
Graph database watermarking using pseudo nodes

Tsvetomir Hristov1

Supervisor(s): Dr. Zekeriya Erkin1, Devriş Işler2

1EEMCS, Delft University of Technology, The Netherlands
2IMDEA Networks Institute, Universidad Carlos III de Madrid, Spain

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 29, 2023

Name of the student: Tsvetomir Hristov
Final project course: CSE3000 Research Project
Thesis committee: Dr. Zekeriya Erkin, Devriş Işler, Dr. Petr Kellnhofer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Although digital watermarking has been a well-
researched topic for the past decades and has
seen numerous implementations for relational
databases, it still lacks research for non-relational
schema-less databases. [1] In this paper, we explore
proposed techniques for non-relational database
watermarking and introduce an improved tech-
nique for NoSQL database watermarking. The im-
proved technique produces pseudo documents, em-
beds a watermark in them, and inserts them into
the database. Then it modifies the relations be-
tween the pseudo and real documents to indicate
which documents are covered by the watermark.
Lastly, the pseudo documents act as a cover for
the watermark embedding, proving the authenticity
of the documents connected. We tested the tech-
nique against numerous modification and deletion
attacks. The results show that the introduced tech-
nique does not improve the robustness of the water-
mark. Although the technique has the potential to
produce a robust watermark, it still needs to be im-
proved before being used in a commercial setting.

1 Introduction
Today, an enormous amount of information is shared over
public channels, such as the internet. However, the source
of this information can rarely be verified, allowing for a high
amount of unauthorized or fake data to be marketed as au-
thentic and reliable. This creates an environment of mistrust
where the receiver cannot easily verify or check data. [2] Nu-
merous techniques have been developed to tackle this prob-
lem, such as encryption; however, they require either a lot
of resources or pre-negotiated information. [3] Digital water-
marking techniques tackle such issues. A watermarked doc-
ument, or a part of it, can prove its integrity and, ultimately,
be used as evidence for the authenticity and ownership of the
data.

Watermarking [4] is a well-established and often-used
technique for protecting and validating intellectual property.
Hidden inside the information, it provides an easy-to-use
yet very effective technique for validating the source of the
database, and its contents, while also proving to be hard to
find, forge or modify without a secret key. Watermarking
can accurately indicate and verify the ownership, authentic-
ity, and integrity of data, whether the information is trans-
ferred over an open channel and needs to be validated; or
leaked from a closed, confidential channel. Although wa-
termarking for copyright protection and ownership verifica-
tion has seen extensive research, it still cannot keep up with
the ever-growing database management field. This is made
apparent by the lack of standardized, well-researched water-
marking algorithms for graphical database management sys-
tems (DBMS).

Databases can further be separated into two main cate-
gories: relational or sequence, databases, and non-relational.
Until now, relational databases have been mainly used in

production environments, which is why these systems have
also been researched more. However, in recent years, non-
relational databases have been steadily growing in popularity
due to their lack of schemas, high distributively, and adaptiv-
ity [5][6].

Unfortunately, this rise in popularity has only recently been
matched by increased research on the topic. The lack of
research could allow for algorithms that are not well-tested
and proven to work to be used in real-world environments.
Thus, it is essential for an algorithm to be well-researched
and tested by numerous researchers before it is used in the
real world. This paper introduces an improved method for
watermarking by identifying and improving upon flaws in-
side a recently proposed watermarking technique.

The aforementioned technique and how it works are
presented in section Technical background. The sections
Methodology and Method discuss the analysis of the previ-
ous method and how they were used to form a new method
for database watermarking. The Analysis section then talks
about the analysis performed on the new method, alongside
their results, compared to the previous method. Finally, the
paper concludes with a Conclusion section and Further re-
search.

2 Technical background
For the purpose of this research, a popular graph database
called Neo4j [7] is used. This chapter juxtaposes how a
graphical database works and its SQL counterpart. It also
introduces terminology which is utilized throughout this pa-
per.

First and foremost, SQL and NoSQL databases vary by ter-
minology: an SQL database consists of tables, which con-
tain rows, also called records, and columns. On the other
side, NoSQL databases consist of collections containing doc-
uments that store information into key/value pairs, as ex-
plained in figure 1.

Figure 1: Sketch showing the difference in terminology between
SQL and NoSQL database, published by Studio 3T, a GUI tool for
Mongo [8].

A typical SQL database stores all its information in ta-
bles, where each table has a well-defined schema, and each
entry must abide by this scheme. A NoSQL database does
not enforce a scheme, which makes watermarking harder, as
there is no guarantee that a document follows a specific data

1

model. Furthermore, NoSQL databases vary by how they
store relations between documents. A typical SQL database
uses a table to store relations between records, whereas a
graph database uses edges, and a document database uses
nesting/embedding. Each edge between two nodes, or doc-
uments, is directed and can store additional data about the
relation.

