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ABSTRACT
Software development is information-dense knowledge work that
requires collaboration with other developers and awareness of
artifacts such as work items, pull requests, and file changes. With
the speed of development increasing, information overload, and
information discovery are challenges for people developing and
maintaining these systems. Finding information about similar code
changes and experts is difficult for software engineers, especially
when they work in large software systems or have just recently
joined a project. In this paper, we build a large-scale data platform
named Nalanda platform to address the challenges of information
overload and discovery. Nalanda contains two subsystems: (1) a
large-scale socio-technical graph system, named Nalanda graph
system, and (2) a large-scale index system, named Nalanda index
system that aims at satisfying the information needs of software
developers.

To show the versatility of the Nalanda platform, we built two
applications: (1) a software analytics application with a news feed
named MyNalanda that has Daily Active Users (DAU) of 290 and
Monthly Active Users (MAU) of 590, and (2) a recommendation sys-
tem for related work items and pull requests that accomplished sim-
ilar tasks (artifact recommendation) and a recommendation system
for subject matter experts (expert recommendation), augmented by
the Nalanda socio-technical graph. Initial studies of the two appli-
cations found that developers and engineering managers are favor-
able toward continued use of the news feed application for informa-
tion discovery. The studies also found that developers agreed that
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a system like Nalanda artifact and expert recommendation applica-
tion could reduce the time spent and the number of places needed
to visit to find information.
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1 INTRODUCTION
Building software is a highly collaborative process that requires
awareness of the activities by many different stakeholders and inter-
action with many different artifacts such as files, pull requests, and
work items. At the same time, large-scale software development cre-
ates lots of data about how people work with each other and with
software artifacts. As a consequence, finding information can be
hard, especially when software engineers work on large software
projects with thousands of files and team members. A lot of times
this knowledge about software development activity and expertise
is hidden in the form of software development process data and
the interaction map between stakeholders and artifacts. This data
is hard to mine and represent in a form that allows practitioners to
build applications on top of this data. This is primarily due to the
scale at which this data is generated and the fact that this data is scat-
tered across disparate data sources and systems. Therefore, it is hard
to take full advantage of this data and extract hidden knowledge,
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Figure 1: Nalanda’s Graph Schema

without employing a plethora of tailored tools, customized for each
source control system and the software development environment.

Socio-technical data that captures social and technical aspects
of software development [39] is often captured in graph structures.
For example, the Hipikat tool builds a project memory from past
activities to support newcomers with software modification tasks
[19]. In 2010, the Codebook framework was introduced with a focus
on discovering and exploiting relationships in software organiza-
tions to support inter-team coordination [11]. Codebook provided a
graph and a query language to support a wide range of applications:
find the most relevant engineers, find out why a recent change was
made, and general awareness of engineering activity [12]. Code-
book was built for a single team with 420 developers only.

With the advent of cloud services, the scale at which software
development happens and the volume of data generated during the
software development process increased significantly [30, 34]. To ad-
dress the challenges that come with scale, in this paper, we present a
large-scale software analytics data platform named Nalanda1 which
is built on top of the software development activity data and the arti-
facts. Nalanda builds a socio-technical graph at enterprise scale, with
thousands of repositories. Additionally, the Nalanda index system,
helps with the search and recommendation of software develop-
ment artifacts and the experts. Nalanda stores its graph in a native
graph database and optimizes heavily to query complex relation-
ships so that software analytics applications can operate directly
on the graph via cloud services and a high degree of performance.

The Nalanda platform, which is a generic and enterprise scale
software analytics data platform consists of two subsystems: the
Nalanda graph system, which provides a large scale socio-technical
graph of software data, and the Nalanda index system, which is an
enterprise scale index system that can be used to support a wide
range of software engineering tasks such as recommendation and
search. Nalanda scales to enterprise-scale data from 6,500 reposito-
ries. The socio-technical graph has 37,410,706 nodes and 128,745,590

1Nalanda is named after an ancient university and knowledge center located in India.
It is famous for its huge corpus of scriptures, books, and knowledge repositories.

edges (The schema of the Nalanda graph is shown in Figure 1.) The
index system contains 8,079,748 documents.

To show the versatility of the Nalanda platform, we describe two
tools that have been built on top of the Nalanda platform and de-
ployed at Microsoft: A software analytics news feed application
built on top of the Nalanda graph system named MyNalanda, and
a novel recommendation system (Nalanda artifact and expert rec-
ommendation application) leveraging the socio-technical graph for
ranking the recommendations.

The goal of this paper is to describe the design, implementation,
and deployment of the Nalanda graph system, the index system, and
two successful applications (MyNalanda and the Nalanda artifact
and expert recommendation application) built and deployed at
Microsoft. We also share details about the extensive analyses and
user studies that we conducted to evaluate the perceived usefulness
of MyNalanda and Nalanda artifact and expert recommendation
application from our deployments at Microsoft. Additionally, we
share insights from building the Nalanda platform, MyNalanda, and
the Nalanda artifact and expert recommendation application.

To that end, we explain the construction of the Nalanda graph
system in Section 2 and the index system in Section 3. We explain
the applications built leveraging these two systems i.e., MyNalanda
in Section 4 and the Nalanda artifact and expert recommendation
application in Section 5.

2 BUILDING THE NALANDA GRAPH
Key challenges in the construction of the Nalanda Graph are scale
and consistency. In this section, we lay out what content we store
in the Nalanda graph, from which sources we collect the data, and
how we ensure that the graph is kept up to date and consistent as
hundreds of thousands of events from thousands of repositories
arrive on a daily basis.

2.1 Nalanda’s Graph Schema
Nodes in the Nalanda graph represent the actors or entities involved
in the software development life cycle, while the edges represent
the relationships that exist between them.

