. (2012) 
 Sagara and Kido (2012) 

ACTUATORS 

Muscle Activation 
(MAI) 

Electric current EMG Electrode - 
Skin contact O/P/E 

Rosen et al. (2001) 
Gopura and Kiguchi (2009) 

Fleischer and Hommel (2008) 
Zecca et al. (2002) 

Cipriani et al. (2008) 
 Parker et al. (2006) 

Han et al. (2003) 

Muscle Targeted 
Reinnervation* 

P 
Kuiken et al. (2007) 
Kuiken et al. (2009) 

Muscle Contraction 
(MCI) 

Vibration MMG (PMG or AMG) 
Microphone 

Induction 
Piezoelectric 

Skin contact P 
Barry et al. (1986) 

Posatskiy and 
Chau (2012b)  

Silva et al. 
(2005) 

Silva and Chau 
(2003) Accelerometer Piezoelectric Skin contact P

Antonelli et al. 
(2009) 

Dimensional change 

MK 
Hall-effect sensor Induction Magnet on the skin P 

Kenny et al. (1999) 
Heath (2003) 

Pneumatic sensor 
Resistive 

Capacitive 
Skin contact P 

Abboudi et al. (1999) 
Curcie et al. (2001) 

SMG Ultrasound scanner Piezoelectric Skin contact P
Zheng et al. (2006) 
Chen et al. (2010) 

Electric Impedance Electrode - Electric current to skin P Kadefors and Olsson (1972) 

Stiffness MT/MK
Pressure Senor 

(force sensor resistor) 
Piezoresistive 

Skin contact O/P 
Wininger et al., (2008) 
Moromugi et al., (2004) 

Piezoelectric transducer Piezoelectric Han et al. (2012) 

Force Force Strain gauges Piezoresistive 
Tunnel cineplasty / Tendon 

exteriorized cineplasty* 
P 

Weir et al. (2001) 
Bertos et al. (1997) 

PLANT 

Movement 
(MI) 

Body Segment Translation 
Joystick 

(potentiometer/Hal- effect sensor) 
- Skin contact P/E/O

Lipschutz et al. (2011) 
Losier et al. (2011) 

Johnson et al. (2001) 
Dicianno et al. (2010) 
Maheu et al. (2011) 

Angular Displacement 
(Joint Angle) 

Goniometer 

Potentiometer - Skin contact P/O
Doubler and Childress (1984) 

Gibbons et al. (1987) 

Optic Photoelectric P/O
Shah et al. (2011) 
Herle et al. (2010) 

Strain gauge Piezoresisitive Skin contact P/O 
Orengo et al. (2009) 
Takagi et al. (2009) 

Angular 
Encoder 

Photoelectric Skin contact /No contact P/O 
Martinez-Villalpando et al. (2008) 

Font-Llagunes et al. (2011) 
 Yamada et al. (2001) 

Force / Pressure 
(FI) 

Deformation 

6 DOF Force/Torque sensor  
(strain gauges) 

Piezoresisitive 

No comtact 

P/O/E 

Abbruzzese et al. (2011) 
Ragonesi et al. (2011) 

Pressure Sensor 
(force sensor resistor) 

Skin Contact 
M. Baklouti et al. (2008) 

Huo et al. (2010) 
Lipschutz et al. (2011) 

PARALLEL 
SYSTEMS 

Eye Movement
Corneal reflection Video Camera Photoelectric 

Near-infrared illumination 
of the cornea 

P/E 
Onose et al., (2012) 

EOG Electrode - Skin contact 
Duvinage et al. (2011) 

Chen and Newman (2004) 

Head Movement Inclination

Accelerometer Piezoelectric Skin contact

E 

Hinkel III ( 2010)  
Craig and Nguyen, (2006) 
Fusco and Balbinot, (2011) 

Video camera Photoelectric No contact 
M. Baklouti et al. (2008) 

 Malek Baklouti et al. (2008) 
Ultrasonic sensor Piezoelectric Skin contact Coyle (1995) 

Mouth 

Tongue Movement 
Contact with palate 

Induction coil Induction 
Ferromagnetic material at 

the tip of the tongue 
E/C 

Huo et al. (2008) 
Struijk et al. (2009) Movement 

Speech Sound Microphone 
Induction 

Piezoelectric 
No contact P/E 

Fan and Li (2010) 
Simpson and Levine (2002) 

Rogalla et al. (2002) 



18 

   

 



 
 

 

 

 

 

 

 

 

 

 

APPENDIX B: CONSENT FORM AND INFORMATION LETTER 
  



 
 

  



   
 

INFORMATION LETTER 
 

Research Title: Evaluation of Electromyography, Force and Hand Joystick as Control 
Interface for Active Orthoses 
 
 
Dear Madam/Sir, 
We are hereby sending you this letter to ask for your participation in a study that aims 
at Evaluating the Performance of Electromyography, Force and Hand Joystick as 
Control Interface for Active Orthoses. This letter provides elaborate information about 
the research on which you can base you consent or refusal to participate in this 
experiment. This research study is part of the FLEXTENSION project. More information 
about the project can be found at the website: www.flextension.nl 
 
Background and research purpose 
Duchenne Muscular Dystrophy (DMD) is a genetic neuromuscular disease 
characterized by progressive muscle degeneration and loss of muscle strength. 
Duchenne patients are eventually unable to move their arms and become dependent 
one others for many activities of daily living. The development of an active orthosis, 
with a suitable control mechanism, would greatly increase the quality of life of these 
patients. Many options may be considered for the control of the orthosis, and at this 
point we pretend to evaluate the performance of electromyography (EMG), force and 
hand joystick as control interfaces for the active orthosis. 
 