3 Methodology
In this research, we aim to improve the current techniques
for graph database watermarking by introducing a novel tech-
nique designed explicitly for graph databases. The tech-
nique works by introducing imperceptible fake documents
that carry a watermark. Then, we implement the algorithm
and test our system based on popular metrics used in the field.
Lastly, the results are compared against results from previous
algorithms.

A literature study is performed to find relevant water-
marking techniques on NoSQL databases. The search uses
two search engines and numerous keywords: combined with
AND, OR, and NOT operators. The search parameters are
shown in Table 1. The resulting papers are manually scanned
and the algorithms proposed are extracted. The steps of
the algorithms are then analyzed to determine the techniques
used for the watermarking. Although this ”classification” step
does not help the analysis of the algorithms, it helps under-
stand how an algorithm works and why it works that way.

The literature study identifies an algorithm to be analyzed
and improved. As part of the analysis, a thorough inspec-
tion of the method is performed, finding critical assumptions
and possible security vulnerabilities. These analyses are then
used to hypothesize attack techniques to which the algorithm
might be susceptible and improve the algorithm, so those at-
tacks do not work anymore.

Lastly, improvements to the algorithm are implemented
and tested to determine how the applied changes influenced
the security of the watermark.

4 Literature study
The literature study identified several watermarking tech-
niques which could be used for graphical bases. [9] [10]

We present an algorithm based on a promising algorithm
for watermarking NoSQL databases introduced in [10]. The
algorithm watermarks a MongoDB database using connected
graphs.

4.1 Steps of the previous algorithm

The algorithm introduced in [10] watermarks a MongoDB
database using connected graphs. The database is presented
as a graph, where references between documents as edges
and documents as nodes. Firstly, pseudo documents are cre-
ated using a genetic algorithm. Then, a watermark is em-
bedded into the pseudo nodes and they are added to the
database. Lastly, the documents are connected into a k-
connected graph.

Figure 2: Chart of the previous algorithm in [10]

4.2 Analysis on a previous watermarking method
Firstly, the algorithm [10] was carefully examined for im-
portant assumptions and possible attacks other than the ones
stated in the paper. The analysis presented below is vital for
breaking the watermarking technique and serves as the main
point for improving the algorithm.

Attack on the primary key
By default, every document in the database should have
an id field, which uniquely identifies each document [11].
As the field is randomly generated upon insertion, chang-
ing its value of it would not change the data stored inside
the database as long as the relations between objects are up-
dated. Any watermark, depending on this field, would then
be undetectable. Similar attacks have been observed on rela-
tional databases with the primary key instead of the id field;
however, techniques for evading this attack are yet to be re-
searched.

Attack on the genetic algorithm
All genetic algorithms are designed to tackle complex prob-
lems in optimization and search algorithms [12]. This means
that, fundamentally, these algorithms are trying to optimize
the fitness function that they are given. Given this informa-
tion, an attacker should be able to distinguish pseudo docu-
ments from real documents, provided how close they are to a
local or global minima/maxima.

Limitation to the genetic change
To stop the genetic algorithm from changing a character too
much, changing an English letter to a non-English one, for
example, the algorithm’s creators have chosen to only change
a certain number of characters. That, however, is not a
good practice, as it guarantees that a set of letters remain
unchanged, setting a maximum possible Hamming distance
[13] per text. This distance can be used to easily find similar
records, which can be inspected to recognize the watermarked
documents further.

Graph creation
The method groups pseudo documents into groups, which are
then connected to form a k-connected graph. This is a novel
approach for database watermarking; however, it gives an-
other attack method: graph analysis. Analyzing the graph

2

should show multiple groups perfectly connected with k-
connections each other. However, this is rarely observed in
real life. This makes the pseudo documents stick out, which
makes them even easier to remove, as every document con-
nected to a pseudo document, is a pseudo document.

5 Algorithm
We present a novel algorithm inspired by the graph method
introduced in [10] but designed to tackle the problems pointed
out in the previous sections of this paper.

5.1 The watermarking technique
The new technique borrows existing watermarking tech-
niques to implement a robust watermarking scheme for
graphical databases. The embedding method consists of sev-
eral well-defined steps visualized in figure 3.

The documents from the database are first divided into
groups, each varying in size. Then, a pseudo document is
added for each group, which carries a watermark. Then, each
pseudo document is linked with all documents in the group.
Lastly, the documents are inserted into the database.

Dividing into groups
The first step of the algorithm is to divide the nodes into
groups. For this purpose, an algorithm is used to find a ran-
dom list of integers whose sum adds up to a number. For ex-
ample, if the algorithm is run with the range (3,5) and a target
sum of 15, a viable solution is [3,4,3,5]. The algorithm is then
given the min group size and max group size parameters
as the range and the number of nodes, which need to be water-
marked, as the total sum. The output is then used to partition
the nodes into groups. It is essential to mention that the mini-
mum and maximum size parameters should have a significant
enough difference between the two. This should prevent an
attacker from analyzing a small portion of the database and
potentially finding a watermarked group. For more clarity,
a pseudo code of this step is provided in algorithm 1 and a
figure visualizing this effect figure 8.

