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Diverse Projection Ensembles
for Distributional Reinforcement Learning

Moritz A. Zanger Wendelin Böhmer Matthijs T. J. Spaan
Delft University of Technology

{ m.a.zanger, j.w.bohmer, m.t.j.spaan}@tudelft.nl

Abstract

In contrast to classical reinforcement learning, distributional RL algorithms aim to
learn the distribution of returns rather than their expected value. Since the nature
of the return distribution is generally unknown a priori or arbitrarily complex, a
common approach finds approximations within a set of representable, parametric
distributions. Typically, this involves a projection of the unconstrained distribution
onto the set of simplified distributions. We argue that this projection step entails
a strong inductive bias when coupled with neural networks and gradient descent,
thereby profoundly impacting the generalization behavior of learned models. In
order to facilitate reliable uncertainty estimation through diversity, this work studies
the combination of several different projections and representations in a distribu-
tional ensemble. We establish theoretical properties of such projection ensembles
and derive an algorithm that uses ensemble disagreement, measured by the average
1-Wasserstein distance, as a bonus for deep exploration. We evaluate our algorithm
on the behavior suite benchmark and find that diverse projection ensembles lead to
significant performance improvements over existing methods on a wide variety of
tasks with the most pronounced gains in directed exploration problems.

1 Introduction

In reinforcement learning (RL), agents interact with an unknown environment, aiming to acquire poli-
cies that yield high cumulative rewards. In pursuit of this objective, agents must engage in a trade-off
between information gain and reward maximization, a dilemma known as the exploration/exploitation
trade-off. In the context of model-free RL, many algorithms designed to address this problem effi-
ciently rely on a form of the optimism in the face of uncertainty principle [Auer, 2002] where agents
act according to upper confidence bounds of value estimates. When using high-capacity function
approximators (e.g., neural networks) the derivation of such confidence bounds for value estimates is
non-trivial. One popular approach employs an ensemble of learned approximations [Dietterich, 2000,
Lakshminarayanan et al., 2017] with the intuition that independent models generalize differently to
unseen states or actions, yielding a measure of ensemble disagreement as a proxy for uncertainty.
Only upon visiting a state-action region sufficiently often are ensemble members expected to con-
verge to almost equal predictions. This notion of reducible uncertainty is also known as epistemic
uncertainty [Hora, 1996, Der Kiureghian and Ditlevsen, 2009].

A concept somewhat orthogonal to epistemic uncertainty is aleatoric uncertainty, that is the uncer-
tainty associated with the inherent irreducible randomness of an event. The latter is the subject of the
recently popular distributional branch of RL [Bellemare et al., 2017], which aims to approximate the
distribution of returns, as opposed to only its mean. While distributional RL naturally lends itself
to risk-sensitive learning, several empirical results show significant improvements over classical
RL even when distributions are used only to recover the mean [Bellemare et al., 2017, Dabney
et al., 2018b, Rowland et al., 2019, Yang et al., 2019, Nguyen-Tang et al., 2021]. Since the space of

16th European Workshop on Reinforcement Learning (EWRL 2023).



potential return distributions is infinite-dimensional in general, many recent advancements in this
field rely on novel methods to project the unconstrained return distribution onto a set of representable
distributions.
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Figure 1: Fit and generalization on a toy 1-D re-
gression task. Black dots are training data points.
Shown here are 9 quantile lines of learned distribu-
tions based on categorical and quantile projections.

In this paper, we study the combination of differ-
ent projections and representations in an ensem-
ble of distributional value learners. We argue
that the inductive bias imposed by the projection
step leads to distinct generalization behaviors
when joined with neural function approximation
and gradient descent. We thus deem distribu-
tional projections instrumental to the construc-
tion of diversely generalizing ensembles and
subsequently to effective epistemic uncertainty
quantification and exploration. Fig. 1 illustrates
the distinct generalization signatures of two such
projection methods on a toy regression problem.

Our main contributions are as follows:

(1) We introduce distributional projection ensembles and analyze their properties theoretically. In
our setting, each model is iteratively updated toward the projected mixture over ensemble return
distributions. We describe such use of distributional ensembles formally through a projection mixture
operator and establish several of its properties, including contractivity and residual approximation
errors.

(2) In connection with the projection mixture operator, we derive a propagation method for epistemic
uncertainty that reconciles the use of a joint target distribution with directed exploration. In particular,
we relate distributional temporal difference (TD) errors, as measured by the 1-Wasserstein distance,
to errors regarding the true return distribution. We leverage this insight to devise an optimism-based
algorithm for directed exploration that leverages projection ensembles as an intrinsic signal.

(3) We implement the above-described algorithmic components in a deep RL setting and evaluate the
resulting agent on the behavior suite [Osband et al., 2019a], a benchmark collection consisting of
a wide range of tasks including a total of 468 environments. Our experiments show that projection
ensembles aid reliable uncertainty estimation and learning stability, outperforming baselines on most
tasks, even when compared to significantly larger ensemble sizes.

2 Related Work

Our work builds on a swiftly growing body of literature in distributional RL [Rösler, 1992, Morimura
et al., 2010, Bellemare et al., 2017]. In particular, several of our theoretical results rely on previous
work by Rowland et al. [2018] and Dabney et al. [2018b], who first provided contraction properties
of categorical and quantile projections in distributional RL respectively. Numerous recently proposed
algorithms [Dabney et al., 2018a, Rowland et al., 2019, Yang et al., 2019, Nguyen-Tang et al., 2021]
are based on novel representations and projections. To the best of our knowledge, our work is the
first to study the combination of different projection operators and representations in the context
of distributional RL. Several works, however, have applied ensemble techniques to distributional
approaches. For example, Eriksson et al. [2022] and Hoel et al. [2023] use a bootstrapped ensemble of
distributional models to derive aleatoric and epistemic risk measures. Nikolov et al. [2018] combine a
bootstrapped deterministic DQN ensemble with a distributional categorical model for information-
directed sampling. In a broader sense, the use of deep ensembles for value estimation and exploration
is widespread [Osband et al., 2016, 2019b, Flennerhag et al., 2020, Fellows et al., 2021, Chen et al.,
2017]. A notable distinction between such algorithms is whether independence between ensemble
members is maintained or whether a joint bootstrapped TD target is used. Our work falls into the
latter category, necessitating a propagation mechanism that reestablishes value uncertainty rather
than uncertainty in TD targets [Fellows et al., 2021, Moerland et al., 2017, Janz et al., 2019]. Our
proposed propagation scheme establishes a temporal consistency between distributional temporal
difference errors and errors in the true return distributions in a similar fashion to the uncertainty
Bellman equations [O’Donoghue et al., 2018].
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3 Background

Throughout this work, we consider a finite Markov Decision Process (MDP) [Bellman, 1957] of the
tuple (S,A,R, γ, P, µ) as the default problem framework, where S is the finite state space, A is the
finite action space, R : S×A → P(R) is the immediate reward distribution, γ ∈ [0, 1] is the discount
factor, P : S ×A → P(S) is the transition kernel, and µ : P(S) is the start state distribution. Here,
we write P(X ) to indicate the space of probability distributions defined over some space X . Given a
state St at time t, agents draw an action At from a stochastic policy π : S → P(A) to be presented
the random immediate reward Rt ∼ R(·|St, At) and the successor state St+1 ∼ P (·|St, At). Under
policy π and transition kernel P , the discounted return is a random variable given by the discounted
cumulative sum of random rewards according to Zπ(s, a) =

∑∞
t=0 γ

tRt, where Rt ∼ R(St, At)
and S0 = s,A0 = a. Note that our notation will generally use uppercase letters to indicate
random variables. Furthermore, we write D(Zπ(s, a)) ∈ P(R)S×A to denote the distribution of the
random variable Zπ , that is a state-action-dependent distribution residing in the space of probability
distributions P(R). For explicit referrals, we label this distribution ηπ(s, a) = D(Zπ(s, a)). The
expected value of Zπ(s, a) is known as the state-action value Qπ(s, a) = E[Zπ(s, a)] and adheres to
a temporal consistency condition described by the Bellman equation [Bellman, 1957]

Qπ(s, a) = EP,π[R0 + γQπ(S1, A1)|S0 = s,A0 = a] , (1)
where EP,π indicates that successor states and actions are drawn from P and π respectively. Moreover,
the Bellman operator TπQ(s, a) := EP,π[R0 + γQ(S1, A1)|S0 = s,A0 = a] has the unique fixed
point Qπ(s, a).