What does the participation in the research entail? 
If you decide to participate in this study you will be asked to come once at HUMAN 
PERFORMANCE VIRTUAL REALITY LAB located on the second floor of the ‘Horstring 
West building at the University of Twente. You will be seated in a chair in front of a 
computer screen in which we will display the experimental task. Muscle activity of your 
biceps and triceps and the resulting forces will be recorded using surface electrodes 
while you perform isometric contractions. You will not notice that EMG, force and 
position of the joystick are being recorded. To assure that contractions are isometric, 
we will immobilize your forearm, using two supports, one close to the elbow and the 
other one close to the wrist. On the screen a target will be displayed that moves 
unpredictably up and down (vertically) and a cursor that you can control by contracting 
biceps and triceps or by moving the joystick with your hand. You will be asked to track 
the target with the cursor keeping the cursor as close to the target as possible. The 
experiment consists of 10 training of 30 seconds each and 3 testing trials of 3 minutes 
for each interface (i.e. EMG, force or hand joystick). Breaks of 1 minute are planned 
after each trial. The total duration of the experiment will be approximately of 1.5 hours. 
You can choose to terminate your participation at any time and for whatever reason. If 
this is the case, further participation in this experiment is excluded. Before the start of 
the experiment, all necessary information will be given and a written informed consent 
will be obtained. 
 



   
 
 
Are you eligible for participating in this experiment? 
You are eligible for participating in this experiment if you are 18 years or older and 
have no history of neuromusculoskeletal disease/trauma affecting upper extremities. 
 
Possible side effects/risks 
The participation in this research isn’t expected to result in any side effects or risks for 
the subjects. Resting periods will be granted liberally, as needed by each subject, to 
avoid muscle overwork and fatigue. 
 
Possible benefits 
The participation in this study will not bring you any personal benefit but it may 
contribute to choose the most suitable control interface for a powered upper extremity 
orthosis for Duchenne patients. 
 
Confidentiality of information and data 
The researchers will handle the participant’s data collected during the experiment 
confidentially, and ensure that no unauthorized outsiders have access to this 
information. 
 
Voluntary participation 
Your cooperation in this study is completely voluntary. Even if you do consent to 
participate in this research, you are still able to terminate your participation at any time, 
including during the experiment, and without having to give any explanation. In case 
you decide to participate in this study, you and the researcher will sign a consent form 
on the day of the experiment. 
 
 
Contacts for further information 
 
Joan Lobo Prat, MSc 
PhD Cand. Flextension project 
 
Laboratory of Biomechanical Engineering 
Faculty of Engineering Technology 
University of Twente (Horstring W218) 
 
PO Box 217 
7500 AE Enschede, The Netherlands 
Tel.: +31 (0)53 489 2720 
Mob.: +31 (0)628 286 349 
E-mail: j.loboprat@utwente.n 



CONSENT FORM 

Research Title: Evaluating the Performance of Electromyography, Force and Hand 
Joystick as Control Interface for Active Orthoses. 

I hereby confirm that I have the ‘Information Letter’ and have read and understood the 
information. I have had enough time to think about my participation and I had the 
opportunity to ask questions. These questions were satisfactorily answered. 

I consent to participate in the above mentioned medical and scientific research. 

I know that my participation is voluntary and that I may withdraw my consent at any 
time without providing any explanation. 

I give permission for the data to be processed for the purposes described in the 
Information Letter. 

Subject name: Signature: 
Date: 

Researcher name:  Signature: 
Date: 

A copy of the signed Consent Form and of the Information Letter shall be given to the 
subject. 
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EVALUATION OF ELECTROMYOGRAPHY, FORCE AND HAND 
JOYSTICK AS CONTROL INTERFACES FOR ACTIVE 

ORTHOSES 
 

ABSTRACT 

The design of an upper extremity orthosis that meets the growing needs of persons 
suffering with Duchenne Muscular Dystrophy would increase the independency and 
quality of life of these patients. At late stages of the disease a powered orthosis is 
necessary and the choice of the control interface for this device is of major importance 
as it will directly affect the user ability to control the orthosis and therefore the device 
performance. We pretend to evaluate the performance of EMG, force and hand joystick 
as control interface for active upper extremity orthosis for Duchenne patients. A first 
test was designed, consisting of a screen based one-dimensional tracking task, and will 
at this point be performed by healthy subjects. The evaluation of the control interface 
will be done in terms of tracking error, information transmission rate of the human-
machine system and human-operator bandwidth. Additionally, we will be interested in 
examining the progression of the results of the training trials, as they may provide 
useful information concerning the intuitiveness of the control interfaces. 

 

EXPERIMENT SETUP 

A screen based one-dimensional tracking task was designed to evaluate the 
performance of electromyography, force and hand joystick as control interfaces for 
active orthoses. The tracking task is presented to the subjects on a computer screen by 
means of a MATLAB graphical user interface. The target (input signal) moves 
according to an unpredictable multi-sine signal composed of 10 sinusoidal signals 
between 0.1 and 3 Hz. Subjects are asked to keep the cursor (a pink dot) as close to 
the yellow square target as possible, as this latter moves vertically in the screen. The 
final purpose being to compare and select the most appropriate control system for a 
powered upper limb orthosis, it was assured that the dynamic properties of the cursor 
resemble the ones of the human arm. 

Figure 1 shows the block diagram and the display of the experimental task. In the block 
diagram, w represents the target position, x the cursor position and u the myoelectric 
signal generated by the subject (by contracting biceps/triceps in the case of EMG and 
force or by controlling the joystick). Concerning the display, pink square and yellow dot 
are, correspondingly, target and cursor. 



   
 

 

Figure 1 - Block diagram and display of the experimental task. 

 

EXPERIMENT GOALS 

 Evaluate the performance of EMG, force and hand joystick as control input 
signal for a screen based 1D tracking task. The tracking error (normalized mean 
square error between the target signal and the path followed by the cursor) will 
give a measure of the accuracy of the task performance. Further analysis 
includes the calculation of the bandwidths and the information transmission 
rates of the human-machine system. 

 Examining the progression of the results of the training trials – look further into 
the learning phase of each interface. 

 

DATA TO BE MEASURED 

 Time (s). 
 EMG, including MVC (V). 
 Target’s position  
 Cursor’s position  
  

VARIABLES OF THE EXPERIMENT 

 Interfaces ( EMG, Force and Joystick) 

SUBJECTS 

 Eight able-bodied subjects will participate in this study.  

 

  



   
 
INFORMATION TO TRANSMIT TO THE SUBJECTS 

We designed a one-dimensional tracking test in which the target, a pink square, moves 
up and down in the screen in an unpredictable way. The goal is to keep the cursor, the 
smaller yellow dot, as close to the center of the target as possible.  