Adding a pseudo document
Numerous techniques have been extensively studied [14] for
the creation of pseudo documents; however, as this step only
helps with making the watermark imperceptible, a simple al-
gorithm is considered for the creation of such documents.
Pseudo documents are created by ”borrowing” fields from
other real documents. To determine which fields are ”bor-
rowed” a schema analysis is manually performed beforehand,
which is explained in more detail in the next section. For each
group, the following tasks are performed:

1. Determine which fields a document have
2. Randomly choose several ”donor” documents from

whom some field values are taken
3. Create the pseudo document from the ”donor” docu-

ment’s data
The algorithm is further explained with pseudocode in the
Appendix 3.

A new pseudo document is added to each group of real doc-
uments, hosting information about the group. After adding,

the pseudo document is linked with each document inside the
group.

Linking documents
The linking of the pseudo document and the other documents
inside the group is a process that can be made more com-
plex with the complexity of the database schema itself. Every
node can have one or multiple labels attached, and every edge
must have a type. This is why it requires manual analysis to
determine what types of documents should carry the water-
mark and with which types of edges these documents should
be connected. Ideally, the manual analysis would produce
a set of documents, which could be used for watermarking,
and a list of node types, which should be used to connect the
pseudo node and the other nodes. To prevent anomalies from
being introduced to the dataset, the algorithm can also accept
weights, specifying how probable it is for two nodes to be
connected with a certain type of edge. An algorithm without
weights is provided in Appendix 4.

Embedding the watermark
To embed a watermark into the document, a well-established
method of embedding the watermark using the least signifi-
cant bit is used. Bits from different variable types, such as
dates, floats, etc., can be used to store information, which can
then be used to verify the watermark. The information stored
inside the watermark can also include part of the node’s data
or the connections it has with other nodes.

As the embedding of information is highly dependent on
the capacity of the cover, the amount of information may vary
based on the available space. For now, the amount of con-
nections is considered the most critical, which is why it is
embedded first. After that, its integrity and its creator(s).

Adding watermarked documents to the database
As the private key is used to hint about the location of the
pseudo documents, several ways to add a watermark inside
the database can be considered based on the way the database
stores the documents. For example, the primary key for a
MongoDB database is a random string; however, the primary
key for a Neo4j database is an integer.

This research focuses on embedding documents into a
Neo4j database; however, similar techniques can be used for
other NoSQL databases. To add all watermarked documents
inside the database, the amount of all documents, including
the pseudo ones, should be known. This can be computed for
all groups Gi using the following formula:

N =
∑
Gi∈G

|Gi| (1)

where G is the set of all groups and |Gi| means the size of
group Gi.

The private key K is put in a Pseudorandom number gener-
ator (PRNG) to generate the primary keys of documents. The
generator’s output is treated as a 32-bit unsigned integer, as
Neo4j’s id field uses the same type [15]. For each integer i
from the generator, the primary key PK of the next document
is calculated using the modulo function:

PK = i mod N (2)

3

Figure 3: Watermarking method

To resolve possible collisions, if there is a document at that
place already and the document is not a pseudo document, a
swap takes place, where the pseudo document takes the pri-
mary key of the real document, and the real one takes the next
free primary key.

5.2 Extracting the watermark
The private key is input into a PRNG to extract the water-
mark, and the output is treated as 32-bit unsigned integers.
The integers are again put tough the same formula PK = i
mod N which gives a list of locations of nodes inside the
database. These nodes are checked for a watermark. As the
list of possible pseudo documents can also have real docu-
ments at the end of it, the list is checked incrementally until
five documents have been observed consecutively without a
watermark. Documents that are missing are not counted, as
this could indicate a possible attack on the watermark.

6 Experimental Setup and Results
6.1 Attacker model
To attack the algorithm, a clear model for an attacker needs
to be established. The model defines an attacker’s role, re-
sources, goals, and methods.

Attacker
An attacker is considered any adversary who tries to purpose-
fully find, delete, modify or interact in any other way with the
watermark. Due to this definition, an attacker does not have
to have malicious intent but to knowingly and purposefully
interact with the watermark. Additionally, an attacker does
not have infinite resources or knowledge that can be used to
break algorithms, which are considered cryptographically se-
cure. [16]

Goals
The ultimate goal of the attacker is to find all watermarked
nodes. These goals can be categorized into two groups: the
attacker may try to find the watermark in the graph using
graph analysis or brute force the private key. The first attack
uses analysis of the properties of the graph alongside analysis
of the data, which is stored inside the graph. Theoretically,
it would allow an attacker to delete the watermark or insert
new documents inside the database. The latter technique is
more computationally intensive; however, it would allow an
attacker full control over the watermark.

Another goal, which can be considered by an attacker, is
wiping the information which contains the watermark. Al-
though possible, this method can also delete a substantial
amount of truthful information from the database, which
would decrease its value. Due to this, this goal is not con-
sidered in this paper.

