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Abstract—The radar resource management problem in a multi-
target tracking scenario for multi-function radar is considered.
To solve it, an optimal balancing of the sensor budget by applying
Lagrangian relaxation and the subgradient method is proposed.
In a time-invariant scenario it is shown that the proposed method
will lead to balanced budgets based on track parameters like
maneuverability and measurement uncertainty. Moreover, since
real world applications quickly lead to time-varying scenarios, it
is demonstrated how the approach can be extended to such cases.
Furthermore the proposed method is compared with other budget
assignment strategies. This paper is the first step into exploring
optimal non-myopic solutions using a POMDP framework for
surveillance radar applications involving detection, tracking and
classification.

Index Terms—Radar Resource Management, Lagrangian Re-
laxation, Steady-State Kalman Filter, Subgradient Method

I. INTRODUCTION

Due to various technological improvements, the degrees of

freedom of radar systems have increased significantly in recent

decades [1]. The most notable examples of such improvements

are the rise of phased-array antennas, digital beamforming

(DBF) on transmit and receive, as well as digital waveform

generation. This has led to a shift in radar systems from highly

specialized systems that focus mostly on a single application

towards so-called multi-function radar (MFR) systems that are

able to execute multiple functions jointly [2]. Among those

functions are surveillance related functions, such as object

detection, tracking and classification.

One of the major problems faced by MFR systems during

operation are limited resources, especially the sensor time

budget. If the radar parameters are being determined online

and independently of the other tasks, the total requested time

budget often exceeds the available budget. In such a case,

drastic load limiting measures will be invoked that may po-

tentially have dramatic effects on system performance. In order

to avoid such overload situations, radar resource management

(RRM) has to distribute the available budget over all radar

tasks in an optimal, operationally relevant manner. In [3],

it has been suggested that such an optimal approach could

significantly improve the radar performance compared to ad-

hoc approaches.

Various approaches to optimally solve RRM problems have

already been suggested in the past, but current management

schemes still include a lot of heuristics and a truly optimal

solution is not yet available. Especially having phased array

MFR applications like for instance air/surface surveillance

radars in mind, we would like to develop more sound ap-

proaches to tackle this problem. Our main interest lies in

exploring optimal non-myopic solutions to the RRM problem,

taking into account expected future situation changes. Other

researchers have already identified that a partially observable

Markov decision process (POMDP) might be an appropriate

framework for doing so. Some examples can be found in

the work of Castañon in [4] and Charlish and Hoffman in

[5]. A good overview of possible solution approaches to

a POMDP for RRM has been published in [6] by Chong,

Kreucher and Hero. Two specifically notable approaches have

been published by Wintenby and Krishnamurthy in [7] and

White and Williams in [8] which both decouple the main

optimization problems into sub-problems per targets by the

use of Lagrangian relaxation (LR). Subsequently, dynamic

programming is applied to solve a POMDP in a non-myopic

fashion. Since the solution of POMDPs can become compu-

tationally complex, decoupling the problem into smaller sub-

problems promises to significantly reduce the computational

load, for instance due to parallelization.

Our long term objective is to develop and evaluate RRM

approaches for surveillance, such as object detection, tracking

and classification based on the POMDP framework presented

in [7] and [8]. We will explore the use of LR to decouple the

overall problem into sub-optimization problems and to jointly

optimize the radar parameters. The algorithm will automati-

cally balance the individual budgets according to individual

target parameters, like its maneuverability for example. Since

the objective is quite ambitious, this paper will be a first step

into that direction. It will be used to numerically illustrate the

potential advantages of such an approach using simulations

involving a relatively simple (though definitely not trivial)

tracking problem setup. To start with, a one-dimensional

scenario is considered. This allows us to exploit the optimal

steady-state solution of the Kalman filter, which is an explicit
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solution of the corresponding POMDP. For now, our attention

is concentrated on the problem of balancing radar budget for

tracking multiple targets (i.e. excluding target detection and

classification).

The remaining paper is structured as follows. The assumed

tracking problem is defined in section II as a constrained

optimization problem. Subsequently, section III introduces our

proposed solution of the RRM problem, using LR and the

subgradient method. Furthermore, the results are illustrated by

time-invariant and time-variant tracking scenarios in section

IV, using the position uncertainty from the predicted steady-

state Kalman error covariance matrix as cost function. Finally,

the paper is completed with general conclusions in section V.