3.1 Distributional reinforcement learning

The distributional Bellman operator T π [Bellemare et al., 2017] is a probabilistic generalization
of Tπ and considers return distributions rather than their expectation. For notational convenience, we
first define Pπ to be the transition operator according to

PπZ(s, a) :
D
= Z(S1, A1), where S1 ∼ P (·|S0 = s,A0 = a), A1 ∼ π(·|S1), (2)

and D
= indicates an equality in distributional law [White, 1988]. In this setting, the distributional

Bellman operator is defined as
T πZ(s, a) :

D
= R0 + γPπZ(s, a). (3)

Similarly to the classical Bellman operator, the distributional counterpart T π : P(R)S×A −→
P(R)S×A has the unique fixed point T πZπ = Zπ, that is the true return distribution Zπ. In the
context of iterative algorithms, we will also refer to the identity T πZ(s, a) as a bootstrap of the
distribution Z(s, a). For the analysis of many properties of T π, it is helpful to define a distance
metric over the space of return distributions P(R)S×A. Here, the supremum p-Wasserstein metric
w̄p : P(R)S×A × P(R)S×A −→ [0,∞] has proven particularly useful. In the univariate case, w̄p is
given by

w̄p(ν, ν
′) = sup

s,a∈S×A

(∫ 1

0
|F−1

ν(s,a)(τ)− F−1
ν′(s,a)(τ)|

pdτ
) 1

p , (4)

where p ∈ [0,∞), ν, ν′ are any two state-action return distributions, and Fν(s,a) : R −→ [0, 1]
is the cumulative distribution function (CDF) of ν(s, a). For notational brevity, we will use the
notation wp(ν(s, a), ν

′(s, a)) = wp(ν, ν
′)(s, a) for the p-Wasserstein distance between distributions

ν, ν′, evaluated at (s, a). One of the central insights of previous works in distributional RL is
that the operator T π is a γ-contraction in w̄p [Bellemare et al., 2017], meaning that we have
w̄p(T πν, T πν′) ≤ γw̄p(ν, ν

′), a property that allows us (in principle) to construct convergent value
iteration schemes in the distributional setting.

3.2 Categorical and quantile distributional RL

In practice, implementing an iteration scheme based strictly on the distributional Bellman operator T π

is impossible without significant restrictions on the return distributions that occur in an MDP. This
is because we can not, in general, represent arbitrary probability distributions in P(R) and instead
resort to parametric models capable of representing a subset F of P(R). Following Bellemare et al.
[2023], we refer to F as a representation and define it to be the set of parametric distributions Pθ

with F = {Pθ ∈ P(R) : θ ∈ Θ}. Furthermore, we define the projection operator Π : P(R) −→ F
to be a mapping from the space of probability distributions P(R) to the representation F . Recently,
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two particular choices for representation and projection have proven highly performant in deep RL:
the categorical and quantile model.

The categorical representation [Bellemare et al., 2017, Rowland et al., 2018] assumes a weighted
mixture of K Dirac delta distributions δzk(z) with support at evenly spaced locations zk ∈ [z1, ..., zK ].
The categorical representation FC is thus given by

FC =
{ K∑

k=1

θkδzk(z)
∣∣∣ θk ≥ 0,

K∑
k=1

θk = 1
}
. (5)

The corresponding categorical projection operator ΠC maps a distribution ν from P(R) to a distri-
bution in FC by assigning probability mass inversely proportional to the distance to the closest zk
in the support [z1, ..., zK ] for every point in the support of ν. For example, for a single Dirac
distribution δx(z) and assuming zk ≤ x ≤ zk+1 the projection is given by

ΠCδx(z) =
zk+1−x
zk+1−zk

δzk(z) +
x−zk

zk+1−zk
δzk+1

(z). (6)

The corner cases are defined such that ΠCδx(z) = δz1(z)∀x ≤ z1 and ΠCδx(z) = δzK (z)∀x ≥ zK .
It is straightforward to extend the above projection step to finite mixtures of Dirac distributions
through ΠC

∑
i piδzi(z) =

∑
i piΠCδzi(z).

The quantile representation [Dabney et al., 2018b], like the categorical representation, comprises
mixture distributions of Dirac deltas δθk(z), but in contrast parametrizes their locations rather than
probabilities. Assuming equal weighting among the Dirac distributions, this yields the representation

FQ =
{ K∑

k=1

1
K δθk(z)

∣∣∣ θk ∈ R
}
. (7)

For some distribution ν ∈ P(R), the quantile projection ΠQν is a mixture of K Dirac delta
distributions with the particular choice of locations that minimizes the 1-Wasserstein distance between
ν ∈ P(R) and the projection ΠQν ∈ FQ. The parametrization θk with minimal 1-Wasserstein
distance is given by the evaluation of the inverse CDF F−1

ν at midpoint quantiles τk = 2k−1
2K ,

k ∈ [1, ...,K], s.t. θk = F−1
ν ( 2k−1

2K ). Equivalently, θk is the minimizer of the quantile regression
loss (QR) [Koenker and Hallock, 2001], which is more amenable to gradient-based optimization. The
loss is given by LQ(θk, ν) = EZ∼ν [ρτk(Z − θk)], (8)
where ρτ (u) = u(τ − 1{u≤0}(u)) is an error function that assigns asymmetric weight to over- or
underestimation errors. 1 here denotes the indicator function.

4 Exploration with distributional projection ensembles

This paper is foremost concerned with leveraging diverse ensembles that rely on different represen-
tations and projection operators. To introduce the concept of distributional projection ensembles
and their properties, we begin by outlining the main algorithmic components in a formal setting that
foregoes sample-based stochastic approximation or function approximation and defer a more realistic
RL setting to Section 5.

Consider an ensemble E = {ηi(s, a) | i ∈ [1, ...,M ]} of M member distributions ηi(s, a), each
associated with a representation Fi and a projection operator Πi. In this setting, we assume that
each member distribution ηi(s, a) ∈ Fi is an element of the associated representation Fi and the
projection operator Πi : P(R) −→ Fi maps any distribution ν ∈ P(R) to Fi such that Πiν ∈ Fi.
The uniform mixture distribution over E given by ηM (s, a) = 1/M

∑M
i=1 ηi(s, a) then has support

over the union of representations FM = ∪M
i=1Fi. We can now define a central identity in this paper,

the projection mixture operator ΩM : P(R) −→ FM , as follows:

ΩMη(s, a) = 1
M

M∑
i=1

Πiη(s, a). (9)

Joining ΩM with the distributional Bellman operator T π yields the combined operator ΩMT π.
Intuitively, ΩMT π performs the following steps: It first applies the distributional Bellman operator T π

to a return distribution η, then projects the resulting distribution with the individual projection
operators Πi onto M different representations Fi, and finally recombines the ensemble members into
a mixture model in FM (illustrated graphically in Fig. 2). In connection with iterative algorithms,
we are often interested in the contractivity of the combined operator ΩMT π to establish convergence.
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Figure 2: Illustration of the projection mixture operator with quantile and categorical projections.