Each node in the Nalanda graph has a type associated with it and
attributes specific to that node type, as listed in Figure 1. The central
node is the Pull Request, which has incoming edges from Author,
Reviewer, Work item, and Repository nodes, and has a outgoing
edges to File nodes changed by the pull request. A developer takes
the role of an author when they make source code changes and
submit pull requests and they assume the role of a reviewer when
they perform code reviews. These are represented as user nodes in
the Nalanda graph with different edge types but are listed here as
two different nodes in Figure 1 for clarity. For File nodes, different
types are distinguished, including source code, configuration, and
project files. Files are edited by the authors via pull requests. Files
are represented as nodes in the Nalanda graph with a second-order
relationship established between the user and file nodes via a Pull
request node.

Edges in the Nalanda graph represent the relationships between
various actors and entities. Like nodes, edges can be of different
types and can have properties associated with them. An edge is
created between an author node and a pull request node when a
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Figure 2: Nalanda’s data collection and graph construction
architecture

developer creates a pull request. Similarly, an edge is established
between the reviewer and the pull request nodes when a developer
is assigned a code review. A linked to edge is created when devel-
opers link a pull request to a work item, commonly done in Azure
DevOps [3] to connect earlier, related, pull requests to new issues.
Likewise, a parent of edge is created between two work items if
they are linked by the developers with a parent-child relationship
in Azure DevOps. Finally, a reports to edge is created between two
user nodes if one of them is the reporting manager of the other.
2.2 Data Collection and Graph Construction
The Nalanda platform architecture is shown in Figure 2. The pri-
mary source of data for the Nalanda graph is Azure DevOps. In-
stead of directly crawling the Azure DevOps system for data, we
leverage an intermediate data source called CloudMine [20]. The
Nalanda platform takes the raw event data from CloudMine and
processes it to create the nodes and edges of the Nalanda graph.
The graph can be queried using the APIs we provide, or directly by
means of the graph query language Gremlin [8].

The platform builds upon Azure [4]: key services used include
Azure batch, Azure CosmosDB, Azure SQL Server, Azure Blob
Storage, and Lens explorer [9]. As shown in Figure 2, the Nalanda
platform is built using two independently operated pipelines: a
data aggregation pipeline and a graph construction pipeline, as
explained below.

2.2.1 Nalanda’s Data Aggregation Pipeline. As indicated as step 1
in Figure 2, the data aggregation pipeline is responsible for fetching
data from different data sources (most notably CloudMine) and
making it available for the graph construction pipeline to process.

We use Lens Orchestrator [9] for orchestration and scheduling
purposes. Lens has the ability to connect to multiple data sources
and systems and move data around. In the aggregator pipeline,
Lens first connects to the CloudMine data store (which is hosted on
Cosmos [4]) and executes Scope scripts to gather data from various
data streams, such as the pull request stream, the work item stream,
the code review stream, etc. Lens saves the aggregated data in the
form of CSV files in Cosmos. Then, Lens connects to Azure Blob
Storage to temporarily store these CSV files for further processing.
This intermediate store is required as CloudMine does not allow
any other service (except Lens) to connect to and access the data
files for security and compliance reasons.

Table 1: Comparison of pipeline run time and number of
records with the increase in number of repositories

Mode Run time # Records to process

350 repos 6500 repos 350 repos 6500 repos

Bootstrap 9 hrs 28 hrs 1.05M 7.41M
Incremental 10 min 20 min 10K 57K

Additionally, we use the Lens job scheduling utilities to configure
a job in Lens to run once every eight hours to pull the latest data
from CloudMine and save it to the Azure Blob Storage.

2.2.2 Nalanda’s GraphConstruction Pipeline. Once the data is avail-
able in Azure Blob Storage, we process it using an Azure batch job
to construct the Nalanda graph (Steps 2 and 3 in Figure 2). We use
Azure CosmosDB as our graph data store.

When the batch job discovers new data files as generated by the
aggregation pipeline, it updates the pipeline registry with new file
information. This includes file names, size, timestamp, whether the
file contains data from the bootstrap or the incremental stream, file
processing status, processing duration, etc. The pipeline registry is
a SQL database whose purpose is to serve as a transactional store for
the graph construction pipeline. We create one row in the pipeline
registry database for every file discovered. After the new data is
downloaded, for each data file the corresponding node and edges
are added to, deleted from, or updated in the Nalanda graph. Once
all data for a file is read, its registry status is set to “completed”.

The graph construction pipeline operates in two modes: boot-
strap mode and incremental mode.

Bootstrap mode. This mode helps ingest all of a repository’s data,
from repository creation time until when it is run. Typically, we
run this mode for a repository when it is being onboarded onto the
Nalanda graph platform for the first time.

Incremental mode. This mode helps keep the data in the Nalanda
graph updated without needing to read the massive original streams
of CloudMine (whose size is in the orders of hundreds of Terabytes),
using the incremental streams offered instead (with sizes in the
order of tens of Gigabytes). We run the incremental pipeline once
every eight hours.

These separate modes offer the flexibility to bootstrap any new
or existing repository data in an independent and asynchronous
manner. Furthermore, the separation of bootstrap and incremental
pipelines offers substantial performance improvement in terms of
run time and resource utilization, as illustrated in Table 1.

