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Abstract

Modern software is being built in a continuously integrated fashion, in order to
overcome the challenges that come with developing large software systems from many
contributors. The cornerstone of continuous integration is the testing step, since it
is supposed to protect the system from changes that might disrupt correct behavior.
Mutation testing is a method that checks the fault finding capability of a test suite.
Current CI settings do not implement a step that checks how thorough the test suite is.

Therefore, the goal of this thesis has been to explore how mutation testing can be
applied to changes under analysis in a continuous integration setting. Since there is
no infrastructure to support this, in order to conduct our study we developed OPi+, a
prototype tool for experimenting the infrastructure required for a continuous mutation
testing approach. Using real-world systems for analysis, we give initial evidence of
the continuous mutation testing usefulness in terms of costs and benefits when applied
to realistic software changes. The empirical study is based on analysis performed on
the entire commit history of the popular open source Java Maven systems.

Through our study we defined 5 types of outcomes together with a continuous
mutation testing behavior flow and additional analysis that streamlines current muta-
tion testing practices. We showed not only that mutation testing in a CI environment
requires significantly fewer resources but they are also within the limits required by
a CI pipeline. Through our study we also identify unmutable code for which we pro-
pose appropriate unimplemented operator set. We also study the evolution of surviving
mutants with regards to their impact on the systems‘ technical debt.

In our study, we showed initial evidence that mutation testing can successfully be
made compatible with a CI environment. We therefore propose a few ideas that could
possibly further streamline continuous mutation testing.
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Chapter 1

Introduction

“We learn by putting stuff into production. We can ask people till they are blue in the face
“What do you want?”, but it’s only when you actually give people something, they will tell
you what they don‘t want”. This is what Martin Fowler calls “the inevitable feature of soft-
ware development” [34]. The users of software products usually clarify the requirements
while they see intermediate deliverables. This dynamic is the main reason why modern
software development is a continuous process. Continuous software development is not
hindered by changing requirements, but instead profits from them by transforming them
into continuous improvement feedback. This results in constantly running software that
keeps up with the volatile requirements of the client.

The development practice that allows multiple developers to integrate changes on the
same code into a shared repository is called continuous integration [39]. Every change a
developer makes must pass a given test suite before being integrated in the master version
of the system. The master version of the system should always be in a correct state since
it functions as the final product at any given time before the completion stage. Therefore
the success of the integration process depends on the test suite capability to catch faulty
behavior that might break the system into production.

Once the changes have been continuously integrated, the new version of the system is
automatically being processed into a deployable product. Continuous delivery is a software
development discipline that allows software features which have already been implemented
to be released to production at any time [39]. Even though the change could be made
live in production from a technical point of view, this is ultimately a management decision.
Continuous delivery means that we are at the point where all changes are being deployed
continuously, but are delivered to the clients based on management flags [34]. The advan-
tages of continuous delivery are the following: smaller deployment risks, providing a sense
of real progress and making use of user feedback [34]. A prerequisite of continuous delivery
is developing code in a continuous integration environment.

A successful continuous integration process is restricted by the test suite behavior,
meaning that the behavior of the test suite decides whether a change will be integrated
in the system. These restrictions may be: selecting a successful subset of the test suite as a
prerequisite, selecting a specific threshold of passed tests or including a quality metric test
suite. The quality of the test suite is based on different aspects of the system under test,
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1. INTRODUCTION

such as code coverage or test code quality.
Code coverage is most often used as a test adequacy metric in continuous integration

processes [65]. Although it may be computed in different ways, the most important aspect is
whether a piece of code is being executed by at least one test case or not. It does not analyze
how that code is being tested, so it is not a comprehensive indicator metric for test quality
since it cannot detect faults. Code coverage can only detect codes that are never executed
by any test case, but does not analyze the way that codes are being executed. Consequently,
it is possible to have test covered faulty code.

A method that can measure the fault detection capability of a test suite in the code base is
mutation testing. This approach is a step further than code coverage because it may be used
to check whether existing tests are actually able to detect certain types of faults injected in
the code covered by them. By detecting the areas in the code that are not thoroughly tested,
mutation testing automatically provides improvement feedback for the test suite by pointing
to insufficiently tested code.

1.1 Problem Formulation

The continuous integration process requires an additional stage to assess the adequacy of a
test suite in order to have a more reliable delivery to production. A widely studied solution
for assessing the fault detection ability of a test suite is mutation testing [41]. Since the
initial proposal [46] in 1971, many improvements have been implemented, the approach has
been tested in empirical studies and applied in many languages and different settings [41].

Unfortunately, the current practices of applying mutation testing are not compatible
with continuous integration processes. The incompatibility is due to several factors:

1. very expensive method which requires a significant amount of processing power and
time [41]

2. It is currently being applied on the entire system, while continuous integration deals
with the change and does not analyze the entire system each time

3. requires a complicated and lengthy manual post analysis due to the unfiltered output
of mutation testing

4. current techniques for mutation testing cost reduction are not tailored for CI envi-
ronments, but for stand-alone laboratory analysis which is not based on many small
changes.

The goal of this thesis is to explore how mutation testing can be applied to changes
under analysis in a continuous integration setting. We particularly investigate the following:

1. How can we set up an infrastructure that allows for an efficient analysis of changes
that are processed in a continuous integration server?

2. What are the costs and benefits of such an infrastructure when applied to realistic
software changes?

2



1.2. Proposed Approach

Continuous mutation testing implies that the continuous integration process would in-
clude a specific step for checking the effectiveness of the test suite. The mutation process
would be applied only to the changed code. This hybrid solution cancels the deficiencies
of both methods. Not only does mutation testing become manageable from a resource per-
spective, but also the CI environment is able to integrate code with a proven degree of
confidence. An overview of this hybrid approach is given in the next section.

1.2 Proposed Approach

Continuous mutation testing is a concept independent of the specific implementation of the
mutation testing tools. Although mutation testing is being used to some extent in real world
projects, it was never integrated in a CI environment. Therefore, there is no infrastructure
to support continuous mutation testing. The purpose of this study is to analyze whether
mutation testing can improve the development process by integrating it in a CI environment.
In order to answer this question we developed OPi+, a prototype tool to conduct experiments
with change-driven mutation testing. In this environment, we adapted current technologies
to meet the requirements for continuous mutation testing by customizing the core of the tool
or extending the features with a custom proxy. The way we integrate continuous mutation
testing with the flow of modern software development mimics a related project Operias [59].
The Operias system is a tool meant to help the process of code reviewing based on the
suggestions on the progress of code coverage. A customized version of this system is the
first step in the continuous mutation testing process.

1.3 Empirical Evaluation

We use OPi+ to automate all the steps of a system‘s development process in chronological
order, also inserting mutation testing in each iteration of the process. This way, we mimic a
continuous mutation testing approach in a real development process. We record all commits
that should be further analyzed, all commits that were ignored and compute the impact of
each commit within the context of change-based mutation testing.

After we have obtained an overview of all the processed code through the continuous
mutation testing method, we conduct an empirical study to analyze how the follow up ac-
tions suggested by OPi+ can help improve the test suite. By doing this we can assess to
what extent this approach can improve the continuous delivery of a well tested system and
the usability in terms of:

1. processing power

2. time

3. developer effort

required in relation to the usefulness of the feedback computed by the approach.

3



1. INTRODUCTION

The analyzed data from the experimental environment of continuous mutation testing
has implications in how the current method can be improved. These implications relate to
the reduced costs of continuous mutation testing, the completeness of the currently available
mutation operator set and the potential impact of surviving mutants in improving the system.
All these implications make a case for setting up the infrastructure for this hybrid solution
which provides continuous feedback for specific missing test cases. The solution in question
also helps highlight critical code areas that need testing and contributes to creating a more
trustworthy build process.

1.4 Outline

This thesis presents the study on continuous mutation testing. Chapter 2 presents a back-
ground on the traditional mutation testing approach and current continuous integration prac-
tices. Chapter 3 describes the conceptual proposed solution for continuous mutation testing
and its implications. Chapter 4 presents the design of the empirical study that assesses the
effects of the approach. We present the results of the empirical study in Chapter 5. Based on
the results, we attempt to answer five research questions related to our main objective, “can
mutation testing be compatible with a continuous development environment?”. 6 presents
an in-depth analysis of the empirical results and their implications, threats to validity and
proposed future work. Chapter 7 describes the related studies in the area of making the
continuous integration process more effective and making mutation testing more usable.
Chapter 8 presents the conclusions drawn from the outcome of this hybrid approach, based
on the empirical study.
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Chapter 2

Background

2.1 Continuous Integration

“Its hard enough for software developers to write code that works on their machine. But
even when that’s done, there’s a long journey from there to software thats producing value
- since software only produces value when its in production.” Martin Fowler [32].

Continuous Deployment is a development process that takes the raw code and trans-
forms it into a client deliverable product after every change within the system [39]. All
steps that take the change test it and then integrate it in the master version of the system
form the continuous integration pipeline. Continuous Integration, a sub part of the Contin-
uous Deployment process, is an automated software delivery process.

