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So-called tap-in–tap-off smart card data have become increasingly avail-
able and popular as a result of the deployment of automatic fare collec-
tion systems on transit systems in many cities and areas worldwide. An 
opportunity to obtain much more accurate transit demand data than 
before has thus been opened to both researchers and practitioners. 
However, given that travelers in some cases can choose different origin 
and destination stations, as well as different transit lines, depending on 
their personal acceptable walking distances, being able to aggregate the 
demand of spatially close stations becomes essential when transit demand 
matrices are constructed. With the aim of investigating such problems 
using data-driven approaches, this paper proposes a k-means-based 
station aggregation method that can quantitatively determine the par-
titioning by considering both flow and spatial distance information. The 
method was applied to a case study of Haaglanden, Netherlands, with a 
specified objective of maximizing the ratio of average intra-cluster flow 
to average inter-cluster flow while maintaining the spatial compactness of 
all clusters. With a range of clustering of different K performed first using 
the distance feature, a distance-based metric and a flow-based metric 
were then computed and ultimately combined to determine the optimal 
number of clusters. The transit demand matrices constructed by imple-
menting this method lay a foundation for further studies on short-term 
transit demand prediction and demand assignment.

Transit demand studies and models form an essential part of any 
transit planning process. The purpose of such research is to estimate 
and evaluate passenger demand by using models and by collecting 
and analyzing data pertaining to current and future transit needs (1). 
Traditionally, a sequential four-step process has been extensively 
used in both academia and practice to estimate the aggregated travel 
demand for a number of traffic analysis zones that are predeter-
mined on the basis of geographical and socioeconomic factors. The 
share of transit demand is then computed at the step of modal split or 
mode choice, using discrete choice models. This four-step method 
provides researchers and practitioners with a straightforward way 
to obtain transit demand when such demand can hardly be observed 
directly, although the results cannot always be as accurate as is 
desirable. However, with a smart card automated fare collection 
(AFC) system being adopted by more and more transit agencies, a 
new type of data source is rapidly becoming available. AFC systems 
record individual travelers’ boarding and alighting information,  

greatly facilitating research on passenger travel patterns that can 
support transit network planning, behavioral analysis, and transit 
demand estimation and forecasting (2).

A large amount of research effort has been directed to transit origin–
destination (O-D) estimation, especially for cases where only entry 
information or exit information is available, or even where neither 
of them is available. Different methods have been proposed to infer 
O-D matrices for transit journeys with limited boarding or alighting 
information (3–10), and these methods can be categorized on the basis 
of their estimation assumptions, including walking distances (buffer 
zones), transfer times, and last-destination assumptions (11). Along 
with an increase in the number of methods, the importance of evalua-
tion and validation of the O-D estimation methods and results has also 
been highlighted in a series of studies (12–16). Recently, Alsger et al. 
used a high-quality data set containing accurate boarding and alighting 
information to validate a multi-leg journey inference method, where 
the alighting information is assumed to be unknown for validation’s 
sake (11).

The aforementioned O-D estimation studies focused on attaining a 
more accurate journey inference; less effort was directed toward stop 
or station aggregation while constructing demand matrices. Stop or 
station aggregation, in this context, means that transit users’ activities 
of originating from, or alighting at, an individual stop can be virtually 
associated with an area that covers a number of adjacent transit stops 
or stations (17). In this sense, demand at a more aggregate level can 
be of more practical use to both transit researchers and practitioners. 
McCord et al. pointed out that the size of stop-to-stop O-D matri-
ces makes it difficult to synthesize important flow patterns and to 
estimate stop-to-stop O-D passenger flows accurately (18). By group-
ing transit stops, however, the estimation, analysis, and communi-
cation of passenger flows can be improved. Further, understanding 
transit demand at an aggregate level was also motivated by Lee et al., 
who highlighted that the ability to define a specific land use type and 
the temporal characteristics related to passengers’ activities can be 
enhanced through stop aggregation (17). The aggregation of stops is 
also in line with the analysis and modeling of transit users’ stop choice 
behavior, which has been recently explored by Hassan et al. and Nassir 
et al. (19, 20). The rationale is that in reality, travelers are very often 
capable of choosing from a set of origin and destination stations that 
are within acceptable walking distance. As a result of such behavior, 
different choices in transit services (modes and lines) can be charac-
terized in terms of travel demand from one area to another.