Proposition 1 delineates conditions under which we can combine individual projections Πi such that
the resulting combined operator ΩMT π is a contraction mapping.

Proposition 1 Let Πi, i ∈ [1, ...,M ] be projection operators Πi : P(R) −→ Fi mapping from the
space of probability distributions P(R) to representations Fi and denote the projection mixture
operator ΩM : P(R) −→ ∪M

i=1Fi as defined in Eq. (9). Furthermore, assume that for some
p ∈ [0,∞] each projection Πi is bounded in the p-Wasserstein metric in the sense that for any two
return distributions η, η′ we have wp

(
Πiη,Πiη

′)(s, a) ≤ ciwp

(
η, η′

)
(s, a) for a constant ci. Then,

the combined operator ΩMT π is bounded in the supremum p-Wasserstein distance w̄p by
w̄p(ΩMT πη,ΩMT πη′) ≤ c̄γw̄p(η, η

′)

and is accordingly a contraction so long as c̄γ < 1, where c̄ = 1
M

∑M
i=1 ci.

The proof is deferred to Appendix A. The contraction condition in Proposition 1 is naturally satisfied
for example if all projections Πi are non-expansions in a joint metric wp. It is, however, more
permissive in the sense that it only requires the average modulus c̄ to be limited, allowing for
expanding operators in the ensemble as well. A contracting combined operator ΩMT π allows us to
formulate a simple convergent iteration scheme where in a sequence of steps k, ensemble members
are moved toward the projected mixture distribution according to η̂i,k+1 = ΠiT π η̂M,k, yielding
the (k + 1)-th mixture distribution η̂M,k+1 = 1

M

∑M
i=1 η̂i,k+1. This procedure can be compactly

expressed by
η̂M,k+1 = ΩMT π η̂M,k, for k = [0, 1, 2, 3, ...] (10)

and has a unique fixed point which we denote ηπM = η̂M,∞.

4.1 From distributional approximations to confidence bounds

We proceed to describe how distributional ensembles can be leveraged for exploration. Our setting
considers exploration strategies based on the upper-confidence-bound (UCB) algorithm [Auer, 2002].
In the context of model-free RL, provably efficient algorithms often rely on the construction of a
bound, that overestimates the true state-action value with high probability [Jin et al., 2018, 2019]. In
other words, we are interested in finding an optimistic value Q̂+(s, a) such that Q̂+(s, a) ≥ Qπ(s, a)

with high probability. To this end, Proposition 2 relates an estimate Q̂(s, a) to the true value Qπ(s, a)
through a distributional error term.

Proposition 2 Let Q̂(s, a) = E[Ẑ(s, a)] be a state-action value estimate where Ẑ(s, a) ∼ η̂(s, a)
is a random variable distributed according to an estimate η̂(s, a) of the true state-action re-
turn distribution ηπ(s, a). Further, denote Qπ(s, a) = E[Zπ(s, a)] the true state-action, where
Zπ(s, a) ∼ ηπ(s, a). We have that Qπ(s, a) is upperbounded by

Q̂(s, a) + w1

(
η̂, ηπ

)
(s, a) ≥ Qπ(s, a) ∀(s, a) ∈ S ×A,

where w1 is the 1-Wasserstein distance metric.

The proof follows from the definition of the Wasserstein distances and is given in Appendix A.
Proposition 2 implies that, for a given distributional estimate η̂(s, a), we can construct an optimistic
upper bound on Qπ(s, a) by adding a bonus of the 1-Wasserstein distance between an estimate η̂(s, a)
and the true return distribution ηπ(s, a), which we define as bπ(s, a) = w1(η̂, η

π)(s, a) in the
following. By adopting an optimistic action-selection with the guaranteed upper bound on Qπ(s, a)
according to a = argmax

a∈ A
[Q̂(s, a) + bπ(s, a)], (11)

we maintain that the resulting policy inherits efficient exploration properties of known optimism-based
exploration methods. Note that in a convergent iteration scheme, we expect the bonus bπ(s, a) to
almost vanish in the limit of infinite iterations. We thus refer to bπ(s, a) as a measure of the epistemic
uncertainty of the estimate η̂(s, a).
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4.2 Propagation of epistemic uncertainty through distributional errors

As is, the previously described bonus does not inform a practicable algorithm, since we do not
assume knowledge of the true return distribution ηπ(s, a) and accordingly can not access bπ(s, a).
Unfortunately, the ensemble E does not straightforwardly lend itself as an estimator of bπ(s, a) either.
This is because our iteration procedure’s use of the mixture operator ΩM precludes the independence
of individual members with model estimates moving toward a joint target at every iteration. This
well-known issue (described extensively in the Bayesian setting by Fellows et al. [2021]) causes
the ensemble to represent uncertainty w.r.t. the bootstrap ΩMT π η̂M (s, a) rather than the true return
distribution ηπ(s, a). While maintaining strict independence between ensemble members can resolve
this issue [Osband et al., 2019b, Chen et al., 2017], numerous works demonstrate that joining
ensemble predictions into a single bootstrap alleviates overestimation bias and learning instability
[Hasselt, 2010, Van Hasselt et al., 2018, Kuznetsov et al., 2020, Chen et al., 2021].

In this paper, we aim for the latter and make the assumption that iterations based on the combined
operator ΩMT π and a well-behaved distributional ensemble E yield an estimate of the one-step uncer-
tainty wavg(s, a) ≈ w1

(
η̂M ,ΩMT π η̂M

)
(s, a). Here, wavg(s, a) is simply the average disagreement

between ensemble members in 1-Wasserstein according to

wavg(s, a) =
1

M(M−1)

M∑
i,j=1

w1

(
η̂i, η̂j

)
(s, a) . (12)

To establish a bonus that allows for optimistic action selection we derive a propagation scheme for
epistemic uncertainty in the distributional setting. More specifically, we find that an upper bound on
the bonus bπ(s, a) satisfies a temporal consistency condition, similar to the Bellman equations, that
relates the distributional return error w1(η̂, η

π)(s, a) to a one-step error w1(η̂,ΩMT π η̂)(s, a) that is
more amenable to estimation.

Theorem 3 Let η̂(s, a) ∈ P(R) be an estimate of the true return distribution ηπ(s, a) ∈ P(R),
and denote the projection mixture operator ΩM : P(R) −→ ∪M

i=1Fi with members Πi and bounding
moduli ci as defined in Proposition 1. Furthermore, assume ΩMT π is a contraction mapping with
fixed point ηπM . We then have for all (s, a) ∈ S ×A

w1

(
η̂, ηπM

)
(s, a) ≤ w1

(
η̂,ΩMT π η̂

)
(s, a) + c̄ γ E

[
w1

(
η̂, ηπM

)
(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a) and A1 ∼ π(·|S1).

The proof is given in Appendix A and exploits the triangle inequality property of the Wasserstein
distances. It may be worth noting that Theorem 3 is a general result that is not restricted to the use of
projection ensembles. It is, however, a natural complement to the iteration described in Eq. (10) in
that it allows us to reconcile the benefits of bootstrapping diverse ensemble mixtures with optimistic
action selection for directed exploration. To this end, we devise a separate iteration procedure aimed
at finding an approximate upper bound on w1(η̂, η

π
M )(s, a). Denoting the k-th iterate of the bonus

estimate b̂k(s, a), we have by Theorem 3 that the iteration

b̂k+1(s, a) = w1

(
η̂,ΩMT π η̂

)
(s, a) + c̄γEP,π

[
b̂k(S1, A1)

∣∣S0 = s,A0 = a
]
∀(s, a) ∈ S ×A ,

converges to an upper bound on w1(η̂, η
π
M )(s, a)1.