The Continuous Integration process is triggered by a change to the code base. A more
detailed cause-effect flow within the build pipeline is described in Figure 2.1. Even though
these steps are custom to every project, they can be classified in a few chronological cate-
gories as described by Humble et al. [39]:

• The commit stage - asserts that the system works at the technical level (compile, pass
test suite, run code analysis)

• Automated acceptance test stages - assert that the system works at the functional and
nonfunctional level (meets user requirements)

• Manual test stages - can include exploratory testing environments, integration envi-
ronments, and UAT (user acceptance testing)

• Release stage - delivers the system to users, either as packaged software or by de-
ploying it into a production or staging environment (a staging environment is a testing
environment identical to the production environment).

The CI pipeline makes releasing software easy if the automated tests are up-to-date
and do not require a lot of manual compensation. “Incorporating testing into every part of
your delivery process is vital to getting work done. Since our approach to testing defines
our understanding of done, the results of testing are the cornerstone of project planning.
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2. BACKGROUND

Figure 2.1: Changes moving through the deployment pipeline [39]

Testing is fundamentally interconnected with your definition of “done, and your testing
strategy should be focused on being able to deliver that understanding feature by feature
and ensuring that testing is pervasive throughout your process” [39]. The underlying idea
behind Continuous Integration is that if the code has a comprehensive test suite that passes
in a production-like environment then it is ready for release. This accentuates the need for
high quality tests.

“A smooth path to the release” is highly dependent upon a high quality test suite. In
order to assess the quality of a test suite, development teams use code coverage [36]. Un-
fortunately high test coverage does not necessary imply a good test suite [39] [40]. Too
often manual testing is left to compensate for a poor automated test suite [39]. Since hu-
mans are not good with repetitive, mundane yet complex tasks this process may lead to poor
quality software [39].

The CI process can become more effective if an additional form of assessing the quality
of a test suite is adopted: mutation testing, as we will discuss in the next section.

2.2 Version Control

An effective way to prevent software aging is by considering software changes to be the
center of the development process [30]. History tracking, currently relies on Version Control
Systems (VCS). These systems treat the software system as a collection of text files and log
all textual changes. However this log approach cannot convey the impact a change has on
the system. Nevertheless a proper VCS is the cornerstone of continuous integration. Our
prototype experiment tool is using Git as the version control system since the empirical
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2.3. Test adequacy

study is based on open source projects hosted by Git. This is a very popular platform with
over 61 million projects hosted [9].

Pairing VCS analysis with mutation testing has the potential of canceling one of the
biggest challenges mutation testing faces: manual analysis of surviving mutants. By timing
mutation testing with the commit time, the mutation process may become maintainable by
focusing on the new few changes. If we match mutant operators with types of change ana-
lyzed in difference analysis we can prioritize the mutations. Furthermore, the programmer
responsible for the change can analyze the related mutants, in order to identify the mutants
that need manual analysis.

2.3 Test adequacy

White-box testing consists of test cases that are build based on the internal structure of the
program, such as instructions and branches [25, 18]. Some tests quality criteria are line and
branch coverage.

Line coverage or statement coverage is the basis for the simplest and weakest form of
testing [38]. This type of coverage is computed by counting the number of instructions that
are being executed by at least one test. It is considered that the higher the coverage number,
the better the test suite is. Nevertheless, achieving a full line coverage is not possible for
unreachable code. Whether a line is unreachable or not cannot be automatically detected,
since it is an undecidable problem [68].

Branch coverage is computed based on the decision paths executed by the test cases.
This is a stronger requirement for a more adequate test suite [38]. If all branches are tested
then also all statements will be tested. Nevertheless, this criteria is not very thorough when
there are more conditions. The number of inputs for more combinations increases exponen-
tially.

Cobertura [4] is an open source project that computes line and branch coverage of a
Java system. It is based on JUnit test suites. More than this, Cobertura can also compute
the McGabe complexity of each tested method. The McGabe metric [50] measures the
complexity of a method and it is computed on the number of linearly independent paths
through the analyzed piece of code. It is also compatible with Ant or Maven projects and it
generates results in the form of XML reports.

2.4 Code review

Code reviewing is a common software engineering practice meant to find defects [20]. This
is done by having a developer approve the changes made by another developer. This step is
a part of the software integration process. This approach has added benefits such as knowl-
edge transfer, increased team awareness and creation of alternative solutions to problems as
found by Bacchelli et al. [20] empirical study. Developers that took part in the study prac-
ticed code review as means to find defects, improve the code, avoid build breaks, improving
the development process and other social team related aspects. According to this study,
these actions are necessary since the current tools are not yet able to replace the manual
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2. BACKGROUND

analysis in all cases. It also showed that there is a need for a more thorough reviewing and
understanding the changes within the continuous integration process.

2.5 Operias

In order to implement a continuous mutation testing experimental environment we need a
step that analyzes the change submitted in one commit. In order to improve the performance
of OPi+ we implement a pre-filtering feature that triggers the mutation process provided
by Pitest. For this step we decided to make use of Operias, a review tool for developers
based on change in code and change in test coverage [59]. Operias generates HTML and
XML reports based on any two versions of a project and its test suite. The report contains
information about the change in code and in test coverage computed via Cobertura [4], a
branch coverage tool for Java.

Operias can analyze Maven projects written in Java. The mutation testing tool we use,
Pitest, has the exact same limitation on the project scope, java project with Maven organiza-
tion. Current Operias implementation also provides feedback for the reviewer on GitHub,
having implemented a proper communication channel with GitHub. We reuse part of this
communication channel for OPi+.

The main usage scenario for Operias is code reviewing a pull request, which is a set of
several changes that build up to the same goal, like a new feature. Even though OPi+ is
tailored for a commit approach the algorithm is the same. The two versions Operias will
analyze are subsequent versions of the system. Another advantage of using Operias is that
we can also analyze the benefits of mutation testing as part of the review process.

2.6 Mutation testing

2.6.1 Process overview and terminology

Mutation testing is a fault-based, white box testing technique, which seeds faults in the orig-
inal system by making small syntactical changes in order to test the fault detection capability
of a test suite. The Competent Programmer Hypothesis [46] states that the programs pro-
duced by programmers are almost correct thus the faults within the system can be corrected
with few syntactical changes. At the same time, the Coupling Effect [46] states that the fault
which requires complex changes can be reduced to several simple errors. This means that
if a test suite can detect small syntactical faults, the complex faults are also detected [55].
Based on this, the mutation testing approach can asses the effectiveness of a test suite in
terms of its ability to detect faults. [41].

The first step in the mutation testing process is making a change in the original system.
This change is meant to break the system. It could be as simple as swapping an operator like
<<< to >>> . These changes are meant to break the original system, mutate it, thus generating a
faulty version of the system called a mutant. A useful mutant should behave abnormally in
the scope of the system‘s requirements [41].

The transformation rule that generates a new mutant is called a mutation operator [41].
An operator can be any change pattern based on the syntax of a software language. They can
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2.6. Mutation testing

be specific for each language making them language specific operators. Mutation operators
have been applied in languages with object-oriented-features such as Java, C#, Eiffel, C++,
JavaScript, and Delphi [62]. Once an operator is applied to the original system, a faulty
version is being generated. This mutated version of the original system is called a simple
mutant or first order mutant. In contrast, a complex mutant is a faulty version of the system
that is generated by applying several operators. We call this an n-th order mutant, where n
is the number of applied changes. Based on the Competent Programmer Hypothesis [46],
and the Coupling Effect [46], it is believed that the changes performed by the operators are
similar to real-life issues.

The mutants generated from the original system are all run against the test suite. Ideally
at least one test should fail thus showing the new version is indeed faulty. If at least one
test fails the mutant is considered killed [41]. However it could be that the mutated version
passes all tests just like the original version, in which case it is referred to as a surviving
mutant [41].

Mutation testing can also provide concrete overview of the test suite quality through the
mutation score. Once we know the status of each mutant, survived or killed, the method
provides a mutation score that grades the quality of the input test set [41]. We must note
that an equivalent mutant is a survived mutant that generated an identical version of the
system. Once equivalent mutants are filtered out of the surviving mutants we are left with
valuable cases that point to specific missing test cases. The mutants that are not killed by
the test suite and are not equivalent to the original system are the ones that provide useful
feedback. This score is computed as:

KilledMutants
Allmutants−EquivalentMutants

=
DetectedFaults
SeededFaults

.
We apply the mutation testing process to the example in Listing 2.1.