A limited number of studies involving stop aggregation can be iden-
tified in the current literature. For instance, Chu and Chapleau used 
the term “anchor points” to define the places that a person repeatedly 
visits, which usually include residence, work, or study locations (21). 
They performed spatial aggregation by grouping stops within 50 m 
of each other to form a new node. A so-called stop-aggregation model 
was later proposed by Lee et al. and applied to studying the metro 
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transit of the Minneapolis–Saint Paul metropolitan area in Minnesota 
(22, 23). This model aims to develop a generalized definition of a 
“stop” that more closely matches the nature of locations serving as 
passenger origins and destinations. An aggregated area around a tran-
sit stop or station can thus be defined by three parameters: (a) distance 
or proximity, measured by using Euclidean and network distances 
in geographic information systems; (b) text in the description of the 
stop, queried using database tools in SQL; and (c) the catchment area, 
which is defined as how a stop is related to the land uses surrounding 
it. Alsger et al. simply aggregated the estimated O-D trips accord-
ing to the 1,515 zones in the Brisbane Strategic Transport Model to 
provide an overview of the results (12). McCord et al. proposed two 
computationally efficient heuristic algorithms to aggregate bus stops 
at the route level to reduce the size of the O-D matrix for improved 
estimation, analysis, and communication (18). More recently, Tamblay 
et al. developed a methodology to estimate a zonal O-D matrix for a 
transit system (24). On the basis of a stop-to-stop O-D matrix created 
with smart card data from Santiago de Chile, a logit model was con-
structed to compute the probability that an observed trip using transit 
stops k and l (as the boarding and alighting points, respectively) 
was originated in zone i and ended in zone j. In the methodology of 
Tamblay et al., a zonal system must be predefined and a survey is 
required to help identify the model parameters.

Unsupervised learning techniques have recently been employed 
to investigate spatial travel pattern and demand, given their natu-
ral advantages in solving clustering problems (6, 25, 26). One of 
the successful applications turns out to be the identification of 
individual transit riders’ spatial and temporal travel patterns using 
the density-based spatial clustering of applications with noise 
(DBSCAN) algorithm (6, 25, 26). This specific algorithm stands 
out in its flexibility; it does not require predetermining the number 
of clusters, and it identifies arbitrarily shaped clusters while it is 
being implemented. Ma et al. first applied this algorithm to examine 
the spatial travel pattern of transit users in Beijing after inferring 
individuals’ journey chains (6). Adopting the approach proposed  
by Ma et al., Kieu et al. later performed a two-level approach that 

relied on the standard DBSCAN algorithm to reveal both spatial and 
temporal travel patterns in Southeast Queensland, Australia (26). 
They further improved the efficiency of this approach by using the 
existing knowledge of individual travel patterns while clustering the 
studied journey, developing a so-called weighted-stop DBSCAN 
(WS-DBSCAN) algorithm (25).

The above-mentioned studies highlight the importance of stop or 
station aggregation in analyzing AFC data. In many cases where transit 
services are well provided in both urban and suburban areas, in terms 
of the number of stations and lines—for example, in Haaglanden, the 
conurbation surrounding The Hague in the Netherlands (Figure 1) 
(dots represent stations)—the data on traveler O-D flow from one 
area to another, both of which areas contain a group of bus or tram 
stations, would be much more usable in transit modeling, prediction, 
and management than the data at the individual stop level. This paper 
proposes a k-means-based station aggregation methodology that can 
in four steps quantitatively determine the clustering by considering 
both flow and spatial distance information.