We conclude this section with the remark that the use of projection ensembles as described here
clashes with the intuition that the epistemic uncertainty wavg(s, a) should vanish in convergence.
This is because each estimate η̂i inherits irreducible approximation errors from the projections Πi.
In Appendix A, we provide general bounds for these errors and show that residual errors can be
controlled through the number of atoms K in the specific example of an ensemble based on the
quantile and categorical projections.

5 Deep distributional reinforcement learning with projection ensembles

Section 4 has introduced the concept of projection ensembles in a formal, sanitized setting. In this
section, we aim to transcribe the previously derived algorithmic components into a deep RL algorithm

1To see the convergence, note that the sequence is equivalent to an iteration with Tπ in an MDP with the
deterministic immediate reward w1

(
η̂,ΩMT π η̂

)
(s, a).
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that departs from several of the previous assumptions. Specifically, this includes 1) control with
a greedy policy, 2) sample-based stochastic approximation, 3) nonlinear function approximation,
and 4) gradient-based optimization. This sets the following section firmly apart from the results
in Section 4, yet it is exactly in this scenario that we hypothesize diverse projection ensembles to
bring to bear their benefits. The central underlying idea is that distributional projections and the
functional constraints they entail offer an effective tool to impose diverse generalization behaviors on
an ensemble of learners. In particular, we implement the above-described algorithm with a neural
ensemble comprising the models of the two popular deep RL algorithms QR-DQN [Dabney et al.,
2018b] and C51 [Bellemare et al., 2017].

5.1 Do different distribution projections lead to different generalization behavior?
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Figure 3: State exploration on deep-sea with
DLTV based on categorical and quantile projec-
tions. Higher (number of visited states) is better.
The horizontal axis represents different factors
of randomized prior functions. Bars represent
medians and interquartile ranges of 100 seeds.

As formal descriptions of the generalization be-
havior of deep NN architectures remain elusive,
we provide empirical support for the claim in
question and motivate the use of projection en-
sembles with a preliminary experiment.

We modify a recent distributional RL algorithm
that relies on predictive variance as an explo-
ration signal: under the premise that predictions
of a QR model produce high variance predic-
tions when encountering unfamiliar state-action
regions, DLTV-QR [Mavrin et al., 2019] employs
an exploratory action-selection rule akin to2

a = argmax
a∈A

(
E[Z] + βV[Z]

)
, Z ∼ η̂QR(s, a).

We replace the quantile representations in the
original formulation with the categorical architec-
ture of C51. Fig. 3 shows the results of this study on the deep exploration benchmark deep sea, where
agents are tasked with finding a rare rewarding state. These results strongly suggest that C51 in this
case does not follow the presumption that unseen state-action tuples are associated with high-variance
predictions, resulting in a counterproductive exploration signal.

5.2 Deep quantile and categorical projection ensembles for exploration

In this section, we introduce projection ensemble DQN (PE-DQN), a deep RL algorithm that combines
the quantile and categorical projections of QR-DQN [Dabney et al., 2018b] and C51 [Bellemare et al.,
2017] into a diverse ensemble to drive exploration and learning stability.

Parametric model. We begin by introducing our parametric model of the mixture distribution ηM,θ.
We construct ηM,θ as an equal mixture between a quantile and a categorical representation, each
parametrized through a NN with K output logits where we use the notation θik to mean the k-th
logit of the network parametrized by the parameters θi of the i-th model in the ensemble. In the
following, we will consider a sample transition (s, a, r, s′, a′) where a′ is chosen greedily according
to EZ∼ηM,θ(s′,a′)[Z]. Dependencies on (s, a) are hereafter dropped for conciseness by writing
θik(s, a) = θik and θik(s

′, a′) = θ′ik. The full mixture model ηM,θ is then given by

ηM,θ = 1
2

M=2∑
i=1

K∑
k=1

p(θik)δz(θik)(z), with p(θ1k)=
1
K , z(θ1k)=θ1k,

p(θ2k)=σ(θ2k), z(θ2k)=zk,
(13)

where σ(xi) = exi/
∑

j e
xj is the softmax transfer function. Consequently, this representation

comprises a total of 2K atoms, K of which parametrize locations in the quantile model, and the
remaining K parametrizing probabilities in the categorical representation.

Projection losses. Next, we assume that bootstrapped return distributions are generated by a set
of delayed parameters θ̃, as is common [Mnih et al., 2015]. The stochastic (sampled) version of the

2For notational simplicity we have here simplified the original formulation, which uses a decaying left-
truncated version of the variance as a bonus. All our experiments make use of the original formulation.
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distributional Bellman operator T̂ π , applied to the target ensemble’s mixture distribution ηM,θ̃ yields

T̂ πηM,θ̃ = 1
2

M=2∑
i=1

K∑
k=1

p(θ̃′ik) δr+γz(θ̃′
ik)

(z). (14)

Instead of applying the projection mixture ΩM analytically, as done previously in Section 4, the
parametric estimates ηM,θ are moved incrementally towards a projected target distribution through
gradient descent on a loss function.

In the quantile representation, we augment the classical quantile regression loss [Koenker and Hallock,
2001] with an importance-sampling ratio Kp(θ̃′ij) to correct for the non-uniformity of atoms from
the bootstrapped distribution T̂ πηM,θ̃. For a set of fixed quantiles τk, the loss L1 is given by

L1

(
ηθ1 ,ΠQT̂ πηM,θ̃

)
=

M=2∑
i=1

K∑
k,j=1

Kp(θ̃′ij)
(
ρτk

(
r + γz(θ̃′ij)− θ1k

))
. (15)

The categorical model minimizes the Kullback-Leibler (KL) divergence between the projected
bootstrap distribution ΠC T̂ πηM,θ̃ and an estimate ηθ2 . The corresponding loss is given by

L2

(
ηθ2 ,ΠC T̂ πηM,θ̃

)
= DKL

(
ΠC T̂ πηM,θ̃∥ηθ2

)
. (16)

As T̂ πηM,θ̃ is a mixture of Dirac distributions, the definition of the projection ΠC according to
Eq. (6) can be applied straightforwardly to obtain the projected bootstrap distribution ΠC T̂ πηM,θ̃.

Uncertainty Propagation. Given a state-action tuple (s, a), the local uncertainty estimate wavg(s, a)
as defined in Eq. (12) can be computed deterministically from a distributional ensemble E. To obtain
a parametric bonus estimate bϕ(s, a) we reproduce the steps above with a model of parameters ϕ
and an alternate tuple (s, a, wavg, s

′, a′ϵ), where we replaced the immediate reward with the ensemble
disagreement. a′ϵ is an exploratory action chosen greedily according to the rule

a = argmax
a∈A

(
EZ∼ηM,θ(s,a)[Z] + β bϕ(s, a)

)
, where bϕ(s, a) = EB∼ηM,ϕ(s,a)[B]. (17)

Here, β is a hyperparameter to control the policy’s drive towards exploratory actions. Finally, the
action selection in Eq. (17) also constitutes our agents’ behavioral policy for exploration.

6 Experimental results

6.1 The behaviour suite

While our algorithm design has an emphasis on hard exploration problems, we intend to assess how
the use of projection ensembles affects the learning process of agents in various aspects on a wide
range of tasks. To this end, we evaluate PE-DQN on the behavior suite (bsuite) [Osband et al., 2019a],
a battery of benchmark problems constructed to assess key properties of RL algorithms. The suite
consists of 22 tasks with up to 22 variations in size or seed, totaling 468 environments.