Methods
For this model, it is assumed that the attacker already has full
access to the public data, which might also be just a part of
the full database. The attacker also has access only to one
watermarked copy of the database and does not have access
to the original database or the key for the watermark. Lastly,
an important assumption is that the attacker cannot check the
watermark, as in an oracle attack, to check if the watermark
is still valid. [17]

The attacks tested are deletion and modification. A python
script, acting as an attacker, is given access to an already
watermarked database for deletion, and modification attacks.
The script then performs an attack and hands the control over
to the verification algorithm, which then tries to verify the
watermark. If the verification process does not detect modi-
fications or does not detect the watermark, then the attack is

4

Algorithm 1 Divide into groups

1: function GENERATEGROUPSIZES(target sum, lower range, upper range,max tries) ▷ Generate a set of random
numbers, all summing up to a target sum

2: if max tries <= 0 then ▷ Base case: check if the maximum tries count was exceeded
3: Exit(”No groups were found satisfying the parameters”)
4: end if
5: returnList← []

6: while target sum− Sum(returnList) > upper range do ▷ Fill the list with random numbers, until you hit the
upper bound of the range

7: returnList.append(randint(RandomNumber())
8: end while
9: remainder ← target sum− Sum(returnList)

10: if remainder < lower range then ▷ If the number is not in the range, run the algorithm again
11: returnGenerateGroupSizes(target sum, upper range, lower range,max tries− 1)
12: else
13: returnList.append(remainder)
14: return returnList
15: end if
16: end function

successful. For the final attack, a series of values are com-
puted for the graph, based on which the script tries to delete
the watermark. After that, the same verification process is
performed to see if the attack was successful.

For an attack, a score is calculated based on the percent-
age of successful detection attacks. The following formula is
used:

%success =
∑

Au∈A

Au

A
(3)

where Au denotes the number of unsuccessful attacks and A
denotes the number of attacks performed.

6.2 Experimental Setup
Codebase
An implementation of the algorithm was written in python
and published on GitHub under the MIT license for public
use. [18] Although the code was written to exactly match
the algorithm in the paper, it is important to note some dif-
ferences between the algorithm and its implementation in
python. Since the database does not allow a document to
change its primary key, the algorithm embeds the pseudo
document without taking into account the primary key of
the newly created document. Two methods could circum-
vent this: copy-pasting real documents and exporting and
re-importing the database; however, currently, it is not con-
sidered a vital detail for testing the algorithm. This is why
the codebase is also designed to be scalable and futureproof,
making it easy to improve or completely rewrite the steps of
the algorithm.

Database
To test the watermarking technique, a public dataset is used.
The dataset, named UK Companies, is part of the default ex-
ample datasets by Neo4j.[19] The dataset contains informa-
tion about public companies in the United Kingdom, their
properties, owners, and political donations. Figure 4 shows
a constructed schema of the database.

Figure 4: UK Companies Database Schema

As shown in figure 4, most documents share an edge with a
document of type Company. Thus, every node of type Person,
Property, or Recipient is watermarked by a node of type Com-
pany. In turn, watermarking nodes of type Company is done
by pseudo nodes from the other three types. This ensures that
every node inside the database can be watermarked.

Due to the schematic nature of NoSQL databases, there is
no defined structure for each document. However, a lot of
the documents still share the same fields. An example of a
Company document can be seen below:

5

{
"companyNumber": "04179322",
"name": "CURO TRANSATLANTIC LIMITED",
"mortgagesOutstanding": 1,
"countryOfOrigin": "United Kingdom",
"incorporationDate": "2001-03-14",
"category": "Private Limited Company",
"SIC": "64999 - Financial intermediation

not elsewhere classified",
"status": "Active"

}

Figure 5: Example of a company document from the database

Setup
Two types of setups are used for the experiment: the first
focuses on the algorithm’s performance, while the second
performs an analysis of the algorithm itself. Additionally,
each setup is performed inside a virtualized environment us-
ing Docker [20] to guarantee minimal interaction between the
different setups and internal processes inside the computer.

The first setup uses multiple ways to monitor the time and
resources consumed by the watermarking algorithm. Log
files are analyzed for the average time for each group to
be watermarked, and monitoring software is attached to the
docker container to monitor resource consumption. Delays
and resource usage of the database is not considered since it
is assumed that the database performs similarly for each test
and is hosted locally. The results are manually analyzed, and
the speed of the algorithm is deducted using the following
formulas:

speeddocument =
Nd

t
(4)

speedgroup =
Ng

t
(5)

where t is the time in seconds it took for the algorithm to
finish, Nd is the number of documents in the database, and
Ng is the number of groups that were formed by the algo-
rithm. The formula measures the number of documents wa-
termarked per second - speeddocument; and the number of
groups watermarked per second - speedgroup. Since the al-
gorithm randomly partitions the documents into groups and
the most work is done per group, speedpergroup is consid-
ered a more important metric for performance. Additionally,
the watermark verification is tested using the same formulas
for embedding; see equation 4.