Refreshing the data by querying the original streams of Cloud-
Mine each time the pipeline is run, takes 28 hours for 6,500 reposi-
tories. As the incremental streams are substantially smaller, each
incremental job finishes in 20 minutes, yielding an improvement
of 98.8% in pipeline run time, for each pipeline run. Note that for
an increase of the number of repositories by a factor of 20, the run
time for the bootstrap mode was increased by a factor of 3 only.
This is an effect of the careful design and implementation of the
data pipeline by massively parallelizing the data processing code
and enabling distributed processing on multiple Azure batch nodes.
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Table 2: Nalanda node and edge types and their prevalence

Node type Count

file 14,537,998
text 12,104,427
pull request 7,568,949
work item 3,067,754
user 131,578
repository 6,500

Total nodes 37,410,706

Edge type Count

changes 65,706,621
reviews 39,447,635
creates 7,569,086
contains 7,337,036
linked to 7,094,597
parent of 843,728
comments on 746,887

Total edges 128,745,590

2.3 Data consistency and Self-healing
The Nalanda graph platform is a distributed system that works
with multiple external data sources and large-scale data processing
systems, which are prone to introduce data inconsistencies. Data
gaps can manifest due to various factors related to infrastructure
and availability of the CloudMine crawlers.

Detecting and remediating data gaps in such a massive dis-
tributed system is not a trivial task. We devised a novel self-healing
system that detects data gaps and consistency issues proactively
and performs self-healing. This helps the pipeline to guarantee
data consistency irrespective of the failures manifested in external
data sources such as CloudMine. The self-healing system uses the
pipeline registry to monitor pipeline states and can switch from
incremental to bootstrap mode if this is warranted.

When an incremental pipeline is run, the timestamp of the oldest
record to be processed is compared with the timestamp of the last
successful pipeline run. If the difference between these timestamps
is bigger than three days (the period for which incremental streams
hold their data), this means a data gap has occurred. To address
this, the bootstrap mode is triggered for the repositories involved,
and ongoing incremental pipelines are halted. Furthermore, the
pipeline registry is updated to indicate that bootstrapping is taking
place, thereby locking new incremental jobs.

2.4 Scale
The Nalanda graph has been designed to accommodate thousands
of repositories. At the time of writing, it holds the software develop-
ment activity data from 6,500 repositories at Microsoft. We ingest
data starting from January 1, 2019, or from more recent reposito-
ries when their first pull request is created.

To keep its graph up to date, the Nalanda platform processes
500,000 events per day. These events include new pull requests, up-
dates or commits on those pull requests, pull request state changes,
code review assignments, and code review comments. At the time
of writing, the Nalanda graph contains 37 million nodes and 128
million edges as detailed in Table 2.

3 INDEXING NALANDA FOR INFORMATION
RETRIEVAL

Many nodes in the Nalanda Graph contain text. To facilitate search
over such text at the Nalanda scale, we need to create appropriate
indexes. The actual indices needed may depend on the specific
applications built on top of the Nalanda graph. In this section, we

discuss the indices we create and how we ensure they remain up to
date at scale.

For every search, we use the BM25 algorithm [35] for determin-
ing text similarity between a query and documents (pull requests,
work items, ...) and ranking the results. BM25 is a bag-of-words
model developed based on the probabilistic retrieval framework [1].
For a given query Q containing keywords q1,...,qn, the BM25 score
for a document D is:

score(𝐷,𝑄) =
𝑛∑︁
𝑖=1

IDF(𝑞𝑖 ) ·
𝑓 (𝑞𝑖 , 𝐷) · (𝑘1 + 1)

𝑓 (𝑞𝑖 , 𝐷) + 𝑘1 · (1 − 𝑏 + 𝑏 · |𝐷 |
avgdl )

(1)

where 𝑓 (𝑞𝑖 , 𝐷) is 𝑞𝑖 ’s term frequency in the document 𝐷 , IDF(𝑞𝑖 ) is
𝑞𝑖 ’s inverse document frequency, |𝐷 | is the length of the document
𝐷 in words, and avgdl is the average document length in the text
collection from which documents are drawn. 𝑘1 and 𝑏 are free
parameters. We use standard recommended values (𝑏 = 0.75, 𝑘1 =
1.2) for these constants [40].

3.1 The Nalanda Artifact Index
The Nalanda artifact index facilitates search through pull requests
and work items. We index the metadata, titles, and descriptions of
the artifacts (pull requests and work items). The metadata consists
of elementary properties, namely project name, repository name,
and organization name.

The Nalanda artifact index can be used to find relevant pull re-
quests given a work item, feature, technical, or functional concept.
Furthermore, with this index completed pull requests and work
items can be used as a template and inspiration to solve similar prob-
lems. They provide code samples, expose code review comments,
and help as informal documentation to learn the best practices. Ad-
ditionally, they help understand the team or project-specific pro-
cesses involved in getting such pull requests completed.

3.2 The Nalanda Expert Index
The Nalanda expert index is built to map subject matter experts
(SMEs) to technical and functional skills. Experts can be of two
types: functional and technical. Functional experts have expertise
in specific functionality of a software product or service, such as
the query optimizer in an RDBMS product or the ranker in a search
engine product. Technical experts have expertise with a technology
concept such as socket programming in Java.

The Nalanda expert index relies on a collaborative software
development platform like Azure DevOps to mine and associate
expertise with people. We match pull requests and work items (as
also used for the artifact index) to their authors and contributors.
The process of building the Nalanda expert index consists of the
following steps:

(1) Find all pull requests and work items completed by a devel-
oper and extract key phrases from them. The key phrases
include tokens in pull request minus English stopwords [5].

(2) Create a document using the data from step 1, which is the
representation of a developer’s skills.

(3) Repeat steps 1-2 for every developer and builds the corpus
for the expert index
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Similar to the Nalanda artifact index, we use the BM25 algorithm
for querying the expert index corpus. The intuition is that if a de-
veloper makes frequent code changes related to a topic (functional
or technical), they must be knowledgeable in that topic area. We
represent the frequency of a topic in a developer’s activity as term
frequency in the BM25 index. Therefore, the more a topic appears
in the document corpus constructed for that developer, the more
weight that topic is given.