This method was applied to a case study of Haaglanden, Netherlands, 
by specifying a criterion that the ratio of average intra-cluster flow 
to average inter-cluster flow should be maximized while maintain-
ing the spatial compactness of all clusters. In the first step, a number 
of different clustering scenarios were obtained by implementing the 
standard k-means algorithm with the geodesic distance considered 
as the only feature. Then, two metrics that represented spatial dis-
tance and passenger flow, respectively, were computed, and finally 
integrated to determine the optimal number of clusters. The pro-
posed data-driven method allowed researchers to obtain clusters 
that are on one hand sufficiently large to enable the consideration 
and modeling of travel alternatives between parts of the network, 
and on the other hand are compact enough to include only viable 
alternatives and support fine-grained demand estimation. Unlike 
the standard DBSCAN algorithm that can identify some points as 
“noise”—points that are then not included in any of the clusters—
the proposed method ensures that all travel information is retained 
in the O-D matrix attained.

FIGURE 1  Tram and bus lines operated by HTM in Haaglanden, Netherlands.
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The next section of this paper presents the data preparation for the 
proposed methodology from two aspects, including an introduction 
of the Dutch smart card data and the construction of valid multi-leg 
journeys. That is followed by a section that details the proposed four-
step k-means-based methodology. The results are then presented, with 
both spatial and temporal variability analyses included. The paper 
concludes with a discussion and suggestions for future research.

Data PreParation

Data overview

The smart card data set used in this study comes from Haaglanden, 
the conurbation surrounding The Hague in the Netherlands. It con-
tains data collected from both buses and trams that are operated by 
Haagsche Tramweg Maatschappij (HTM), the local transit operating 
company. As Figure 1 depicts, the transit network organized by HTM 
in this area consists of 12 tram and eight bus lines serving 931 sta-
tions. A more detailed description of the Dutch smart card system, the 
OV-Chipkaart, can be found in a study conducted by Van Oort et al. 
(27). The original transaction data are from March 2015 and contain 
8,177,434 records (i.e., tap-in–tap-out pairs), covering 31 days.

Construction of Multi-Leg Journeys

Multi-leg journeys using this data set were constructed by Bagherian 
et al. (28). The procedure started with excluding data that contain 
missing values (e.g., records that were missing tap-in or tap-out or 
had no line identifier). Three types of transactions were subsequently 
removed, including those with identical location of tap-in and tap-out; 
those between stops i, j with to

n,i − tc
n,j < γ leg

min, where to
n,i and tc

n,j represent 
the tap-in and tap-out time of a card of identification (ID) n at sta-
tion i and j, respectively, and γ leg

min denotes the minimum duration of a 
leg; and those with abnormally long durations to

n,i − tc
n,j > γ leg

max, where 
γ leg

max denotes the maximum duration. After this step, transactions were 
grouped using card ID for each day in the analysis period, and within 
each group the transactions were also sorted using a check-in time-
stamp. Finally, an iterative procedure chained transactions forming a 
journey if tc

rn
 − to

r−1n
 < γ transfer, where tc

rn
 and to

r−1n
, respectively, represent 

the tap-in time of transaction r and the tap-out time of transaction  
r − 1; γ transfer denotes the time interval between two successive legs with 
same card ID. In this case study, γ leg

min, γ leg
max, and γ transfer were set to be  

1 min, 60 min, and 35 min, respectively. Once a journey was formed, 
transfer times and the number of transfers were also computed, and 
the journey was added to the database. Consequently, 6,255,798 
journeys in the analysis period were generated. The output of this 
procedure was a database of the identified journeys, including an ID, 
date, number of transfers, and a list of details (line ID, tap-in time and 
location, and tap-out time and location) for all legs.