Additional testing is conducted on the impact of param-
eters on the general performance of the algorithm. Pa-
rameters such as min group size, max group size, and
watermarked document fields are considered to have a
high impact on the performance.

The second setup focuses more on evaluating the water-
mark in terms of security, robustness, and usability. The se-
curity and robustness of the algorithm are evaluated using a
deletion and modification attack. At the same time, usability
is assessed by monitoring the number of pseudo nodes intro-
duced and their influence on common characteristics of the
dataset.

The robustness of the watermark is tested with a deletion
attack. First, a script, acting as a malicious actor, randomly
picks nodes and deletes them. After that, a verification script
is run to determine the amount of watermarked nodes that
were deleted or not detected. This sequence continues until
the verification script does not detect the watermark anymore.
The algorithm is explained in more detail in the appendix 5.
At every step, the amount of deleted nodes and the percentage
of watermarked nodes is recorded:

%deleted =
N

Ni

%watermarked =
Nw

Nwi

(6)

where N is the number of nodes in the database, Ni is the
number of nodes initially in the database, Nw is the number of
discovered watermarked nodes, and Nwi is the initial number
of watermarked nodes.

The security of the watermark is tested with a modification
attack. A script, acting as a malicious actor, randomly selects
several documents whose values are modified 6. After modi-
fications, a verification script verifies the watermarked nodes.
The sequence continues until the watermark is not detected by
the verification script anymore. At each iteration, the amount
of modification and the percentage of watermarked nodes is
recorded:

F =
∑
d∈D

fd

%modified =
Fm

F

%watermarked =
Nw

Nwi

(7)

where fd is the number of fields in document d, D is the
set of all documents inside the database, Fm is the number of
modified fields, Nw is the number of discovered watermarked
nodes. and Nwi is the initial number of watermarked nodes.

The usability of the watermark is evaluated by several key
factors: the number of pseudo documents added, the average,
mean, and median of certain numerical values, the number of
edges per node, etc. To ensure the usability of the database
after the watermark, manual analyses are performed on pre-
defined values, looking for changes introduced by the water-
mark.

To ensure that the different test setups do not interfere with
each other, each test is performed inside an isolated docker
container. This guarantees that there is one database instance
per test, which cannot be accessed from the outside, and that
every database is identical at the start of each test. For each
test, a container for the database is started, after which the
container with the python script is started. The container out-
puts its findings in a log file, logging results, errors, and other
information related to this research.

Host
Although the tests are run inside a virtual environment, the
performance of the algorithm highly depends on the specifi-
cations of the host. The algorithm was run on a PC with a

6

12-core processor, 16GB of RAM, and a 64-bit Windows 11
operating system; more information about the host’s specifi-
cations is located inside Appendix 5.

6.3 Results
To generate results, the tests were run 67 times, each test iso-
lated in a new virtual environment. After each test, the log
files are sent back to the host, before the environment is pow-
ered down and deleted.

Performance
The algorithm’s performance was measured in the number of
seconds the algorithm took to watermark all groups. Because
the number of groups is not fixed, we noted the number of
groups that needed to be watermarked and the time it took
to watermark them (figure 6). The number of watermarked

Figure 6: Performance of the algorithm

groups is plotted on the x-axis, while the time it took for the
algorithm to watermark all groups is plotted on the y-axis.
The graph shows that the amount of groups that need to be
watermarked directly impacts the algorithm’s performance.
The plot also shows that the algorithm follows a linear time
complexity, indicating that the algorithm can be scaled for
large databases without compromising performance. Addi-
tional calculations show that the implementation watermarks
5.28 groups per second on average. It is important to note
that the algorithm does not have multi-thread support, which
could significantly increase its performance.

Usability
Usability is measured by calculating the number of pseudo
nodes introduced and dividing it by the number of total nodes,
essentially obtaining the ratio of pseudo nodes inside the
database. To visualize this, a graph is created where the ra-
tio is plotted on the x-axis while the percentage of nodes that
needed to be deleted to erase the watermark is plotted on the
y-axis (figure 7). The graph shows the number of nodes that
should be introduced to achieve a certain level of robustness.
Unfortunately, even with as much as 8 percent of the nodes
being watermarked, the algorithm still under-performs, com-
pared to the one introduced in [10].

Figure 7: Watermark usability

Parameter impact
Test to measure the impact of the parameters on the perfor-
mance; the input parameters were recorded alongside the time
it took for the algorithm to watermark the database.

Figure 8: Impact from parameter choice on watermarking perfor-
mance

Figure 8 indicates that the choice of parameters highly
impacts the algorithm’s performance. This is related to the
grouping of the nodes, as smaller numbers for both parame-
ters lead to more groups being created, leading to more work
for the algorithm. A 3D plot showing this effect can be found
in Appendix 10

6.4 Deletion and modification attacks
Both a deletion and a modification attack are performed to
test the security and robustness of the algorithm. The results
are then plotted according to the scoring system discussed
earlier with equations 5 and 6, where the number of water-
marked nodes is plotted along the x-axis, and the score of the
algorithm is plotted along the y-axis.

