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A B S T R A C T

Ship pipe route design is often overlooked in the context of the energy transition, although it is a crucial
driver for design time and costs. Motivated by this, we propose a mathematical approach for modeling
uncertainty in pipe routing with deterministic optimization, stochastic programming, and robust optimization.
The uncertainty entails not knowing which type of fuel will be used in the ship’s future. All three models
are based on state-of-the-art integer linear programming models for the Stochastic Steiner Forest Problem
and adjusted to the maritime domain using specific constraints for pipe routing. Our results highlight the
importance of accounting for uncertainty in ship pipe routing, demonstrating cost reductions of up to 22%
based on experiments with artificial and realistic data. Our methods enable engineers to explore different levels
of preparedness for the energy transition with minimal effort during the early design phase.
1. Introduction

The maritime industry is a significant contributor to global green-
house gas emissions as it accounts for 2%–3% of global carbon emis-
sions (International Maritime Organization, 2020). Therefore, the In-
ternational Maritime Organization (IMO) and the United Nations (UN)
have made regulations and guidelines for the maritime industry. To
stop global warming, emissions must be reduced as soon as possi-
ble. Approximately a 40% reduction per vessel is to be achieved by
2030 and even net zero for the fleet by 2050 (International Maritime
Organization, 2023).

These guidelines should stimulate the maritime industry to transi-
tion from fossil fuels to sustainable alternatives. However, ship owners
optimize for the economic situation at the beginning of a ship’s con-
struction (Pruyn, 2017). This means sustainability is often not taken
into account. Yet, with a service life of 20 to 30 years at least (Dinu
and Ilie, 2015), a ship should be profitable in all (economic) conditions
encountered in that period. As a result, ships are currently already
sub-optimal at delivery. To deal with this issue, we must consider
future alternative fuels already in the design phase to prevent this
sub-optimality.

Transitioning to a new fuel type would impact the engine, the fuel
storage, and the piping between the two. The first two are extensively
researched already (Lindstad et al., 2021; Zwaginga and Pruyn, 2022),
and piping as well (Dong et al., 2022; Lin and Zhang, 2023; Yan et al.,

∗ Corresponding author.
E-mail address: berend.markhorst@cwi.nl (B. Markhorst).

2024), yet it is often overlooked in the context of the energy transition.
Pipe routing takes over 50% of the total detail-design labor hours (Park
and Storch, 2002). Additionally, the labor costs yield 60% of the total
costs of a ship (Asmara, 2013, Section 1.2). Hence, pipe routing greatly
determines both design time and costs.

Furthermore, pipe routing constraints are heavily dependent on the
corresponding fuel type (Lloyd’s Register, 2023). Even though present
studies mention the same alternative fuels, the industry has not agreed
on a single optimal future marine fuel (Prussi et al., 2021). They
state that the future mix of fuels will depend on their expected price,
availability, and suitability for the specific ship.

This work focuses on the mathematical optimization of pipe rout-
ing in ship design in light of the uncertainty created by the energy
transition. The goal is to find a pipe routing that minimizes the costs
of installing pipes when building a ship and adjusting this routing in
the future for a new fuel type, also referred to as retrofit costs. By
representing the ship as a graph, the problem is to connect multiple
groups of terminals (i.e., tanks and engine rooms) as cheaply as possible
in the first stage scenario and in uncertain future stage scenarios (that
capture retrofit costs to deal with new fuel types). In the mathematical
literature, this problem is known as the Stochastic Steiner Forest Prob-
lem (SSFP), a problem that has only been studied in Gupta and Kumar
(2009) but without having to connect the terminal groups from the first
stage scenario. SSFP is closely related to the stochastic Steiner Tree
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Problem (SSTP) from Bomze et al. (2010), Zey (2016), Leitner et al.
(2018), but for ship pipe routing, we require (i) connecting multiple
erminal groups per scenario, and (ii) also the terminal groups from the

first stage scenario must be connected. We illustrate this pipe routing
problem with a small example in Section 5.1 using Figs. 2, 5, and 6.

To solve the pipe routing problem under uncertainty, we develop
eterministic optimization (DO), stochastic programming (SP), and ro-
ust optimization (RO) models adjusted with pipe routing constraints.
or these models, we build upon Schmidt et al. (2021), as it provides
tate-of-the-art LP relaxation bounds for the Steiner Forest Problem

(SFP), leading to enhanced optimization performance in practice. To
study the scalability of the models and the relative gains of considering
uncertainty, we use artificial instances and a realistic instance made
in collaboration with maritime experts. Although this work focuses
on ship pipe routing, we would like to emphasize that the studied
network design problem is also relevant in other domains such as in,
for example, telecommunication (Bomze et al., 2010; Hokama et al.,
2014; Ljubić et al., 2017; Leitner et al., 2018).

Our contributions. The contributions of this work are as follows:

• This work is the first to formalize the Two-Stage Stochastic Steiner
Forest Problem (2S-SSFP), which is an important problem in ship
pipe routing in light of the uncertain energy transition.

• Whereas most ship pipe routing literature focuses on heuristic
approaches for deterministic ship pipe routing, we describe exact
methods for the stochastic variant of the problem. Additionally,
we show in experiments that addressing the uncertain energy
transition in pipe routing can reduce costs by 22%.

Our methods enable engineers to explore different levels of pre-
paredness for the energy transition with minimal effort during the early
ship design phase. This will help management make better decisions to
reduce future costs and will ease the adoption of cleaner fuels to reduce
greenhouse emission.

Outline. The rest of this paper is structured as follows. In Section 2,
we review the relevant literature on pipe routing and mathematical
ptimization. Sections 3 and 4 formulate the deterministic and stochas-
ic problem, respectively, and elaborate on the mathematical models.
 discussion of the experiments and the corresponding results follows

in Section 5. Finally, we conclude the paper with our conclusions and
irections for future research in Section 6.

2. Literature review

In this section, we discuss related literature for ship pipe routing
and mathematical optimization to provide an overview of the current
state-of-the-art and to position our work in the literature.

Related pipe routing literature. The existing literature on pipe routing
is described in several surveys, see long Qian et al. (2008), Asmara
(2013), Blokland et al. (2023). The synthesis tables from Blokland et al.
(2023, Section 5) give a detailed overview of the current state-of-the-
art. Recent works mostly focus on heuristic approaches, such as genetic
lgorithms (Sui and Niu, 2016; Dong and Lin, 2017b), particle swarm
ptimization (Dong and Lin, 2017a; Lin and Zhang, 2023), and ant

colony optimization (Dong et al., 2022; Wang et al., 2018; Jiang et al.,
2015). This pipe routing literature mainly describes deterministic mod-
els that do not take uncertainty into account. Even more, considering
he uncertainty about the energy transition can reduce future retrofit
osts, which has not been done in the literature so far (Blokland et al.,

2023, Section 6) and will be the focus of this work.
2 
Related mathematical optimization literature. The goal of ship pipe rout-
ng is connecting multiple points, such as engine room(s) and tank(s),
sing as little material as possible while following the rules described
n Lloyd’s Register (2023). As mentioned in Section 1, mathematically,

this is close to a Steiner Tree Problem (STP), which is a well-studied
problem in combinatorial optimization, see Ljubić (2021) for a recent
verview. We represent a ship by a graph in which the vertices de-
ote (engine) room(s) and tank(s), and the edges denote a connection
etween those vertices where we can install pipes. The objective is to

connect a set of terminals (i.e., a subset of vertices) in a given graph
using edges with minimal total costs. For example, a set of terminals
may consist of an engine and multiple fuel tanks. STP is known to
be NP-hard (Garey and Johnson, 2009, p. 208–209), and belongs to
Karp’s classical 21 NP-complete problems (Karp, 1975), meaning that
t is unlikely that there exists a scalable (polynomial-time) algorithm

that can find the optimal solution to all STP instances.
Recall from Section 1 that the stochastic equivalent of the STP is

the SSTP, which considers two stages and a finite number of scenarios
with the corresponding probabilities, terminal groups, and edge costs.
In the first stage, it is unknown which scenario will occur in the second
stage. The question is which edges to buy in the first stage and which
(more expensive) edges to buy in the second stage. Approximation
algorithms for the SSTP are described in Gupta et al. (2004), Gupta and
Pál (2005), Swamy and Shmoys (2006), Gupta et al. (2007a,b), whereas
an exact model that uses a two-stage branch-and-cut algorithm based
on Benders’ decomposition is discussed in Bomze et al. (2010). For the
11th DIMACS challenge, a genetic algorithm has been developed and is
iscussed in Hokama et al. (2014). Additionally, a comparison between