II. RRM TRACKING PROBLEM DEFINITION

In this section, the tracking problem under consideration is

described in detail.

The chosen parameters to be optimized are the revisit time

T and the dwell time τ . We assume that a certain number of

targets are in the observable area around our radar system and

are already being tracked. The state of a target in a Cartesian

coordinate system is defined as

x = [px, py, vx, vy]
T , (1)

where px and py are the target position in x and y respectively.

Analogous to that, vx and vy define the target velocities in two

dimensions.

We assume that the objects to be tracked are moving

according to a linear dynamical system. When we assume

discrete time steps k, the next state for target i can be predicted

as

xk+1
i = F (T k

i ) · xk
i +wk

i , (2)

where xi is the state of the target and F (T k
i ) ∈ R

4×4 is the

according state transition matrix which is based on the revisit

time T k
i . Moreover, wk

i ∈ R
4 is the maneuverability noise for

target i, whose covariance is defined as

E(wk
i w
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with σ2
w,i being the maneuverability noise variance.

The assumed radar system is able to measure the range and

the angle of each target. All measurements are considered to

be well separated, so there are no association problems. From

each of those polar measurements, we can easily obtain the

Cartesian measurement z = [zx, zy]
T . For target i at time k

it can therefore be described as

zk
i = H · xk

i + vk
i , (4)

where H ∈ R
2×4 is the measurement matrix and vk

i ∈ R
2 the

measurement noise. It is assumed that the standard deviation

of the latter depends on the dwell time τ as

σn,i =
σ0,i

τi
, (5)

where σ0,i is a predefined basic measurement noise standard

deviation for target i.
For the actual tracking, a Kalman filter can be applied, for

instance. The problem that we want to solve in this paper is

how to optimally assign dwell times and revisit intervals to the

different tracks, in order to achieve the best result according

to some cost. We formulate the problem as an optimization

problem to find the minimum of a cost function c(Ti, τi),
constrained by a maximum available budget for all tracking

tasks.

The general optimization problem can therefore be de-

scribed as

minimize
T ,τ

N
∑

i=1

c(Ti, τi)

subject to

N
∑

i=1

τi
Ti

≤ Bmax,

(6)

where N ∈ Z
+ is the amount of tasks (or the amount of

targets to be tracked), T = [T1, ..., TN ]T ∈ R
N are the revisit

intervals and τ = [τ1, ..., τN ]T ∈ R
N the dwell times for all N

targets, c(T, τ) is the chosen cost function and Bmax ∈ [0, 1]
is the maximum time budget for all tasks combined.

We define the time budget as the ratio of dwell time and

revisit interval. Therefore, this number represents the fraction

of the revisit interval that is being used by the dwell time per

task. The idea of the global constraint Bmax is to limit the

total time budget of all tasks to a value between 0 (no sensor

time used) and 1 (all sensor time used).

III. PROPOSED SOLUTION OF THE RRM TRACKING

PROBLEM

Our solution approach uses the LR technique, which is

generally described in appendix A. Following this approach,

the original (or primal) optimization problem can be relaxed

by adding the constraints as penalty terms to the cost function,

which results in the so-called Lagrangian dual. The optimiza-

tion problem of finding the maximum of the Lagrangian dual

over the Lagrange multiplier (also referred to as dual variable),

is called Lagrangian dual problem and can be expressed as

ZD = max
λ

(

min
T ,τ

(

N
∑

i=1

(

c(Ti, τi) + λ · τi
Ti

)

)

− λ ·Bmax

)

.

(7)

where λ ∈ R is the Lagrange multiplier for the budget

constraint.

It can easily be seen that the resulting Lagrangian dual

problem in (7) is just a sum of N sub-optimization problems,

one for each task. Therefore, this problem does not have to

be solved for all tasks jointly, but can be decoupled into



the individual tasks i. Accordingly, we can split up (7) into

N easier to solve optimization problems. It is important

to realize that λ is a single multiplier for the sum of all

sub-optimization problems. We therefore consider it as outer

optimization problem which is solved after optimizing the

parameters Ti and τi per task i. Since those sub-optimization

problems can still be quite complicated, they are going to be

solved in different stages through an iterative process with

steps l ∈ Z
+. First, an initial value for the Lagrange multiplier

λl is chosen.