Experimental setup. We compare PE-DQN to several baselines: the popular Bootstrapped DQN
with prior functions (BDQN+P) [Osband et al., 2019b], the aforementioned DLTV QR-DQN [Mavrin
et al., 2019], and information-directed sampling (IDS-C51) [Nikolov et al., 2018]. BDQN+P ap-
proximates posterior sampling of a parametric value function by combining statistical bootstrapping
with additive prior functions in an ensemble of DQN base learners. IDS-C51 builds on the BDQN+P
architecture but acts according to an information-gain ratio for which Nikolov et al. [2018] estimate
aleatoric uncertainty (noise) with the categorical model of C51. In contrast, DLTV QR-DQN employs
a distributional value approximation based on the quantile representation and follows a decaying
exploration bonus of the left-truncated variance (for more details, see Mavrin et al. [2019]). We
aimed to keep as many hyperparameters between the implementations equal, up to algorithm-specific
parameters, network architecture, prior factors, and learning rate. We tuned each algorithm with a grid
search on a selected subset of problems in the bsuite. Our implementations make slight adjustments
to DLTV and IDS in their favor and generally outperformed the vanilla baselines where available.
Further details on the experimental design and implementation are provided in Appendix B.

Comparative evaluation. Fig. 4 (a) shows the results of the entire suite experiment, summarized in
seven core capabilities. These capability scores are computed as proposed by Osband et al. [2019a]
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Figure 4: (a) Summary of bsuite experiments. Wider is better. (b) Median episodic regret over deep
sea size. Lower is better. Shaded regions are the interquartile range of 10 seeds.

and follow a handcrafted scoring function per environment. For example, exploration capability
is scored by the average regret in the sparse reward environments deep sea, stochastic deep sea,
and cartpole swingup. The full set of results is provided in Appendix B. Perhaps unsurprisingly,
PE-DQN has its strongest performance in the exploration category but we find that it improves upon
baselines in several more categories. Note here, that PE-DQN uses substantially fewer models than
the baselines, with a total of 4 distributional models compared to the 20 DQN models used in the
ensembles of both BDQN+P and IDS, where the latter requires an additional C51 model.

6.2 The deep-sea environment

The deep sea environment is one of the exploration problems in the behavior suite and has recently
gained popularity as an exploration benchmark [Osband et al., 2019b, Janz et al., 2019, Flennerhag
et al., 2020]. Deep sea is a sparse reward environment where agents can reach the single rewarding
state at the bottom right of an N×N grid only through a unique sequence of actions in an exponentially
growing trajectory space. We ran an additional experiment on deep sea with grid sizes up to 100;
double the maximal size in the behavior suite. Fig. 4 (b) shows a summary of this experiment
where we evaluated episodic regret, that is the number of non-rewarding episodes with a maximum
budget of 10000 episodes. PE-DQN scales more gracefully to larger sizes of the problem than the
baselines, reducing the median regret by roughly half. Additional experimental results provided in
Appendix C show that the use of diverse projection ensembles is crucial in attaining this performance,
outperforming variations of PE-DQN that rely on ensembles of equal architecture by a large margin.

7 Conclusion

In this work, we have introduced projection ensembles for distributional reinforcement learning, a
method combining diversely generalizing models based on different parametric representations and
projections of return distributions. We have provided a theoretical analysis that establishes conver-
gence conditions and bounds on residual approximation errors that apply to general compositions
of such projection ensembles. Furthermore, we have introduced a general propagation method that
reconciles one-step distributional errors with optimism-based exploration. Our empirical analysis of
PE-DQN, a deep RL algorithm based on projection ensembles, demonstrates the efficacy of diversely
generalizing projection ensembles on hard exploration tasks and showed significant performance
improvements on a wide range of tasks.

We believe our work opens up a number of promising avenues for future research. For example,
we have only considered the use of uniform mixtures over distributional ensembles in this work. A
logical continuation of this approach may aim to use a diverse collection of models less conservatively,
aiming to exploit the strengths of particular models flexibly where beneficial. Naturally, a more
carefully curated composition of ensembles and a more exploitative usage of their characteristics
will require a deeper understanding of how the choice of projection and parametrization affects the
generalization behavior of neural networks.
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A Appendix
This section provides proofs for the theoretical claims and establishes further results on the residual
approximation error incurred by our method.

A.1 Proof of Proposition 1

Before stating supporting lemmas and proofs of the results in section 4, we recall several basic prop-
erties of the p-Wasserstein distances which we will find useful in the subsequent proofs. Derivations
of these properties can for example be found in an overview by Mariucci and Reiß [2018] .

P.1 The p-Wasserstein distances satisfy the triangle inequality, that is
wp(X,Y ) ≤ wp(X,Z) + wp(Z, Y ) .

P.2 For random variables X and Y and an auxiliary variable Z independent of X and Y , the
p-Wasserstein metric satisfies the inequality

wp(X + Z, Y + Z) ≤ wp(X,Y ) .

P.3 For a real-valued scalar a ∈ R, we have
wp(aX, aY ) = |a|wp(X,Y ) .

Lemma 4 Let X1, X2, X3, ..., Xn and Y1, Y2, Y3, ..., Yn be a collection of independent random
variables. Furthermore, let a1, a2, a3, ..., an be scalars ai ∈ R. Then, the p-Wasserstein metric
satisfies the inequality

wp(
n∑

i=1

aiXi,
n∑

i=1

aiYi) ≤
n∑

i=1

|ai|wp(Xi, Yi) .

Proof. The case for n = 1 is trivially satisfied by Property P.3. The proof then follows by induction
for the case n = 2. Consider an auxiliary random variable X̂2 that is equal in distribution law to X2.
We have by the triangle inequality that

wp(a1X1 + a2X2, a1Y1 + a2Y2) ≤ wp(a1X1 + a2X2, a1Y1 + a2X̂2)

+ wp(a1Y1 + a2X̂2, a1Y1 + a2Y2) .

By Property P.2, it follows that

wp(a1Y1 + a2X̂2, a1Y1 + a2Y2) ≤ wp(a2X̂2, a2Y2) = |a2|wp(X2, Y2),

wp(a1X1 + a2X2, a1Y1 + a2X̂2) ≤ wp(a1X1, a1Y1) = |a1|wp(X1, Y1),

and hence wp(
∑n=2

i=1 aiXi,
∑n=2

i=1 aiYi) ≤
∑n=2

i=1 |ai|wp(Xi, Yi).

Proposition 1 Let Πi, i ∈ [1, ...,M ] be projection operators Πi : P(R) −→ Fi mapping from the
space of probability distributions P(R) to representations Fi and denote the projection mixture
operator ΩM : P(R) −→ ∪M

i=1Fi as defined in Eq. (9). Furthermore, assume that for some
p ∈ [0,∞] each projection Πi is bounded in the p-Wasserstein metric in the sense that for any two
return distributions η, η′ we have wp

(
Πiη,Πiη

′)(s, a) ≤ ciwp

(
η, η′

)
(s, a) for a constant ci. Then,

the combined operator ΩMT π is bounded in the supremum p-Wasserstein distance w̄p by
w̄p(ΩMT πη,ΩMT πη′) ≤ c̄γw̄p(η, η

′)

and is accordingly a contraction so long as c̄γ < 1, where c̄ = 1
M

∑M
i=1 ci.

Proof. Due to the assumption of the proposition, we have wp(Πiν,Πiν
′) ≤ ciwp(ν, ν

′). With
Lemma 4 and the γ-contractivity of T π , the statement follows directly according to

w̄p(ΩMT πη,ΩMT πη′) = w̄p(
M∑
i=1

1
MΠiT πη,

M∑
i=1

1
MΠiT πη′)

≤ 1
M

M∑
i=1

w̄p(ΠiT πη,ΠiT πη′)

≤ 1
M

M∑
i=1

ciw̄p(T πη, T πη′)

≤ 1
M

M∑
i=1

ciγw̄p(η, η
′)

= c̄γw̄p(η, η
′) .
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A.2 Proof of Proposition 2

Proposition 2 Let Q̂(s, a) = E[Ẑ(s, a)] be a state-action value estimate where Ẑ(s, a) ∼ η̂(s, a)
is a random variable distributed according to an estimate η̂(s, a) of the true state-action re-
turn distribution ηπ(s, a). Further, denote Qπ(s, a) = E[Zπ(s, a)] the true state-action, where
Zπ(s, a) ∼ ηπ(s, a). We have that Qπ(s, a) is upperbounded by

Q̂(s, a) + w1

(
η̂, ηπ

)
(s, a) ≥ Qπ(s, a) ∀(s, a) ∈ S ×A,

where w1 is the 1-Wasserstein distance metric.