1 p u b l i c c l a s s BankAccount {
2

3 p r i v a t e do ub l e b a l a n c e ;
4

5 p u b l i c b o o l e a n d e p o s i t ( d ou b l e amount ) {
6 i f ( amount > 0 . 0 0 ) {
7 b a l a n c e = b a l a n c e + amount ;
8 r e t u r n t r u e ;
9 } e l s e {

10 System . o u t . p r i n t l n ( ” amount c a n n o t be
n e g a t i v e ” ) ;

11 r e t u r n f a l s e ;
12 }
13 }
14

15

16 p u b l i c b o o l e a n wi thdraw ( d ou b l e amount ) {
17 i f ( amount <= 0) {
18 System . o u t . p r i n t l n ( ” amount c a n n o t be

n e g a t i v e ” ) ;
19 r e t u r n f a l s e ;
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20 }
21 i f ( b a l a n c e < 0) {
22 System . o u t . p r i n t l n ( ” a c c o u n t i s

o v e r d r a f t ” ) ;
23 r e t u r n f a l s e ;
24 }
25 b a l a n c e = b a l a n c e − amount ;
26 r e t u r n t r u e ;
27 }
28

29 }

Listing 2.1: Literature Survey root example

We have full branch coverage for deposit method by writing the tests in Listing 2.2
1 @Test
2 p u b l i c vo id d e p o s i t I f C o v e r a g e ( ) {
3 BankAccount acc = new BankAccount ( ) ;
4 a s s e r t T r u e ( acc . d e p o s i t ( 1 0 . 0 0 ) ) ;
5 }
6

7 @Test
8 p u b l i c vo id d e p o s i t E l s e C o v e r a g e ( ) {
9 BankAccount acc = new BankAccount ( ) ;

10 b o o l e a n r e s u l t = acc . d e p o s i t (−10.00) ;
11 a s s e r t E q u a l s ( r e s u l t , f a l s e ) ;
12 }

Listing 2.2: Full branch coverage for deposit()

If we mutate line 7 from our example Listing 2.1 using an operator that changes +++ to
−−− our mutant passes the full coverage test suite. This means that our second version of the
system that deposits money by erroneously deducting the sum (balance = balance - amount;)
is a surviving mutant. The mutation score is currently 0 = 0/1−0 .

A high quality test suite should catch the faulty behavior with at least one test case. We
kill the surviving mutant by adding the test described in Listing 2.3. After improving our
test suite the mutation score increases to 1 = 1/1−0.

1 @Test
2 p u b l i c vo id a f t e r M u t a t i o n ( ) {
3 BankAccount acc = new BankAccount ( ) ;
4 acc . d e p o s i t ( 1 0 . 0 0 ) ;
5 b o o l e a n r e s u l t = acc . wi thdraw ( 1 0 . 0 0 ) ;
6 a s s e r t E q u a l s ( r e s u l t , t r u e ) ;
7 }

Listing 2.3: Test to kill faulty deposit surviving mutant

Traditional Mutation Testing requires all possible mutants to be generated and run
against the entire test suite [41]. Given a specific set of operators, we can generate mu-
tants by changing all areas marked in Figure 2.2. The yellow highlighted areas indicate
basic non object oriented operators such as changing a conditional boundary, a constant
value or changing the return value. All these operators are very common and have various
names in the literature [41].
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Figure 2.2: Mutation testing operators that can be applied on the highlighted area [58]

2.6.2 Limitations

The main disadvantage of the mutation testing process is that it requires a significant amount
of computational resources. This is due to the fact that all mutated versions of the system
have to be compiled and run against the test suite.

To remedy this problem, efforts have been made to reduce this cost. The cost reduction
techniques developed so far focus on one of the these two directions: reducing the number of
generated mutants or reducing the execution cost [41]. Methods proposed for reducing the
number of generated mutants focus on finding the subset of all possible generated mutants
that would output a similar mutation score. Methods proposed for reducing the execution
cost are focused on optimizing the mutant execution process.

Another disadvantage of mutation testing is the need for manual analysis for identify-
ing equivalent mutants. It is possible that some mutations do not change the semantics of
the code (e.g. swapping the order of two method calls or refactoring dead code) [41]. In
this case, some of the mutants pass through all tests, just like the original program, because
they behave exactly the same as the original program. This type of mutant is called an
equivalent mutant. The equivalent mutants need to be identified because they have a direct
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Table 2.1: Java Mutation Testing Tools found my Zhu et al. [62] and own research

impact on the accuracy of the mutation testing output. The equivalent mutants also have to
be ignored for further analysis since they do not convey any useful feedback. Unfortunately,
this process is hard to automate as the general problem of determining that two mutants are
semantically equivalent is undecidable [24].

2.6.3 Mutation Testing Tool: Pitest

Current mutation testing tools are not compatible with continuous integration environ-
ment and are also inflexible by nature, not allowing operator extensions or customizable
constraints. This is based on a recent 2016 study that presents the practical usage of mu-
tation testing in different studies. The authors, Zhu et al. [62] based their findings on
159 papers. Half of all the papers surveyed, used pre-existing open source mutation testing
tools, while in 21 instances the authors implemented their own tools or manually created
the mutants.

Inflexibility is not the only setback of current mutation testing tools. Most mutation
tools do not implement cost reduction techniques. More than half of the papers surveyed by
Zhu et al. [62], do not mention how they deal with one of the biggest problems mutation
testing faces, labeling the seemingly similar faulty versions. The rest of the papers either
ignored those cases or labeled them by manual analysis.

Since the mutation testing tools are inflexible, hard to setup and also do not implement
cost reduction techniques, mutation testing is not very popular in practice. Nevertheless, in
order to analyze continuous mutation testing in a experimental environment we selected the
best pre-existing mutation testing tool. We looked at all mutation testing tools for Java we
could find, most of them included in the survey of Zhu et al. [62]. We looked at compatibil-
ity, usage, maintenance and performance for each tool in Table 2.1. Based on this selection
we decided Pitest [26] is the best fit for our continuous mutation testing experimental envi-
ronment.

Pitest [26] is a very well maintained mutation testing framework for Java. It has good
integration with build tools (e.g. Maven, Ant, Gradle), development environments (IntelliJ,
Eclipse), and static code analysis tools (SonarCube). Pitest also presents all data computed
in a structured and clear way. Nevertheless the output does not offer any filtering options
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making the manual analysis very lengthy requiring a lot of system and mutation knowledge.
However, the tool is being actively maintained and improved, creating a very helpful and
responsive community.

Pitest is also fast [26], compared to other mutation tools because it applies the operators
at bytecode level and implements test selection for each mutant based on coverage and ex-
ecution speed. The current operator set of Pitest is considered feasible and practical on real
world programs [26]. The fault seeding procedure is implemented using the ASM byte-
code framework [2] and the BCEL framework [3] for local implementations. Test selection
means that Pitest only runs the tests that cover the code that was mutated, so the collection
of tests to be run is chosen based on coverage and on a timeout constraint to improve the
speed of the process.

An important advantage of Pitest is that it makes a difference between tested and untested
mutants. Most tools would consider both cases as survived mutants. However Pitest intro-
duces a 3rd mutant label: NO COVERAGE. This information is crucial for the filtering
steps in the continuous mutation testing process. Also Pitest checks for a green test suite. If
any tests are being skipped or fail, Pitest will not analyze the project. This also means that
if there is no coverage, Pitest will still analyze the system and report all mutants generated
as not covered.

In principle Pitest‘s compatibility with Maven facilitates a CI compatible infrastructure.
Nevertheless it does not provide an easy customization of the input on which to apply the
mutation process. This makes Pitest unsuitable in its current version for large applications
as shown by the empirical study conducted by Klischies et al. [44]. The limitations of the
tool is also illustrated by data collected in this study.

Pitest has a new feature offered by the community which allows it to run on the last
change. This means all files that contain at least one change will be analyzed. While still an
early-stage feature with some problems, we will use it as our starting point for implementing
continuous mutation testing.
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Chapter 3

Proposed Solution

In a Continuous Integration(CI) environment, every time a change is made in the code base,
the CI pipeline is being activated. This triggers the execution of the test suite, the results of
which are automatically examined. If certain criteria are met by the results, the application
is deployed. These criteria may be the following: all tests are passing,the code coverage is
above a certain threshold etc.

Although mutation testing is used to some extent, it is not commonly used in CI envi-
ronments. This is due to the major disadvantages of the mutation testing process - a) it is
time consuming, b) it requires a lot of processing power as well as manual analysis, c) not
all suggested fixes are highly relevant or there might be false positives. This is indicated
by the design of mutation testing tools, since they are tailored towards analyzing complete
systems.

The purpose of this study is to analyze whether mutation testing can improve the devel-
opment process by integrating it in a CI environment. By running the mutation tests after
each code change, we can continuously detect specific missing test cases. We will also de-
tect faults within the tests of the code that was changed, which is most prone to introducing
new bugs due to the modifications. By focusing only on the relevant code, not only do we
reduce the resources required, but we also filter out less relevant suggested fixes for the
system.

3.1 Process flow

We will refer to the process of applying mutation testing in a continuous integration (CI)
environment as change driven mutation testing or continuous mutation testing. In this ap-
proach, a new step that generates mutants and runs tests on them should be added in the CI
pipeline. In order to have a successful build, the tests have to kill all the mutants generated
for the last committed piece of code. Generating the mutants and running the tests leads to
a variety of scenarios. Each scenario will result in either a successful build or in the need to
take an action that improves the process. All possible scenarios are shown in Figure 3.1.

The CI pipeline will always be triggered by a commit. Once a commit is made, our
analysis focuses only on the change recently submitted. In order to be able to integrate
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Table 3.1: Line Types in Changed Based Mutation Testing ( ”x” indicates it is logically
impossible for that condition to take place at the same time as the rest of the conditions;
”∼” indicates that specific condition value makes no difference)

mutation testing in this analysis, the following requirements have to be met: a green test
suite and changed code lines with the potential to affect the behavior of the system. In order
to identify which code lines have this potential, different strategies may be implemented.
However, the most basic rules are that the code has to contain an actual instruction (no
comments or annotations) and it has to be part of the application logic implementation (no
testing code). If this kind of lines have been changed, we are able to generate mutants. After
we have identified the number of mutants for each line, the granularity of the analysis is at
line level. We then apply the same analysis for each changed line.