We will use three different interfaces that will allow you to control the cursor. In two of 
them, EMG and force, you will be able to move the cursor up and down by contracting 
determined muscles. As for the hand joystick, only one degree of freedom will be 
available, allowing just vertical movements of the cursor. 

The cursor position can be controlled by contracting determined muscles. We will ask 
you to sit in a chair and will immobilize your forearm in such a way that the elbow is 
flexed at 90 degrees. One support is used to fix the arm and this will guarantee 
isometric contractions; no movement will result from the contractions. The EMG 
electrodes will be placed in your biceps and triceps. Contracting the biceps, as if trying 
to flex the arm, (bringing it up in the direction of the forearm) will result in upwards 
displacement of the cursor. To move the cursor down you need to contract your triceps, 
as if trying to extend your arm. The cursor velocity is proportional to the force of the 
contraction: a stronger contraction will result in a faster movement of the cursor. 

In order to implement this velocity-controlled system, we will ask you to perform what is 
called a maximum voluntary contraction for both biceps and triceps before starting the 
trials. That is, we are going to measure the electrical activity of your muscles and the 
resulting force exercised while you contract as hard as you can. Three 3 s contractions 
will be asked for both biceps and triceps. 

Before the test trials there is a preparation and training phase. You will perform 10 
training trials similar to the test trials but shorter, each one will have a duration of 30 s. 
This will happen for each control interface. Finally, the test trials will begin. You will first 
perform three evaluation trials, each one with duration of 3 minutes.  

 

ARM POSITION 

The subject will be sited on a chair with the forearm immobilized in such a way that the 
elbow is flexed at 90 degrees. One support is used to fix the arm to the setup, in 
contact with the styloid processes. 

 

  



   
 
EXPERIMENT PROCEDURE 

1. Beforehand preparation 
 Open Simulink model 
 Run initialization form 
 Built Model 
 Connect xPC target 
 Run UDPshow.exe 
 Run 3Dmouse.exe 

 
2. Administration 

 Explanation of the objective and method of the experiment 
 Consent form 

 
3. Equipment and subject preparation 

 Adjust setup for the subject (assure that the elbow is flexed at 90 degrees – a 
pillow may be used if necessary). Attach the forearm to the support, it must be 
positioned in the styloid processes. 

 Set the gains of channels 1 and 2 of the Delsys amplifier to 1k and all others to 
0. Channel 1 corresponds to biceps, channel 2 to triceps. 

 Application of the Adhesive Sensor Interface. 
 Sensor placement: 

o Preparation of the skin. 
o Positioning the patient in a starting posture. 
o Determination of the sensor location. (see Figure 1). 
o Placement and fixation of the sensor: 

 inter electrode distance (if applicable); 
 orientation of electrodes; 
 fixation on the skin; 
 location of the reference electrode. 

 
o Testing of the connection. 

 
 

 

Figure 2 - Electrode location on the biceps brachii and on the long head of the triceps brachii. 

 



   
 
DATA COLLECTION DURING THE EXPERIMENT 

 

Subject name/number: Date: 

Task Duration Saved file 
Comments 

(Calculated values: 
MVC, tracking error) 

We start by asking you to perform what is called a MVC for both biceps and triceps. That is, we are going to measure the EMG of 
the muscle while you contract it as hard as you can for three seconds. 

Calibration EMG offset 
-    

Force offset  

MVC 3 Biceps 30 s 
 

 
3 Triceps 30 s  

Interface 1 

Training 
trials 

30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   

Evaluation 
trials 

3 min   
3 min   
3 min   

  



   
 

Interface 2 

Training 
trials 

30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   

Evaluation 
trials 

3 min   
3 min   
3 min   

Interface 3 

Training 
trials 

30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   
30 s   

Evaluation 
trials 

3 min   
3 min   
3 min   

 

Order of preference:  1)    2)    3)     
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DATA

X_target
X_cursor
U_EMG
U_force

U_joystick

TRACKING 
ERROR
get_See

FRF
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Learning 
curves
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Bandwidth
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Model
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1. Introduction 

 

Active orthoses can increase the independence of and quality of life for patients with severe neuromusculoskeletal 
disorders. The operation of these active assistive devices is mediated by a control interface. The selection of the 
interface strategy to control the device according to each user’s needs and capabilities – which may change over 
time – is crucial for the usability and proper functioning of the active movement-assistive device. Currently, many 
control interfaces exist and it remains unclear which strategy is most suited to each type of impairment and task. 

A better understanding of the limitations and capabilities of the different control interfaces, through objective and 
quantitative evaluations, can provide the relevant information for the selection of the most suited control interface 
for an specific application.   

The goal of this study was to quantitatively evaluate the performance and the learning characteristics of force-, 
EMG- and hand joystick-based interfaces. The human operator abilities were tested using a screen-based one-
dimensional position-tracking task, where the interface signal (u) is mapped to the velocity of the cursor. The 
target (w) was moving according to a multi-sine signal with a flat velocity spectrum. 

The performance of the control interface was evaluated in terms of tracking error, human-operator bandwidth and 
information transmission rate. The learning characteristics were evaluated by analyzing the tracking error along a 
series of training trials. Furthermore, the subjects were asked to list the control interfaces in order of preference.  

Preliminary results from 6 subjects show that force-, EMG- and joystick-based interfaces present very similar 
results in terms of tracking error. However, force- and joystick-based interfaces show considerably higher 
information transmission rate but lower bandwidth than EMG-based interface. Five of the six subjects stated that 
force-based interface was the most preferred interface followed by EMG- and joystick-based interface. 
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2. Time Domain Analysis 

2.1. Learning Curves 
Tracking Error Comparison 

  

 
Notes: One outlier was detected and excluded for the 6th EMG training trial of one subject. Weights given by 1/variance were 
used. Mean (fitted model: f(x) = a*exp(b*x) + c*exp(d*x)) 
 
Observations: Curve fitting of the EMG learning curve is not realistic. If the curve fitting does not take into account the 
variance the fitting is realistic. Learning is clearly observed for both interfaces. 
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First results with the new joystick (3 subjects) 

 
Observations: Although these results refer only to 3 subjects, it seems that the joystick tracking error is slightly inferior to 
both EMG and Force. However, it is not clear whether or not learning can be observed for this interface. 
 
 
2.2. Tracking Error 
 

Tracking Error Comparison 

Note: First 5s are not taken into account. Joystick tracking error corresponds to only 3 subjects. 
 