The Lagrangian dual function for each target i is solved

with the current Lagrange multiplier value, as shown in (8):

{T l
i , τ

l
i} = argmin

Ti,τi

(

c(Ti, τi) + λl

(

τi
Ti

))

. (8)

The total budget Bmax is omitted here, because it is a constant

with respect to T l and τ l and does therefore not change

the position of the minimum in the Lagrangian. The current

optimal values T l = [T l
1, ..., T

l
N ]T and τ l = [τ l1, ..., τ

l
N ]T are

then used to find the next Lagrange multiplier λl+1. This is

done by the use of the subgradient method, as explained in

detail in appendix A. The subgradient for Lagrange multiplier

λl is chosen as

slλ =

N
∑

j=1

τj
Tj

−Bmax. (9)

The Lagrangian multiplier is then updated with a chosen step

size γl. Therefore the new Lagrangian multipliers for the next

iteration are calculated as shown in (10):

λl+1 = max{0, λl + γlslλ}. (10)

The initial multiplier value λ0 has to be suitably chosen. Since

the budget constraint is an inequality constraint, the value of its

Lagrange multiplier can only be positive. With the new value

λl+1 the process is started again, until the desired precision

of the solution is reached.

IV. ONE-DIMENSIONAL TRACKING SCENARIO

In this paper, a one-dimensional tracking scenario is consid-

ered as an example. To conduct the tracking, the Kalman filter

is used according to the state and measurement definitions

mentioned in (1), (2) and (4). In this section, a possible

solution to such a scenario is discussed.

A. Steady-State of the Kalman Filter

If the targets are known already and the Kalman filters

are assumed to be staying in a steady-state, the predicted

error-covariance matrix of the Kalman filter could be used

as the cost function. Being in steady-state means that the

measurement uncertainties and maneuverabilities per target are

constant and therefore an optimal time-invariant Kalman filter

error-covariance can be computed. It can be shown that the

α-β-filter is an example for a steady-state Kalman filter [9].

The predicted error-covariance matrix is minimized in order

to find the revisit intervals T and the dwell times τ .

For this scenario, we assume that the objects follow a linear

dynamical system as described in (1), (2) and (4). The state

matrix in the one-dimensional case is therefore defined as

x = [p, v]T , (11)

where p is the position of the target and v is the velocity of

the target.

A method to calculate the error covariance for a steady-

state Kalman filter has been introduced by Kalata in [10] with

an extension by Gray and Murray in [11]. In their work, the

steady-state equations for an α-β-filter are calculated based on

a tracking index Λ, which for a target i is defined as

Λi ∝
position maneuverability uncertainty of target i

position measurement uncertainty of target i

=̂
T 2
i σw,i

σn,i

,

(12)

where σn,i is the standard deviation of the measurement

noise (see (5)) and σw,i is the standard deviation of the

maneuverability noise for target i. Through the tracking index,

the filter parameters α and β can be calculated. To simplify the

calculations, an extra damping parameter has been introduced

in [11], which is defined as

ri =
√
1− αi

=
4 + Λi −

√

8Λi + Λ2
i

4
.

(13)

From this, we can calculate α as

αi = 1− r2i

= 1−
(

4 + Λi −
√

8Λi + Λ2
i

4

)

(14)

and β as

βi = 2(2− αi)− 4
√
1− αi. (15)

Based on (14) and (15), the filtered covariance matrix can be

formed, as shown by Kalata in [10]. The corresponding matrix

is shown in (16).

Pk|k(Ti, τi, σ0,i, σw,i) =

[

σ2
x,i σ2

xv,i

σ2
xv,i σ2

v,i

]

=

[

αiσ
2
n,i

βi

Ti

σ2
n,i

βi

Ti

σ2
n,i

(2αi−βi)βi

2(1−αi)T 2

i

σ2
n,i

]

.

(16)

Since we are interested in creating a cost function based on

the prediction of the error covariance matrix, we follow the

approach in [10] and define it for target i according to the

Kalman filter prediction equations as

Pk|k−1(Ti, τi, σ0,i, σw,i)

= F (Ti)Pk|k,i(Ti, τi, σ0,i, σw,i)F
T (Ti) +ΨiΨ

T
i σ

2
w,i

=

[

1 Ti

0 1

]

[

αiσ
2
n,i
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Ti
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1 0
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T 2

i

2
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T 2

i
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where F (Ti) is the dynamic matrix for target i.
As a simple cost function for target i, we will use the

first element of the predicted error-covariance matrix, which

corresponds to the error covariance in range:

c1,i(Ti, τi) =
[

1 0
]

Pk|k−1(Ti, τi, σ0,i, σw,i)

[

1
0

]

. (18)

Cost function c1 will lead to a budget distribution only based

on the maneuverability and measurement uncertainty of the

different targets.