Once the analysis granularity is at line level, we need to label each line with one of the
5 change driven mutation testing categories shown in Table 3.1. In order to infer the correct
type, we look at the following criteria: 1) whether the line is covered by tests or not (test
coverage), 2) the number of killed and surviving mutants for that line and 3) if the line has
behavioral impact on the system. We also have to differentiate between surviving mutants
for a line that is tested and one that is not.

Type-5: represents using mutation testing in the traditional approach, where the output
is the mutation score for the test suite. This acts like a grade for the test suite performance
and contains a set of surviving mutants that are either equivalent to the original system, or
are indicators of specific missing test cases. The feedback potential of mutation testing is
within the set of surviving mutants. However the surviving mutant set can only be created
over tested code.

Type-4: represents the case of a perfectly tested system that would catch all faults. This
is why when the code has test coverage and no surviving mutants, we consider the build a
success and label that changed line with Type-4.

Type-3 and Type-2 when a line has no mutants created for it, it may mean one of
two things. Either that line should not be analyzed (it is a comment or an annotation) or the
current operator set is not compatible with that line of code. A perfect system would be able
to pre-filter the lines that should be analyzed at the very beginning. However, the existence
of Type-3 lines, gives a change of the system learning and improving its pre-filtering for the
next commits.
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Type-1: represents the case for the code that has no test coverage but could be mutated
based on the syntax. Applying mutation testing on code that has no coverage results in a full
set of surviving mutants. Even though this is accurate, the purpose of mutation testing is
to check the quality of the test suite. Reporting survived mutants for code that has no tests
would add noise to the manual analysis. Moreover, not all code that is not tested can be
mutated. If the lines can be mutated, it means that they may contain faults. For this reason,
we label a line as Type-1 if the line was changed, may be mutated, but has no test coverage.
We consider this a critical area that should be tested.

3.2 Implementation

3.2.1 Infrastructure

Mutation testing was first proposed in 1971 [47] as a method to asses the effectiveness of
a test suite. Since then, cost reduction techniques for mutation testing have been proposed,
but they all focus on the method itself and not on how or when it is applied. In its current
form, the available mutation testing infrastructure is not compatible with modern continu-
ous software development. Mutation testing in its current usage is very time consuming,
whereas CI pipelines require faster feedback, for instance the Facebook CI pipeline has a
threshold of 10 minutes [52]. In order to study the effects of continuous mutation testing
we created a prototype tool to conduct experiments, built on top of the available technology
described in Chapter 2. Continuous mutation testing means the process should be triggered
by a change, followed by the analysis of the actual changed code for the purpose of creating
mutants. The way the code is analyzed has been described in detail in the previous section,
following the flow in Diagram 3.1.

From the infrastructure point of view, the continuous mutation testing flow can be
viewed as a pipeline that requires the following sub-systems:

1. versioning control system for the code base

2. difference analysis processor

3. mutation testing tool applied on a given code base

4. mutation testing output processor

5. a user communication channel for the improvement feedback extracted from the out-
put

For the implementation of most of the required sub-systems, we reused available tech-
nologies: GitHub [9] for control versioning system, Pitest [26] for mutation testing and
Operias [59] for difference analysis. We developed from scratch the systems which have
not been already implemented. The change based mutation testing prototype tool which
resulted is named OPi+. The name is based on the technologies used, Operias, Pitest, and
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Figure 3.1: Continuous Mutation Testing Behavior Flow
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Figure 3.2: OPi+ Architecture

the extra computations we implemented. The project is hosted on Github1. The architecture
of OPi+ is presented in the following sections and in Figure 3.2.

3.2.2 OPi+ Main Data Structures

Regardless of the technology used, continuous mutation testing requires that the code anal-
ysis must be made at line level. We consider that a simple mutation impacts only one line
of code. Based on the theory that complex mutants are killed if the simple mutants that
compose it are killed, each fault introduced by the mutation process requires changing only
one line of code. Therefore, the core concept for change based mutation testing becomes
a Line. The interaction between the main data structures is shown in the UML diagram
3.3. According to the continuous mutation testing flow, 3.1 we can detect 5 possible out-
comes for any line, all described in the previous section. For each branch in the control flow
graph, we instantiate a data structure in order to analyze it. It contains the following related
information:

• the line number in the new version of the system

• the line change type (add or edit)

• the actual content of the line in the new version

• the total number of each type of generated mutants (surviving, killed, or not covered)

• a list of all mutants that survived (with name and description)

1https://github.com/ileontiuc/Continuous-Mutation-Testing
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Figure 3.3: UML Representation of the Main Data Structures in OPi+

• whether this line has branch coverage

• the continuous mutation testing type that comes from processing this related data

A Mutated File is a changed file to which we also apply mutations at the difference
points. A line is the core data structure for continuous mutation testing regardless of the
technology used. However, the above information is influenced by technology. We chose
Pitest as the mutation testing tool, which is capable of analyzing an entire file, not each
individual line. Because of this, we instantiated a Mutated File for each mutation testing
report generated for a file by Pitest. For each version of the file after applying the commit
we record the following :

• full path of the file within the system

• name of file

• path to the file mutation report generated by Pitest

• the commit ID it belongs to

• a list of all changed lines within the file for the specific commit that are each repre-
sented by a Line

3.2.3 OPi+ Pre-filtering

Until now, applying mutation testing meant running the generation of mutants and testing
them for the entire system. In order to integrate it in a continuous delivery process, we only
need to apply it on the specific change or commit that triggered the CI pipeline. In our study,
OPi+ looks at the entire commit history of a system in order to analyze the improvement this
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integration can bring after each commit. However, not all commits are relevant for mutation
testing. Therefore OPi+ narrows down the analysis area by incorporating two steps of pre-
filtering, at commit level and at line level. Both pre-filtering steps are highlighted in the
OPi+ architecture shown in Figure 3.2.

The commit level pre-filtering consists of selecting the commits that change only the
code base for which we want to check the fitness of the tests. The commits contain at least
one file for which the following conditions are true: 1) a .java extension, 2) it is placed in
src/main/java and 3) it contains at least one added or updated line.

After selecting these commits, the second pre-filtering step changes the filtering gran-
ularity to line level. The line level pre-filtering is done after identifying all the lines that
were changed (after executing Operias). At this stage, only the lines that can potentially
change behavior are filtered. Mutation testing is applied only to code lines that can impact
the systems behavior. Therefore, OPi+ filters out comments (starting with // /* or ending in
*/), logic unrelated lines (starting with @, import, package, {,},};,HTML tags) and empty
lines.

In OPi+, we implemented this filtering process on top of JGit. We did not find another
suitable tool for our requirements. The only commit filtering library we could find was Gi-
tective [8], an outdated library built on top of JGit. Even after updating the dependencies
to the latest JGit version, the filters provided by Gitective are very basic and inapplicable
for continuous mutation testing (i.e. author information). The filters that do apply (i.e. .java
extension) have poor performance time wise. In addition to the filters, the OPi+ implemen-
tation can also compute the number of change types for each file. Each file contains blocks
of change. These blocks can either add, edit or delete code or have a path or file name
changed. Each file is characterized in OPi+ based on the types of change blocks it contains.

3.2.4 Operias customization

Continuous mutation testing means the process is triggered by a change and the analysis is
done on the change itself. In order to represent the change in OPi+, we use Operias [59], an
open source tool that outputs the differences between two versions of a project, looking at
the source code and also at the statement coverage. Operias outputs part of the information
required by OPi+, such as the code that was changed and their branch coverage. Although
Operias is designed to support the analysis of full pull requests, it can also be applied to
compare arbitrary commits. It is this feature of Operias that we will be using. We consider
the commit under analysis and the previous one, as the two different versions of the system
which Operias needs to analyze.

In order to improve the OPi+ performance, we only trigger Operias if the version under
analysis passes all test cases, even though Operias can run with failing tests. Also, by replac-
ing the pull requests with commits, the tool generates its information more often in order to
output reports, since the granularity is smaller. To alleviate the surplus of information, we
cancelled the reports generation phase without altering the data processing algorithm. As
soon as the analysis is done and differences are found, we cancel all further steps, take this
data and transform it into OPi+ data structures such as Mutated File and Lines.
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The core of Operias is structured into 3 different Threads. Two of the threads analyze the
branch coverage for each version of the system by using Cobertura [4]. The third thread
compares the source code of both versions, reporting the differences. For a successful
Operias analysis, as well as a successful OPi+ commit analysis, all 3 threads require a
successful run. If any of them crashes for any reason, we conclude that the commit may not
be analyzed due to Operias limitations.

Setting up the correct environment to make Operias compatible with the OPi+ exper-
imental process has proved to be challenging. Certain code change cases are not covered
by Operias and treated with a System.exit. This happens in 19 places, out of which 17
affect the OPi+ process. We records all these cases as an Operias exception, which means
that the commit can not be analyzed. One of these instances is used in the Configuration
class, where Operias is parsing the command line arguments. If Operias can not parse an
argument, it will stop the entire JVM. Nevertheless, OPi+ analyzes all commits, so one
unparsable parameter set should not cancel the entire analysis process.

After extracting all the data from the threads, Operias merges the information from all
of them, creating the core data structure called an Operias Report. The creation of this
report can cause stack overflows that are treated the same as a thread failure. The commit
that causes the stack overflow is ignored by Operias.