We leverage the Nalanda socio-technical graph for re-ranking
the search results returned by the artifact and expert indices. A
detailed analysis of the impact of employing the Nalanda graph in
refining the search results is discussed in Section 5.3.

3.3 Scale
Building indices such as the artifact and expert index at scale is an
expensive operation.We carefully crafted the system design tomake
the Nalanda index creation and refresh pipelines robust and tolerant
to failures (details about implementation are explained in Section
5.2). The Nalanda search system has been built as a cloud-native
service. This enables us to scale out the system horizontally with
the increase in data and query volume. This also helps us in meeting
high uptime Service Level Agreements (SLAs) requirements to
move to production. Currently, the artifact index contains 8,018,320
documents and the expert index contains 61,428 documents.

We ingest data from 6,500 repositories. Our index data refresh
pipeline, which runs once every week, completes in 65 minutes on
average. The graph data refresh pipeline, which runs every 8 hours
and finishes in 18 minutes. We optimized the API service to return
the response in 1.7 seconds in accordance to the SLA requirements.

4 NALANDA APPLICATIONS (I): THE
MYNALANDA PORTAL

The Nalanda graph and indexing platform can be used to build
many applications to support software development teams and
organizations in their daily work. The first application we discuss
is MyNalanda, an online news feed in production at Microsoft, in
which developers andmanagers alike canmonitor ongoing software
development activities.

4.1 MyNalanda Motivation
The motivation behind MyNalanda is that it is common practice
for developers to work on multiple work items or pull requests at
once. It is also common practice for developers at Microsoft to work
on multiple source code repositories simultaneously. Microsoft
does not have many large mono-repositories, but a lot of small or
medium sized repositories. Keeping track of one’s work items in
their repository or across multiple repositories is a difficult and
time consuming task. Moreover, these tools operate in a workitem-
centric fashion, i.e., the primary goal of the tool is to search for and
find a work item one is interested in.

By contrast, MyNalanda is a developer-centric news feed. Upon
login, MyNalanda shows the activity (pull request, work item, code
review) of a developer, from multiple repositories, in their home-
page. Additionally, MyNalanda enables developers to discover what
their teammates and other collaborators are working on without
the hassle of going to different Azure DevOps repositories.

Figure 3: The MyNalanda homepage

4.2 The MyNalanda Homepage
For a user, the central hub in MyNalanda is their homepage. An
example of such a MyNalanda homepage is shown in Figure 3. Its
information is organized in the following sections:

News feed: The centralized news feed (‘F’ in Figure 3) is located
in the middle of the page. The news feed shows events such as up-
dates in pull requests, code review comments, and pull request sta-
tus changes from all the repositories a developer works in. For man-
agers, the news feed provides updates from their reports’ activity.

User details: This section (‘A’ in Figure 3) provides details about
developers, such as name, email address, job title, and their expertise
(extracted from their software development activity data). This
helps in facilitating easy discovery of developers’ skills and their
current projects.

Active items: There are separate sections for active reposito-
ries, pull requests, work items, and code review requests (‘B’-‘E’ in
Figure 3). Users of MyNalanda can prioritize the discovery of up-
dates from these items by following or unfollowing them.

Related people: This section (‘G’ in Figure 3) visualizes who a
developer collaborates with and how local software development
communities are formed. A developer’s collaborators include others
who work together with the developer on a coding task or work
item, or who are either being reviewed by that developer, or who
are involved in reviewing a developers’ pull request.

Search box: The search box (‘H’ in Figure 3) can be used to
find developers and discover their activity. It also can help with
searching for technical and functional concepts by leveraging the
Nalanda artifact and expert indices (as explained in Section 3).

All elements in MyNalanda, such as pull requests, work items,
people, and repositories have embedded URLs which take them to
the corresponding item in Azure DevOps. This makes it easy for
developers to navigate between MyNalanda and Azure DevOps.

Additionally, MyNalanda facilitates integration of other machine
learning recommenders due to its extensible architecture. For exam-
ple, overdue pull request are indicated with a subtle warning icon
in the active pull requests section. This is powered by the Nudge
machine learning models [32].

4.3 MyNalanda Usage
MyNalanda leverages the graph representation of the data (the Na-
landa graph) and its schema design to navigate efficiently through
complex relationships and find the content presented in various
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sections. As a result, the MyNalanda homepage including the news
feed and the other sections loads in less than a second. As quoted
by one of the MyNalanda users “It is simple, blazing fast to load,
adapts to screen size”.

Based on organic growth alone, MyNalanda reached 290 Daily
Active Users (DAU), and 590 MonthlyActive Users (MAU), in the
first six months of deployment of the Beta version at Microsoft.

4.4 MyNalanda Evaluation: Perceived
Usefulness

To evaluate how developers and engineering managers perceive the
usefulness of MyNalanda, we follow a mixed method research de-
sign involving interviews and surveys. With increasing sources of
development-related information available, there remains an open
question about how they want to access and integrate information
about their own development activities and the development work
done by their peers, and if current platforms are adequate. Through
this evaluation we assess how MyNalanda matches the correspond-
ing information needs.

4.4.1 Evaluation Setup.

Semi-structured Interviews. We conducted interviews to inves-
tigate information discovery and overload, and if users might use
an interface like MyNalanda. Participants included five developers
and two engineering managers; seven participants were men and
zero were women. Semi-structured interviews were conducted re-
motely, and ranged from 30-45 minutes. Interview topics included
interest in accessing information about their own and peers’ devel-
opment activity, information overload and how they typically get
information (in both in-office and work-from-home contexts). We
then showed a deployed version of MyNalanda and asked for reac-
tions including if they would like it, what information they would
find useful, and where they would want to see it. If the interviewee
was an engineering manager, they were also asked what informa-
tion they would be interested in seeing related to their team’s work.