different Integer Linear Programming (ILP) models for the SSTP is made
n Zey (2016). Finally, a two-stage branch-and-cut algorithm based on
 decomposed model is discussed in Ljubić et al. (2017), whereas a new

decomposition model is described in Leitner et al. (2018).
In this work, multiple groups of terminals (i.e., tanks and engine

rooms) must be connected in ship pipe routing. Consequently, we con-
ider the SFP (Schäfer, 2008), a generalization of STP in which multiple
erminal groups must be connected. As STP is NP-hard, also SFP is NP-
ard (Gassner, 2010). For this problem, approximation algorithms are

described in Bateni et al. (2011), Çivril (2019), Ghalami and Grosu
(2022), whereas a greedy algorithm is discussed in Gupta and Kumar
(2015) and a local-search algorithm in Groß et al. (2017). We mainly
base our work on a study (Schmidt et al., 2021) that describes and
compares different ILP models for the SFP. As discussed in Section 1, we
have only found one work that studies the SSFP with an approximation
algorithm (Gupta and Kumar, 2009). To the best of our knowledge, no
paper in the literature describes an SSFP where the terminal groups
from the first stage scenario must also be connected.

Fig. 1 gives an explicit overview of the different complexities of
the mentioned problems and highlights the complexity of the 2S-
SSFP, which is the problem we will study in this work. The first
and second row in Fig. 1 correspond to deterministic and stochastic
roblems, respectively, and the arrows point towards generalizations
f the problem. Finally, we note that STP, SFP, SSTP, and SSFP are
lassic combinatorial optimization problems, whereas the 2S-SSFP is
 generalization that is tailored towards the application of ship pipe
outing.

3. Deterministic problem formulation

In this section, we describe the deterministic problem formulation of
he SFP. This model captures the ship pipe routing problem for a single

fuel type without considering the possibility of a transition to another
fuel in the future, which is often the focus of current practice (Pruyn,
2017, 2020). We introduce this model in such a way that it can be
reused in the stochastic and robust optimization models in Section 4.
More specifically, each future scenario corresponds to an equivalent
deterministic ship pipe routing problem for a particular fuel type in

https://dimacs11.zib.de
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Fig. 1. Complexity relations (the arrows point towards generalizations) between related
problems.

Table 1
Abbreviations of our different ILPs, and references to the sections in which they
re discussed. Model types specify whether directed flows or undirected flows are
onsidered.
Optimization type Model type Section

Undirected (U) Directed (D)

Deterministic optimization (DO) (DO-U) (DO-D) 3.1, 3.2
Robust optimization (RO) (RO-U) (RO-D) 4.2
Stochastic programming (SP) (SP-U) (SP-D) 4.2

the future. The future scenario-dependent parameters and decision
variables will use the same notation as introduced in this section but
hen decorated by (𝑠), for example, the current admissible edges will be
enoted by 𝐸 and in future scenario 𝑠 by 𝐸(𝑠).

Table 1 contains an overview of the different ILPs described in
ections 3 and 4, which are based on the undirected (U) and directed

(D) flow-based ILPs from Schmidt et al. (2021) tailored to the ship pipe
routing problem. We consider three optimization types (DO, RO, and
SP) and two model types regarding the flow (undirected and directed).
For example, (DO-U) and (DO-D) are ILPs for DO using undirected
and directed formulations, respectively. We explain later the difference
between the two model types.

In the following, we first give the general formulation of the SFP
and explain how this general problem relates to ship pipe routing
in Section 3.1. Then, we present the mathematical models of our
eterministic optimization ILP s (DO-U) and (DO-D) in Section 3.2.

3.1. Problem description for ship pipe routing

We model a ship as an undirected graph 𝐺 = ( , ) where the finite
vertex set  denotes the set of (ship) rooms and  represents the pos-
ible pipe connections between them, i.e.,  ∶= {(𝑢, 𝑣) ∶ 𝑢 ∈  , 𝑣 ∈  ,
𝑢 ∼ 𝑣, 𝑢 < 𝑣}, where 𝑢 ∼ 𝑣 denotes adjacency between the vertices
𝑢 and 𝑣. Furthermore,  is the set of arcs of the bi-direction of
𝐺, represented by {(𝑢, 𝑣) ∶ 𝑢 ∈  , 𝑣 ∈  , 𝑢 ∼ 𝑣}. Each (ship) room can
contain one or more engines or fuel tanks. We illustrate in Fig. 2(a) an
xample of a schematic top-down view of a ship’s deck and in Fig. 2(b)

the corresponding graph representation. Later, when we consider fu-
ture scenarios, we will assume that the ship’s graph representation 𝐺
remains the same.

Pipes must connect each ship’s engine to one or more tanks to
nable fuel transportation. This information is captured by a given set

of 𝐾 terminal groups 𝑇 = (𝑇 𝑘)𝑘∈, where 𝑇 𝑘 ⊆  denotes the 𝑘th
terminal group consisting of terminal vertices, in short terminals, and
 = {1,… , 𝐾}. We must install pipes such that all vertices within
 terminal group 𝑇 𝑘 are connected for all 𝑘 ∈ . Without loss of
enerality, we can take these terminal groups to be pairwise disjoint
ubsets of vertices, i.e., ⋂𝑘∈ 𝑇 𝑘 = ∅ (Schmidt et al., 2021, Section 1).

We refer to a scenario in this article as a pipe routing instance in
he present or in the future (in contrast, the literature often denotes a
cenario as a branch in the scenario tree, see Fig. 4 for an example). We

assume that every scenario (now and in the future) corresponds to one
fuel type, which does not rule out the possibility that future scenarios
differ from the present scenario. Different fuel types require different
3 
Table 2
Notation overview for our ship pipe routing problem (DO) and its ILP (DO-U).

Sets

 Set of vertices.
 Set of edges, represented by {(𝑢, 𝑣) ∶ 𝑢 ∈  , 𝑣 ∈  , 𝑢 ∼ 𝑣, 𝑢 < 𝑣}.
𝐸 Set of admissible edges; 𝐸 ⊆  .
 Set of arcs, represented by {(𝑢, 𝑣) ∶ 𝑢 ∈  , 𝑣 ∈  , 𝑢 ∼ 𝑣}.
𝐴 Set of admissible arcs; 𝐴 ⊆ .
 Set of indices for the terminal groups, indexed from 1 to 𝐾.
 Set of all terminal groups  = (𝑇 𝑘)𝑘∈, where 𝑇 𝑘 ⊆  .
 Set of root vertices;  = {𝑟1 ,… 𝑟𝑘}, where 𝑟𝑘 ∈ 𝑇 𝑘 for terminal group

𝑘 ∈ . The root vertex is chosen arbitrarily for each terminal group.
 Set of available pipe types.
𝑃 Set of feasible pipe types; 𝑃 ⊆  .

Parameters

𝑐𝑝𝑢𝑣 Cost parameter for installing pipe type 𝑝 ∈  at edge (𝑢, 𝑣) ∈  .

Other notation

𝜏(𝑡) The index of the unique terminal group that contains the terminal
𝑡 ∈  .

Decision Variables

𝑥𝑝𝑢𝑣 Binary variable equal to 1 if we install a pipe of type 𝑝 ∈  on edge
(𝑢, 𝑣) ∈  , and 0 otherwise.

𝑓𝑡𝑝𝑢𝑣 Binary variable equal to 1 if there is a flow over arc (𝑢, 𝑣) ∈ 𝐴 with
pipe type 𝑝 ∈ 𝑃 for a route between vertex 𝑡 ∈  ⧵ 𝑅 and 𝑟𝜏(𝑡), and 0
otherwise.

pipe types (Lloyd’s Register, 2023). Therefore, we introduce a finite set
of available pipes  and the subset 𝑃 ⊆  that describes feasible pipes
for the fuel type under consideration. Introducing  and 𝑃 allows us
o consider different fuel types in the future. The cost of placing a pipe
∈  at a particular edge (𝑢, 𝑣) ∈  is given 𝑐𝑝𝑢𝑣 > 0 and all costs are

ollected in 𝐶 = (𝑐𝑝𝑢𝑣)𝑝∈ ,(𝑢,𝑣)∈ .
Due to regulations, pipes transporting dangerous fuel types cannot

ross certain rooms on a ship (Lloyd’s Register, 2023). For example,
iesel cannot be routed through a room adjacent to the waterside to

reduce the chance of pollution in an accident. For this purpose, we
introduce the set of admissible edges 𝐸 ⊆  for the fuel type under
consideration, i.e., only edges in 𝐸 can be used to install pipes to
connect terminal groups. Again, introducing both 𝐸 and  allows us
to consider different fuel types in the future. Similarly, note that 𝐸 ⊆ 
induces a subset of admissible arcs 𝐴 ⊆ , i.e., only arcs in 𝐴 can be
used to connect vertices in terminal groups.