Once the Operias Report is successfully generated, OPi+ goes through all changes re-
ported parsing them and creating the Lines data structures, clustered in Mutated File data
structures. Operias generates multiple change instances for the same file. In order to filter
out the duplicates, OPi+ parses the file names, recording only unique reported changes for
each file. During this step we also compute the commit impact. A commit is a set of changes
in the system spread across one or several files. Each file contains at least one block of code
changed. A block represents a change, uninterrupted by code that is not being modified.
Each block is formed out of at least one line. In the scope of OPi+, we are only interested
in lines that are adding or editing source code. That is why we compute the impact of a
commit as the total number of code lines added or updated.

SelectedFiles

∑
j=1

Blocks

∑
i=1

blocksize =CommitImpact

Once all changed files recorded by the Operias Report are transitioned to Mutated File,
we trigger the mutation step. Pitest is only triggered if we have at least one file converted to
a Mutated File.

3.2.5 Pitest Proxy

Continuous mutation testing is independent of specific mutation testing tools implementa-
tions. Each mutation tool, however, has different advantages and disadvantages. In order to
make the OPi+ architecture modular, we decided to treat the mutation step as a black-box.
The mutation black-box has as input the changes we want to analyze and as an output the
mutant status for each of the lines analyzed.

The current OPi+ mutation black-box makes use of Pitest, one of the most popular and
compatible mutation testing tools. Just as all the other mutation testing tools, Pitest was
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designed to be run on the entire system. However the community contributed with a feature
that allows to run Pitest on all files that were changed in the last commit [15].

In order to provide input to Pitest by OPi+, we designed a Pitest Proxy, which does
the following actions. The new Pitest feature can only analyze the last commit made, so
the proxy first clones the repository, changes the HEAD to the commit we want to analyze
and then rebuilds the system. One of the advantages of Pitest is that the mutations are
done at byte-code level, which is why the system needs to be built before providing the
compiled version to Pitest. Pitest also requires certain dependencies to be met in the project
settings which are ensured by the Proxy. We worked with Maven projects and the required
dependencies are the valid SCM connection and a JUnit version higher than 4.5. SCM [13]
stands for Software Configuration Management. It is a Maven plugin that lets users commit
and update the system through Maven by connecting their Maven system to their own code
control management system. For each commit we have to check the pom file of the changed
system and update it accordingly. If the pom file is not compatible and we can not edit it,
we label the commit as a commit that can not by analyzed by Pitest. Once the project is set,
we can run Pitest on “the last commit”, which due to the HEAD change is always the given
commit.

Using only this Pitest feature and maven capabilities might seem enough for continuous
mutation testing. In order for mutation testing to be usable in a continuous integration
environment the process needs more steps. The current process does not minimize the
manual analysis still required after the automatic part of mutation testing is done. This is
due to the following problems:

1. Fixed analysis scope: Pitest analyzed a lot more code than the change itself. By
using the new run on last commit feature of Pitest we still analyze the entire file than
contains a change meaning a lot more code is being processed than required.

2. No information filtering: there is no filtering of the relevant information. All infor-
mation processed by Pitest is being reported, such as code status, mutant status and
tests run. This exhaustive information requires more time for the manual analysis.

3. No prioritization features: none of the information provided is being ranked. The
analysis process is more time consuming if there is no prioritization of cases. The
reports Pitest generates are well structured, but since they contain all the information
regarding the mutation process, the useful information is hard to find.

The output of Pitest needs to be processed before reporting it through OPi+. If Pitest
reports the build has failed, the system could not be analyzed and we consider that that
commit cannot be analyzed due to Pitest and report it as such. If the build is a success,
it does not necessarily mean Pitest generated a report for each file that was changed in
the commit. The console maven output is logged in a temporary file. After parsing this
file we infer whether Pitest did generate a report for the files we requested or not. Pitest
may generate no report because of malfunctions that either do not detect any change or no
mutants could be generated.

23



3. PROPOSED SOLUTION

Once the Pitest report for a changed file of interest is generated, we parse it and extract
the mutant information regarding the specific changed lines. This way, we properly simulate
pure changed based mutation testing. From the Pitest report we extract the total number
of each type of mutants and make a copy of all the surviving mutants per line. All this
information is stored in the Mutated File data structure. This parsing step is based on the
actual operator implementation of Pitest.

Setting up the correct environment for Pitest, running it and then processing the infor-
mation by parsing the generated report is very inconvenient time wise, which why we use
the process described above. We trigger the run of Pitest only in the cases we know we have
lines that should be mutated. This is done by first pre-filtering the commits, then all the
lines. We trigger Pitest on the current commit only if we detect that the commit contains at
least one line of code with behavior change potential that was either added or updated.

The Pitest setup with the new feature had its own challenges. While making use of
this feature we discovered several issues. Together with the Pitest creator, Henry Coles,
we found a temporary solution and also reported an issue on the Pitest Issues page2. For
certain projects, Pitest does not recognize any tests, so all generated mutants are labeled as
not covered. Mutant labelling is a crucial functionality required for continuous mutation
testing. Together with Henry Coles we found a temporary fix, by adding the test path in the
command line.

3.2.6 OPi+ external dependencies

The OPi+ architecture ensures the communication between the subsystems described above.
For this communication, third party libraries are used. These are represented as external
facilities in the OPi+ dependency architecture, as shown in Figure 3.4 and are the following:

• JGit [11]: is used first in the commit pre-filtering stage. This library is built on top
of the Git API. It can label each commit by its main change. For OPi+ we select
commits labeled as ADD, MODIFY or RENAME and ignore DELETE and COPY.
All the categories which contain code are worthy of further investigation. This li-
brary comes with behavior that is not always aligned with the needs of OPi+. For
example, JGit labels some deletions as a file that is modified. Nevertheless, the OPi+
process correctly deals with this, and reports it as a system failure, yet proceeds with
analyzing the rest of compatible code.

• Maven Apache Project [1]: is a Java library that can provide firing a Maven command
from the JVM. We had to change the local running folder in order to execute Pitest
with the feature that runs on a commit. This is an issue we discovered during the OPi+
development stage. Pitest’s feature only runs if the pom file is in the local folder. We
reported this issue on the Pitest Issue page [14].

• Jsoup [12]: is a Java library that provides easy parsing of HTML code. This library
is used by OPi+ to analyze the Pitest report and extract relevant information.

2https://github.com/hcoles/pitest/issues/336
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Figure 3.4: OPi+ Architecture 3.2 with External Dependencies

• DOM [6]: is a Java library used to analyze, change, add or delete XML elements.
OPi+ makes use of this library in order to parse and update the dependencies in the
pom file of the analyzed system.

3.2.7 OPi+ output computation

In order to infer the continuous mutation testing type for each changed line, we need in-
formation from both Operias and Pitest. Correctly pairing the information is done through
path parsing and file name matching by Operias. This step is represented in the OPi+ ar-
chitecture by the AND logic gate shown on Figure 3.2. If the data cannot be paired, it is
ignored and reported as unparsable data due to Operias or Pitest.

The possible line types within the context of continuous mutation testing stay the same
regardless of the specific technical implementation. The decision process in OPi+ has a
slightly different decision tree than the continuous mutation testing behavior flow shown in
Figure 3.1. The slightly altered decision tree is shown in Figure 3.5.

We first detect Type-2 or Type-3, that require either adding a new operator or better pre-
filtering. Both cases happen when we have no mutants generated on the line. The changes
in the decision flow start from this point on since Type-2 or Type-3 is independent on any
type of test coverage.

Pitest and Operias are based on different types of test coverage. Pitest is based on line
coverage while Operias is based on branch coverage. More than this, Pitest uniquely reports
3 types of mutants: survived, killed and not covered. Based on the Pitest implementation,
the existence of no coverage mutants implies there is no other type of mutant. The lack
of coverage mutants means that there is no line coverage, which also implies no branch
coverage. This case is labeled Type-1 and requires tests, since code with behavior change
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3. PROPOSED SOLUTION

Figure 3.5: Continuous Mutation Testing Decision Flow in OPi+

potential is not checked.
In the case we have any mix of surviving and killed mutants, we can detect a special

case. If all mutants are killed (meaning the number of killed mutants > 0 and the number
of surviving mutants = 0), this code is very well tested. This specific scenario requires line
coverage that is able to detect faults. In practice, we found branching statements that had
line coverage but no branch coverage. Nevertheless, the partial branch coverage was able to
detect the faults seeded by the mutation testing process.

If we have surviving mutants, then we also take branch coverage into consideration.
Lack of branch coverage is the first indicator for missing tests cases. That is why we label
lines with surviving mutants and no branch coverage as 1, which requires additional tests
for the missing branches.
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Chapter 4

Empirical Study

4.1 Research Questions

Mutation testing is a widely studied solution for assessing the fault detection ability of
a test suite [41] and artificially generating faults [19]. Nevertheless, mutation testing
operator sets do not scale well [57] and have a direct impact on the effectiveness of the
method [53]. These shortcomings make current mutation testing practices incompatible
with modern software development technologies such as continuous delivery.

The goal of this thesis is to explore how mutation testing can be applied to changes under
analysis in a continuous integration setting. We particularly investigate the following:

1. How can we set up an infrastructure that allows for an efficient analysis of changes
that are processed in a continuous integration server?