Observations: Mean tracking errors for all three interfaces are very similar.Force-based interface presents a considerably 
lower standard deviation of the tracking error than EMG-based interface. 
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Velocity – Tracking Error dependency Learning curve using PSD of error signal (See) 

  
Observations: The tracking error is dependent to the target velocity. Because of the random phase of the multisine signal, the target does 
not have the same speed in all trials.  This results in ~20% of uncertenty of the tracking error. This could be solved by using always the 
same multisine signal. Another approach would be to estimate the traking error for the frequency domain taking the integral of the PSD of 
the error signal (See). 
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2.3. Alternative to Tracking Error: Integral of See (form 0Hz to 20Hz) 
 

Box plots of the See area for the 3 evaluation trials: 

 

As can be seen from the EMG plot, subject 5 had an unexpectedly high tracking error for one of the trials and is therefore 
detected as an outlier when the box plot of the mean for all subjects is computed. 

 

Tracking Error Comparison 

Notes: Delete outliers version 2 - Outlier detection is performed between subjects (after the See sum). This resulted in the 
exclusion of Subject 5 for EMG. 
Observations: The area of the PSD of the error signal can give a more reliable measure of accuracy of the interface in the 
tracking task. The See area is very similar for EMG and Force; slightly inferior for Force when outliers aren’t detected but 
slightly larger when they are. 
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2.4. Effort comparison (EMG vs Force) 
 

 
Amount of Force comparison Amount of EMG comparison 

Observations: The amount of force (area of %MVF) is similar in all subjects when using the force-based interface. In 
contrast, the amount of EMG (area of %MVC) presents a higher intra-subject variability. This could be caused by the 
inherent differences in the control strategy between EMG and Force. 
 
In the case of the EMG-based interface the direction of movement is determined depending on which muscle (biceps or 
triceps) is more active. In the Force-based interface the direction of movement is determined depending on the sign of the 
measured force. In both cases the velocity of the cursor is proportional to the amplitude of the signal. 
 

 

Co-contraction comparison 

 
 

Observations: No considerable differences of co-contraction levels can be observed between Force-based interface and 
EMG-based interface. 
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3. Frequency Domain Analysis 

Power spectral densities and cross-spectral densities were calculated using the fast-Fourier transform. For these calculations, 
the first cycle of 30 s was not taken into account. The remaining 5 cycles of the signals were averaged. Furthermore, for each 
subject, an average of spectral densities over the 3 evaluation trials was performed. 

3.1. Power Spectral Densities 
 

Input PSD Human output PSD 

  
  

 
System Output PSD Error PSD 
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3.2. Frequency Response Functions 
 

Hhuman =
Swu
Swe 																																								Hsystem =

Swx
Swu 																																																			Hcs =

Swx
Sww 

 

3.2.1. EMG-based interface 
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EMG FRF of subject 5 

Problem with the phase is probably due to an abnormal error during the 1st evaluation trial (see figure). If we don’t take into 
account this trial, Hsys is far closer to the obtained with the other subjects. 
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3.2.2. FORCE-based interface 
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3.2.3. Average of all subjects 
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3.2.4. First results with the new joystick. 
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3.3. Information Transmission Rate 
 

Ṫ =
1

NT
෍ logଶ ൤

S୶୶(f୩)
S୶୶(f୩)− |H(f୩)|ଶS୵୵(f୩)

൨
୤ౡ∈୏

																										H(f୩) =
S୵୶(f୩)
S୵୵(f୩) 

K = {0.100,0.133,0.200,0.300,0.467,0.667,0.967,1.400,2.067,3.000} 

 

Note: Joystick – 3 subjects. 

Observations: Force-based interface presents a higher information transmission rate and a considerably lower standard 
deviation than EMG-based interface. 
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3.4. Bandwidth 
The human-operator bandwidth is obtained from Hcs. Since information is only available at the 10 excited frequencies, linear 
interpolation between these values was performed. The value at 0.1 Hz (1st frequency) is obtained and the bandwidth is 
defined as the frequency at which this value drops -3 dB (70%). 

 

As for EMG, this 3 dB drop is not observed before 3 Hz (last frequency). 

As we need a definition that holds for all interfaces, we defined the maximum as the mean value from 0.1 to 0.467 Hz. With 
this definition, we obtained a slightly larger bandwidth for EMG than for Force. 
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3.5. Parameter estimation 
 

3.5.1. Training trials 
The model Hmod	 = 	K	 × 	exp(−delay × s) was fitted to Hhuman for the 10 training trials (in the figure: subject 8, training 
trial number 4). Gain and delay parameters along training trials were computed. 

 

Subject 8 

Force K 8,69 8,24 9,82 8,22 9,19 9,80 10,09 9,33 9,41 8,69 
Delay 0,23 0,26 0,25 0,27 0,26 0,23 0,27 0,26 0,27 0,23 

EMG K 10,58 7,23 8,93 9,63 9,30 10,54 10,85 8,64 10,28 10,58 
Delay 0,10 0,17 0,10 0,14 0,25 0,13 0,12 0,10 0,12 0,10 

 

Subject 7 

Force K 7,82 6,51 7,30 7,97 7,87 8,01 7,87 7,91 7,21 7,82 
Delay 0,25 0,27 0,27 0,27 0,25 0,23 0,24 0,24 0,24 0,25 

EMG K 7,59 5,74 6,58 6,53 6,02 7,46 8,00 7,95 7,11 7,59 
Delay 0,13 0,19 0,15 0,14 0,17 0,19 0,15 0,14 0,14 0,13 

 

  

10
-1

10
0

10
1

10
0

10
1

10
2

G
ai

n 
[-]

Hhuman

 

 Force
EMG
Force model
EMG model

10
-1

10
0

-400

-200

0

P
ha

se
 [d

eg
]

10
-1

10
0

10
1

0

0.5

1

f [Hz]

C
oh

2



   
 

18 
 
 

3.5.2. Evaluation trials 

 

 

RESULTS OF PARAMETER FIT 

 

Interface                          K      delay 

--------------------------------------------------------------------- 

EMG                            6.994      0.184 

Force                            6.280      0.249 
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APPENDIX F: OUTPUT FROM THE STATISTICAL ANALYSIS 

 
  



 
 

  



BANDWIDTH



GLM EMG FOR JOY

 /WSFACTOR=Interface 3 Polynomial
 /METHOD=SSTYPE(3)

 /PLOT=PROFILE(Interface)
 /EMMEANS=TABLES(Interface) COMPARE ADJ(BONFERRONI)

 /PRINT=DESCRIPTIVE
 /CRITERIA=ALPHA(.05)

 /WSDESIGN=Interface.