Table 2 gives the comprehensive list of the sets, parameters, and
decision variables used to formulate the problem and the (DO-U) and
(DO-D) models in (2) and (4), respectively. The decision variables will
be discussed more elaborately in Section 3.2.

An instance of our problem is denoted by 𝐼 = (𝐺 , ,  , 𝑃 , 𝐶 , 𝐸),
where 𝐺 (and thus ) and 𝑃 are fixed, and  , 𝑃 , 𝐶, and 𝐸 (and
thus 𝐴) can vary in future scenarios. We define (𝐼) as the set of
all feasible solutions for instance 𝐼 . A feasible solution 𝐒 ∈ (𝐼) for
a fuel type under consideration is given by a set of edge-pipe pairs
that (i) connect all vertices in each terminal group from  , (ii) uses
only feasible pipes from 𝑃 for the terminal connections, and (iii) only
uses feasible edges for the terminal connections. Note that a feasible
𝐒 ∈ (𝐼) may use different feasible pipes to connect terminals and
can also install infeasible pipes as long as they are not used to connect
terminals (this can be efficient to anticipate for future scenarios later
on). To be able to take future scenarios into account, we assume that we
are given the set 𝐒0 of edge-pipe pairs that describe which pipes already
exist on which edge. Specifically, (𝑝, (𝑢, 𝑣)) ∈ 𝐒0 means that pipe 𝑝 ∈ 𝑃
is present at edge (𝑢, 𝑣) ∈  . We let 𝐹 (𝐼 ,𝐒0,𝐒) be the cost of solution
𝐒 ∈ (𝐼) for instance 𝐼 when edge-pipe pairs 𝐒0 are present. Then our
mathematical optimization problem can be written as

(𝐃𝐎) min
𝐒∈(𝐼)

𝐹 (𝐼 ,𝐒0,𝐒) = min
𝐒∈(𝐼)

∑

(𝑝,(𝑢,𝑣))∈𝐒⧵𝐒0

𝑐𝑝𝑢𝑣. (1)

Note that our problem, with 𝐒0 = ∅ (the empty set), reduces to a Steiner
forest problem (𝐺 ,  ) if it holds that  = 𝑃 = {1},  = 𝐸 (and thus
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Fig. 2. Example of a ship pipe routing problem instance and the corresponding abstract representation as a graph. Fig. 2(a) shows a schematic top-down view of a ship’s deck.
or illustration purposes, we assume that we can install pipes in the gray rooms but not in the black rooms, for example due to safety regulations. Fig. 2(b) displays a graph

representation of the ship’s deck. Note that we omitted the three vertices whose corresponding rooms are located at the black squares of Fig. 2(a). Dashed lines denote possible
ipe connections.
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 = 𝐴) in 𝐼 = (𝐺 , ,  , 𝑃 , 𝐶 , 𝐸), i.e., there is only one feasible pipe
type, all edges are feasible, and there are no current pipes in the graph.
Consequently, (DO) is NP-hard.

3.2. Deterministic ILP for ship pipe routing

We can reformulate (DO) to an integer linear optimization (ILP)
odel so that (commercial) ILP solvers can solve our problem. This

section introduces the deterministic ILP and the corresponding decision
variables and constraints. For the deterministic ILP, we build on the
work of Schmidt et al. (2021), as this work describes the cut-based and
low-based ILPs for the SFP, which are equivalent. This leads to models
DO-U) and (DO-D) from Table 1 in the following.

Deterministic optimization with an undirected formulation. For (DO-U)
n (2), we introduce a binary decision variable 𝑥𝑝𝑢𝑣 that equals 1 if pipe
𝑝 ∈  is installed at edge (𝑢, 𝑣) ∈  , and 0 else. To ensure that pipes
connect all terminals in each terminal group, we will let an artificial
flow go through the pipes. In particular, in each terminal group 𝑘 ∈ ,
we randomly (without losing on generality) designate one terminal as
the root vertex 𝑟𝑘 ∈ 𝑇 𝑘 of that particular terminal group for orientation
purposes. The set of all root vertices is defined as  = {𝑟1,… , 𝑟𝐾}.
From the root vertex, we let an (artificial) flow go to all remaining
terminals in the corresponding terminal group. We define 𝑓𝑡𝑝𝑢𝑣 as the
flow amount to terminal 𝑡 ∈  ⧵  from the corresponding root over
pipe 𝑝 ∈ 𝑃 at arc (𝑢, 𝑣) ∈ 𝐴. The formulation of (DO-U) is called
‘‘undirected’’ as it does not force a flow direction upon the installed
pipes for different terminals (see Box I).

The goal of (2) is to minimize the costs of connecting the terminals
ithin all terminal groups (2a) while ensuring the conservation of flows

as formulated in (2b) using only admissible edges and feasible pipe
types. Note that we added the summation over the set of pipes to allow
for different (feasible) pipe types within a connection between a root
nd terminal. We ensure that an edge is used only in one direction for
ach connection between 𝑟𝜏(𝑡) and terminal 𝑡 and connect the decision

variables 𝑓𝑡𝑝𝑢𝑣 and 𝑥𝑝𝑢𝑣 in (2c). Note that we restrict to feasible pipe
types and admissible edges in our flow decision variable 𝑓𝑡𝑝𝑢𝑣 and
hat (2e) can be relaxed because (2d) enforces the integrality of 𝑥𝑝𝑢𝑣.

For simplicity, and with a slight abuse of notation, we may capture
all feasible 𝐱 and 𝐟 for (DO-U) in (𝐼)(DO-U), so that (DO-U) can be
compactly written as

(𝐃𝐎 − 𝐔) min
∑

(𝑝,(𝑢,𝑣))∈(×)⧵S0

𝑥𝑝𝑢𝑣 ⋅ 𝑐𝑝𝑢𝑣 (3a)

s.t. x, f ∈ (𝐼)(DO-U) (3b)
4 
Deterministic optimization with a directed formulation. To solve an ILP
efficiently, it is important to have an ILP that gives sharp LP-relaxation
bounds (Schmidt et al., 2021). The formulation of (DO-U) can be sharp-
ened to give better LO-relaxation bounds. The LO-relaxation of (DO-U)
now allows for directed cycles of flows of different terminals, which
is not tight. These directed cycles can appear for different terminals
rom one terminal group or when two (or more) terminal groups are
onnected/overlapping in the solution. By ruling out these directed
ycles of flow in the LO-relaxation, a stronger model is obtained. See

Fig. 3(b) for an illustrative example.
To rule out the directed cycles of flow, we introduce an ILP (DO-D)

that ‘‘directs’’ the flow into consistent orientations. More specifically,
(DO-D) improves over (DO-U) by (1) dynamically combining overlap-
ping terminal groups effectively into one large terminal group and (2)
inding an arborescence (a directed tree) for this combined terminal
roup in which one root is designated to send (artificial) flow to all
ther terminals in the combined terminal group. In (DO-D), it is ensured
hat all flow in an arborescence has the same orientation in the LO-

relaxation. As a result, directed cycles are eliminated, as shown in
Fig. 3(c). Hence, the LO-relaxation from (DO-D) will be tighter than
the LO-relaxation from (DO-U). More details can be found in Schmidt
et al. (2021).

For (DO-D), the decision variable 𝑥𝑝𝑢𝑣 from (DO-U) remains the
ame. Compared to (DO-U), the flow decision variable is extended by
 terminal group index 𝑘 ∈  and the resulting 𝑓𝑘𝑡𝑝𝑢𝑣 is the flow sent
rom the root of terminal group 𝑘 to terminal 𝑡 via pipe 𝑝 at arc (𝑢, 𝑣).
inary decision variable 𝑧𝑘𝑙 is 1 when the root of the terminal group
sends flow to all terminals of the terminal group 𝑙, and 0 else. When
𝑘𝑙 = 1, binary decision variable 𝑦𝑘𝑝𝑢𝑣 equals 1 when flow from the root
f terminal group 𝑘 is sent over arc (𝑢, 𝑣) through pipe 𝑝, and 0 else.
astly, binary decision variable 𝑦𝑝𝑢𝑣 equals 1 when pipe 𝑝 at arc (𝑢, 𝑣) is
sed to send flow over by any of the created arborescences, and 0 else.
n overview of all decision variables is given in Table 3, which builds
pon the notation from Table 2.