2. What are the costs and benefits of such an infrastructure when applied to realistic
software changes?

The implications of this study can answer the following research questions:

• RQ1: How is the mutant generation, time and developer effort of mutation testing
impacted in a continuous integration environment?

• RQ2: What are the implications of continuous mutation testing on the completeness
of currently available operator sets?

• RQ3: What feedback information do the surviving mutants offer to developers in the
context of a continuous integration setting?

• RQ4: Is there a correlation between surviving mutants and system characteristics
such as: code coverage, churn and bad smells?

• RQ5: Can continuous mutation testing be used in the code review process?

To answer these questions, we will explore the histories, as visible through their com-
mits, of a number of selected open source systems.
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4.2 Project Selection

In this section, we present the projects we used in the empirical study to assess the costs
and benefits of change driven mutation testing. We selected systems that have more than
400 commits that are valid for our analysis. Mutation testing can only be applied on code
that is already tested, thus we selected projects with a code coverage value higher than 75%.
The selected systems needed to also match the technical requirements of the tools we used.
Both Operias and Pitest require as input a Maven based project with a passing test suite, so
we needed only maven projects. Also, Pitest operator set applies to the Java language, thus
we needed Java projects.

Selecting the projects that would meet all the above requirements was challenging. Our
initial project filtering was popular Java Maven projects with a coverage higher than 56%.
This lead to a subset of 22 projects. Out of this set, some systems could not be analyzed
due to one of the following reasons:

• The system has a small number of classes

• The system is incompatible with Pitest: Spark1, Retrofit2, Evosuite3

• The system shows incompatibility with Cobertura through Operias: Auto4, Apache
Commons Collections5, Guice6

• Operias goes into stack overflow when analyzing the system: ZXing7

• Operias enters an infinite loop when analyzing the system: Apache Commons Math8

• The system has unstable master versions(build fails on master branch and once we fil-
ter the failing commits out there are no more valid commits left to analyze): JUnit49,
Apache Commons Lang10, Joda-time11

For the empirical part of this study we will use three systems: JSoup, Apache Com-
mons Compress and Apache Commons IO. These systems are compatible with the OPi+
infrastructure. We describe them in the following section.

JSoup12 is a Java library for parsing HTML code. It is a popular open source system,
actively maintained and hosted on GitHub. We selected this project because it is a

1https://github.com/perwendel/spark
2https://github.com/square/retrofit
3https://github.com/EvoSuite/evosuite
4https://github.com/google/auto
5https://github.com/apache/commons-collections
6https://github.com/google/guice
7https://github.com/zxing/zxing
8https://github.com/apache/commons-math
9https://github.com/junit-team/junit4

10https://github.com/apache/commons-lang
11https://github.com/JodaOrg/joda-time
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Maven project with 62 classes. It also has a green test suite with 77% line coverage
and 72% branch coverage. We analyzed the entire 988 commits, from 52 contributors,
found in the history of the project.

Apache Commons Compress13 is a Java API for working with several types of com-
pressed files such as: ar, cpio, Unix dump, tar, zip, gzip, XZ, Pack200, bzip2, 7z,
arj, lzma, snappy, DEFLATE, lz4, Brotli and Z files. It is a popular open source sys-
tem, actively maintained and hosted on GitHub. We selected this project because it is
a Maven project with 168 classes. It also has a green test suite with 83% line coverage
and 72% branch coverage. We analyzed the entire 2206 commits found in the history
of the project from 26 contributors.

Apache Commons IO14 is a Java library for utilities used in develOPing IO functionality.
It is a popular open source system, actively maintained and hosted on GitHub. We
selected this project because it is a Maven project with 119 classes. It also has a green
test suite with 90% line coverage and 86% branch coverage. We analyzed the entire
1941 commits found in the history of the project from 32 contributors.

4.3 Experimental Procedure

By using OPi+, we can simulate applying continuous mutation testing in the development
process of a software system, by applying it to a series of earlier commits. We take all the
commits made for that system and then we label each line, affected by each commit, with
the labels described in chapter 3. After we have an overview of all the labeled lines, we
analyze how the follow up actions, associated to the given labels, can help us find bugs.

The main purpose of OPi+ is to evaluate the cost and benefits of continuous mutation
testing. We consider OPi+ an experimental environment because we repeat all the steps of
a system‘s development process in chronological order: a commit is made, the system gets
built and then tested. We then insert mutation testing as a last step, in each iteration. This
way, we mimic a continuous mutation testing approach in a real development process.

4.3.1 Commit History Analysis

For each system we analyze, we consider all commits from the project’s history. The OPi+
data structure that contains them is the Commit File Library described in Chapter 3. After
applying the commit prefiltering from OPi+, we are left with commits that contain at least
one code line changed in a .java file. For each commit, OPi+ retains the number of the
included changed files. We can now categorize the commits in: large (more than 3 changed
files), medium (2 changed files) and small (1 changed file) commits.

In order to maximize the efficiency of OPi+ we focus on analyzing only certain commits.
We leave out a)branch merges and b)the commits whose content is incompatible with the
OPi+ infrastructure (commits that lead to OPi+ crashes).

In GitHub, each merged branch is recorded as a commit. Because of their big impact on
several files, merged commits end up being classified by OPi+ as a large commit, which is
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not further analyzed. Change based mutation testing is an approach that targets one commit
per iteration of the continuous integration development process. Before merging, the CI
pipeline is triggered for each of the commits that make up all the changes included in the
merge. Thus, analyzing a branch merge would be redundant and is outside the scope of this
study.

If a commit cannot be analyzed, due to a crash of Pitest, Operias or OPi+, we label it as
a crash. All crashes are recorded and described by the type, name of the exception and the
cause. The crash types that can occur in OPi+ are as follows:

1. A Pitest crash is related to commits that cannot be processed by Pitest, such as:

• could not find pom file

• could not update dependencies in pom file

• internal Pitest build failed

• Pitest did not detect any change

2. An Operias crash means one of the three threads from Operias failed, which are
described in Chapter 2. This means the change added by the commit could not be
analysed.

3. A System crash contains any Exception that is not currently being handled by OPi+,
such as:

• missing path to mutation report

• missing Pitest maven output

• commit should have been pre-filtered (this means the filtering process should be
improved. It is not an actual system crash)

4. An Incompatible System Version crash is when we cannot build that version of the
system. These versions should not be present in the master branch. We also include
very early versions of the system that do not pertain to the Maven conventions (i.e.
no pom file).

4.3.2 Evaluation Data Gathering Process

In our continuous mutation testing analysis, each commit is broken down to line level. For
each line, we record the type and, in the case of Type-5, the specific surviving mutants.
We record all the lines in a project.csv file, along with the data described in Figure 4.1.
The project.csv file will map every analyzed line of code to one row in the file, except for
Type-5 lines. In this case, we have a separate row for each of the surviving mutants. For
example, for a line with 3 surviving mutants, there will be 3 lines in the project.csv table.
The surviving mutants information is computed by an OPi+ parser, based on the internal
implementation of Pitest.
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Figure 4.1: OPi+ Evaluation Data Gathering Process
Each text line represents a column in the data table.

Each box represents the step that generates the data for the specific columns

Figure 4.2: Data Extraction point in OPi+ Architecture
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4.3.3 Additional Data Files

OPi+ logs its actions during certain stages of its execution. These are highlighted with
orange over the architecture in Figure 4.2. All the data gathered is organized on areas of
interests as follows:

• Crash File: contains all crashes with their detailed description (crash type, commit
ID, cause)

• Data File: contains project name, link to repository, total number of commits, num-
ber of analyzed commits, total crashes per category, overall crash percentage, com-
mits where pom file needed updated scm (described in Chapter 3) or JUnit depen-
dencies, list of filtered commits (described by ID, mutation reports missing, file with
mutation report), list of all commits (described by commit ID, how many files where
submitted, how many lines should be analyzed, pre-filter status).

• Log File: contains a detailed step by step description of all the actions taken by OPi+

• Commit Overview File: contains a list of all the files for which Pitest did not gener-
ate a mutation report. These events are also recorded as a crash. We record commit
ID, path to file in project and the file name.

4.4 In Depth Analysis of Output Types

When applying continuous mutation testing, each changed line of code can have one of the
five labels described in Section 3.1. Each label has a different follow up action required, de-
scribed also in Chapter 3. In order to study the impact these actions have in the development
process, we take a different empirical approach for each label type.

4.4.1 Analyzing Type-3

A changed and analyzed line of code that is labeled with 2 or 3, means that there were no
mutants created for it. Label 3 means the line should not be analyzed (like a comment line
or annotation), and label 2 means that the available operator set is incompatible with this
code. For Type-3 we suggest this information should be implemented in a better prefiltering
step.

4.4.2 Analyzing Type-2

Once the prefiltering step is upgraded, we are left only with Type-2 lines. Since the cur-
rent set of operators cannot be applied to these lines, we require more operators, since the
changed lines have impact on the system‘s behavior. There have been studies conducted on
operators [41]. However the way they were developed was to resemble known faults related
to the language. In this case we decide on the needed operators the other way around. We
see which code the current mutation operators leave untouched, and from that we propose
new operators that we could apply. Based on this extracted information we can study the
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implications of continuous mutation testing on the completeness of the used operator set,
thus answering RQ2. Since OPi+ is using Pitest for the mutation testing step, making our
study relevant since it is based on the most used operator set.