7

Figure 9: Deletion attack results

The deletion attack shows that the watermark can with-
stand around 40% of documents being deleted before becom-
ing undetectable. This result is good for the range between
0 and 1000 watermarked documents; however, the score re-
mains constant when the number of watermarked documents
increases.

7 Responsible research
Watermarking techniques could pose a threat to user privacy
and security. Security and privacy software often work on the
communication channel to ensure the user stays anonymous.
However, as this technique could open a new covert commu-
nication channel unseen by security and privacy protection
software, it could pose a risk of sending identifiable data over
it. For example, a rogue program purposefully watermarks
every piece of information using an identifiable string as a
key. As the watermark is designed to be undetectable, it re-
mains undetected until the server on the other side detects it
and reveals the source of the data, which was supposed to be
anonymous.

The most common use case for the watermarking tech-
nique is for data authorization. While this algorithm can em-
bed a robust watermark, it can still not be used as definitive
proof of who produced the watermark. For example, suppose
a watermarked database is made public against the author’s
permission. In that case, they can use the watermark detec-
tion technique to identify how and from whom the database
was leaked. However, this cannot be used in court as evi-
dence, as the algorithm was not designed and tested for these
scenarios.

8 Conclusions
We introduce a new graphical database watermarking algo-
rithm based on inserting watermarked pseudo nodes. This
novel approach, first introduced by [10], promises to create
a robust, non-detectable, and secure watermark, resilient to
modification, deletion and insertion attacks. Several flaws,
such as the genetic algorithm and the graphical properties

of the watermark, were identified after analyzing the algo-
rithm in [10]. A new algorithm was designed and imple-
mented to tackle these flaws and then tested against modi-
fication and deletion attacks. The test results showed that the
algorithm under-performed in contrast to the algorithm intro-
duced by [10]. This means that further research needs to be
done for a robust and secure algorithm to be introduced for
graph database watermarking.

9 Further work
Remove the need for manual analysis
Unfortunately, the lack of schemes in NoSQL databases intro-
duces the need for manual analysis of the database before it
can be watermarked. This is an intensive process and requires
deep knowledge of how the technique works and knowledge
of python to implement the algorithm for the database. Auto-
matic scheme analysis and automatic watermark embedding
can greatly improve the usability of the algorithm, removing
the chance of configuration mistakes.

Watermarking edges
As the graph database can also hold data inside the edges,
edges can be watermarked to increase robustness against
deletion and modification attacks.

Random distribution of IDs
As this algorithm was implemented for the Neo4j database,
it is also limited to the constraints enforced by the database.
One such constraint does not permit a document’s primary
key to be modified. This can be circumnavigated by cut-
pasting documents from the database back to the database,
essentially giving a document a new primary key. However,
this technique is not recommended, as it could potentially de-
crease the detectability of the watermark.

Algorithm is not limited to the database type
Although this algorithm was implemented for a graphical
database, many other databases can be reduced to a graph
representation, as demonstrated in [10]. The technique in this
paper can then be used to watermark the graph, greatly in-
creasing the use cases for it.

Improve methods for embedding
Although this method was proposed with a simple watermark
embedding algorithm, improving the way it is embedded can
greatly increase its imperceptibility. Due to the design of the
algorithm, the watermark embedding and verification algo-
rithms can be treated as black boxes, and the way the rest of
the algorithm works is not influenced.

References
[1] S. Kumar, B. K. Singh, and M. Yadav, “A recent sur-

vey on multimedia and database watermarking,” Mul-
tim. Tools Appl., vol. 79, no. 27-28, pp. 20149–20197,
2020.

8

[2] E. N. M. Ibrahim, N. L. M. Noor, and S. Mehad, “Trust
or distrust in the web-mediated information environ-
ment (W-MIE): A perspective of online muslim users,”
J. Enterp. Inf. Manag., vol. 22, no. 5, pp. 523–547,
2009.

[3] M. Winslett, T. Yu, K. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu, “Negotiating trust in the
web,” IEEE Internet Computing, vol. 6, no. 6, pp. 30–
37, 2002.

[4] S. Katzenbeisser and F. A. P. Petitcolas, Information
hiding techniques for steganography and digital wa-
termarking. Artech House computer security series,
Boston: Artech House, 2000.

[5] C. Dr. Shannon Block, “Why amazon, google, netflix
and facebook switched to nosql?,” Mar 2019.

[6] M. Bach and A. Werner, “Standardization of nosql
database languages,” in Beyond Databases, Architec-
tures, and Structures - 10th International Conference,
BDAS 2014, Ustron, Poland, May 27-30, 2014. Pro-
ceedings (S. Kozielski, D. Mrozek, P. Kasprowski,
B. Malysiak-Mrozek, and D. Kostrzewa, eds.), vol. 424
of Communications in Computer and Information Sci-
ence, pp. 50–60, Springer, 2014.