Using the extra notation, we get the following (see Box II) ILP
DO-D).

The objective (4a) is similar to (2a), whereas the conservation
of flows in (4b) differs from (2b). This constraint ensures that each
erminal is contained in an arborescence rooted at 𝑟𝑘 for some 𝑘 ∈
. From each arborescence root 𝑟𝑘, an artificial flow is sent to all

remaining terminals in the arborescence. Decision variables 𝑓𝑘𝑡𝑝𝑢𝑣 ac-
ivate 𝑦𝑘𝑝𝑢𝑣 in (4c) whenever flow is sent from root 𝑟𝑘 to terminal 𝑡

via pipe 𝑝 at arc (𝑢, 𝑣). We ensure that every arc is part of at most
one arborescence in (4d). In case of an overlap, the corresponding
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(𝐃𝐎 − 𝐔)

min
∑

(𝑝,(𝑢,𝑣))∈(×)⧵S0

𝑥𝑝𝑢𝑣 ⋅ 𝑐𝑝𝑢𝑣 (2a)

s.t.
∑

𝑝∈𝑃

(

∑

𝑢∶(𝑣,𝑢)∈𝐴
𝑓𝑡𝑝𝑣𝑢−

∑

𝑢∶(𝑢,𝑣)∈𝐴
𝑓𝑡𝑝𝑢𝑣

)

=

⎧

⎪

⎨

⎪

⎩

1 if 𝑣 = 𝑟𝜏(𝑡)

−1 if 𝑣 = 𝑡
0 otherwise

∀𝑣 ∈  ,∀𝑡 ∈  ⧵ (2b)

𝑓𝑡𝑝𝑢𝑣 + 𝑓𝑡𝑝𝑣𝑢 ≤ 𝑥𝑝𝑢𝑣

{

∀𝑡 ∈  ⧵,∀𝑝 ∈ 𝑃 ,
∀(𝑢, 𝑣) ∈ 𝐸

(2c)

𝑓𝑡𝑝𝑢𝑣 ∈ B
{

∀𝑡 ∈  ⧵,∀𝑝 ∈ 𝑃 ,
∀(𝑢, 𝑣) ∈ 𝐴

(2d)

𝑥𝑝𝑢𝑣 ∈ B ∀𝑝 ∈  ,∀(𝑢, 𝑣) ∈  (2e)

Box I.
Fig. 3. Example that shows the difference between the (DO-U) and (DO-D). Fig. 3(a) shows a small example from Figure 1 and 2 of Schmidt et al. (2021) with two terminal
groups, red and blue, and possible connections between vertices denoted by dashed lines. The roots are denoted by circles that are filled with colors. The remaining vertices are
the terminals. The costs of using an edge equal 1 for all edges in the graph. The optimal integer solution yields an objective of 3 because it requires three edges to connect all
terminals. Fig. 3(b) shows a feasible fractional solution for (DO-U) where the colored arcs denote flows of 0.5 for the corresponding root-terminal pairs, and the corresponding
𝐱 decision variables equal 0.5 and are represented by the solid black lines. This solution is infeasible for (DO-D) because there are directed cycles between the two roots and
the two terminals. Fig. 3(c) shows a feasible solution for (DO-D) where the 𝐱 and 𝐟 decision variables both equal 1. The red arcs represent the arborescence that connects both
erminal groups, which yields a solution with three edges.
r
t
s

W
i
t

b

Table 3
Notation overview for the (DO-D) problem formulation and ILP, which builds on the
notation from Table 2.

Sets

 Set of non-terminal vertices, also called Steiner vertices:  =  ⧵  .
 𝑘…𝐾 Set of some terminal groups:  𝑘…𝐾 = (𝑇 𝑘)𝑘∈{𝑘,…,}.
 𝑘…𝐾
𝑟 Set of some terminal groups without the corresponding root vertex:

 𝑘…𝐾
𝑟 =  𝑘…𝐾 ⧵ {𝑟𝑘}.

Decision Variables

𝑓𝑘𝑡𝑝𝑢𝑣 Binary variable equal to 1 if there is a flow over arc (𝑢, 𝑣) ∈ 𝐴 with
pipe type 𝑝 ∈ 𝑃 for a route between root 𝑟𝑘 of terminal group 𝑘 ∈ 
and terminal 𝑡 ∈  𝑘…𝐾

𝑟 , and 0 otherwise.
𝑦𝑘𝑝𝑢𝑣 Binary variable equal to 1 if there is a flow over arc (𝑢, 𝑣) ∈ 𝐴 with

pipe of type 𝑝 ∈ 𝑃 from root 𝑟𝑘 of terminal group 𝑘 ∈ , and 0
otherwise.

𝑦𝑝𝑢𝑣 Binary variable equal to 1 if there is a flow over arc (𝑢, 𝑣) ∈ 𝐴 with
pipe of type 𝑝 ∈ 𝑃 , and 0 otherwise.

𝑧𝑘𝑙 Binary variable equal to 1 if 𝑇 𝑘 and 𝑇 𝑙 are in the same arborescence
and 𝑟𝑘 is the root for both terminal groups, and 0 otherwise.

arborescences are forced to be merged into one arborescence. Similarly

to (2c), (4e) allows for only one direction on an edge. We enforce that

every terminal group is rooted at exactly one root in (4f), whereas (4g)

nforces exactly one root in each arborescence.
5 
Constraints (4h)–(4m) are not necessary for (DO-D) to produce
feasible solutions but are introduced to strengthen the model’s LO-
relaxation (Schmidt et al., 2021). In (4h), we ensure that every vertex
eceives flow over at most one pipe. According to the definition of 𝑧𝑘𝑙,
he root 𝑟𝑘 can be only responsible for terminal groups 𝑙 ≥ 𝑘. Con-
equently, (4i) prevents a connection between root 𝑟𝑘 and a terminal

from  1…𝑘−1. Constraints (4j) prevent a flow from leaving a terminal.
e denote flow-balance constraints in (4k) and (4l), also mentioned

n Leitner et al. (2018, Section 2.2) for the SSTP, which state that
he in-degree of a Steiner vertex cannot be larger than its out-degree:

(4k) enforces this in the overall solution whereas (4l) focuses on each
terminal group. We enforce that the arborescence rooted at 𝑟𝑘 can use
root 𝑟𝑙 if and only if 𝑧𝑘𝑙 = 1 in (4m).

Finally, we include integrality constraints in (4n)–(4r). As (4n)
already enforces integrality on 𝑦𝑘𝑝𝑢𝑣, constraints (4p) and (4q) can be
relaxed.

For simplicity, and with a slight abuse of notation, we may capture
all feasible 𝐱, 𝐟 , 𝐲, and 𝐳 for (DO-D) in (𝐼)(DO-D), so that (DO-D) can
e written as

(𝐃𝐎 − 𝐃) min
∑

(𝑝,(𝑢,𝑣))∈(×)⧵S0

𝑥𝑝𝑢𝑣 ⋅ 𝑐𝑝𝑢𝑣 (5a)

s.t. x, f,y, z ∈ (𝐼)(DO-D) (5b)
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(𝐃𝐎 − 𝐃)

min
∑

(𝑝,(𝑢,𝑣))∈(×)⧵S0

𝑥𝑝𝑢𝑣 ⋅ 𝑐𝑝𝑢𝑣 (4a)

s.t.
∑

𝑝∈𝑃

(

∑

𝑢∶(𝑣,𝑢)∈𝐴
𝑓𝑘𝑡𝑝𝑣𝑢

−
∑

𝑢∶(𝑢,𝑣)∈𝐴
𝑓𝑘𝑡𝑝𝑢𝑣

)

=

⎧

⎪

⎨

⎪

⎩

𝑧𝑘𝑙 if 𝑣 = 𝑟𝑘

−𝑧𝑘𝑙 if 𝑣 = 𝑡
0 otherwise

{

∀𝑘 ∈ ,∀𝑡 ∈  𝑘…𝐾
𝑟

∀𝑣 ∈  with 𝜏(𝑡) = 𝑙
(4b)