Due to the large number of Type-2 lines, we cannot manually analyze them so we apply
data mining algorithms to cluster them. After a thorough analysis on the existing dataset,
we find that the number of clusters should be bounded between 3 to 5. Hence, a silhouette
analysis is attempted, in order to figure out the most suitable k-value. Unfortunately, the
resulted cluster does not meet our expectations of instruction type based clusters. This
leads us to investigate alternative approaches.

The data collected by OPi+ for a line is not numerical data, but contains the actual code
line. Therefore we extract numerical text features based on TFxIDF. Term frequencyinverse
document frequency(TFxIDF) [17] is a popular term weighting scheme in the field of in-
formation retrieval. This method tries to quantify the significance of a term in a document
based on its frequency. In our analysis, we do not remove stop-words, which is a com-
mon approach to ignore terms with no meaning. Since the document we analyze is the code
base, all terms could be relevant. After applying TFxIDF, we remove terms with highest fre-
quency, terms that would not create a meaningful cluster, such as ”the”, ”a”, ”and”. These
terms come from the comment lines, Type-3 lines we could not pre-filter. We generate a list
of clusters that describe a specific type of code line that is not being analyzed due to lack of
mutation operators.

We generate a list of all the top terms collected for all systems analyzed. We then
group the terms based on their impact from a programming point of view. Since we analyze
Java systems, we expect the terms to be related to object-oriented programming feature.
Therefore we select the most relevant object-oriented mutation operators from literature,
that match the terms we previously selected. More than this, we propose new operators or
adjustments to existing ones, all part of answering RQ2.

4.4.3 Analyzing Type-5

A changed code line that has surviving mutants is the core of the mutation testing feedback.
Analyzing these lines we can find specific missing test cases or even faults in the code
logic. In principle, the existence of surviving mutants implies these lines are covered by
tests but are not tested well enough. Nevertheless, a surviving mutant can also generate an
equivalent system. Both the equivalence status or the actions that further need to be taken
require manual analysis.

The continuous mutation testing approach would imply manual analysis on all lines
labeled Type-5. Since in this study we evaluate the usefulness of this approach, we need to
know: a) what type of information is stored in these lines, b) the distribution of each type
and c) if we can detect a pattern for their spread. The research we conduct on this subset of
lines is done at 3 different granularity levels as shown in Figure 4.3. The first one requires
extensive and complex manual analysis, where as the rest are computed automatically. The
levels of granularity at which we conduct the analysis are the following:

1. Line level: in order to detect relevant current problems unfixed in the system, thus
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Figure 4.3: Label 5 in depth analysis

answer RQ3, we need to compare the version after the current analyzed commit with
the current version of the system. There can be two possible scenarios after that:

• The analyzed line is no longer in the current version. This means it was previ-
ously deleted, leading us to investigate the reason for deleting it. It could be the
code was irrelevant, however it could mean that a code line that has surviving
mutants created problems for the system and it was changed later on. We also
investigate how late the deletion was made.

• The analyzed line is still in the system. Due to the fact that changes were made
between the commit analyzed and current version, the surviving mutant status
might change. For this, we map the mutant status compared to the current ver-
sion. A line with surviving mutants adds to the system technical debt by the
liability it creates by not being tested well enough.

2. File level: is required for answering RQ4. We look at overall number of surviving
mutants and the number of changes made to the file, over the entire commit history.
We also apply the bad smell view computed for each file. A bad smell is an easy
to spot, potential problem in the code base design [35]. Code that contains a bad
smell is a prime candidate for refactoring. There are several bad smells presented
by Martin Fowler in his book on Refactoring [35]. We detect bad smell classes by
using InCode [49]. Based on the data distribution, we check for a correlation between
changes, bad coding practices and the existence of surviving mutants.

3. System level: we can infer the mutant type to which the project is most sensitive.
We generate a ranking of all surviving mutants found in the system commit history
analysis. We also note the overall package test coverage. This information is part of
answering RQ2.
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4.4.4 Analyzing Type-1 and Type-4

For labels 1 and 4 we are only interested in the overall percentage. This information com-
bined with the distribution of the other lines answers RQ1. Label 4 is for lines that are
covered by tests, can be mutated and there are no surviving mutants. A very small percent-
age of this type of lines, found in a very well tested system, would mean the change based
mutation testing approach is too fine grained and will require too many resources, similar
to the traditional mutation testing approach. Since no further action is required for Type-4
lines, we look at the overall percentage of this case.

Label 1 means the changed line can be mutated, however it is not tested. Again we
are only interested in the overall percentage and no further analysis is required because
testing untested code is outside the scope of this study. Nevertheless, we explore whether
continuous mutation testing has the potential of prioritizing the untested code, as this could
render mutation testing even more valuable.

35





Chapter 5

Empirical Results

In this chapter, we present the results of the empirical study and thereby, we answer the
research questions we raised in Chapter 4. The goal of this thesis is to explore how mutation
testing can be applied in a continuous integration setting in order to improve the code
change analysis. We particularly investigate the following:

1. How can we set up an infrastructure that allows for an efficient analysis of changes
that are processed in a continuous integration server?

2. What are the costs and benefits of such an infrastructure when applied to realistic
software changes?

The results are presented in the following sections.

5.1 RQ1: How is the mutant generation, time and developer
effort of mutation testing impacted in a continuous
integration environment?

5.1.1 Mutant Generation

The processing power for mutation testing is required by the generation of mutants and the
process of labelling them as killed or survived. Even after cost reduction techniques are
applied, generating and running each mutant requires a considerable amount of processing
power. In Table 5.1 we show the contrast between the generated mutants on the entire
system and the generated mutants on the entire change history within the context of the
project size, measured in classes. The Pitest columns represent the number of mutants
generated on the last version of the system. The OPi+ columns represent all the mutants
generated by processing all changes from the commit history. The results show an 80%
reduction in the number of classes analyzed by OPi+ in comparison with Pitest. Also,
continuous mutation testing in our study has a reduction of 91% in generated mutants. Out
of these we have a 89% reduction in killed mutants and a reduction by 95% of surviving
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mutants generated. The data collection process on which these results are based is presented
in Sections 4.3.2 and 4.4.4.

Table 5.1: Mutant Reduction Overview for Analyzed Systems

The way we selected which code to analyze is described in Chapter 3. Nevertheless,
we give an overview of the selection process for each system in the Figures 5.2– 5.4. The
diagrams follow the OPi+ filtering process. After selecting the commits that changed actual
source code, we were left with 30%, 60% and 21% out of the total commits for the three
different projects. We then split these commits in 3 size bins based on the amount of source
code file changed. Then for each bin, we recorded the number of commits that should
have been pre-filtered (false positives), are incompatible (the project cannot be successfully
built from that commit version), caused a crash in the OPi+ environment, and the ones
left to analyze. For all systems, on average, we were left with around 2000 lines of code
to process. These lines are then labelled by OPi+ with one of the 5 continuous mutation
testing line labels. On average, 38% of the lines required testing, 45% were not mutable
due to the available operator set, 12% were thoroughly tested according to mutation testing
standards and 5% required manual analysis. These statistics are based on the information
provided in Diagrams 5.2– 5.4.

Table 5.2: OPi+ Commit Analysis for Jsoup
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impacted in a continuous integration environment?

Table 5.3: OPi+ Commit Analysis for Commons Compress

Table 5.4: OPi+ Commit Analysis for Commons IO

5.1.2 Time

The time required for mutation testing is comprised out of the time it takes to process the
mutants (described in the previous section) and the time required for the manual analysis.
Table 5.5 presents the overview of time required for the automatic processing part of mu-
tation testing. The time it takes for Pitest to analyze the entire system is put in contrast
with the time required to analyze the entire commit history (which includes running Pitest
among other analysis). The history analysis is represented by the average time required for
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a commit. This is linked to the time limit imposed by OPi+ on the Operias analysis. This
time comparison is presented within the context of the project size computed in classes.

Even though Commons Compress and Commons IO have a similar size in Java core
code classes, the time difference when running Pitest is due to a lot more timed out mutants
and warning such as ”unclosed ZipFile detected” or ”Unclosed BZip2CompressorOutputStream
detected”. A time out represents a test case that takes longer than expected when running
a mutant. They are supposed to bypass infinite loops caused by mutants. These cases are
reported separately but ignored by our study. However, the average time for running on a
commit is much higher for Commons IO. The diff algorithm from Operias takes longer for
Commons IO. To this end we had to change the Operias thread time limit from 1 minute to
10 minutes. All the cases that could not be analyzed by Operias brought this average time
limit up.