General Linear Model

[DataSet0] 

Within-Subjects Factors

Measure: MEASURE_1

Interface
Dependent 

Variable
1
2
3

EMG
FOR
JOY

Measure: MEASURE_1

Descriptive Statistics

Mean Std. Deviation N
EMG
FOR
JOY

2,6048 ,31429 14
2,0690 ,19147 14
2,0071 ,27524 14

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.
Interface Pillai's Trace

Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

,817 26,715b 2,000 12,000 ,000
,183 26,715b 2,000 12,000 ,000

4,453 26,715b 2,000 12,000 ,000
4,453 26,715b 2,000 12,000 ,000

Design: Intercept 
 Within Subjects Design: Interface

a. 

Exact statisticb.

Page 1



Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect Mauchly's W
Approx. Chi-

Square df Sig.

Epsilonb

Greenhouse-
Geisser

Interface ,885 1,470 2 ,479 ,897

Measure: MEASURE_1

Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect

Epsilonb

Huynh-Feldt Lower-bound
Interface 1,000 ,500

Measure: MEASURE_1

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix.

Design: Intercept 
 Within Subjects Design: Interface

a. 

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests 
are displayed in the Tests of Within-Subjects Effects table.

b. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum 

of Squares df Mean Square F
Interface Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interface) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

3,024 2 1,512 29,162
3,024 1,793 1,686 29,162
3,024 2,000 1,512 29,162
3,024 1,000 3,024 29,162
1,348 26 ,052
1,348 23,312 ,058
1,348 26,000 ,052
1,348 13,000 ,104

Measure: MEASURE_1

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source Sig.
Interface Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interface) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

,000
,000
,000
,000

Measure: MEASURE_1

Page 2



Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source Interface
Type III Sum 

of Squares df Mean Square F Sig.
Interface Linear

Quadratic
Error(Interface) Linear

Quadratic

2,500 1 2,500 57,414 ,000
,524 1 ,524 8,709 ,011
,566 13 ,044
,782 13 ,060

Measure: MEASURE_1

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Source
Type III Sum 

of Squares df Mean Square F Sig.
Intercept
Error

208,297 1 208,297 1937,557 ,000
1,398 13 ,108

Measure: MEASURE_1

Estimated Marginal Means

Interface

Estimates

Measure: MEASURE_1

Interface Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1
2
3

2,605 ,084 2,423 2,786
2,069 ,051 1,958 2,180
2,007 ,074 1,848 2,166

Measure: MEASURE_1

Pairwise Comparisons

Measure: MEASURE_1

(I) Interface (J) Interface

Mean 
Difference (I-

J) Std. Error Sig.b

95% Confidence Interval for 
Differenceb

Lower Bound Upper Bound
1 2

3
2 1

3
3 1

2

,536* ,100 ,000 ,262 ,809
,598* ,079 ,000 ,381 ,814

-,536* ,100 ,000 -,809 -,262
,062 ,078 1,000 -,152 ,276

-,598* ,079 ,000 -,814 -,381
-,062 ,078 1,000 -,276 ,152

Measure: MEASURE_1

Based on estimated marginal means
The mean difference is significant at the ,05 level.*. 

Adjustment for multiple comparisons: Bonferroni.b.
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Multivariate Tests

Value F Hypothesis df Error df Sig.
Pillai's trace
Wilks' lambda
Hotelling's trace
Roy's largest root

,817 26,715a 2,000 12,000 ,000
,183 26,715a 2,000 12,000 ,000

4,453 26,715a 2,000 12,000 ,000
4,453 26,715a 2,000 12,000 ,000

Each F tests the multivariate effect of Interface. These tests are based on the 
linearly independent pairwise comparisons among the estimated marginal means.

Exact statistica.

Profile Plots
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EFFORT MEASURE



GLM VAR00001 VAR00003 VAR00006

 /WSFACTOR=Interfaces 3 Polynomial
 /METHOD=SSTYPE(3)

 /PLOT=PROFILE(Interfaces)
 /EMMEANS=TABLES(Interfaces) COMPARE ADJ(BONFERRONI)

 /PRINT=DESCRIPTIVE
 /CRITERIA=ALPHA(.05)

 /WSDESIGN=Interfaces.

General Linear Model

[DataSet0] 

Within-Subjects Factors

Measure: MEASURE_1

Interfaces
Dependent 

Variable
1
2
3

VAR00001
VAR00003
VAR00006

Measure: MEASURE_1

Descriptive Statistics

Mean Std. Deviation N
VAR00001
VAR00003
VAR00006

7.9312 .32686 20
7.4494 .25652 20
7.9132 .56458 20

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.
Interfaces Pillai's Trace

Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

.753 27.502b 2.000 18.000 .000

.247 27.502b 2.000 18.000 .000
3.056 27.502b 2.000 18.000 .000
3.056 27.502b 2.000 18.000 .000

Design: Intercept 
 Within Subjects Design: Interfaces

a. 

Exact statisticb.

Page 1



Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect Mauchly's W
Approx. Chi-

Square df Sig.

Epsilonb

Greenhouse-
Geisser

Interfaces .524 11.635 2 .003 .677

Measure: MEASURE_1

Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect

Epsilonb

Huynh-Feldt Lower-bound
Interfaces .711 .500

Measure: MEASURE_1

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix.

Design: Intercept 
 Within Subjects Design: Interfaces

a. 