B. Time-invariant problem

In a time-invariant scenario, the Kalman filters for all objects

are assumed to be in a steady-state, which means that both the

measurement uncertainties as well as the maneuverabilities are

constant. This leads to a constant predicted error-covariance

matrix. A single solution can therefore be calculated that is

valid for every moment in time.

To illustrate that the LR approach leads to an automatic

budget distribution, a simulation is conducted. The budgets

are calculated according to the method mentioned in section

III, without creating an explicit schedule of the task. Three

targets are assumed, starting at different positions from the

radar, which is positioned at the origin of the coordinate

system. The state of the objects is defined as x = [p, v]T in

a Cartesian coordinate system where p is the position of the

target in meters while v is its velocity in meters per second.

For the Kalman filter, the dynamic matrix for target i is defined

as F (Ti) = [1, Ti; 0, 1], while the measurement matrix is

defined as H = [1, 0]. As cost function, c1 is used as defined

in (18). The targets have different measurement uncertainties

and maneuverabilities to point out that our approach leads to

a balancing of the budgets according to those uncertainties,

while still taking the constraints into account. A total budget

Bmax of 1 is assumed, which corresponds to using all available

sensor time for tracking. The LR step size is set to a constant

value. The features of the tracked targets are summarized in

Table I, while the general simulation parameters are shown in

Table II. The mentioned values have been carefully selected

in order to lead to a convergence of the Lagrange multiplier.

Other selections can potentially lead to a very slow conver-

gence or even divergence.

TABLE I
INITIAL TARGET PARAMETERS FOR TIME-INVARIANT SCENARIO

SIMULATION.

Target Position Velocity Measurement Maneuverability

[m] [m/s] variance [m2] [m2]
1 -1000 10 25 25

2 2000 20 25 250

3 1000 -30 300 25

The simulation results are shown in Figure 1 and in Table

III. It can be seen that the LR indeed converges to constant

budget values which add up to a total of 1. In every time

step of the simulation, the Lagrange multipliers are adjusted,

which leads to the Lagrangian approaching the value of the

TABLE II
SIMULATION PARAMETERS FOR TIME-INVARIANT SCENARIO.

Parameter Value

Amount of targets N : 3

Maximum budget Bmax: 1

Initial Lagrangian multiplier λ0: 10000

Step size for LR at time step k γk: 100

Precision of subgradient solution: 0.01

Cost function: c1

cost function. The process stops after 411 iterations, when

the subgradient of the constraint reaches 0 with the desired

precision of 0.01. Since the cost function is only based on the

measurement uncertainty and the maneuverability, the actual

state of the targets has no direct impact on the result. It

is obvious that both the differences in maneuverability (see

budget difference between tasks 1 and 2), as well as the

differences in measurement uncertainty (see budget difference

between tasks 1 and 3) lead to quite different sensor budgets

for the different tasks.
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Fig. 1. Simulation results of time-invariant budget allocation using cost
function c1 for three tracked targets.

TABLE III
SIMULATION RESULTS OF TIME-INVARIANT BUDGET ALLOCATION AFTER

CONVERGENCE USING COST FUNCTION c1 FOR THREE TRACKED TASKS.

Target Revisit interval T [s] Dwell time τ [s] Budget

1 1.01 0.23 0.22

2 0.62 0.19 0.31

3 1.21 0.55 0.46

C. Time-variant problem

In this time-variant scenario, it is assumed that the state

of the targets has an influence on the cost. The position and

velocity will influence the solutions which will therefore not

be valid for the whole future, as assumed in the time-invariant

scenario. For that reason, it needs to be updated in certain



intervals in which the filters can be assumed to be nearly in a

steady-state.