𝑓𝑘𝑡𝑝𝑢𝑣 ≤ 𝑦𝑘𝑝𝑢𝑣

{

∀𝑘 ∈ ,∀𝑡 ∈  𝑘…𝐾
𝑟

∀𝑝 ∈ 𝑃 ,∀(𝑢, 𝑣) ∈ 𝐴
(4c)

∑

𝑘∈
𝑦𝑘𝑝𝑢𝑣 ≤ 𝑦𝑝𝑢𝑣 ∀𝑝 ∈ 𝑃 ,∀(𝑢, 𝑣) ∈ 𝐴 (4d)

𝑦𝑝𝑢𝑣 + 𝑦𝑝𝑣𝑢 ≤ 𝑥𝑝𝑢𝑣 ∀𝑝 ∈ 𝑃 ,∀(𝑢, 𝑣) ∈ 𝐸 (4e)
𝑘
∑

𝑙=1
𝑧𝑙 𝑘 = 1 ∀𝑘 ∈  (4f)

𝑧𝑘𝑘 ≥ 𝑧𝑘𝑙

{

∀𝑘 ∈  ⧵ {1, 𝐾}
∀𝑙 ∈  if 𝑙 ≥ 𝑘 + 1 (4g)

∑

𝑝∈𝑃

∑

𝑢∶(𝑢,𝑣)∈𝐴
𝑦𝑝𝑢𝑣 ≤ 1 ∀𝑣 ∈  (4h)

∑

𝑝∈𝑃

∑

𝑢∶(𝑢,𝑡)∈𝐴
𝑦𝑘𝑝𝑢𝑣 = 0 ∀𝑘 ∈  ⧵ {1},∀𝑡 ∈  1…𝑘−1 (4i)

∑

𝑝∈𝑃

∑

𝑢∶(𝑡,𝑢)∈𝐴
𝑓𝑘𝑡𝑝𝑢𝑣 = 0 ∀𝑘 ∈ ,∀𝑡 ∈  𝑘…𝐾

𝑟 (4j)

∑

𝑝∈𝑃

∑

𝑢∶(𝑢,𝑣)∈𝐴
𝑦𝑝𝑢𝑣 ≤

∑

𝑝∈𝑃

∑

𝑢∶(𝑣,𝑢)∈
𝑦𝑝𝑢𝑣 ∀𝑣 ∈  (4k)

∑

𝑝∈𝑃

∑

𝑢∶(𝑢,𝑣)∈𝐴
𝑦𝑘𝑝𝑢𝑣 ≤

∑

𝑝∈𝑃

∑

𝑢∶(𝑣,𝑢)∈
𝑦𝑘𝑝𝑢𝑣 ∀𝑘 ∈ ,∀𝑣 ∈  ⧵  𝑘…𝐾

𝑟 (4l)

∑

𝑢∶(𝑢,𝑟𝑙 )∈𝐴

𝑦𝑘𝑝𝑢𝑟𝑙 ≤ 𝑧𝑘𝑙

⎧

⎪

⎨

⎪

⎩

∀𝑘 ∈  ⧵𝐾
∀𝑙 ∈  if 𝑙 ≥ 𝑘 + 1

∀𝑝 ∈ 𝑃 .
(4m)

𝑓𝑘𝑡𝑝𝑢𝑣 ∈ B
{

∀𝑘 ∈ ,∀𝑡 ∈  𝑘…𝐾
𝑟

∀𝑝 ∈ 𝑃 ,∀(𝑢, 𝑣) ∈ 𝐴
(4n)

𝑥𝑝𝑢𝑣 ∈ B ∀𝑝 ∈  ,∀(𝑢, 𝑣) ∈  (4o)

𝑦𝑝𝑢𝑣 ∈ B ∀𝑝 ∈ 𝑃 ,∀(𝑢, 𝑣) ∈ 𝐴 (4p)

𝑦𝑘𝑝𝑢𝑣 ∈ B
{

∀𝑘 ∈ ,∀𝑝 ∈ 𝑃
∀(𝑢, 𝑣) ∈ 𝐴

(4q)

𝑧𝑘𝑙 ∈ B ∀𝑘 ∈ ,∀𝑗 ∈ {𝑘…𝐾} (4r)

Box II.
f
f
p
f

4. Accounting for uncertainty: two new problem formulations

In this section, we explain how uncertainty affects the ship pipe
routing problem and introduce two new optimization models to deal
with it. Stochastic programming (SP) and robust optimization (RO)
are techniques that address uncertainties and variability in real-world
optimization problems. They are different approaches for dealing with
uncertainty; SP requires more detailed distributional information and
focuses on the average case, whereas RO requires information on the
support of the uncertain parameters and focuses on the worst case.
Although both models are well known in the mathematical literature,
applying these models in our practical context is novel (Blokland et al.,
2023, Section 6). For more details about SP, we refer to Birge and
ouveaux (2011), Klein Haneveld et al. (2020), whereas (Ben-Tal et al.,

2009; Gorissen et al., 2015) provide more information on RO. In this
 s

6 
section, models (RO-U), (RO-D), (SP-U), and (SP-D) from Table 1 will
be introduced.

4.1. Benefits of using SP and RO for pipe routing

Currently, diesel is the most used ship fuel (Prussi et al., 2021). As
part of the energy transition, guidelines from the IMO (International
Maritime Organization, 2023) stimulate the maritime industry to tran-
sition to alternative, less polluting fuels. However, no single alternative
uel is recommended to be used in the future. The future mix of
uels used depends on many external factors, such as technology im-
rovements, availability, and future costs (Prussi et al., 2021). In our
ramework, we consider two periods in time, the present and the future,

and refer to them as the first stage and second stage, respectively.
Fig. 4 shows the scenario tree schematically representing our problem
etting. At each stage, pipe routes can be changed by installing extra
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Fig. 4. Two-stage scenario tree that schematically represents the problem setting we are studying.
Fig. 5. Example of a deterministic and robust pipe route connecting fuel tanks (vertex 22 for diesel and vertex 32 for methanol) with the engine room (vertex 8). The purple and
green lines represent single and double-walled pipes, respectively. The solid lines denote pipes installed in the first stage, whereas the dashed lines denote pipes installed in the
second stage if the methanol scenario takes place. The gray dashed lines represent the remaining edges.
D
s
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pipes. We assume that it is not necessary to remove unused pipes. In
he first stage, we consider one scenario, typically diesel, see Table 1
rom Prussi et al. (2021). However, in the second stage, we consider

multiple scenarios, each corresponding to a different (future) fuel type,
such as diesel, methanol and LNG, see Table 1 from Prussi et al. (2021),
and possibly different pipe routes. For example, a future scenario could
be methanol, which, unlike diesel, can be routed through rooms next
to the waterside and requires double-walled pipes (Lloyd’s Register,
2023). Because of these different characteristics, methanol might need
ifferent pipes and routes than diesel.

Ship designers optimize for the economic situation of a ship at the
start of construction (Pruyn, 2017, 2020). As a result, ships are already
sub-optimal at delivery due to ongoing technological developments.
Changing the ship’s pipe network after construction is not preferable.
For example, retrofitting a ship from diesel to methanol is expensive
because of the ship’s downtime and the required complex mainte-
nance. To make ships future-proof for both economic and sustainability
reasons, alternative fuels must be taken into account in the design
phase.

To illustrate the importance of considering future fuels, we use the
example from Fig. 2(b). The first two branches from the scenario tree in
Fig. 4 are considered in this example: transitioning from diesel to diesel
r methanol, respectively. For both fuel types, we need to connect the

fuel tanks and the engine room with a pipe route. More specifically,
ertices 22 and 32 in Fig. 2(b) represent different fuel tanks, diesel,
nd methanol, respectively, whereas vertex 8 denotes the engine room.

Figs. 5(a) and 5(b) show a deterministic and robust pipe route for this
example, respectively. Because Fig. 5(a) represents the deterministic
solution, the pipe route is only optimal for the first stage, in which the
diesel tank gets connected to the engine room. However, it is unknown
which fuel type will be used in the future and therefore which scenario
will be realized. If diesel persists in the future, the pipe route will not
 p

7 
need to change. However, in case methanol occurs in the future, we
need to build an extra pipe route in order to connect the methanol
tank and the engine room, which is denoted by the green dashed line.

epending on the retrofit costs and the probabilities of the second
cenario, a different pipe routing in the first stage can be optimal.

For example, Fig. 5(b) shows a robust solution that does not need any
installations in the future. Although this route seems inefficient for the
iesel scenario, it prepares the ship for a possible transition to methanol
n the future. The only way to make the best pipe routing decisions is
o include uncertainty in our mathematical models explicitly.