Immediately following the interviews, notes were taken by the in-
terviewer to augment the transcription and interviews were coded
for emergent themes. Following each subsequent interview, themes
were revisited to see if any codes should be combined or sepa-
rated. Once no new themes emerged (i.e., theoretical saturation),
we concluded our interview phase. After seven interviews, themes
remained consistent. Finally, we reviewed notable excerpts from
all interviews and organized the themes by topic.

Surveys. Following interviews, we conducted surveys to validate
and quantify the themes that emerged. Survey participants included
full-time employees who were developers or engineering managers.

We designed our survey based on themes that emerged during
our interviews, resulting in a 19-item instrument that took a me-
dian of 8.5 minutes to complete. Participants were shown their My-
Nalanda newsfeed (with their own development activity) and given
the survey. Topics included demographics, usefulness of informa-
tion included in their MyNalanda feed, information pain points and
privacy concerns, and current and anticipated work location (e.g.,
office or work-from-home). We included items asking about use-
fulness of MyNalanda information, and preferences for possible
features (based on jobs-to-be-done). We asked where respondents

would like to see MyNalanda integrated (if at all), and their com-
fort level in sharing their development activity through something
like MyNalanda. The full survey instrument is available online at
research.microsoft.com [31].

The survey was sent to 2,000 people in total (1,400 developers
and 600 engineering managers) with 144 responses (92 developers
and 44 engineering managers), resulting in an 8% response rate af-
ter considering the 10% out of office responses. Our low response
rate could be due to the fact that the survey is not a trivial one to
fill in (cognitively and time it takes to complete the survey) and/or
because we did not offer any incentives for participation. Of those
respondents, 92 (67.65%) were developers (including software devel-
opment engineers, senior software engineers, etc.) and 44 (32.35%)
were engineering managers (including software engineering man-
ager, software engineering lead, etc.). Our respondents included
five women (6.17%), 73 men (90.12%), one who preferred to self-
describe (1.32%), and two who preferred not to answer (2.63%). They
reported an average of 10.15 years working at Microsoft, ranging
from 0.6 to 29.9 years (standard deviation 7.13).

4.4.2 Results of the Study. We first present findings from our semi
structured interviews, with each noted as developer (D) or engi-
neering manager (EM). We then present our survey results.

Interviews. Participants expressed two themes related to informa-
tion needs: integration and overload. Information integration was
echoed bymany interviewees; we define this as having development-
related information for self and others integrated into a single, easy-
to-access interface. P1 (EM) and P2 (D) discussed easily linking de-
sign docs and associated artifacts like pull requests. P1 (EM) dis-
cussed the usefulness of graphic summaries for their teams’ devel-
opment activity across time periods; this reflects consolidation via
visualization. P2 (D) called out that the ability to see detailed infor-
mation about peers’ work is helpful when coordinating work, and
is not readily available.

P5 (D) spoke about viewing the information in different ways
to deal with information overload and ensure they were not miss-
ing things: using a ‘Most recent’ view for chronologically-ordered
information, an algorithmic ‘Relevance’ view to combine informa-
tion across teams, and team-only view to further filter. This speaks
to strategies they use to ensure keep up on development-related
information both within and across teams they collaborate with.
Similar sentiments were expressed by other interviewees.

Surveys. We asked participants to rate how useful each feature
of MyNalanda was on a five-point Likert-type scale ranging from
1= Not at all useful to 5= Extremely useful. All items were optional;
of those who took the survey, 85 answered questions about MyNa-
landa features (63 developers and 22 engineering managers). This
allowed us to capture participant reactions to a real integrated in-
formation platform instead of a hypothetical one.

Table 3 lists the accumulated percentages of “Extremely useful”
(Likert=5) and “Very useful” (Likert = 4) for each feature. Here, we
see that Active pull requests (55.6% and 54.5% among developers
and engineering managers, respectively) and Active code review re-
quests (49.2% and 45.5% among developers and engineering man-
agers, respectively) are the highest rated features, with User details
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Table 3: MyNalanda survey Feedback

Feature Cumulative
(n=85)

Developers
(n=63)

Managers
(n=22)

Active pull requests (C) 55.3% 55.6% 54.5%
Active code review re-
quests (E)

48.2% 49.2% 45.5%

Active repositories (B) 44.7% 46.0% 40.9%
Active work items (D) 34.1% 34.9% 31.8%
Feed (F) 28.2% 34.9% 29.1%
User Details (A) 24.7% 27% 38.2%
Related people (G) 20% 23.8% 9.1%

Figure 4: Nalanda recommendations in Azure DevOps

(27.0% and 38.2% among developers and engineering managers, re-
spectively) and Related People (23.8% and 9.1% among developers
and engineering managers, respectively) rated the lowest.

Based on this, we conclude that the active items (pull requests,
code review requests, repositories, and work items) are the most
valued features of MyNalanda, and that user details are primarily
of interest to engineering managers.

5 NALANDA APPLICATIONS (II): ARTIFACT
AND EXPERT RECOMMENDER

When a developer is working on a work item or feature, finding the
relevant pull requests and code samples is one of the biggest pain
points for developers [31]. The intensity of the problem multiplies
in large organizations with teams working on multiple source code
repositories. Similarly, finding functional and technical experts in
large organizations is a difficult task. A lot of times, this involves
the developers to mine git history, going through wiki pages, design
documents, etc.