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests 
are displayed in the Tests of Within-Subjects Effects table.

b. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum 

of Squares df Mean Square F
Interfaces Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interfaces) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

2.984 2 1.492 10.297
2.984 1.355 2.202 10.297
2.984 1.422 2.098 10.297
2.984 1.000 2.984 10.297
5.506 38 .145
5.506 25.744 .214
5.506 27.027 .204
5.506 19.000 .290

Measure: MEASURE_1

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source Sig.
Interfaces Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interfaces) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

.000

.002

.001

.005

Measure: MEASURE_1
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source Interfaces
Type III Sum 

of Squares df Mean Square F Sig.
Interfaces Linear

Quadratic
Error(Interfaces) Linear

Quadratic

.003 1 .003 .016 .902
2.981 1 2.981 36.941 .000
3.973 19 .209
1.533 19 .081

Measure: MEASURE_1

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Source
Type III Sum 

of Squares df Mean Square F Sig.
Intercept
Error

3617.327 1 3617.327 17942.363 .000
3.831 19 .202

Measure: MEASURE_1

Estimated Marginal Means

Interfaces

Estimates

Measure: MEASURE_1

Interfaces Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1
2
3

7.931 .073 7.778 8.084
7.449 .057 7.329 7.569
7.913 .126 7.649 8.177

Measure: MEASURE_1

Pairwise Comparisons

Measure: MEASURE_1

(I) Interfaces (J) Interfaces

Mean 
Difference (I-

J) Std. Error Sig.b

95% 
Confidence ...b

Lower Bound
1 2

3
2 1

3
3 1

2

.482* .068 .000 .303
.018 .145 1.000 -.362

-.482* .068 .000 -.661
-.464* .134 .008 -.815
-.018 .145 1.000 -.398
.464* .134 .008 .112

Measure: MEASURE_1
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Pairwise Comparisons

Measure: MEASURE_1

(I) Interfaces (J) Interfaces

95% 
Confidence ...b

Upper Bound
1 2

3
2 1

3
3 1

2

.661

.398
-.303
-.112
.362
.815

Measure: MEASURE_1

Based on estimated marginal means
The mean difference is significant at the .05 level.*. 

Adjustment for multiple comparisons: Bonferroni.b.

Multivariate Tests

Value F Hypothesis df Error df Sig.
Pillai's trace
Wilks' lambda
Hotelling's trace
Roy's largest root

.753 27.502a 2.000 18.000 .000

.247 27.502a 2.000 18.000 .000
3.056 27.502a 2.000 18.000 .000
3.056 27.502a 2.000 18.000 .000

Each F tests the multivariate effect of Interfaces. These tests are based on the 
linearly independent pairwise comparisons among the estimated marginal means.

Exact statistica.

Profile Plots
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INFORMATION TRANSMISSION RATE



GLM EMG FOR JOY

 /WSFACTOR=Interface 3 Polynomial
 /METHOD=SSTYPE(3)

 /PLOT=PROFILE(Interface)
 /EMMEANS=TABLES(Interface) COMPARE ADJ(BONFERRONI)

 /PRINT=DESCRIPTIVE
 /CRITERIA=ALPHA(.05)

 /WSDESIGN=Interface.

General Linear Model

[DataSet0] 

Within-Subjects Factors

Measure: MEASURE_1

Interface
Dependent 

Variable
1
2
3

EMG
FOR
JOY

Measure: MEASURE_1

Descriptive Statistics

Mean Std. Deviation N
EMG
FOR
JOY

3,1353 ,25632 19
3,4850 ,24867 19
3,4922 ,22674 19

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.
Interface Pillai's Trace

Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

,481 7,868b 2,000 17,000 ,004
,519 7,868b 2,000 17,000 ,004
,926 7,868b 2,000 17,000 ,004
,926 7,868b 2,000 17,000 ,004

Design: Intercept 
 Within Subjects Design: Interface

a. 

Exact statisticb.
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Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect Mauchly's W
Approx. Chi-

Square df Sig.

Epsilonb

Greenhouse-
Geisser

Interface ,766 4,540 2 ,103 ,810

Measure: MEASURE_1

Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect

Epsilonb

Huynh-Feldt Lower-bound
Interface ,879 ,500

Measure: MEASURE_1

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix.

Design: Intercept 
 Within Subjects Design: Interface

a. 

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests 
are displayed in the Tests of Within-Subjects Effects table.

b. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum 

of Squares df Mean Square F
Interface Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interface) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

1,581 2 ,791 12,310
1,581 1,620 ,976 12,310
1,581 1,757 ,900 12,310
1,581 1,000 1,581 12,310
2,312 36 ,064
2,312 29,165 ,079
2,312 31,632 ,073
2,312 18,000 ,128

Measure: MEASURE_1

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source Sig.
Interface Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interface) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

,000
,000
,000
,003

Measure: MEASURE_1
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source Interface
Type III Sum 

of Squares df Mean Square F Sig.
Interface Linear

Quadratic
Error(Interface) Linear

Quadratic

1,210 1 1,210 14,542 ,001
,372 1 ,372 8,208 ,010

1,498 18 ,083
,815 18 ,045

Measure: MEASURE_1

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Source
Type III Sum 

of Squares df Mean Square F Sig.
Intercept
Error

647,653 1 647,653 12830,891 ,000
,909 18 ,050

Measure: MEASURE_1

Estimated Marginal Means

Interface

Estimates

Measure: MEASURE_1

Interface Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1
2
3

3,135 ,059 3,012 3,259
3,485 ,057 3,365 3,605
3,492 ,052 3,383 3,601

Measure: MEASURE_1

Pairwise Comparisons

Measure: MEASURE_1

(I) Interface (J) Interface

Mean 
Difference (I-

J) Std. Error Sig.b

95% Confidence Interval for 
Differenceb

Lower Bound Upper Bound
1 2

3
2 1

3
3 1

2

-,350* ,089 ,003 -,586 -,114
-,357* ,094 ,004 -,604 -,110
,350* ,089 ,003 ,114 ,586
-,007 ,059 1,000 -,164 ,149
,357* ,094 ,004 ,110 ,604
,007 ,059 1,000 -,149 ,164

Measure: MEASURE_1

Based on estimated marginal means
The mean difference is significant at the ,05 level.*. 

Adjustment for multiple comparisons: Bonferroni.b.
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Multivariate Tests

Value F Hypothesis df Error df Sig.
Pillai's trace
Wilks' lambda
Hotelling's trace
Roy's largest root

,481 7,868a 2,000 17,000 ,004
,519 7,868a 2,000 17,000 ,004
,926 7,868a 2,000 17,000 ,004
,926 7,868a 2,000 17,000 ,004

Each F tests the multivariate effect of Interface. These tests are based on the 
linearly independent pairwise comparisons among the estimated marginal means.