4.2. Extension of the deterministic problem formulation to SP and RO

This section extends the deterministic pipe routing problem for-
mulations to SP and RO formulations and corresponds to the (SP-U),
(SP-D), (RO-U), and (RO-D) models mentioned in the second and third
ow of Table 1. As mentioned in Section 3.1, we need to introduce a

set of second-stage scenarios 𝑠 ∈ , where each scenario corresponds
to one fuel type. We reuse all previously introduced notations for
(DO-U) and (DO-D) but then for each future scenario, which will
be indicated by superscript (𝑠) for scenario 𝑠. For example, 𝐼 (𝑠) =
(𝐺 , ,  (𝑠), 𝑃 (𝑠), 𝐶 (𝑠), 𝐸(𝑠)) denotes a problem instance in scenario 𝑠 (in
which  (𝑠) for example denotes all the corresponding terminal groups)
and 𝐒(𝑠) captures the decisions taken in scenario 𝑠. The cost of installing
a pipe 𝑝 ∈  at a particular edge (𝑢, 𝑣) ∈  is given by 𝑐(𝑠)𝑝𝑢𝑣 = 𝑐𝑝𝑢𝑣 ⋅ 𝜆(𝑠)

where 𝜆(𝑠) > 1 is the inflation rate. These costs are captured in 𝐶 (𝑠) =
(𝑐(𝑠)𝑝𝑢𝑣)𝑝∈ ,(𝑢,𝑣)∈ ,𝑠∈ . For an overview of the notation for the new problem
formulations, see Table 4.

Using the new notation, we get the following robust optimization
roblem in which we anticipate the worst-case future scenario:
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Table 4
Notation overview for (RO), (SP) and their ILPs, which builds on the notation
rom Tables 2 and 3.
Sets

 Set of scenario indices, indexed from 1 to S.

Decision Variables

𝑑 Continuous variable that captures the worst-case retrofit costs
for the (RO-U) and (RO-D) models.

(𝐑𝐎)

min
𝐒∈(𝐼)

(

𝐹 (𝐼 , ∅,𝐒) + max
𝑠∈

min
𝐒(𝑠)∈(𝐼 (𝑠))

(

𝐹 (𝐼 (𝑠),𝐒,𝐒(𝑠))
)

)

(6a)

= min
𝐒∈(𝐼)

(

∑

(𝑝,(𝑢,𝑣))∈𝐒⧵𝐒0

𝑐𝑝𝑢𝑣

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
First stage costs

+ max
𝑠∈

min
𝐒(𝑠)∈(𝐼 (𝑠))

∑

(𝑝,(𝑢,𝑣))∈𝐒(𝑠)⧵𝐒
𝑐(𝑠)𝑝𝑢𝑣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Second stage costs

)

. (6b)

We can rewrite (RO) to an undirected ILP denoted by (RO-U) that
commercial) ILP solvers can solve:

(𝐑𝐎 − 𝐔)

min
∑

(𝑝,(𝑢,𝑣))∈(×)
𝑥𝑝𝑢𝑣 ⋅ 𝑐𝑝𝑢𝑣 + 𝑑 (7a)

s.t. 𝑑 ≥
∑

(𝑝,(𝑢,𝑣))∈(𝑃 (𝑠)×𝐸(𝑠))

(𝑥(𝑠)𝑝𝑢𝑣 − 𝑥𝑝𝑢𝑣) ⋅ 𝑐(𝑠)𝑝𝑢𝑣 ∀𝑠 ∈  (7b)

𝑥(𝑠)𝑝𝑢𝑣 ≥ 𝑥𝑝𝑢𝑣 (7c)

x, f ∈ (𝐼)(DO-U) (7d)

x(𝑠), f(𝑠) ∈ (𝐼 (𝑠))(DO-U), (7e)

where continuous decision variable 𝑑 captures the worst-case retrofit
costs. We force 𝑥(𝑠)𝑝𝑢𝑣 = 1 when 𝑥𝑝𝑢𝑣 = 1 in (7c), as we can reuse pipe
𝑝 ∈  at edge (𝑢, 𝑣) ∈  in scenario 𝑠 ∈ . We can also rewrite (RO) to
a directed ILP (RO-D) that is based on (DO-D). So (RO-D) is the same
as (RO-U) above, but with (𝐼)(DO-U) replaced by (𝐼)(DO-D).

The stochastic programming problem (SP), which aims to minimize
the sum of expected costs, can be written as:

(𝐒𝐏)

min
𝐒∈(𝐼)

(

𝐹 (𝐼 , ∅,𝐒) + ES

[

min
𝐒′∈(𝐼S)

(

𝐹 (𝐼S,𝐒,𝐒′)
)

])

(8a)

= min
𝐒∈(𝐼)

(

∑

(𝑝,(𝑢,𝑣))∈𝐒⧵𝐒0

𝑐𝑝𝑢𝑣

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
First stage costs

+ES

[

min
𝐒′∈(𝐼S)

∑

(𝑝,(𝑢,𝑣))∈𝐒(𝑠)⧵𝐒
𝑐(𝑠)𝑝𝑢𝑣

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Second stage costs

)

, (8b)

where S denotes a discrete random variable for the future scenario with
 known distribution, i.e., Pr (S = 𝑠) is known for all 𝑠 ∈ .

We can rewrite (SP) to an undirected ILP model denoted by (SP-U)
that (commercial) ILP solvers can solve:

(𝐒𝐏 − 𝐔)

min
∑

(𝑝,(𝑢,𝑣))∈(×)
𝑥𝑝𝑢𝑣 ⋅ 𝑐𝑝𝑢𝑣 +

∑

𝑠∈
𝜌(𝑠)

∑

(𝑝,(𝑢,𝑣))∈(𝑃 (𝑠)×𝐸(𝑠))

(𝑥(𝑠)𝑝𝑢𝑣 − 𝑥𝑝𝑢𝑣) ⋅ 𝑐(𝑠)𝑝𝑢𝑣

(9a)

s.t. 𝑥(𝑠)𝑝𝑢𝑣 ≥ 𝑥𝑝𝑢𝑣 (9b)

x, f ∈ (𝐼)(DO-U) (9c)

x(𝑠), f(𝑠) ∈ (𝐼 (𝑠))(DO-U). (9d)

where 𝜌(𝑠) represents the probability of scenario 𝑠 ∈ . We can also
write (SP) to a directed ILP model (SP-D) that is based on (DO-D).
So (SP-D) is the same as (SP-U), but with (𝐼)(DO-U) replaced by
(𝐼)(DO-D).
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5. Results

To highlight different aspects of the 2S-SSFP and the proposed
odels, we consider three graphs of different sizes and with different

evels of modeling realism. This section will discuss our experiments
n these graphs and report the corresponding results. Section 5.1

elaborates on the small graph from Fig. 2(b), whereas Section 5.2 and
Section 5.3 discuss the artificial and realistic graphs, respectively. We
compare the scalability of the models and study the relative gains of
taking uncertainty into account. Both (DO-U) (2) and (DO-D) (4) are
deterministic models that do not consider the uncertainty of the second
stage and only optimize for the first stage, which is a naive approach
compared to SP and RO. In the following, DO will mainly serve as a
benchmark to compare with SP and RO. All experiments are executed
n a supercomputer with 32 cores and CPU 2.4 GHz using the Gurobi
olver (Gurobi Optimization, LLC, 2023) for our Python code, which is

available upon request.

5.1. Small graph: an example of the added value from SP

This section will discuss an example that shows the added value
rom SP and gives insight into the cost difference between the three

mathematical models. We use the small and simple graph from
Fig. 2(b), which is a grid graph where the costs of installing a single-
walled pipe in the first stage equals 1, i.e.,

𝑐1𝑢𝑣 = 1, ∀(𝑢, 𝑣) ∈  .

We assume that double-walled pipes are more expensive than single-
walled ones for all three graphs. More specifically, we set the cost ratio
between double-walled and single-walled pipes equal to 2, i.e.,

𝑐2𝑢𝑣 = 2𝑐1𝑢𝑣, ∀(𝑢, 𝑣) ∈  .

We assume that the costs of installing pipes are higher in the future
than in the present, but we do not know to what extent. Therefore,
we use the smallest integer that is greater than 1 for the ratio between
future and present costs of installing pipes, i.e.,
𝑐(𝑠)𝑝𝑢𝑣

𝑐𝑝𝑢𝑣
= 𝜆(𝑠) = 2, ∀𝑠 ∈  ,∀𝑝 ∈  ,∀(𝑢, 𝑣) ∈  .