[7] J. J. Miller, “Graph database applications and concepts
with neo4j,” in Proceedings of the southern association
for information systems conference, Atlanta, GA, USA,
vol. 2324, 2013.

[8] “The professional client, ide and gui for mongodb,” Jan
2023.

[9] T. M. Thanh, N. H. Thuy, and N. Huynh, “Key-value
based data hiding method for nosql database,” in 10th
International Conference on Knowledge and Systems
Engineering, KSE 2018, Ho Chi Minh City, Vietnam,
November 1-3, 2018 (N. T. Thuy, S. Tojo, T. Hanh,
M. L. Nguyen, T. M. Phuong, and V. N. Q. Bao, eds.),
pp. 193–197, IEEE, 2018.

[10] X. Zhuang, X. Luo, and L. He, “Document database wa-
termark algorithm based on connected graph,” in 2022
International Conference on Computing, Communica-
tion, Perception and Quantum Technology (CCPQT),
pp. 212–218, 2022.

[11] MongoDB, “Documents,” 2022.
[12] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on

genetic algorithm: past, present, and future,” Multim.
Tools Appl., vol. 80, no. 5, pp. 8091–8126, 2021.

[13] A. Bookstein, V. A. Kulyukin, and T. Raita, “Gen-
eralized hamming distance,” Inf. Retr., vol. 5, no. 4,
pp. 353–375, 2002.

[14] K. Emam, L. Mosquera, R. Hoptroff, and a. O. M. C.
Safari, “Practical synthetic data generation,” 2020.

[15] Neo4j, “Neo4j Bolt driver for Java.”
[16] J. Katz and Y. Lindell, Introduction to Modern Cryptog-

raphy, Second Edition. CRC Press, 2014.

[17] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato,
G. Steel, and J. Tsay, “Efficient padding oracle attacks
on cryptographic hardware,” in Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings (R. Safavi-Naini and R. Canetti, eds.), vol. 7417
of Lecture Notes in Computer Science, pp. 608–625,
Springer, 2012.

[18] T. Hristov, “Graph Database Watermarker(BEP).”
[19] W. Lyon, “UK Companies Data.”
[20] D. Merkel, “Docker: lightweight linux containers for

consistent development and deployment,” Linux jour-
nal, no. 239, p. 2, 2014.

9

A Search parameters

Engines Google Scholar, Scopus
Keywords Digital watermarking, watermark, algorithm, database, NoSQL, document database, graph

Example query Digital watermarking AND noSQL AND graph

Table 1: Search parameters

B Database specifications

Label Amount
Person 30207

Company 35000
Recipient 65
Property 4728

Table 2: Amount of nodes per label

Type Amount
HAS CONTROL 60414

DONATED 130
OWNS 9456

Table 3: Amount of edges per type

C Result graphs

C.1 Impact of parameters on watermark 3D

Figure 10: Impact of parameters on amount of watermarked documents

10

D Parameters of the algorithm

parameter description
ids The ids of the documents, which need to be watermarked
labels The labels of the documents, which need to be watermarked
mingroupsize The minimum size of each group
maxgroupsize The maximum size of each group
watermarkeddocumenttype The type of the document, which contains the watermark
watermarkcoverf ield The name of the field, which contains the watermark
watermarkeddocumentf ields The fields, which are included inside the watermarked document
watermarkeddocumentoptionalf ields The fielDs, which are optionally included inside the watermarked document
watermarkkey The private key for the watermark
groupf indmaxtries The amount of tries it will take for the algorithm to give up on partitioning

groups
watermarkidentity An optional identity for the watermark, this can be the name of the person the

information was leased or any other identifiable string
watermarkedgedirectionrandomized If the edge direction should be randomized. If true, the algorithm will treat the

graph as undirected and not take the direction of the edges into account when
creating the watermark.

watermarkvisibility Optional. If selected, the letter W will be added on the back of the type of the
watermark document and edges, indicating that it is watermarked.

Table 4: Watermark algorithm parameters

E Specifications of the host computer

Part Description
CPU AMD Ryzen 9 3900XT 12-Core 3.80 GHz Processor
GPU NVIDIA GeForce RTX 3070, driver version 527.37
RAM 16,0 GB

OS 64-bit Windows 11 Pro, build 22621.1105

Table 5: Host specifications

11

F Algorithms

F.1 Divide into groups

Algorithm 2 Divide into groups

1: function GENERATEGROUPSIZES(target sum, lower range, upper range,max tries) ▷ Generate a set of random
numbers, all summing up to a target sum

2: if max tries <= 0 then ▷ Base case: check if the maximum tries count was exceeded
3: Exit(”No groups were found satisfying the parameters”)
4: end if
5: returnList← []