Proof. We begin by stating a property that relates the expected value E[X] to the CDF of X under the
condition that the expectation E[X] is well-defined and finite. Let X ∼ ν and write Fν for the CDF
of ν, then:

E[X] =

∫ ∞

0

(
1− Fν(x)

)
dx−

∫ 0

−∞
Fν(x)dx .

Now, suppose an auxiliary variable X ′ is distributed according to the law ν′. It then follows that∣∣E[X]− E[X ′]
∣∣ = ∣∣∣ ∫ ∞

0

(
Fν′(x)− Fν(x)

)
dx−

∫ 0

−∞

(
Fν − Fν′(x)

)
dx

∣∣∣
=

∣∣∣ ∫ ∞

−∞
Fν′(x)− Fν(x)dx

∣∣∣
≤

∫ ∞

−∞

∣∣Fν′(x)− Fν(x)
∣∣dx

= w1(ν, ν
′),

where the last step was obtained by a change of variables in the definition of the 1-Wasserstein
distance:

w1(ν, ν
′) =

∫ 1

0

|F−1
ν (τ)− F−1

ν′ (τ)|dτ

=

∫
R
|Fν(x)− Fν′(x)|dx.

The result of Proposition 2 is obtained by rearranging.

A.3 Proof of Theorem 3

Before stating the proof of Theorem 3, we formalize the notion of a pushforward distribution which
will be useful in a more explicit description of the distributional Bellman operator T π . Our notation
here follows the detailed exposition by Bellemare et al. [2023] .

Definition 5 For a function f : R −→ R and a random variable Z with distribution ν = D(Z),
ν ∈ P(R), the pushforward distribution f#ν ∈ P(R) of ν through f is defined as

f#ν(B) = ν(f−1(B)), ∀B ∈ R ,

with B a Borel set in R.

Equivalently to Definition 5, we may write f#ν = D(f(Z)). By defining a bootstrap transformation
br,γ : R −→ R with br,γ = r+γx, we can state a more explicit definition of the distributional Bellman
operator T π according to Definition 6.

Definition 6 [Distributional Bellman Operator [Bellemare et al., 2017] ] The distributional Bellman
operator T π : P(R)S×A −→ P(R)S×A is given by(

T πη
)
(s, a) = E

[
(bR0,γ

)
#
η(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a), A1 ∼ π(·|S1).

Lemma 7 Let (br,γ)#ν ∈ P(R) be the pushforward distribution of ν ∈ P(R) through
br,γ : R −→ R. Then we have for two distributions ν, ν′ and the 1-Wasserstein distance w1 that

w1

(
(br,γ)#ν, (br,γ)#ν

′) = γw1(ν, ν
′).
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Proof. The proof follows from the definition of the 1-Wasserstein distance. Let Z ∼ ν and Z ′ ∼ ν′

be two independent random variables, then
w1

(
(br,γ)#ν, (br,γ)#ν

′) = w1

(
D(r + γZ),D(r + γZ ′)

)
=

∫ 1

0

∣∣F−1
(b0,γ)#ν(τ)− F−1

(b0,γ)#ν′(τ)
∣∣dτ

= |γ|w1(ν, ν
′) .

Theorem 3 Let η̂(s, a) ∈ P(R) be an estimate of the true return distribution ηπ(s, a) ∈ P(R),
and denote the projection mixture operator ΩM : P(R) −→ ∪M

i=1Fi with members Πi and bounding
moduli ci as defined in Proposition 1. Furthermore, assume ΩMT π is a contraction mapping with
fixed point ηπM . We then have for all (s, a) ∈ S ×A

w1

(
η̂, ηπM

)
(s, a) ≤ w1

(
η̂,ΩMT π η̂

)
(s, a) + c̄ γ E

[
w1

(
η̂, ηπM

)
(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a) and A1 ∼ π(·|S1).

Proof. Since ηπM (s, a) is the fixed point of the combined operator ΩMT π, we have that
ΩMT πηπM (s, a) = ηπM (s, a). From the triangle inequality it follows that

w1

(
η̂, ηπM

)
(s, a) ≤ w1

(
η̂,ΩMT π η̂

)
(s, a) + w1

(
ΩMT π η̂,ΩMT πηπM

)
(s, a). (18)

Furthermore, for the second term on the r.h.s. in Eq. (18) the following holds:

w1

(
ΩMT π η̂,ΩMT πηπM

)
(s, a) = w1

(
1
M

M∑
i=1

ΠiT π η̂, 1
M

M∑
i=1

ΠiT πηπM
)
(s, a)

≤ 1
M

M∑
i=1

ciw1

(
T π η̂, T πηπM

)
(s, a)

= c̄w1

(
T π η̂, T πηπM

)
(s, a).

Under slight abuse of the assumptions in Section 3, we here consider an immediate reward distribution
with finite support on R to simplify the following derivation. In this case, we can write out the
expectation in Definition 6 as(

T π η̂
)
(s, a) =

∑
r∈R

∑
s′∈S

∑
a′∈S

Pr(R0 = r,A1 = a′, S1 = s′|S0 = s,A0 = a)
(
(br,γ

)
#
η̂(s′, a′)

)
,

where Pr(·) is the joint probability distribution given by the transition kernel P (·|s, a), the immediate
reward distribution R(·|s, a), and the policy π(·|S′). Thus, by Lemma 4 and Lemma 7 it follows that

c̄w1

(
T π η̂, T πηπM

)
(s, a)

≤ c̄E
[
w1

(
(bR0,γ

)
#
η̂(S1, A1), (bR0,γ

)
#
ηπM (S1, A1)

)∣∣S0 = s,A0 = a
]

= c̄γE
[
w1

(
η̂, ηπM

)
(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a) and A1 ∼ π(·|S′). The proof is completed by plugging in the
intermediate results.

A.4 Residual epistemic uncertainty

Due to a limitation to finite-dimensional representations and the use of varying projections, our
algorithm incurs residual approximation errors which may not vanish even in convergence. In the
context of epistemic uncertainty quantification, this is unfortunate as it can frustrate exploration
or lead to overconfident predictions. Specifically, the undesired properties are twofold: 1) Even in
convergence, the fixed point ηπM does not equal the true return distribution (bias). 2) Even in the fixed
point νπM , the ensemble disagreement wavg does not vanish. Often, however, we may be able to upper
bound and control the error incurred due to the projections Πi. In this case, Propositions 8 and 9
provide upper bounds on both types of errors as a function of bounded projection errors.

Proposition 8 Let ΩM be a projection mixture operator with individual projections Πi defined as
in Eq. (9) . Further, assume each projection Πi is upper bounded by wp(Πiν, ν) ≤ di for some
p ∈ [0,∞]. Then, the p-Wasserstein distance between the fixed point ηπM (s, a) = ΩMT πηπM (s, a)
and the true return distribution ηπ(s, a) = T πηπ(s, a) satisfies

wp(η
π
M , ηπ)(s, a) ≤ d̄

1−c̄γ ∀(s, a) ∈ S ×A, where d̄ = 1
M

M∑
i=1

di .
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Proof. To show the desired property, we will make use of Proposition 1 and Lemma 4. We omitted
the dependency on (s, a) in this section for brevity. It follows then from the triangle inequality that

wp(η
π
M , ηπ) ≤ wp(ΩMT πηπM ,ΩMηπ) + wp(ΩMηπ, ηπ)

= wp(ΩMT πηπM ,ΩMT πηπ) + wp(ΩMηπ, ηπ)

≤ c̄γwp(η
π
M , ηπ) + wp(

1
M

M∑
i=1

Πiη
π, ηπ)

≤ c̄γwp(η
π
M , ηπ) + 1

M

M∑
i=1

wp(Πiη
π, ηπ) .