The Nalanda artifact and expert recommendation application
implements a recommendation plug-in for Azure DevOps (AzDO)
[3]. When a new work item is assigned to a developer, the plug-in
triggers an API call to the Nalanda search API. The client passes
the necessary input parameters, such as the search query (work
item title and description), the work item owner, and the reposi-
tory metadata. Upon receiving the results (artifact and expert rec-
ommendations), the client add recommendations to the work item

page (in Azure DevOps). A sample work item recommendation page
from live deployment (Beta version) is shown in Figure 4. Besides,
through its easy-to-use APIs, the Nalanda artifact and expert rec-
ommendation application system powers other applications such
as the search box in MyNalanda (as explained in Section 4.2).

When a work item or an issue is assigned to a developer, the
Nalanda artifact and expert recommendation application uses a
combination of title and description of the assigned work item as
an input search query and provides recommendations about work
items or pull requests that accomplished similar tasks. Additionally,
the system also provides a list of subject matter experts whom a
developer can reach out to seek help while working on that work
item.

5.1 The Nalanda Ranking Algorithm
To construct the Nalanda Expert and Artifact recommenders, we
devised a ranking algorithm consisting of three steps: 1) querying
the artifact index (see Section 3.1) to get the relevant pull requests
and work items, 2) querying the expert index (see Section 3.2) to
get a list of relevant experts, and 3) re-ranking the results using the
Nalanda graph. To that end, we take the following steps:

Step 1: We first construct a query as a combination of the title
and description of the work item. Then, we tokenize the query using
heuristics that we built for the software engineering domain, such
as splitting strings into camel-cased or pascal-cased tokens. We also
create n-gram based tokens since we found that bi-grams and tri-
grams, such as ImapTransfer and MailboxSyncEngine, capture
important information. Next, we filter out stop words [29].

We employ the BM25 algorithm, which takes care of prioritizing
important tokens using Inverse Document Frequency (IDF) scores.
It assigns more weight to the documents with a higher overlap
with the search query tokens (term frequency), and calculates a
relevance score as shown in Equation 1.

Step 2: We query the expert index, which contains one document
per person. These documents contain the tokens mined from a
developer’s pull requests and work items history. We perform the
same pre-processing explained in Step 1 on the query. The BM25
index returns a ranked list of experts.

Step 3: A heuristics-based filtering scheme is used to filter out
results with relevance scores below a threshold. We determine the
threshold empirically to set it at the 75th percentile of the relevance
score distribution. We determined this value based on a series of
experiments to optimize the accuracy of the results while reducing
the size of the results set that is passed to the next step.

Step 4: We use the Nalanda socio-technical graph to assign
proximity scores based on the edge distance between the person
performing the search and the results returned by the BM25 index
(obtained from Step-3). The proximity score is the length of the
shortest path between two nodes. We use the proximity score to
re-rank the results. For example, the proximity score is 1 if a pull
request, work item, or people node is 1-edge away from a developer
node, in their shortest path.

Step 5: We then pick the top-𝑘 results from the results set and
return them to the user. Items that have a higher BM25 relevance
score and are in close proximity to a developer are ranked higher.
Furthermore, we use proximity score to break the tie between
results where relevance scores are the same.

1252



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore C. Maddila et al.

Expert 
Index

Artifact 
Index

Nalanda 
Graph

Azure  
Cognitive Search CodeMine

Nalanda Indexers Az
ur

e 
Ba

tc
h

Azure  
Cognitive Search

Tele 
metry

Nalanda Search API

Filter 
and Rerank

Az
ur

e 
Ap

pS
er

vi
e

Nalanda 
Recommender Plugin Az

ur
e 



De
vO

ps

Figure 5: Nalanda artifact and expert recommendation appli-
cation architecture

5.2 Implementation
We implemented the Nalanda search system on the Azure platform,
with an emphasis on scalability to thousands of repositories. The
underlying architecture is visualized in Figure 5.

5.2.1 Nalanda Indexers. The backbone of the recommendation
system is the batch jobs creating and continuously updating the
indices and the socio-technical graph, as discussed in Section 3 and
shown at the bottom of Figure 5. We leverage CodeMine [21] to help
us with aggregating source control system data from thousands of
repositories.

We rely on Azure Cognitive Search (ACS) [2], which provides
BM25 as a service, to store and access the indices. This helps us
in alleviating the problems associated with service maintenance,
uptime, and scale-out.

5.2.2 Search API. Given the indices and the socio-technical graph,
the Nalanda Search API (shown in the middle of Figure 5) imple-
ments the search algorithm from Section 5.1. Each search query
(typically initiated by the users in MyNalanda or through Azure De-
vOps) passed to the Nalanda search API is processed in real-time.
The mean response time for the API call is 1.7 seconds.

The Nalanda API service asynchronously saves telemetry to an
Azure SQL database without impacting the query performance. The
telemetry includes the search query, user metadata, search results,
click logs, and the API response time. We use this information
to evaluate engagement and to improve the performance of the
Nalanda search system and the API service.

5.3 Quantitative Evaluation
To understand the efficacy and usefulness of the Nalanda artifact
and expert recommendation application, we conduct a large-scale
offline evaluation and a user study.