Exact statistica.

Profile Plots

Interface
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TRACKING ERROR



NEW FILE.

DATASET NAME DataSet1 WINDOW=FRONT.
DATASET ACTIVATE DataSet1.

DATASET CLOSE DataSet0.
EXAMINE VARIABLES=EMG FOR JOY

  /PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT
  /COMPARE GROUPS

  /PERCENTILES(5,10,25,50,75,90,95) HAVERAGE
  /STATISTICS DESCRIPTIVES EXTREME

  /CINTERVAL 95
  /MISSING LISTWISE

  /NOTOTAL.

Explore

[DataSet1] 

Case Processing Summary

Cases
Valid Missing Total

N Percent N Percent N Percent
EMG
FOR
JOY

102 86,4% 16 13,6% 118 100,0%
102 86,4% 16 13,6% 118 100,0%
102 86,4% 16 13,6% 118 100,0%
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Descriptives

Statistic Std. Error
EMG Mean

95% Confidence Interval for Mean Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

FOR Mean
95% Confidence Interval for Mean Lower Bound

Upper Bound
5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

JOY Mean
95% Confidence Interval for Mean Lower Bound

Upper Bound
5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

119151,7875 3079,42511
113043,0364
125260,5385
117145,0911
119276,3975
967251616,2
31100,66906

70073,89
220920,54
150846,65
43775,55

,874 ,239
1,061 ,474

120785,9283 2047,77672
116723,6902
124848,1665
119488,3251
118215,8835
427725727,4
20681,53107

86129,73
192168,57
106038,84
26805,74

,923 ,239
1,140 ,474

131176,8800 2286,13403
126641,8050
135711,9549
130455,0627
128530,2508
533093696,7
23088,82190

79345,41
201934,94
122589,53
31617,51

,467 ,239
,107 ,474
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Percentiles

Percentiles
5 10 25 50

Weighted Average(Definition 1) EMG
FOR
JOY

Tukey's Hinges EMG
FOR
JOY

75584,0955 83478,5017 92561,4323 119276,3975
92338,4472 97221,6833 105728,8786 118215,8835
96968,5852 101790,7564 114693,5250 128530,2508

92712,9334 119276,3975
105747,9976 118215,8835
114894,0313 128530,2508

Percentiles

Percentiles
75 90 95

Weighted Average(Definition 1) EMG
FOR
JOY

Tukey's Hinges EMG
FOR
JOY

136336,9863 153749,0155 182332,1817
132534,6226 144888,1695 167624,6810
146311,0310 163233,3910 171641,7079
136093,8528
132474,1677
146249,9020

Extreme Values

Case Number Value
EMG Highest 1

2
3
4
5

Lowest 1
2
3
4
5

FOR Highest 1
2
3
4
5

Lowest 1
2
3
4
5

JOY Highest 1
2
3

47 220920,54
19 215644,59
88 196844,66
46 196033,17
91 182927,60
58 70073,89
67 71268,00
71 72393,74
69 72726,11
85 74874,07
20 192168,57
45 174706,77

2 174587,77
16 170894,53
42 167795,39
72 86129,73
71 87704,81
73 88176,47
64 90773,06
17 92249,24
76 201934,94
80 190651,90
74 176838,34
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Extreme Values

Case Number Value
4
5

Lowest 1
2
3
4
5

77 175940,62
63 171715,63
99 79345,41
16 92405,21

102 95797,97
101 95865,46

7 96931,19

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

EMG
FOR
JOY

,081 102 ,099 ,942 102 ,000
,076 102 ,156 ,948 102 ,001
,079 102 ,119 ,983 102 ,219

Lilliefors Significance Correctiona. 

EMG

EMG

220000,00

200000,00

180000,00

160000,00

140000,00

120000,00

100000,00

80000,00

Fr
eq

ue
nc

y

20

15

10

5

0

Histogram

Mean = 119151,79
Std. Dev. = 31100,669
N = 102
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EMG Stem-and-Leaf Plot

 Frequency    Stem &  Leaf

     7,00        7 .  0122499

    12,00        8 .  023355667889
    14,00        9 .  01111222446899

    11,00       10 .  00134677999
     7,00       11 .  1134467

    16,00       12 .  1122555666799999
    17,00       13 .  00122235567888999

     7,00       14 .  1245669
     2,00       15 .  05

     2,00       16 .  05
     2,00       17 .  38

     1,00       18 .  2
     2,00       19 .  66

     2,00 Extremes    (>=215645)

 Stem width:  10000,00
 Each leaf:       1 case(s)
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Observed Value
250.000200.000150.000100.00050.000

Ex
pe

ct
ed

 N
or

m
al

4

2

0

-2

Normal Q-Q Plot of EMG
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Observed Value
250.000200.000150.000100.00050.000

D
ev

 fr
om

 N
or

m
al

1,2

1,0

0,8

0,6

0,4

0,2

0,0

-0,2

Detrended Normal Q-Q Plot of EMG
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EMG

250.000

200.000

150.000

100.000

50.000

47
19

FOR
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FOR
180000,00160000,00140000,00120000,00100000,0080000,00

Fr
eq

ue
nc

y

20

15

10

5

0

Histogram

Mean = 120785,93
Std. Dev. = 20681,531
N = 102

FOR Stem-and-Leaf Plot

 Frequency    Stem &  Leaf

     3,00        8 .  678

     5,00        9 .  02244
     7,00        9 .  6778889

     9,00       10 .  111112333
    10,00       10 .  5567788999

     9,00       11 .  011112234
    14,00       11 .  55777778888899

     8,00       12 .  01233444
     8,00       12 .  67778899

     7,00       13 .  0012234
     8,00       13 .  56677778

     4,00       14 .  0134
     3,00       14 .  578

      ,00       15 .
     1,00       15 .  8

      ,00       16 .
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     2,00       16 .  67

     1,00       17 .  0
     3,00 Extremes    (>=174588)

 Stem width:  10000,00

 Each leaf:       1 case(s)

Observed Value
200.000180.000160.000140.000120.000100.00080.000

Ex
pe

ct
ed

 N
or

m
al

4

2

0

-2

Normal Q-Q Plot of FOR
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Observed Value
200.000180.000160.000140.000120.000100.00080.000