Per the assumption of Proposition 8 and by rearranging we obtain the desired result.

Proposition 9 Let wavg be the average ensemble disagreement defined according to Eq. (12) and
assume individual projections Πi are bounded by wp(Πiν, ν) ≤ di. For an ensemble E whose
mixture distribution equals exactly the fixed point ηπM (s, a) = ΩMT πηπM (s, a), the average ensemble
disagreement wavg satisfies the inequality

wavg(s, a) ≤ 2M
M−1 d̄ ∀(s, a) ∈ S ×A, where d̄ = 1

M

M∑
i=1

di .

Proof. In the fixed point ηπM (s, a) = ΩMT πηπM (s, a), the distributional error estimated by wavg(s, a)

does not vanish, unlike the ground truth error w1

(
ηπM ,ΩMT πηπM

)
(s, a) = 0. The shown property

upper bounds this mismatch and is a direct consequence of the assumption wp(Πiν, ν) ≤ di which
postulates an upper bound on the error introduced by the projection Πi in terms of the p-Wasserstein
distance. The average disagreement is given by

wavg(s, a) =
1

M(M−1)

M∑
i,j=1

wp(η̂i, η̂j)(s, a) .

The proof is given by applying the triangle inequality and the assumption of the proposition with
wp(η̂i, η̂j) = wp(Πiη

π
M ,Πjη

π
M )

≤ wp(Πiη
π
M , ηπM ) + wp(η

π
M ,Πjη

π
M )

≤ di + dj .

Plugging in and rearranging yields the desired result.

Lemma 10 [Projection error of the categorical projection [Rowland et al., 2018] ] For any distribu-
tion ν ∈ P([zmin, zmax]) with support on the interval [zmin, zmax] and a categorical projection as
defined in Eq. (6) with K atoms zk ∈ [z1, ..., zK ] s.t. z1 ≥ Zmin and zK ≤ zmax, the error incurred
by the projection ΠC is upper bounded in the 1-Wasserstein distance by the identity

w1(ΠCν, ν) ≤
[

sup
1≤k≤K

(zk+1 − zk)
]
.

Proof (restated). The proof uses the duality between the 1-Wasserstein distance and the 1-Cramér
distance stating

l1(ν, ν
′) =

∫
R
|Fν(x)− Fν′(x)|dx =

∫ 1

0

|F−1
ν (τ)− F−1

ν′ (τ)|dτ = w1(ν, ν
′) ,

and can be obtained by a change of variables. The l1 formulation simplifies the analysis of the
categorical projection, yielding

w1(ΠCν, ν) =

∫
R
|FΠCν(x)− Fν(x)|dx

≤
K−1∑
k=1

(zk+1 − zk)|FΠCν(zk)− Fν(zk)|

≤
K−1∑
k=1

(zk+1 − zk)|Fν(zk+1)− Fν(zk)|

≤ [ sup
1≤k≤K

(zk+1 − zk)]
K−1∑
k=1

|Fν(zk+1)− Fν(zk)|

≤ [ sup
1≤k≤K

(zk+1 − zk)] .
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Table 1: Hyperparameter search space
Hyperparameter Values

Neural net architecture [[64, 64], [128, 128], [512]]
Learning rate [5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3]
Prior function scale [0.0, 5.0, 20.0]
Heads K [51, 101]
Bonus β [0.5, 5.0, 50.0]

Lemma 11 [Projection error of the quantile projection [Dabney et al., 2018b] ] For any distribu-
tion ν ∈ P([zmin, zmax]) with support on the interval [zmin, zmax] and a quantile projection defined
according to Eq. (8) with K equally weighted locations θk ∈ [θ1, ..., θK ], the error incurred by the
projection ΠQ is bounded in the 1-Wasserstein distance by the identity

w1(ΠQν, ν) ≤
zmax − zmin

K
.

Proof (restated). The projection ΠQ is given by

ΠQν = 1
K

∑K
k=1δF−1

ν (τk)
(z) , where τk = 2k−1

2K .

The desired identity w1(ΠQν, ν) is accordingly given by the continuous integral

w1(ΠQν, ν) =

∫ 1

0

|F−1
ΠQν(τ)− F−1

ν (τ)|dτ ,

and can be rewritten in terms of a sum of piecewise expectations

w1(ΠQν, ν) =
K∑

k=1

1
KEX∼ν

[
|X − F−1

ν ( 2k−1
2K )|

∣∣F−1
ν (k−1

K ) < X ≤ F−1
ν ( k

K )
]
.

From this, it follows that
w1(ΠQν, ν) ≤ 1

K (F−1
ν (1)− F−1

ν (0))

≤ zmax − zmin

K
.

Corollary 12 Let ηπM (s, a) be the fixed point return distribution for an ensemble of the categorical
and quantile projections with the mixture operator ΩMη(s, a) = 1/2ΠQη(s, a) + 1/2ΠCη(s, a).
Furthermore, suppose the return distribution ηπM (s, a) has bounded support on the interval (Rmax −
Rmin)/(1− γ) where Rmax and Rmin denote the maximum and minimum immediate reward of the
MDP. The average ensemble disagreement wavg(s, a) is then bounded by

wavg(s, a) ≤
4(Rmax −Rmin)

(1− γ)K
.

Proof. The result follows straightforwardly from Proposition 9 and Lemmas 10, 11.

B Experimental Details

We provide a detailed exposition of our experimental setup, including the hyperparameter search
procedure, hyperparameter settings, algorithmic details, and the full bsuite experimental results.

B.1 Hyperparameter settings

In our experiments, we aimed to keep most hyperparameters between different implementations equal
to maintain comparability between the analyzed methods. Algorithm-specific hyperparameters were
optimized over a search space of hyperparameters using Optuna [Akiba et al., 2019]. The total search
space is given in Table 1, where the Heads K parameter only applies to distributional algorithms,
and in the case of IDS, hyperparameters for the DQN ensemble and the distributional model were
searched jointly. C51 requires us to define return ranges, which we defined manually and can be
found in the online code repository. All algorithms use the Adam optimizer [Kingma and Ba, 2015].
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Table 2: Hyperparameter search environments
Environment ID Horizon in no. of episodes Scoring function f

deep_sea/20 500
∑

(s,a)1 visited (s, a)
deep_sea_stochastic/20 1500

∑
(s,a)1 visited (s, a)

mountain_car/19 100
∑t

0(−1)

Table 3: Hyperparameter settings
Hyperparameter BDQN+P DLTV IDS (DQN/C51) PE-DQN (QR/C51)

Net architecture [64, 64] [512] [64, 64] / [512] [512]
Adam Learning rate 1× 10−3 1× 1−3 1× 10−3 / 5× 10−4 5× 10−4

Prior function scale 5.0 20.0 20.0 / 5.0 20.0 / 0.0
Heads K 1 101 1 / 101 101/101
Ensemble size 20 1 20/1 2/2
Initial bonus βinit n/a 5.0 5.0 5.0
Discount 0.99
Buffer size 10, 000
Adam epsilon 0.001/batch size
Initialization He truncated normal [He et al., 2015]
Update frequency 1
Target update step size 1.0
Target update frequency 4
Batch size 128