Here, for simplicity and illustration purposes, we chose 𝜆(𝑠) = 2,
which is a constant increase rate for the costs of installing pipes. We
use this parameter setting in the remaining experiments as well.

In the example from Fig. 2(b), we start with a diesel scenario in
the first stage and transition to either a diesel or methanol scenario
n the second stage. In the following, 𝜌(2) denotes the probability of

the methanol scenario in the future, which consists of a transition from
diesel to methanol. Since there are only two scenarios in this example,
the likelihood of the first scenario is also known: 𝜌(1) = 1 − 𝜌(2). We can
algebraically compute the DO, RO, and SP costs for this example. There
are three pipe routes for the problem instance in Fig. 2(b). The first two
routes are DO and RO, as shown in Figs. 5(a) and 5(b). DO installs four
single-walled pipes in the first stage and possibly four double-walled
pipes in the second stage, whereas RO installs three single-walled pipes
and four double-walled pipes in the first stage. Fig. 6(a) shows the third
route, which installs three single-walled and three double-walled pipes
in the first stage and one double-walled pipe in the second stage in
the case of the methanol scenario. This route saves costs in the first
stage but still prepares for a possible transition in the second stage. As
mentioned, the second stage costs of installing a pipe are twice as high
compared to the first stage. For a fair comparison, we also consider
the expected second-stage costs of installing pipes for DO, which we
compute by multiplying the second-stage costs by the probability of the
methanol scenario. As a result, the expected DO costs increase linearly
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Fig. 6. Fig. 6(a) shows the third pipe route option for the example of Fig. 2(b). Note the similarity with Fig. 5(b), except the dashed line between vertices 26 and 32, which
denotes that we possibly install a pipe there in the second stage. Fig. 6(b) shows the expected costs of the three routes and (10) in Fig. 2(b). The shaded area indicates the interval
f 𝜌(2) values for which E𝑅SP(𝑝2) ≤ min

{

E𝑅1(𝑝2),E𝑅2(𝑝2)
}

.
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with 𝜌(2). The sum of the expected first and second-stage costs for the
hree routes are:

E𝑅1(𝜌(2)) = 4 + 16𝜌(2)
𝑅2(𝜌(2)) = 11
𝑅3(𝜌(2)) = 9 + 4𝜌(2),
where 𝑅1 and 𝑅2 denote the objective values for the DO and RO

solution, and 𝑅3 represents the objective value for the solution from
Fig. 6(a). Note that both 𝜆(𝑠) and 𝜌(2) determine the slope of 𝑅1 and 𝑅3.
Fig. 6(b) visualizes the expected costs, where the 𝑥-axis and the 𝑦-axis
show 𝜌(2) and the sum of the expected first- and second-stage costs,
respectively. RO yields a horizontal line because this model does not
epend on probabilities.

SP takes the minimum of all three options:

E𝑅SP(𝜌(2)) = min
{

4 + 16𝜌(2), 11, 9 + 4𝜌(2)} . (10)

E𝑅3 intersects with E𝑅1 at 𝜌(2) = 5
12 and with E𝑅2 at 𝜌(2) = 1

2 . Between
hese two values, it holds that E𝑅SP < min

{

E𝑅1,E𝑅2
}

, which shows
he value of taking uncertainty into account. However, this result is
ased on the assumption that 𝜌(2) is known, which is not always the
ase in practice. Another way to quantify the added value of SP is the
alue of the stochastic solution (VSS), which is the difference between
he expectation of the expected value solution (EEVS) and the optimal
bjective value of the SP. In this example, VSS equals the difference
etween E𝑅1 and E𝑅SP, which ranges between 0 and 9 (82% of the SP
bjective). In other words, the relative gains of SP are relatively high
n this example.

5.2. Artificial instance: a comparison of the models

In this section, we compare the scalability of the three models and
how the relative gains of considering uncertainty. Since there are no
enchmark instances available for the 2S-SSFP, we generate our own
nstances. To this end, we introduce an artificial 5-by-5 grid graph that

is made with realistic parameter settings in collaboration with maritime
xperts from a shipyard. The costs of installing a single-walled pipe are

randomly drawn from a uniform distribution between 1 and 10, i.e.,

𝑐1𝑢𝑣 ∼  [1, 10], ∀(𝑢, 𝑣) ∈  .

In consultation with the maritime experts, we set the installation
costs of double-walled pipes again to 𝑐 = 2𝑐 , ∀(𝑢, 𝑣) ∈  . For
2𝑢𝑣 1𝑢𝑣
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each scenario, the corresponding terminals are randomly chosen from
all vertices. For a parameter study, we vary the number of future
fuel scenarios, such as diesel, methanol, LNG, and a hybrid option,
between two and four (because there is a limited number of future
fuel options), the number of terminals between three and five (which
is approximately the number of fuel tanks and engines that needs to be
onnected), and the number of terminal groups between one and three

(to account for different tank-engine room pairs), which amounts to 27
different parameter settings in total for the artificial graph. To account
for randomness, we generate 100 instances for each parameter setting,
resulting in 2700 different instances for the same artificial graph. For
the sake of simplicity, we assume that every terminal group can install
all pipe types on every edge of the graph and that each scenario is
equally probable, i.e., 𝜌𝑠 =

1
𝑆 ,∀𝑠 ∈ .

Fig. 7(a) shows the average compilation and run time for (SP-U)
nd (SP-D) over all the 2700 instances, respectively. The figure shows
hat directed formulations require more compilation time but yield
 considerably shorter run time. We zoom in on this statement with

Fig. 7(b), which displays the run times of (SP-U) and (SP-D) with the
otal number of terminals per scenario (i.e., the number of terminal
roups multiplied by the number of terminals per terminal group).

We see that (SP-D) is generally faster than (SP-U), typically when the
umber of terminals is large.

It is interesting to zoom in on the worst- and best-case instances
in terms of run time for (SP-U). The best-case instance contains two
cenarios, one terminal group per scenario, and three terminals per ter-
inal group. These terminals lie close to each other, resulting in shorter

un times. The worst-case instance contains more terminals, terminal
roups, and scenarios, which leads to longer run times, probably due
o an increased number of decision variables and constraints. When
he terminals are spread across the whole graph, the routing problem
ecomes more complex, resulting in longer run times.

Because DO, RO, and SP are entirely different models, comparing
hem with one measure is not trivial. Therefore, we compare them
o each other’s objective in Table 5. In the DO objective, we divide

the first-stage costs of the three models by the first-stage costs of DO.
We see that RO yields a higher ratio than SP, which is caused by the
onservatism of RO. SP and RO are 29% and 62% more expensive
han DO in the DO objective, respectively. In the RO objective, we
ompute the objective value of the three solutions in case of the worst-
ase scenario and divide it by the RO objective value. We find that the
objectives of SP and RO are closer to each other than those of DO and
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Fig. 7. Fig. 7(a) shows the average of the compilation and run times from (SP-U) and (SP-D). Fig. 7(b) shows the run times of (SP-U) and (SP-D) with the total number of
terminals per scenario (i.e., the number of terminal groups multiplied by the number of terminals per terminal group). The green line indicates where the run times of (SP-U) and
(SP-D) are equal.
Fig. 8. Fig. 8(a) shows a distribution of the RO costs divided by the DO costs for all 2700 instances. Fig. 8(b) shows boxplots that represent a comparison of all three models in
the SP objective.
Table 5
Comparison of the models’ average performances under three different
objectives over 2700 artificial instances, which are made using realistic
parameter settings after discussions with maritime experts.

Model \ objective DO RO SO

DO 1.000 1.286 1.057
RO 1.623 1.000 1.048
SO 1.225 1.116 1.000

RO. Compared to RO, DO and SP are 29% and 9% more expensive,
respectively. Hence, considering the uncertainty for the worst case
yields a relative gain of 22%. Finally, in the SP objective, we compute
the objective value of the three solutions in the average case with
equal probabilities for each scenario and divide it by the SP objective
value. DO and RO perform comparably in this objective as both lie
approximately 5% from the optimal objective value. In other words,
the VSS amounts to approximately 5%, which is the expected gain from
solving the SP instead of DO.