The formulation of the state vector x, the dynamic matrix

F and the measurement matrix H are the same as in the time-

invariant scenario. Since cost function c1 is only depending on

the uncertainty of the measurement and the maneuverability,

it will assign resources to targets only according to the

uncertainty of their states. In a real application, this will

for instance lead to paying more attention to targets that are

far away than to closer ones. This is not a very useful cost

function formulation, because the threat of an object is directly

related to its state. It is therefore obvious that is is very

important to carefully formulate the cost function according

to the mission needs. For illustration purposes, we extend

the above mentioned cost function by a heuristic threat factor

θt(x). This threat factor is based on the threat formulation as

used for example by Katsilieris, Driessen and Yarovoy in [12]

and is related to the closest point of approach (CPA). Since

the examples presented in this paper are one-dimensional, we

limit ourselves to the time to reach the CPA. The CPA is

equivalent to the radar location in our case. To convert the

time into threat, the same sigmoid function as suggested in

[12] is used, with an additional offset of +0.1, to avoid a

factor of 0. The following parameters for the sigmoid function

are applied: t1 = 10s, t0.5 = 20s and t0 = 30s. We do not

claim that this is the best cost function. Its purpose is to point

out how important it is to define a proper cost function and

to illustrate the impact of an extra heuristic factor. The cost

function c2 for target i is therefore defined as

c2,i(Ti, τi) =
[

1 0
]

Pk|k−1(Ti, τi, σ0,i, σw,i)

[

1
0

]

θt(xi).

(19)

The budgets for all targets are updated in a fixed time interval

βt. During this time interval, measurements are conducted

according to the calculated dwell times τ and revisit intervals

T . Separate Kalman filters are used to track the objects

accordingly. All T and τ stay constant until a new update

of the budgets is performed by the use of LR. Two separate

simulations with βt = 5s and βt = 10s are conducted. It is

assumed that the targets are constantly tracked without track

drops or reinitializations.

The LR budget algorithm is fed with the predicted positions

given by the Kalman filter based on noisy measurements. The

features of the simulated targets are the same as in the previous

simulation, see Table I. All other simulation-related values are

shown in Table IV and the trajectories of the targets are shown

in Figure 2. As in the previous example, the mentioned values

in table IV have been carefully selected in order to lead to a

convergence of the Lagrange multiplier. Other selections can

potentially lead to a very slow convergence or even divergence.

The simulation results are shown in Figures 3 and 4. It can

be seen that our LR approach leads to changing budgets over

time according to the uncertainty and the threat. When an ob-

ject is expected to reach the radar position in a comparatively

short time, it gets much more attention than the other targets,

TABLE IV
SIMULATION PARAMETERS FOR TIME-VARIANT SCENARIO.

Parameter Value

Amount of targets N : 3

Maximum budget Bmax: 1

Total simulation time tmax: 100s

Simulation step size tstep: 0.1s

Budget update interval βt: 5s and 10s

Initial Lagrangian multiplier λ0: 10000

Step size for LR at time step k γk: 1

Precision of subgradient solution: 0.01

Cost function: c2
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Fig. 2. Target trajectory of the three simulated targets mentioned in Table I.
The thin lines show the predicted positions by the Kalman filters. Target 1:
blue, target 2: red, target 3: yellow.

while the total sum of budgets stays within the constraint.

Of course, the budget update interval βt has an impact on

the resulting budgets, which can be seen when comparing

Figures 3 and 4. If the budgets are updated fast enough, the

Kalman filters can be assumed to a stay in a steady-state.

If the target states change very quickly, the chosen budget

update interval needs to be reduced. It is therefore important

to choose this interval properly. Figure 5 shows the resulting

cost differences when different fixed budget update periods are

compared to a budget update period of βt = 1s. Contrary to

the previous simulations, the LR budget algorithm is fed with

the exact target position in order to remove any uncertainty

and to be able to properly compare the cost. It can be seen

that the smallest budget update interval always leads to the

smallest cost differences. The longer the update interval, the

higher the cost compared to the optimal solution.

D. Comparison of time-variant solution with other approaches

To illustrate that this approach leads to improved results,

it is compared with different budget allocation techniques

according to the cost given by cost function c2. The simulation

parameters are identical with those in Tables III and IV, but

the LR budget algorithm is again fed with the exact target

positions.