The hyperparameter search was conducted on a subselection of environments of the bsuite, as shown
in Table 2. For each environment, we evaluate a set of hyperparameters by means of a scoring function.
A particular set of hyperparameters is evaluated every T/5 episodes with a maximum training horizon
of T episodes. The “continuous” scoring functions make the hyperparameter search more amenable
to pruning, for which we use the median pruner of Optuna, reducing the computational burden of the
combinatorial search space significantly.∑

(s,a)1 visited (s, a) here is the count of visited state-action tuples and
∑t

0(−1) is simply the negative
number of total environment interactions. For every hyperparameter configuration ζi, the scores f(ζi)
are calibrated to facilitate a meaningful comparison between different environments. The calibrated
score function we use is given by

fc(ζi) = exp
(
0.693

f(ζi)− µζ

supi f(ζi)− µζ

)
, (19)

where µζ is the average score of all hyperparameter configurations µζ =
∑N

i 1/Nf(ζi), and
supi f(ζi) is the maximal score achieved. The calibration function in Eq. (19) was chosen heuristically
to have an intuitive interpretation: it assigns a score of 1 to the best-performing hyperparameter
configuration, 0.5 to configurations that achieve exact average performance, and decays exponentially
according to score. The final score assigned to a hyperparameter configuration ζi is the sum of all
scores of the tested environments. Table 3 shows the full set of hyperparameters used for every
algorithm.

B.2 Implementation details

Randomized prior functions are added to all baselines and PE-DQN. Specifically, we add the
output of a fixed, randomly initialized neural network of the same architecture as the main net, scaled
by a hyperparameter, to the main network’s logits. In the case of C51, the prior function is added
pre softmax. To the best of our knowledge, DLTV-QR does not use prior functions in its original
formulation but we find it to be crucial in improving exploration performance. Fig. 5 (b) shows an
experiment assessing the exploration performance of DLTV-QR with randomized prior functions and
prior scale 20 (DLTV [rpf20]) compared to the vanilla implementation without priors (DLTV [rpf0]).
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Information-gain in our IDS implementation is computed in a slightly modified way compared to
the vanilla version. Nikolov et al. [2018] compute the information gain function I(s, a) with

I(s, a) = log
(
1 +

σ2(s, a)

ρ2(s, a)

)
+ ϵ2 ,

where σ2(s, a) is the empirical variance of BDQN+P predictions, ϵ2 = 1× 10−5 is a zero-division
protection, and ρ2(s, a) is the clipped action-space normalized return variance

ρ(s, a)2 = max

(
Var(Z(s, a))

1
|A|

∑
a∈A Var(Z(s, a))

, 0.25

)
. (20)

Var(Z(s, a)) here is the variance of the distributional estimate provided by C51. We replace the
clipping in Eq. (20) by adding a small constant ϵ1 = 1× 10−4 to Var(Z(s, a)), s.t.

ρϵ(s, a)
2 =

Var(Z(s, a)) + ϵ1

ϵ1 +
1

|A|
∑

a∈A Var(Z(s, a))
.

Fig. 5 (b) shows the effect of clipping as in the vanilla version (IDS-C51 [clip]) compared to our
variation (IDS-C51 [noclip]) on the deep sea environment.

Intrinsic reward priors are a computational method we implement with PE-DQN, which leverages
the fact that we can compute the one-step uncertainty estimate wavg(s, a) deterministically from
a parametric ensemble given a state-action tuple. This obviates the need to learn it explicitly in
the bonus estimation step. We thus add wavg(s, a) automatically to the forward pass of the bonus
estimator bϕ(s, a) as a sort of “prior” mechanism according to

bϕ(s, a) := braw
ϕ (s, a) + wavg(s, a) ,

where braw
ϕ is the raw output of the bonus estimator NN of parameters ϕ.

Bonus decay is the decaying of the exploratory bonus during action selection. It is well-known
that the factor β is a sensitive parameter for UCB-type exploration algorithms, enabling efficient
exploration when chosen correctly but simultaneously preventing proper convergence when chosen
wrongly. Due to the variety of tasks included in the bsuite, we opted for a fixed schedule by which β
is linearly decayed to 0.0 over one third of the total training horizon. In the bsuite experiments, we
apply this schedule to all tested baselines where applicable and chose the initial βinit value according
to the hyperparameter search.

Ensemble size is a central parameter in IDS and BDQN+P. We used a size of 20 as in the implemen-
tation by Osband et al. [2019a] , who find that increasing the ensemble size beyond 20 did not lead to
significant performance improvements on the bsuite. Fig. 5 (a) shows a comparison of the influence
of ensemble size in BDQN+P compared to PE-DQN.

The computational resources we used to conduct the bsuite experiments were supplied by [Delft
High Performance Computing Centre , DHPC] and the InsyCluster. We deployed the environments
in 16 parallel jobs to be executed on 8 NVIDIA Tesla V100S 32GB GPUs, 16 Intel XEON E5-6248R
24C 3.0GHz CPUs, and 64GB of memory in total. In this setup, the execution of one seed on
the entire suite experiment took approximately 38 hours for DLTV, 72 hours for PE-DQN, and 80
hours for IDS. Due to the narrower network architecture of BDQN+P, we in this case parallelized
environments over 64 Intel XEON E5-6248R 24C 3.0GHz CPUs, taking approximately 76 hours
wall-clock time for the entire suite.

B.3 Full results of bsuite experiments

Fig. 7 shows the averaged undiscounted episodic return for all bsuite tasks. Each curve represents the
average over approximately 20 variations of the same task (Osband et al. [2019a] provide a detailed
account of the task variations) where results were taken from a separate evaluation episode using
a greedy action-selection rule. In the “scale” environments, evaluation results were rescaled to the
original reward range to maintain a sensible average. Bold titles indicate environments tagged as hard
exploration tasks.
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Figure 5: (a) Summary of bsuite experiments. Comparison between BDQN+P with different ensemble
sizes and PE-DQN (total ensemble size 4). (b) Deep sea comparison between our implementations
and vanilla implementations of baseline algorithms. Shown are median state-action visitation counts
over number of episodes on the deep sea environment with size 50. Shaded regions represent the
interquartile range of 10 seeds. Higher is better.

C Additional Experimental Results

We conduct an additional ablation study on PE-DQN to better understand the practical merits and
limitations of its algorithmic components. Specifically, we aim to address the following questions:

(1) What is the effect of using diverse projection ensembles as opposed to ensembles composed of
equivalent models?

(2) What is the effect of bootstrapping mixture distributions as opposed to fully independent training
of ensemble members?
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Figure 6: Ablation studies on extended deep sea
environments. Median episodic regret over deep
sea size. Lower is better. Shaded regions are the
interquartile range of 10 seeds.

Fig. 6 shows the results of a study with sev-
eral variations of PE-DQN on the extended deep
sea benchmark outlined in Section 6.2. Here,
PE-DQN [QR/QR] and PE-DQN [C51/C51] are
variants of PE-DQN where we replace all mod-
els in the ensemble with all quantile-based or all
categorical-based models respectively. While we
find that the quantile-based ensemble is able to
solve several levels of the deep sea environment, it
scales significantly worse to larger problem sizes
than the vanilla PE-DQN version. Unfortunately,
we were not able to implement a well-performing
ensemble based on categorical models, which con-
sistently collapsed to zero predictions everywhere
despite the use of prior functions. Conversely,
PE-DQN [Ind.] consists of both a quantile and a
categorical model but unlike PE-DQN trains these
independently with models bootstrapping strictly
their own target networks’ predictions. In this
case, the ensemble disagreement wavg is added di-
rectly as a bonus to exploratory action selection. While PE-DQN [Ind.] can solve smaller instances
of deep sea, we find that it does not scale well to larger problem sizes. We hypothesize that individual
bootstrapping combined with repeated applications of the same projection may be less stable than the
mixture bootstraps of PE-DQN.
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Figure 7: Averaged episodic return for all 23 bsuite tasks.
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