An issue regarding the validity of journey identification was 
observed while analyzing the data set—some journeys are unrea-
sonably long (i.e., several hours). These “noise”-inferred multi-leg 
journeys were presumably caused by short activity chaining and 
were removed from the data set by adopting a threshold of a maxi-
mum of 90 min for a journey. This value was determined on the 
basis of the maximum time that a person needs to spend reaching 
his or her destination in Haaglanden. As a result of this cleaning 
process, 14,794 journeys were removed, which left 99.76% of the 
original records for further analysis.

k-Means-BaseD station 
aggregation MethoD

a Four-step k-Means-Based Method

As one of the simplest and most popular clustering techniques, the 
k-means algorithm has been extensively leveraged in various fields 
since it was first proposed in 1967 (29). Given a set of n observations 
(x1, x2, . . . , xn), each of which is a d-dimensional real vector, this 
clustering algorithm aims to partition the n observations into K (≤ n)  
mutually exclusive and collectively exhaustive clusters C = {C1,  
C2, . . . , CK}. It iteratively determines the center µi for each cluster Ci  
and assigns each observation to a cluster whose center is closest to 
the observation. This iterative clustering process terminates when 
the assignments no longer change, which can be described to mini-
mize the within-cluster sum of squares (the sum of distance functions 
of each observation in the cluster Ci to the center µi):

lx
C x

argmin (1)2

1

i

Ci

K

i

∑∑ −
∈=

Details on the implementation of the k-means algorithm can be 
found in Tou and Gonzalez (30). The algorithm’s main disadvantage 
is that the number of clusters, K, must be supplied as a parameter. In 
this study, a four-step k-means-based station aggregation method is 
proposed, in which a quantitative way to determine the optimal K is 
incorporated (Figure 2).

The method starts with finding the best clustering on the basis of 
a chosen measure for each K, and then continues with the computa-
tion of two metrics that are related to spatial distance and passenger 
flow. In the final step, two metrics are integrated for the determination 
of the optimal number of clusters, K*. Such a method is flexible as 
it can accommodate different formulations of both metrics and final 
integration function in order to cater different purposes pertaining to 
the construction of transit O-D matrix. The essential idea, however, 
is to maximize either the intra-cluster or the inter-cluster flow while 
maintaining the spatial compactness of all clusters simultaneously.

k-Means-Based Clustering

Given that the clusters of transit stations should be spatially compact, 
the geodesic distance between points, which can be calculated based 
on their coordinates, was used as the only feature in the k-means 
clustering. While the k-means algorithm was implemented, a set of 
K points were input as the initial cluster centers so that the algorithm 
could proceed with iterations. Because the result of the k-means algo-
rithm can vary given different initial centers, a common way to obtain 
better and reproducible results is to perform the algorithm a number 
of times with different initial centers and then select the initial centers 
that produce the optimal clustering in terms of the adopted measure. 
In this study, a measure called sum of the squared error (SSE) was 
employed to help select the initial centers because it can reflect the 
quality of a clustering—the lower SSE is, the better the clustering. 
The SSE was defined as follows for the current case:

K d x

x Ci

K

i

i

∑∑( ) = µ
∈=

SSE (2),
2

1

where dµi,x denotes the geodesic distance between a station and 
the cluster center to which it belongs. The k-means algorithm was 
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programmed in Python 2.7 and the implementation process was as 
follows. A number of randomly generated sets of initial centers were 
tested for each K (ranging from 2 to 30) in the current study, and the 
initial center scenario that resulted in the minimum SSE was eventu-
ally selected and fixed for this K in the sequential analysis. Given the 
particular spatial distribution of stations in the study area (i.e., most 
stations are in the core area of The Hague, with others scattered in 
relatively isolated areas), six subareas, including Delft, Zoetermeer, 
and areas to the northeast, northwest, southwest, and southeast of 
The Hague were set up. When the number of clusters K was larger 
than five, two initial center points were randomly generated from the 
Delft and Zoetermeer subareas; the rest would also be generated from 
The Hague subareas. By doing so, the efficiency of implementing the 
k-means algorithm for a great number of iterations was dramatically 
improved. It is still worth mentioning that it can be time consuming to 
complete all clustering experiments for large values of K (>25). This 
issue can be further resolved by optimizing the k-means program. 
After obtaining all clustering results for different Ks, the subsequent 
analysis was performed with MATLAB (31).