The following elaborates on the first- and second-stage costs of
all three models. We compare the first-stage costs of DO and RO in
Fig. 8(a). We divide the RO costs by the DO costs and find a right-
skewed distribution, where the lower bound of this ratio yields 1.
Fig. 8(b) shows how the models perform in the first and second stages.
Note that we compute the expected costs in the SP objective, which
means that we compute the second stage costs for DO and RO in case
of equal probabilities for each scenario, i.e., 𝜌(1) = 𝜌(2) = 0.5. We see
that DO has the lowest first-stage costs but is relatively expensive in
the second stage, whereas both SP and RO require a bigger investment
in the first stage but have considerably lower second-stage costs. When
10 
the terminals are close to each other in the first stage but far apart in
the second stage, DO seems affordable in the first stage and yields high
costs in the second stage.

5.3. Realistic instance: an example of an application

In this section, we apply the three models to a realistic graph to
show what robust pipe routing looks like in practice. We collaborated
with a shipyard to study a ship consisting of four decks. This graph
is based on a schematic overview of Minderhoud (2023), as shown
in Fig. 9, which computes possible locations of the methanol tanks in
a ship currently fueled by diesel. Note that the figures differ slightly
from the original paper due to an improvement in the methodology.
This ship contains a moonpool, which is an opening in the floor that
gives access to the water below, enabling operators to lower tools into
the sea. Pipes cannot go through these rooms, making pipe routing
more difficult, as it restricts routes. A cargo ship hold would do the
same, as pipes cannot enter the cargo space. However, a work ship
like this gives more variation since cargo ships have limited spaces and
equipment in front of the cargo hold. We represent the 3D network of
compartments in the ship as a graph; vertices denote rooms, and edges
represent connections between adjacent rooms. The resulting graph
contains 75 vertices and 156 edges. We use the Manhattan distance
between the vertices for the costs 𝑐1𝑢𝑣 of installing a single-walled pipe
in the first stage. The installation costs of double-walled pipes are again
𝑐2𝑢𝑣 = 2𝑐1𝑢𝑣, ∀(𝑢, 𝑣) ∈  .

We assume that we start with diesel in the first stage and transition
to diesel or methanol in the second stage. We use the locations of the
current diesel tanks of the ship as terminals for the diesel scenario
and the locations of the methanol tanks computed in Minderhoud
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Fig. 9. Fig. 9(a)–9(d) shows an overview of the four decks of the ship from Minderhoud (2023), where each number represents a room. Green rooms denote methanol tanks,
while red rooms cannot serve as methanol tanks as they are already occupied. Rooms 24, 38, and 70 denote the moonpool.
(2023) as terminals for the methanol scenario. Diesel pipes cannot be
routed through the double bottom or through rooms adjacent to the
water. Whereas diesel can be routed through either single- or double-
walled pipes, methanol requires double-walled pipes due to safety
regulations (Lloyd’s Register, 2023). A mathematical overview of the
realistic instance is shown below:

•  =  (1) = {37, 42, 53, 54, 63, 65}
•  (2) = {1 − 11, 22, 23, 36, 37, 42, 48 − 54, 62, 63, 65, 66, 68}
•  = 𝑃 = 𝑃 (1) = {1, 2}
• 𝑃 (2) = {2}
•  = {1 − 30, 31, 33, 34, 35, 36, 40, 41, 43, 44 − 48, 52, 56, 58, 59, 61, 68,
72, 73, 75}

• 𝐸 = 𝐸(1) = {(𝑢, 𝑣) ∶ 𝑢 ∈  ⧵  , 𝑣 ∈  ⧵  , 𝑢 ∼ 𝑣, 𝑢 < 𝑣}
• 𝐸(2) =  ,
11 
where vertex 42 represents the engine room and set  represents the
rooms in which we cannot install diesel pipes. We ran all models
on the realistic graph and show our findings in Table 6. For SP,
we assume equal probabilities for the scenarios in the second stage,
i.e., 𝜌(1) = 𝜌(2) = 1

2 . We see that the models with directed formulations
require more compilation time, probably caused by an increase in the
number of decision variables and constraints, but yield considerably
shorter run times. When focusing on the undirected formulations, we
see that the best integer solution is found relatively quickly and that the
solver needs a relatively long time to close the gap, whereas directed
formulated models close the gap within almost a second.

The optimal routes according to DO and RO are displayed in
Figs. 10, 11, and 12. We did not include the optimal route according to
SP as it is similar to RO’s solution. All three figures use different vertex



B. Markhorst et al. Ocean Engineering 319 (2025) 120113 
Table 6
Result overview of running all models on the realistic graph.

Deterministic Stochastic Robust

(DO-U) (DO-D) (SP-U) (SP-D) (RO-U) (RO-D)

Compilation time (s) 0.034 0.054 0.361 0.593 0.359 0.566
Run time (s) 0.127 0.045 450.333 0.894 566.527 1.137
Number of decision variables 1092 1405 10,920 12,171 10,921 12,172
Number of constraints 765 1609 8391 14,957 8393 14,959
p

b

Fig. 10. Optimal DO pipe route for the realistic graph, which only consists of single-
walled pipes.

colors denoting different connections with lower and upper decks. In
Fig. 10, we see that the DO solution only contains single-walled pipes
and avoids rooms adjacent to the water. Fig. 11 and 12 show that
the RO solution uses single and double-walled pipes to prepare for
 2

12 
Fig. 11. Optimal RO single-walled pipe route for the realistic graph.

diesel and methanol. The RO solution shows three main insights: (1) the
ipe route goes via the starboard side of the moonpool to the engine

room due to room 37, which contains a tank as well; (2) the double
ottom contains a center pipeline that connects rooms 1-11 with room
3, which is adjacent to room 37; and (3) single-walled pipes are placed
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Fig. 12. Optimal RO double-walled pipe route for the realistic graph.

to connect the diesel tanks to the engine room, as they cannot use the
aforementioned pipeline in the double bottom.

6. Conclusion

Motivated by ship pipe routing under the uncertainty of the energy
ransition, we have introduced the 2S-SSFP and corresponding DO, SP,
nd RO models. For each of these three models, we have used both
ndirected and directed flow formulations based on Schmidt et al.

(2021). We have applied them to three graphs to highlight different
aspects of the 2S-SSFP and the proposed models.

In this work, we have shown that our methods enable engineers
to explore different levels of preparedness for the energy transition
13 
with minimal effort during the early ship design phase. This facilitates
better decision-making for management and ship owners, helping to
lower retrofit costs and simplify the adoption of cleaner fuels to address
climate change. We enforce this statement with our experiments which
show that considering uncertainty can yield relative gains up to 22%.
An application to a graph representing an actual ship shows three
insights: (1) we install double-walled pipes in the center of the double-
bottom to connect methanol tanks with the engine room; (2) we use
a combination of single- and double-walled pipes on the other decks,
and (3) we route the pipe network via the starboard side. Furthermore,
we find that DO is typically the cheapest in the first stage but has
considerable second-stage costs. SP and RO invest more in the first
stage, which results in lower second-stage costs. DO performs the worst
when the first stage contains terminals that lie close to each other,
whereas the second stage consists of widespread terminals over the
graph. The run times of the models increase when the number of
scenarios, terminals, and terminal groups increases, especially when the
terminals are widespread over the graph. More specifically, the directed
formulations require longer compilation times but yield considerably
shorter run times than the undirected formulations, which is in line
with the findings in Schmidt et al. (2021). The difference in run times
between directed and undirected formulations increases as the number
of terminals increases.

For future research, we suggest studying methods that perform well
on larger graphs to take more ship details into account, as an ILP
model typically does not scale well. Because ship pipe route design
is a strategic problem, exact solution methods using dual ascent, the
L-shaped method, or Lagrangian relaxation as proposed in Leitner
et al. (2018) could be applied in certain cases for SP. However, if
more details, scenarios, or stages need to be considered, these exact
methods may become intractable and one has to resort to heuris-
tics. Possible heuristics that already have been described in the (pipe
routing) literature are genetic algorithms (Hokama et al., 2014; Sui
and Niu, 2016; Dong and Bian, 2020; Dong and Lin, 2017b), particle
warm optimization (Dong and Lin, 2017a; Lin and Zhang, 2023), ant

colony optimization (Dong et al., 2022; Wang et al., 2018; Jiang et al.,
2015), greedy algorithms (Gupta and Kumar, 2015), or approximation
lgorithms (Gupta and Kumar, 2009). To the best of our knowledge,
hese methods have only been applied to the deterministic equivalent
f our stochastic pipe routing problem. Additionally, we could make

the model more realistic by allowing multiple fuel types within one
cenario. The energy transition might consist of multiple stages with
ifferent scenarios. Consequently, multi-stage SP could be helpful in
his case.
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