0 20 40 60 80 100

Simulation time [s]

0

0.2

0.4

0.6

0.8
B

u
d
g
e
t 
B

0 50 100

Simulation time [s]

0.6

0.8

1

1.2

1.4

R
e
v
is

it
 t
im

e
 [
s
]

0 50 100

Simulation time [s]

0

0.2

0.4

0.6

0.8

D
w

e
ll 

ti
m

e
 [
s
]

Fig. 3. Simulation results of time-variant budget allocation using cost function
c2 for three tracked targets with a budget update interval of βt = 5s. Target
1: blue, target 2: red, target 3: yellow.

0 20 40 60 80 100

Simulation time [s]

0

0.2

0.4

0.6

0.8

B
u
d
g
e
t 
B

0 50 100

Simulation time [s]

0.6

0.8

1

1.2

1.4

R
e
v
is

it
 t
im

e
 [
s
]

0 50 100

Simulation time [s]

0

0.2

0.4

0.6

0.8

D
w

e
ll 

ti
m

e
 [
s
]

Fig. 4. Simulation results of time-variant budget allocation using cost function
c2 for three tracked targets with a budget update interval of βt = 10s. Target
1: blue, target 2: red, target 3: yellow.

The different strategies are

• LR approach with a budget update interval of βt = 1s
• Random budget distribution

• Equal budget distribution (1/N)

A comparison of the results from different budget assign-

ment approaches is shown Figure 6. It can be seen that the

LR approach always delivers the lowest cost.

V. CONCLUSIONS

In this paper, we have explored advantages of an optimal

approach for solving the RRM problem of tracking multiple

existing targets. The optimization problem has been decoupled

into sub-optimization problems by the use of LR and has then

been solved by using the subgradient method. The presented

approach is a first step towards the development and evaluation

of an optimal approach for solving the RRM problem for
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Fig. 5. Simulation results of time-variant budget allocation using cost function
c2 for three tracked targets with different budget update intervals βt. The
difference in cost is with respect to the cost result for βt = 1s.
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Fig. 6. Comparison of the cost of three different budget assignment strategies.
It can be seen that the LR strategy always leads to the lowest total cost.

general surveillance tasks such as target detection, tracking and

classification. We applied the proposed solution to a simple

one-dimensional tracking scenario with three objects to be

tracked, leading to three tasks to be executed by the radar.

We have selected the revisit intervals and dwell times as the

radar parameters that have to be tuned, where a constraint on

the total budget guarantees that the total available budget will

not be exceeded. Two different cost functions based on the

steady-state Kalman filter error covariance have been taken

into account.

The first considered scenario is time-invariant and allows

a steady-state analysis. It has been shown that our algorithm

leads to a balanced distribution of the available sensor budget

over the tasks according to the different maneuverabilities

and measurement uncertainties of the targets. We have il-

lustrated that the total budget stays within the predefined

budget constraint. In the case of a cost function based on



the one-step-ahead prediction error variances, this leads to a

larger relative budget for targets with higher maneuverability

or larger measurement error variances. The time budget is

therefore based on the uncertainty, which is generally de-

sirable. In an operational radar scenario, this would imply

that objects at long range will receive more radar budget

than objects close-by. This usually is not very useful from

an operational point of view and makes it clear that for a

future practical implementation, the explicit formulation of

operationally relevant cost functions is required.

It has been illustrated that slightly more useful solutions

are already generated when applying a heuristic operationally

inspired adaptation to the cost function. Since this adapted cost

function introduces a time-varying setting, the LR algorithm

based on steady-state analysis has been applied to predefined

time intervals.

It has been shown that the budget update intervals lead to

approximately optimal solutions, as long as they are chosen

small enough. In that case, the tracking filters can be assumed

to stay in a steady-state during those intervals.

Finally, a comparison of our LR approach with other budget

distribution strategies has been presented. It can be seen that

our technique indeed always delivers the lowest cost.

In the future, we are going to extend our current approach by

improving and accelerating the subgradient method algorithm

and extending our simulations to more realistic examples

(using two-dimensional position and velocity, as well as range

dependent SNR, for instance). Furthermore, we would like

to investigate operationally more relevant and time-dependent

cost functions and finally extend the approach to other surveil-

lance tasks, such as classification.

APPENDIX

LAGRANGIAN RELAXATION FOR RRM

By using LR, one can decouple big constrained optimization

problems into smaller ones that can be solved independently

of each other. This appendix section introduces how this

technique can be used in RRM.