Distance-Based Metric

The construction of the distance-based metric adopted the approach 
proposed by Ray and Turi (32). It examined the spatial compactness 
of a clustering by taking into consideration both intra-cluster and 
inter-cluster distance measures. The former computes the square of 
distance between a point and its cluster center, and then takes the 
average of all of them, denoted by Dintra:

D
N

d x

x Ci

K

i

i

∑∑= µ
∈=

1
(3)intra

,
2

1

where N is the number of stations in the study area.

The inter-cluster distance measure, Dinter, on the other hand, 
only takes the square of minimum distance between cluster centers 
because as long as the minimum of such distance is maximized, the 
others will by definition be larger than it. This measure is defined 
as follows:

min 1 (4)inter
,

2D d j
i j

= ∀ ≠µ µ

The two measures are then combined by taking the ratio as 
follows:

D

D
τ = (5)

intra

inter

where τ denotes the final distance-based metric. To obtain the opti-
mal number of clusters in terms of spatial compactness, τ is mini-
mized; the intra-cluster distance measure Dintra in the numerator 
should be minimized, and the inter-cluster distance measure Dinter 
in the denominator should be maximized.

Flow-Based Metric

The passenger flow at the station level can first be derived from 
the original data set and then aggregated on the basis of a specific 
clustering. The flow-based metric provides additional informa-
tion that can be used to determine the optimal number of clusters. 
Intuitively, total intra-cluster flow decreases as the number of 
clusters grows, given the constant total flow over the entire study 
period. More flows are naturally assigned to the inter-cluster 
group (Figure 3b).

When considering the flow information, it is possible to seek 
to maximize the total inter-cluster flow over the total intra-cluster 

Step 1. Obtain range of clustering using k-means
Apply k-means to the set of stations for a range of K. For each K, try a number of different initial
centers and then select the clustering result with the minimum sum of the squared error (SSE). This
clustering result will be always used for this K in the sequential analysis.

Step 2. Compute distance-based metric
Derive the distance-based metric by considering both intra-cluster and 
inter-cluster geodesic distances between stations.

Step 4. Determine the number of clusters
Determine the optimal number of clusters by combining both distance-based and flow-based 
metrics. The “optimal” depends on what characteristics of the constructed O-D matrix are more 
pursued. 

Step 3. Compute flow-based metric
Derive the flow-based metric by considering both intra-cluster and inter-
cluster passenger flows among clusters.

FIGURE 2  Steps of the proposed k-means-based station aggregation methodological framework.
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FIGURE 3  Intra- and inter-cluster flows: (a) SSE decreases exponentially as the number of clusters increases, 
(b) variation in both total intra-cluster and total inter-cluster flows, (c) variation in both average intra-cluster 
and average inter-cluster flows, (d ) intra-cluster and inter-cluster flow measures, (e) illustration of two scaled 
metrics, and (f ) integrated metric that reaches the maximum value when the number of the cluster is equal to 12.

one, or vice-versa, depending on the application and the analysis 
objectives. An argument in favor of the former is that it leads to 
more flow being assigned as inter-cluster (nondiagonal) elements in 
the O-D matrix. In contrast, by making the intra-cluster flow more 
significant, most self-contained and coherent clusters in terms of 
travel demand (diagonal elements) can be obtained, which is more 
desirable from a planning perspective. In the case of Haaglanden, 
Netherlands, the second option was eventually adopted and the 
following two flow measures were proposed:

1
(6)intra

,

,1

F
K

fx x

x x Ci

K

m n

m n i

∑∑=
∈=

1
(7)inter

2 ,

, ,1

F
K K
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x C x C i jj i

K
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m i n j
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− ∈ ∈ ∀ ≠==

where fxm,xn
 denotes the passenger flow from station xm to station xn 

and K denotes the number of clusters. Essentially, Fintra and Finter 
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represent the average intra-cluster and average inter-cluster flow, 
respectively (Figure 3c). To combine two measures, the ratio of F intra 
to F inter is adopted and defined as follows:

F

F
δ = (8)

intra

inter

where δ denotes the flow-based metric. To obtain most self-contained 
clusters, δ should be maximized so that the average intra-cluster flow 
is as significant as possible.

Determination of the number of Clusters

To determine the optimal number of clusters with both distance-based 
and flow-based metrics, different objective functions can be formu-
lated. Because, in the current case, it was desired to (a) obtain clusters 
that are as spatially compact as possible, which can be achieved by 
minimizing τ, and (b) attain an intra-cluster flow as strong as possible, 
which can be achieved by maximizing δ, a straightforward way that 
takes the ratio of δ to τ was adopted. A scaling procedure was applied 
to both metrics before taking the ratio so that their magnitudes were 
comparable.

X
X

X
′ = (9)

max

After applying the scaling procedure, the optimal number of 
clusters K* was attained:

K K K

K

K

′δ
′τ[ ]∈

argmax (10)
,min max

where δ′K and τ′K denote the scaled flow-based and distance-based 
metrics for the K clustering, respectively.

resuLts anD anaLysis

results

Figure 4 shows the clustering results determined for each K, which 
ranged from 2 to 30 in this study on the basis of the calculation of 
SSE. The different clusters are illustrated with various combina-
tions of colors and markers without the underlying transit network 
included. The variation in SSE is presented in Figure 3a. It can be seen 
that as the number of clusters increases, more clusters are generated, 
mainly within The Hague area. The SSE does not decrease linearly 
as K increases. Instead, a sharp drop can be observed in Figure 3a 
when K is approaching 8; then the decline becomes increasingly  
flat as K grows.

Figure 3d reveals that both the intra-cluster and inter-cluster dis-
tance measures show a pattern of decrease as K grows, although the 
intra-cluster one is smoother than its counterpart. Two scaled metrics 
are plotted together in Figure 3e for the sake of comparison. No spe-
cific patterns are very clear for both metrics, but when K is equal to 5, 
12, and 24, the distance-based metric reaches some local minimums. 
The flow-based metric exhibits an overall growing pattern.

The integrated metric that takes the ratio of scaled flow-based to 
scaled distance-based metric is displayed in Figure 3f. The optimal 

number of clusters in terms of the integrated index in this case turns 
out to be 12 (highlighted in Figure 3f ), although there is only a slight 
difference between K10 and K12, and K22, K23, K24, and K25 are 
also close. Detailed results and analysis of this optimal clustering are 
presented in Figure 5, including the spatial outcome and the number 
of stations contained in each cluster. The bar chart shows that the 
number of stations contained in the more isolated parts of the network 
(Clusters 1, 2, and 7) is significantly lower than in other parts of the 
network. This is arguably attributed to the low density of stations in 
these areas. Within the core area of The Hague, stations are more 
evenly distributed in different clusters, although there are still more 
stations assigned in Cluster 5 and Cluster 8.