D
ev

 fr
om

 N
or

m
al

1,2

1,0

0,8

0,6

0,4

0,2

0,0

-0,2

Detrended Normal Q-Q Plot of FOR
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FOR

200.000

180.000

160.000

140.000

120.000

100.000

80.000

20

45

2

JOY
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JOY
200000,00180000,00160000,00140000,00120000,00100000,0080000,00

Fr
eq

ue
nc

y

20

15

10

5

0

Histogram

Mean = 131176,88
Std. Dev. = 23088,822
N = 102

JOY Stem-and-Leaf Plot

 Frequency    Stem &  Leaf

     1,00        7 .  9

      ,00        8 .
     7,00        9 .  2556789

     8,00       10 .  01223448
    18,00       11 .  000113334455667899

    20,00       12 .  00012234444667778899
    14,00       13 .  00001233477799

    11,00       14 .  00223346668
    12,00       15 .  011334556777

     4,00       16 .  0456
     5,00       17 .  01156

      ,00       18 .
     1,00       19 .  0

     1,00 Extremes    (>=201935)

 Stem width:  10000,00
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 Each leaf:       1 case(s)

Observed Value
200.000175.000150.000125.000100.00075.000

Ex
pe

ct
ed

 N
or

m
al

4

2

0

-2

Normal Q-Q Plot of JOY
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Observed Value
210.000180.000150.000120.00090.000

D
ev

 fr
om

 N
or

m
al

0,8

0,6

0,4

0,2

0,0

-0,2

Detrended Normal Q-Q Plot of JOY

Page 15



JOY

210.000

180.000

150.000

120.000

90.000

76

GLM EMG FOR JOY
  /WSFACTOR=Interface 3 Polynomial

  /METHOD=SSTYPE(3)
  /PLOT=PROFILE(Interface)

  /EMMEANS=TABLES(Interface) COMPARE ADJ(BONFERRONI)
  /PRINT=DESCRIPTIVE

  /CRITERIA=ALPHA(.05)
  /WSDESIGN=Interface.

General Linear Model

[DataSet1] 

Within-Subjects Factors

Measure: MEASURE_1

Interface
Dependent 

Variable
1
2
3

EMG
FOR
JOY

Measure: MEASURE_1
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Descriptive Statistics

Mean Std. Deviation N
EMG
FOR
JOY

117284,3191 27882,08398 96
119425,2082 18119,94216 96
130879,5418 22287,83436 96

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.
Interface Pillai's Trace

Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

,133 7,202b 2,000 94,000 ,001
,867 7,202b 2,000 94,000 ,001
,153 7,202b 2,000 94,000 ,001
,153 7,202b 2,000 94,000 ,001

Design: Intercept 
 Within Subjects Design: Interface

a. 

Exact statisticb. 

Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect Mauchly's W
Approx. Chi-

Square df Sig.

Epsilonb

Greenhouse-
Geisser

Interface ,849 15,390 2 ,000 ,869

Measure: MEASURE_1

Mauchly's Test of Sphericitya

Measure: MEASURE_1

Within Subjects Effect

Epsilonb

Huynh-Feldt Lower-bound
Interface ,884 ,500

Measure: MEASURE_1

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix.

Design: Intercept 
 Within Subjects Design: Interface

a. 

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests 
are displayed in the Tests of Within-Subjects Effects table.

b. 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum 

of Squares df Mean Square F
Interface Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interface) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

10259687836 2 5129843918 8,862
10259687836 1,738 5904591478 8,862
10259687836 1,767 5805824651 8,862
10259687836 1,000 10259687836 8,862

1.100E+11 190 578856299.7
1.100E+11 165,070 666279526.0
1.100E+11 167,878 655134586.4
1.100E+11 95,000 1157712599

Measure: MEASURE_1

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source Sig.
Interface Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error(Interface) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

,000
,000
,000
,004

Measure: MEASURE_1

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source Interface
Type III Sum 

of Squares df Mean Square F Sig.
Interface Linear

Quadratic
Error(Interface) Linear

Quadratic

8871843881 1 8871843881 11,046 ,001
1387843956 1 1387843956 3,914 ,051

76301109707 95 803169575.9
33681587232 95 354543023.5

Measure: MEASURE_1

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Source
Type III Sum 

of Squares df Mean Square F Sig.
Intercept
Error

4.324E+12 1 4.324E+12 9721,471 ,000
42253897810 95 444777871.7

Measure: MEASURE_1

Estimated Marginal Means

Interface
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Estimates

Measure: MEASURE_1

Interface Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1
2
3

117284,319 2845,703 111634,884 122933,754
119425,208 1849,359 115753,767 123096,650
130879,542 2274,743 126363,607 135395,477

Measure: MEASURE_1

Pairwise Comparisons

Measure: MEASURE_1

(I) Interface (J) Interface

Mean 
Difference (I-

J) Std. Error Sig.b

95% Confidence Interval for 
Differenceb

Lower Bound Upper Bound
1 2

3
2 1

3
3 1

2

-2140,889 3068,578 1,000 -9619,353 5337,574
-13595,223* 4090,562 ,004 -23564,375 -3626,071

2140,889 3068,578 1,000 -5337,574 9619,353
-11454,334* 3166,962 ,001 -19172,569 -3736,098
13595,223* 4090,562 ,004 3626,071 23564,375
11454,334* 3166,962 ,001 3736,098 19172,569

Measure: MEASURE_1

Based on estimated marginal means
The mean difference is significant at the ,05 level.*. 

Adjustment for multiple comparisons: Bonferroni.b. 

Multivariate Tests

Value F Hypothesis df Error df Sig.
Pillai's trace
Wilks' lambda
Hotelling's trace
Roy's largest root

,133 7,202a 2,000 94,000 ,001
,867 7,202a 2,000 94,000 ,001
,153 7,202a 2,000 94,000 ,001
,153 7,202a 2,000 94,000 ,001

Each F tests the multivariate effect of Interface. These tests are based on the 
linearly independent pairwise comparisons among the estimated marginal means.

Exact statistica. 

Profile Plots
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Interface
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132000,00

130000,00

128000,00

126000,00

124000,00

122000,00

120000,00

118000,00

Estimated Marginal Means of MEASURE_1
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