A. Lagrangian relaxation principle

LR is an approach to simplify a complicated constrained op-

timization problem. In this process, constraints can be removed

by adding them as penalty terms into the original problem

in combination with so-called Lagrange multipliers. As a

consequence, a new optimization problem is created that has

less constraints than the original problem. The optimization

procedure consists of maximizing the minimum of the cost

function by adjusting the Lagrange multipliers. This is called

the Lagrangian dual problem which is usually a lower estimate

of the original problem if the initial Lagrange multipliers are

chosen correctly (see for example [13]).

LR and Lagrange multipliers have been extensively covered

in literature (for example in [13], [14], [15], [16] or [17]). As

an example of how LR is applied, we consider the general

optimization problem with N input variables that is shown in

(20).

minimize
x

f(x)

subject to g(x) ≤ A

h(x) ≥ B,

(20)

where

x = [x1, ..., xN ]T ∈ R
N ,

g(x) = [g1(x), ..., gm(x)]T ∈ R
m,

h(x) = [h1(x), ..., hp(x)]
T ∈ R

p,

A = [A1, ..., Am]T ∈ R
m,

B = [B1, ..., Bp]
T ∈ R

p.

As mentioned above, the idea is to include the constraints into

the original optimization problem. This is done by adding a

penalty term for each removed constraint, multiplied by La-

grange multipliers, which are defined as λ = [λ1, ..., λm]T ∈
R

m and µ = [µ1, ..., µN ]T ∈ R
p. The Lagrangian is defined

as

L(x,λ,µ) = f(x)+
m
∑

i=1

λi(gi(x)−Ai)+

p
∑

j=1

µj(Bj−hj(x)).

(21)

The relaxed problem is called Lagrangian dual function and

is defined as

d(λ,µ) = minimize
x

L(x,λ,µ). (22)

The Lagrangian dual problem is then characterized as finding

the maximum of the Lagrangian dual function with respect to

the Lagrange multipliers, as shown in (23).

ZD = maximize
λ,µ

d(λ,µ). (23)

To summarize, the objective function is minimized over x,

while also being maximized over the Lagrange multipliers, in

order to come as close to the original problem as possible. To

find the optimal Lagrange multipliers and therefore the tightest

lower bound to the original problem, iterative approaches can

be used. There are many techniques available to calculate

the Lagrange multipliers iteratively, like the commonly used

subgradient method. It will be explained in the next subsection.

B. Subgradient method

The subgradient method (see for example [13]) is an it-

erative process that starts with a chosen initial value for the

Lagrange multipliers (e.g. 1). At each iteration k, first the

minimum of the relaxed problem is calculated (Lagrangian

dual function, see (21)). Next, the subgradients are chosen

for each constraint as skλ = [skλ,1, ..., s
k
λ,m]T ∈ R

m and

skµ = [skµ,1, ..., s
k
µ,p]

T ∈ R
p. Following the notation that

has been used above for the constraints, the subgradients are

defined as

skλ = (g(xk)−A)

skµ = (B − h(xk)).
(24)



The Lagrange multipliers are then updated with a specific

step size γk. For inequality constraints, the penalty terms are

not allowed to become negative. Therefore the new Lagrange

multipliers for the next iteration are calculated as shown in

(25):

λk+1 = max{0,λk + γkskλ}
µk+1 = max{0,µk + γkskµ}.

(25)

The step size can be chosen freely. A possibility are constant

or decreasing step sizes like γ0/k or 1/γk, for example. The

process is then started again with the new Lagrange multipli-

ers. A new Lagrangian dual function is found and afterwards,

new subgradients are calculated again. Theoretically, the exact

result has been found when the gradients skλ and skµ reach 0.

Since this value will never be reached exactly, the process is

repeated until the gradient reaches 0 with a desired precision.

To summarize, a short overview of the subgradient algo-

rithm for the above mentioned optimization problem is given

here:

1) k = 0: Set the Lagrangian multipliers to initial value

(λ0 = λ0, µ0 = µ0).

2) Calculate solution for d(λ,µ) and save xk.

3) Choose subgradients for Lagrangian multipliers skλ and

skµ (see (24)).

4) Check if skλ ≈ 0 and skµ ≈ 0 with desired precision. If

it is, stop the process.

5) Adjust Lagrangian multipliers as shown in (25).

6) Go to step 2 and set k = k + 1.
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