Aggregated passenger demand at the cluster level is shown in 
Figure 5d and Figure 5e, with the former specifying all the numbers 
while the latter offers a visualization through a chord chart. Appar-
ently, Cluster 5 accounts for the most demand because it contains all 
stations around the central station of The Hague with connections to 
train services. It is followed by Cluster 11 and Cluster 12. Cluster 11 
covers the area of Den Haag HS station, which is the second-biggest 
train station in The Hague; Cluster 12 covers the main commercial 
area. Clusters 1, 3, 4, 7, and 10, however, show relatively low demand 
for HTM services, which can be partially explained by the presence of 
competing transit operators (i.e., bus and train). Furthermore, the low 
demand of Cluster 4 and 10 can be attributed to the relatively lower-
density residential areas and lower overall transit market share. Clus-
ter 8 exhibits a higher demand, presumably caused by the presence 
of regional and national institutions (e.g., museums, theater, stadium, 
and embassies) that attract visitors.

spatial Variability analysis

The spatial variability of all individual clusters is illustrated in Fig-
ure 5c through box plots of the spatial distance between stations in 
a cluster. This is important in the sense that travelers are assumed 
to be able to reach alternative stations within a cluster easily using 
nonmotorized modes, primarily walking and cycling. If the spatial 
variability of a cluster is too large, then some stations within the 
cluster are too far from each other and would not likely be consid-
ered as alternatives by travelers. On each box, the central mark indi-
cates the median, and the bottom and top edges of the box indicate 
the 25th and 75th percentiles, respectively. The whiskers extend 
to the most extreme data points that are not considered outliers, and 
the outliers are plotted individually using the + symbol. All clusters’ 
median station-to-station distances are less than 2 km, but Clusters 1, 
2, and 7 show larger variability because of their larger spatial extents. 
Besides these three spatially isolated clusters, Cluster 3 and Cluster 9 
also show more variability than the average. This is because these 
two clusters were generated with more scattered stations; they do 
not show the most desired round shapes as a result of the k-means 
algorithm. For example, some stations in the west of Cluster 9, as 
well as some in the southwest of Cluster 3, are more distant from the 
majority of the stations. This is admittedly one of the drawbacks of 
adopting the k-means algorithm.

temporal Variability analysis

As can be seen in Figure 6a, the transit demand in Haaglanden revealed 
clear within-day and across-day patterns during the regular operating 
time. To examine the influence of time-dependent passenger flow on 
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FIGURE 4  Illustration of clustering with different K.
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(a)

(d)

OD Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12
Cluster 1 121177 0 1546 5850 23001 0 13751 228 2711 0 22223 0
Cluster 2 0 178816 0 0 66471 3935 40878 3897 35243 2419 0 15844
Cluster 3 1069 0 58100 1232 35804 16170 0 4360 4071 4873 45274 1661
Cluster 4 5966 0 1187 28283 117664 4957 0 23469 7608 4253 28012 5818
Cluster 5 30268 87636 44599 141126 466499 100297 70813 153711 202626 96113 228770 272318
Cluster 6 0 4668 25186 6124 80867 122933 3605 7819 7006 32956 62252 110581
Cluster 7 10912 42561 0 0 48622 2801 42323 2783 23480 1794 18607 9671
Cluster 8 212 4435 4631 26360 132465 7182 3003 49039 7032 36745 47954 53815
Cluster 9 2279 34005 3808 7319 150812 6457 23575 8935 105280 9430 6548 46555

Cluster 10 0 2551 5646 4222 79136 19509 1850 28635 7529 48343 10960 48864
Cluster 11 40727 0 55729 36417 206610 62525 25834 52833 7128 7718 196911 126246
Cluster 12 0 20964 1856 9366 198927 115379 13404 57849 51066 45848 99807 272591

(b)
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FIGURE 5  Illustrations of the optimal clustering, K = 12: (a) visualization of 12 clusters, (b) number of stations contained in each cluster, 
(c) illustrations of clusters’ spatial variability, (d ) constructed transit O-D matrices over the 31-day study period, and (e) visualization of the 
O-D passenger flow.
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the determination of the number of clusters, the proposed method was 
also implemented with multiple temporal passenger flow profiles from 
different periods. The following periods were investigated:

Weekdays
•	 Morning prepeak, before 7:30 a.m.;
•	 Morning peak, 7:30 to 10:00 a.m.;
•	 Midday, 10:00 a.m. to 3:00 p.m.;
•	 Afternoon peak, 3:00 to 7:30 p.m.;
•	 Afternoon postpeak, after 7:30 p.m.