5.3.1 Experiment Setup. We randomly sample 80,000 work items
from the 6,500 repositories such that there are at least 10 work
items selected from each repository. Subsequently, we use the title
and description of each of these work items as the input to the

Table 4: Evaluation Data Summary

Artifact Recommendation Expert Recommendation

Index data Pull request title and de-
scription, socio-technical
graph

Pull request title and de-
scription, socio-technical
graph

Test set Work Item title and de-
scription

Internal StackOverflow
questions

Ground truth Pull requests linked to the
work item

People who answered the
post and people who have
answered at least five
other questions with the
same tag as the post

Data set 80K randomly sampled
work items from the 6,500
repositories

10K randomly sampled
questions and answers
from StackOverflow

Table 5: Evaluation and Comparative study for Artifact Rec-
ommendation

K = 3 K = 5 K = 10
Indexed Properties Accuracy MRR Acc MRR Acc MRR
PR metadata 0.26 0.23 0.29 0.28 0.32 0.30
PR attributes
+ PR title 0.38 0.36 0.43 0.41 0.51 0.48
+ PR description 0.49 0.47 0.53 0.51 0.60 0.59
+ socio-technical graph 0.71 0.71 0.74 0.73 0.78 0.77

Table 6: Evaluation and Comparative study for Expert Rec-
ommendation

K = 3 K = 5 K = 10
Indexed Properties Accuracy MRR Acc MRR Acc MRR
PR metadata 0.35 0.30 0.39 0.33 0.43 0.38
PR attributes
+ PR title 0.51 0.46 0.54 0.49 0.59 0.53
+ PR description 0.60 0.54 0.64 0.59 0.69 0.61
+ socio-technical graph 0.63 0.60 0.69 0.63 0.75 0.67

Nalanda search API. We expect the right pull requests and people
to be returned from the search API.

Since a recommendation system like ours does not exist in the
company, we do not have a ground truth to conduct a large-scale
evaluation. Therefore, we rely on the pull requests manually tagged
by developers to the work items in Azure DevOps to build the eval-
uation dataset. To create the ground truth dataset for the expert
recommendations, we leverage the private instance of StackOver-
flow deployed at Microsoft. Details about the index, ground truth,
and test sets used for these experiments are shown in Table 4.

5.3.2 Results. We use two commonly used metrics for recom-
mender systems: 1. Top K accuracy, which measures the number
of times the correct item is found in the top K recommendations 2.
Mean Reciprocal Rank (MRR), which calculates the reciprocal of
the rank at which the first relevant document was retrieved [18].

Table 5 shows the results from the evaluation for different val-
ues of K. We can see that incorporating more attributes of the pull
request, such as its title and description, improves both the MRR
and accuracy considerably. Furthermore, re-ranking the results us-
ing the Nalanda graph also substantially improves the recommen-
dations. Similar improvements can be noticed for the expert recom-
mendation task too (Table 6).
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Figure 6: Participants’ evaluation of the Nalanda system

5.4 User Perception
We conducted a user study among developers regarding the useful-
ness of the recommendations. We selected ten participants (identi-
fied as P1–P10) from Microsoft to evaluate the recommendations
on their recently completed work items.

5.4.1 Participants and Protocol. We conducted semi-structured
interviews, which were conducted remotely, and ranged from 15-
30 minutes. The average experience of the subjects is 7.7 years in
the company and ranged from 10 months to 21 years.

We employ a one-group pretest-posttest pre-experimental de-
sign [16]. We used the Likert scale [37] for rating the responses.
The respondents can provide their responses on a 1 to 5 scale, rang-
ing from ‘strongly disagree’ to ‘strongly agree’. We posed them the
questions listed below.

When you are working on a work item, how useful would the
recommendations be in completing the work item (on a scale of 1 to 5):

(1) You are going to refer to the work items and pull requests
recommended as inspiration and informal documentation
on accomplishing the work item.

(2) You would likely reach out to the recommended people for
consultation on accomplishing the work item.

5.4.2 Results. Do the users feel work item, pull request, and
expert recommendations are useful? The participants expressed
that the Nalanda recommendation system can be a great value ad-
dition to the software development process. 60% of the participants
rated ‘agree’ or ‘strongly agree’ when asked whether they find the
artifact recommendations useful and 40% responded favorably to
the expert recommendations.

Through question 2 we measure the difference between the ex-
pectations the participants had of a hypothetical recommendation
system with the Nalanda artifact and expert recommendation appli-
cation. This question measures the dependent variable for the user
study (introduction of the Nalanda system). In Figure 6, the radar
chart shows some differences between the participants’ original ex-
pectations and their perception of the Nalanda recommendations.

These differences can be observed better in Figure 7, in which
the averages of the rating are shown. The difference in expectation
versus perception was more apparent with the expert recommen-
dations compared to the artifact recommendations.

To offer an impression, we list some typical quotes (positive and
negative) that we received from the developers.

“A tool like this will help greatly to understand the
processes involved in pushing my changes through.”

Figure 7: Expectations and perceptions of the Nalanda system

“It is great to see the recommendations about people to
talk to. My team is large, mostly remote, and I am new.
So this is very helpful.”
“Finding people to talk to has never been a problem for
me as I have been working in the same org for a while.”

6 DISCUSSION
6.1 Outlook
In the future, we anticipate both the Nalanda graph system and My-
Nalanda to be scaled out significantly inside Microsoft in terms of
the number of repositories and users. Furthermore, we see oppor-
tunities for implementing the Nalanda graph platform as a service
on top of the open-source software development data mined from
systems like GitHub.

We also expect the Nalanda artifact and expert recommendation
application to be employed at substantially more software develop-
ment systems at Microsoft. Future research could entail including
other types of useful recommendations such as internal and exter-
nal documentation, tutorials, and recommendations from question-
answer forums.

The rich socio-technical data in the Nalanda graph in combi-
nation with advances in deep learning and Graph Convolutional
Networks (GCNs), hold promise for applications such as neural re-
viewer recommendations by leveraging the socio-technical struc-
tures. The Nalanda graph system lays the foundation to bring vari-
ous techniques from the graph representation world [7], such as
link prediction, social network analysis, etc. into the software engi-
neering and analytics domain.

6.2 Threats and Limitations
6.2.1 Internal Validity. Conducting trustworthy experiments on
data collected from thousands of repositories is challenging espe-
cially due to the problems of avoiding data leakage and obtaining
credible ground truth. In our experiments, we addressed this (see
Table 4). While our results are highly promising and an important
first step, more experiments are needed to better understand the
true nature of the graph’s contribution to expert and artifact rec-
ommendation.