6: while target sum− Sum(returnList) > upper range do ▷ Fill the list with random numbers, until you hit the
upper bound of the range

7: returnList.append(randint(RandomNumber())
8: end while
9: remainder ← target sum− Sum(returnList)

10: if remainder < lower range then ▷ If the number is not in the range, run the algorithm again
11: returnGenerateGroupSizes(target sum, upper range, lower range,max tries− 1)
12: else
13: returnList.append(remainder)
14: return returnList
15: end if
16: end function

F.2 Create pseudo document

Algorithm 3 Create pseudo document

1: function GETDISTINCTVALUES(document type, field) ▷ Get all distinct values for a field
2: allDocuments← GetAllDocuments(document type)
3: allV alues← []
4: for document ∈ allDocuments do ▷ Loop over all documents
5: if document.get(field) /∈ allV alues then ▷ Check if the value is already inside the list
6: allV alues.append(document.get(field)) ▷ Append the value to the list
7: end if
8: end for
9: returnallV alues

10: end function
11: procedure CREATE PSEUDO DOCUMENT(document type, fields)
12: newDocument← BlankDocument()
13: for field ∈ fields do
14: allPosibilities← GetDistinctV alues(document type, typeoffield) ▷ Get all possible values for this field
15: newField← RandomChoice(allPosibilities) ▷ Choose a value for the field
16: ChangeDocument(newDocument, field, newField) ▷ Save the new field
17: end for
18: end procedure

12

F.3 Connect pseudo node to the rest of the group

Algorithm 4 Connect pseudo node to the rest of the group

1: procedure CONNECT PSEUDO NODE(pseudo node, group, edge type lookup)
2: for node ∈ group do
3: edgeType← edge type lookup[typeofpseudo node][typeofnode] ▷ Determine the edge type from the lookup

matrix
4: ConnectDocument(pseudo node, node, edgeType) ▷ Connect the two documents with the edge type
5: end for
6: end procedure

F.4 Deletion Attack

Algorithm 5 Deletion Attack

1: function GETRANDOMDOCUMENTS(size) ▷ Generate a random set of document IDs with a certain size
2: allIDs← getAllIDs()
3: randIDs← generateRandomSubset(allIDs, size)
4: returnrandIDs
5: end function
6:
7: function DELETION SCRIPT(iterations, step)
8: for iterations do
9: documentToModify ← GetRandomDocuments(step) ▷ Chose random documents to delete

10: DeleteDocument(documentToModify) ▷ Save changes
11: end for
12: end function
13:
14: procedure DELETION ATTACK(iterations, step, database)
15: do
16: Deletionscript(iterations, step) ▷ Call the deletion script
17: detected← V erifyWatermark(database) ▷ Check for the watermark
18: while detected = true
19: end procedure

13

F.5 Modification attack

Algorithm 6 Modification attack

1: function GETRANDOMDOCUMENTS(size) ▷ Generate a random set of document IDs with a certain size
2: allIDs← getAllIDs()
3: randIDs← generateRandomSubset(allIDs, size)
4: return randIDs
5: end function
6:
7: function GENERATERANDOMDATA(data type) ▷ Generate random data from the same type as the specified
8: new data← GenerateRandomData(data type)
9: return new data

10: end function
11:
12: function MODIFICATION SCRIPT(iterations)
13: for iterations do
14: documentToModify ← GetRandomDocuments(1)[0] ▷ Chose a random document to modify
15: fieldToModify ← RandomChoice(documentToModify.fields) ▷ Chose a random field to modify
16: newData← GenerateRandomData(typeoffieldToModify) ▷ Generate new data to overwrite the previous one
17: ChangeDocument(documentToModify, fieldToModify, newData) ▷ Save changes
18: end for
19: end function
20: procedure MODIFICATION ATTACK(iterations, step, database)
21: do
22: Modificationscript(iterations, step) ▷ Call the modification script
23: detected← V erifyWatermark(database) ▷ Check for the watermark
24: while detected = true
25: end procedure

14

	Introduction
	Technical background
	Methodology
	Literature study
	Steps of the previous algorithm
	Analysis on a previous watermarking method
	Attack on the primary key
	Attack on the genetic algorithm
	Limitation to the genetic change
	Graph creation

	Algorithm
	The watermarking technique
	Dividing into groups
	Adding a pseudo document
	Linking documents
	Embedding the watermark
	Adding watermarked documents to the database

	Extracting the watermark

	Experimental Setup and Results
	Attacker model
	Attacker
	Goals
	Methods

	Experimental Setup
	Codebase
	Database
	Setup
	Host

	Results
	Performance
	Usability
	Parameter impact

	Deletion and modification attacks

	Responsible research
	Conclusions
	Further work
	Search parameters
	Database specifications
	Result graphs
	Impact of parameters on watermark 3D

	Parameters of the algorithm
	Specifications of the host computer
	Algorithms
	Divide into groups
	Create pseudo document
	Connect pseudo node to the rest of the group
	Deletion Attack
	Modification attack