Weekend
•	 Morning, before 10:00 a.m.;
•	 Midday, 10:00 to 6:00 p.m.;
•	 Evening, after 6:00 p.m.

Results for weekdays are shown in Figure 6b and Figure 6c, while 
results for weekends are in Figure 6d and Figure 6e. The red dashed 
line plotted in all these figures represents the result of aggregated 
passenger flow over the entire study period and can be used as a 
benchmark. Overall, the temporal flow variance was found not to 
have a significant influence on the final determination of number of 
clusters. The best choices still remain in the neighborhood of K11, 
although K12 in some cases turns out to be optimal while K10 is 
optimal in others. The general pattern remains stable.

One particular finding is that, during weekdays, the flow-based 
metric of midday is remarkably higher than the rest, while the flow-
based metric of the morning prepeak hour always remains the low-
est. This implies that more long-distance inter-cluster journeys are 
generated when people are going to their workplaces early in the 
morning. At midday, on the contrary, the intra-cluster flow is stron-
ger than the inter-cluster one because these traveling activities are 
less related to commuting. However, the metrics of afternoon peak 
and afternoon postpeak suggest a more mixed composition of jour-
ney purposes, such as shopping, recreational, or household-related 
activities in the city after work. During the weekend, however, the 
flow-based metrics of all three periods stay at a low level, which 
implies that more inter-cluster journeys are performed than intra-
cluster ones compared with weekdays. This can be explained by the 
fact that people normally go to the city for shopping or other leisure 
activities during the weekend.

CONCLUDING REMARKS

Accurate estimation of transit demand is crucial for both transit plan-
ning and operating processes. This paper proposes a k-means-based 
station aggregation method that can quantitatively determine the 
clustering by considering both flow and spatial distance information. 
Differing from the traditional way of grouping stops on the basis of 
traffic analysis zones, the proposed data-driven method offers another 
effective and efficient solution to those applications involving transit 
demand aggregation on the basis of directly observed flows rather 
than their proxies. The method was specified and applied to a case  
study of Haaglanden, Netherlands, by using the criterion that the ratio 
of average intra-cluster flow to average inter-cluster flow should be 
maximized while maintaining the spatial compactness of all clusters. 
This type of aggregation is particularly suited to urban areas char-
acterized by a high density of transit stations, such as the case study 
area, Haaglanden. Travelers in such environs can choose different 
origin and destination stations and services.

The proposed method consists of four steps. First, the best clus-
tering of each K is constructed by running the k-means algorithms a 
number of times with different initial centers and selecting the one that 
results with the minimum SSE, a measure for the variance of clusters. 
Then two metrics based on distance and passenger flow are computed, 
considering both intra-cluster and inter-cluster components. Finally, 
the two metrics are combined to determine the optimal number of 
cluster following the criterion adopted. This analysis process can be 
applied using other spatial and flow metrics of interest, depending on 
the application, case study characteristics, and data availability. The 
temporal variability analysis shows that the variance in passenger flow 
over time does not have a significant influence on the final determi-
nation of number of clusters when using the proposed method, which 
implies that this method is robust and can be potentially adopted for 
both short-term and long-term transit-related research.

One direction for future research is performing short-term tran-
sit demand prediction on the cluster level, which can be especially 
practical in the context of real-time transit operation but has not yet 
been well studied. Both temporal and spatial aggregation of transit 
demand are necessary to develop short-term predictions. In addition, 
transit O-D matrices are essential inputs to transit assignment mod-
els. Future research may examine the impact of different demand 
clustering on transit assignment performance (e.g., intra-cluster 
travel demand).
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