The risk of response bias is minimal in all our studies because all
the participants of the user study are organizationally distant from
the people involved in building this system. However, there remains
a small chance that people in the user study may be positive about
the system because they want to make the developers who are from
the same company motivated and happy.
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6.2.2 External Validity. The context of our evaluation and user
studies is a software development company with a large number of
developers. These developers work on a portfolio of products across
many contexts and domains. By conducting a user study within
one single company, we were able to control for factors like culture,
tooling, frameworks, and programming languages. However, our re-
sults may not be generalizable across all developers in all contexts.
Hence, our results are not verified in the context of other organiza-
tions or the open-source community. Therefore, our findingsmay be
limited and warrant further research. Future work could investigate
user interfaces, integrating our findings with design guidelines that
span usability and technical and organizational complexity [27].

7 RELATEDWORK
Graph Representations. Hipikat [19] is one of the earliest works

to build a graph for software development entities like tasks, file
versions, and documents, using a fixed schema. It was built for on-
boarding new hires quickly by providing easy access to relevant
artifacts. Codebook [11] builds a prototype graph consisting of var-
ious software development entities. The data was mined from soft-
ware repositories for a single team at Microsoft. Bhattacharya et
al. [14] use graph representation of source code and bug tracking
information to construct predictors for software engineering met-
rics like bug severity and maintenance efforts. Other applications
of graph representations of software artifacts include visualizing
relationships among project entities [38] and extracting changes
in variability models [22]. Compared to all this work, the scale of
the Nalanda graph is significantly larger with 37M nodes and 128M
edges, and Nalanda has been designed to be actively used in a pro-
duction setting.

Source Control Dashboards. GitHub offers a dashboard for devel-
opers on its homepage [6]. It displays the repositories, active pull
requests, and issues (work items). A key limitation of the GitHub
dashboard is there exists no notion of a “Team feed” in Github un-
like MyNalanda. Team feed helps the discovery of the items worked
on by other team members.

Information Needs. Ko et al. [28] studied information needs in
colocated development teams. Fritz and Murphy [23] provide a list
of questions developers ask for the most frequently sought-after in-
formation within a project. Information needs have also been stud-
ied in the context of change tasks [41], inter-team coordination [11]
and software analytics [13, 15, 26] Through its applications, Na-
landa can efficiently address most information needs related to peo-
ple, code, and work items. For example, the answer to questions
such as “Who is working on what” and “What are coworkers work-
ing on right now” is easily available in the MyNalanda application.

Artifact Recommendation systems for software developers. Recom-
mendation systems for software engineering aim at assisting devel-
opers with activities such as code reusability, writing effective bug
reports, etc. [36]. Tools like CodeBroker [42] help in finding the
relevant code samples extracted from the standard Java documen-
tation generated by Javadoc from Java source programs and deliver
the suggestion to the Emacs editor. Anvik et al. [10] proposed a
semi-automated method to assign bug reports to reporters based
on their expertise using a machine learning algorithm. Mockus and

Herbsleb[33] used quantity as a measure of expertise. Fu et al.[24]
used the node2vec algorithm to convert file entities within projects
into knowledge mappings. They proposed four features to capture
the social relationships between developers. Devrec[43], a devel-
oper recommendation system, mines the development activities of
developers in GitHub and StackOverflow to recommend collabora-
tors for a given project. Hammad et al [25] use keywords from the
textual content of commits. On the other hand, Canfora et al [17] use
mailing lists and versioning systems to recommend experts for new-
comers joining a software project. Compared to these approaches,
the Nalanda artifact and expert recommendation application is de-
signed to be highly scalable and provide responses in real-time.

8 CONCLUSION
In this paper, we seek to build a large scale software analytics data
platform named Nalanda with two subsystems (the Nalanda graph
systemand the Nalanda index system). The Nalanda graph system
consists of a socio-technical graph encompassing the entities, peo-
ple, and relationships involved in the software development life
cycle. The Nalanda index system is an enterprise scale index system
that can be used to support a wide range of software engineering
tasks such as recommendation, and search.

We built the Nalanda graph system using software development
activity data from 6,500 source code repositories. The graph con-
sists of 37,410,706 nodes and 128,745,590 edges. To the best of our
knowledge, it is the largest socio-technical graph built to date us-
ing private software development data. Similarly, the Nalanda in-
dex system contains 8,018,320 documents in its artifact index and
61,428 documents in its expert index with data ingested from 6,500
repositories at Microsoft.

The Nalanda platform and its applications (MyNalanda and Na-
landa artifact and expert recommendation application) help in de-
veloping awareness of each other’s work, and building connections
between developers across repositories, while offering mechanisms
to discover information while managing information overload. We
also seek to address the problems of information discovery by find-
ing related work items and experts for software developers.

Based on organic growth alone, MyNalanda has Daily Active
Users (DAU) of 290 and Monthly Active Users (MAU) of 590. A pre-
liminary user study shows that 74% of developers and engineering
managers surveyed are favorable toward continued use of MyNa-
landa for information discovery. The Nalanda artifact and expert
recommendation application, with the help of the socio-technical
graph for customization, lifted the accuracy of artifact recommen-
dations by 30.45 percentage points to 0.78. In a study with ten pro-
fessional software developers, participants agreed that a system
like Nalanda artifact and expert recommendation application could
reduce the time spent and the number of places needed to visit to
find information.

In the future, we anticipate both the Nalanda graph system and
MyNalanda to be scaled out significantly inside Microsoft in terms
of the number of repositories and users. We believe the systems and
the techniques have applicability beyond Microsoft. Furthermore,
we see opportunities for implementing the Nalanda graph platform
as a service on top of the open-source data mined from platforms
like GitHub.
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