Table 5.5: Execution Time Overview of Systems Analyzed

5.1.3 Manual Analysis

All the commits analyzed were divided in 3 categories based on the size of the commit,
with one file being the unit of measure. The commits labelled as Large were mostly branch
merges. For JSoup, out of the 172 large commits, 37 are merge branches and 41 are pull
requests. Even though a branch merge is logged as a commit within the GitHub repository
history, the target of OPi+ is a traditional commit. We chose to continue the analysis only on
small and medium commits since continuous mutation testing targets individual commits,
not new branches. Because we discovered there is a correlation between churn and survived
mutants analyzed by OPi+ (described in Section 5.4.1) we only manually analyzed the files
that were changed 100 or more times, by looking for the number of mutants produced
for each file. An overview of these files is given in Tables 5.6, 5.7 and 5.8. Here we
have the number of mutants produced by Pitest (running on the entire, last version of the
system) for each file in contrast with the number of mutants produced by OPi+ (running
on all the commits). In the last 3 columns, we also show the number of lines in each file,
the number of lines from that file analyzed by Pitest and by OPi+. The decrease of lines
required for analysis is plotted in Figures 5.1, 5.2 and 5.3. In these figures we use a linear
regression model type between the file size and number of lines analyzed by both Pitest and
OPi+. We notice all p values for Pitest are <0.004, showing there is a correlation. This is
expected since Pitest analyzes all possible code from a file. If the file size increases than
the mutable code area also increases which in turn is more code that has to be analyzed by
Pitest. However, OPi+ analyzes code based on the change not on the file size. If a file size
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impacted in a continuous integration environment?

is large and is also changed frequently than we may see a correlation, which happens for
Common IO. Nevertheless the other two systems have a p value >0.5 .

Table 5.6: JSoup: Manual Analysis File Overview

Figure 5.1: Jsoup File Size vs Pitest and OPi+ analyzed lines
(p=0.0001592; p=0.540378)
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Table 5.7: Common Compress: Manual Analysis File Overview

Figure 5.2: Common Compress File Size vs Pitest and OPi+ analyzed lines
(p=0.0002855; p=0.569648)

Table 5.8: Common IO: Manual Analysis File Overview
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Figure 5.3: Commons IO File Size vs Pitest and OPi+ analyzed lines
(p=0.0036486; p=0.014331)

Each file that we manually analyzed is described in Appendix A. An overview of this
analysis is given in Table 5.9. Here we contrast the average number of mutants generated
by OPi+ with the average number of mutants generated by Pitest over all the manually
analyzed files. We present this within the context of the average churn of the files analyzed
and the overall churn and commits of the systems.

Table 5.9: Developer Manual Analysis Overview for Analyzed Systems

Mutation testing requires all surviving mutants to be manually analyzed. The number
of surviving mutants OPi+ proposed for manual analysis is increasingly smaller than the
surviving mutants generated by Pitest for the last version of the same file. We plot the
number of surviving mutants generated by Pitest and the number of surviving mutants that
were proposed by OPi+ to be analyzed in the entire commit history of the systems in Figures
5.4, 5.5 and 5.6. There is no correlation between these numbers since larger files do not
necessarily imply more changes. Nevertheless we can see most data point are in the left
side of the plots, which shows that OPi+ scales very well for large files. However, for
Commons IO, we have a p value of 0.0001 which implies there a significant correlation
between number of survived mutants generated by OPi+ and Pitest. This is due to the fact
that in the case of this system large files tend to also be changed a lot. Nevertheless most
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files are still on the left side of the plot, and even for large files we still have a high reduction
in number of generated mutants.

Figure 5.4: JSoup: Surviving mutants generated by OPi+ from the entire change history vs
survived mutants generated by Pitest for the last version of the same file (p=0.848864)

Figure 5.5: Commons Compress: Surviving mutants generated by OPi+ from the entire
change history vs survived mutants generated by Pitest for the last version of the same file
(p=0.252013)
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of currently available operator sets?

Figure 5.6: Commons IO: Surviving mutants generated by OPi+ from the entire change
history vs survived mutants generated by Pitest for the last version of the same file (p<
0.0001)

5.2 RQ2: What are the implications of continuous mutation
testing on the completeness of currently available operator
sets?

The overview of the OPi+ analysis from Figures 5.2– 5.4 shows that on average 45% of
code lines changed were not mutable by the used operator set, as shown in the Type 2/3 line
data. This means we are not able to reproduce faults and seed them into the system due to
the incompatibility of the operators set. This data was collected and analyzed as described
in Sections 4.4.2 and 4.4.3.

The main terms that indicate types of instructions that can not be mutated are presented
in Table 5.10. The data is presented for each system in decreasing order of the frequency.
Each term indicates to a type of language specific instruction that is popular in the analyzed
code base. Nevertheless we can group all these popular terms into groups that represent the
type of impact or role they have on the system, such as: modifiers, system specific classes
or system specific method calls. Once these popular term based groups are detected we
can more easily pair each group to a mutation operator. This way we identify important
unimplemented mutators.
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Table 5.10: Most Important Words computed via TFxIDF method from all Type-2 and
Type-3 OPi+ lines

For each system we also plot the usage of each operator on the entire change history.
The operators are from the Pitest mutator set and we show the number of killed and survived
mutants of each type for each size group of commits in Figures 5.7, 5.8 and 5.9.

(a) Large Commits (b) Medium Commits (c) Small Commits

Figure 5.7: Surviving Mutants in JSoup Commit History

(a) Large Commits (b) Medium Commits (c) Small Commits

Figure 5.8: Surviving Mutants in Commons Compress Commit History
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context of a continuous integration setting?

(a) Large Commits (b) Medium Commits (c) Small Commits

Figure 5.9: Surviving Mutants in Commons IO Commit History

5.3 RQ3: What feedback information do the surviving mutants
offer to developers in the context of a continuous
integration setting?

The manual analysis described in Section 5.1.1 also contained a comparison between the
number of survived mutants identified by OPi+ and the number of survived mutants identi-
fied by Pitest from the last version of the system. We did this comparison because the last
version of the system is closest to what the system is supposed to be. With this perspective
we can infer how the existence of surviving mutants impacts the system. The entire analysis
procedure is described in Section 4.4.3. We discovered 6 possible outcomes for the evolu-
tion of a line containing a surviving mutant within the system‘s history. The distribution of
these cases is plotted in Figures 5.10, 5.11 and 5.12.

Figure 5.10: Distribution of Type-5 lines in JSoup
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Figure 5.11: Distribution of Type-5 lines in Commons Compress

Figure 5.12: Distribution of Type-5 lines in Commons IO

Out of this analysis, we observed 2 possible states: either the line was deleted or is
still in the system. If the line was deleted, there can be two possible causes: refactoring or
change in functionality. If the line still exists, we also compare the line’s mutants status. In
this case, we define the following cases:

• Missing Test Case for Variables: the missing test case refers to a local variable or
field initialization not being tested

• Important Missing Test Case: this is an important missing test case that could col-
lect technical debt (not included in previous case)

• Improved (all mutants are killed): due to new test cases being added in the mean
time, the line mutation testing status has improved

• Decreased (all mutants become not covered): due to an unknown reason tests that
previously covered this area are deleted
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5.4 RQ4: Is there a correlation between surviving mutants and
system characteristics such as: code coverage, churn and
bad smells?

To the best of our knowledge, no other study researched a correlation between surviving
mutants and specific system characteristics. Even though a system can be characterized
in many different ways, based on the limitation of this study we chose to look at churn,
code coverage and bad smells. The specific steps of the empirical approach are described
in Section 4.4.3. In what follows, we reflect on the identified correlation between surviving
mutants and the aforementioned characteristics.

5.4.1 Code Coverage

Mutation testing and code coverage are both methods that asses the quality of a test suite.
Therefore we would expect a decreasing number of surviving mutants for increasing code
coverage. Nevertheless, the methods are very different by nature. Mutation testing checks
the fault capability of a test suite. Code coverage checks whether the code is being executed
by a test. Since there are studies that showed high test coverage does not necessarily imply
a good test suite [39] [40], we expect to have no correlation between code coverage and
number of surviving mutants.

We computed the branch coverage for the current version of Jsoup using EclEmma
[7], based on JaCoCo [10]. We plot the relationship between branch coverage, churn and
number of surviving mutants created by Pitest and OPi+ in Figures 5.13, 5.14 and 5.15. We
make bins of branch coverage intervals on x-axis for all the files on the y-axis. The colour
of each bin is based on the number of survived mutants generated by Pitest in the first plot
and the survived mutants generated by OPi+ in the entire history analysis. We can notice
that high coverage is not an indicator of good tests, since for classes that have full coverage
we have a number of surviving mutants from all ranges. The different range in the number
of surviving mutants is also kept when looking at mutants generated by Pitest.
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Figure 5.13: Jsoup Branch Coverage for each Class vs Surviving Mutants found by OPi+
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5.4. RQ4: Is there a correlation between surviving mutants and system characteristics
such as: code coverage, churn and bad smells?

Figure 5.14: Commons Compress Branch Coverage for each Class vs Surviving Mutants
found by OPi+
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Figure 5.15: Commons IO Branch Coverage for each Class vs Surviving Mutants found by
OPi+

5.4.2 Churn

Continuous mutation testing is a change driven approach. This means surviving mutants are
only generated for changed code. Therefore, we expect a correlation between the number of
survived mutants and the number of times a file has been changed. We plot the correlation
between changes made for each class in the entire history of the project and the survived
mutants found by OPi+ in that class. This is shown in Figures 5.16, 5.17 and 5.18.

We obtain the expected correlation between churn and number of survived mutants re-
quired by continuous mutation testing for 2 out of the 3 systems analyzed, with a p value <
0.002. However for Commons Compress we do not have a significant outcome. Neverthe-
less for this particular system, we had the highest percentage of non analyzable commits,
meaning we do not have enough data to infer this correlation.
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Figure 5.16: JSoup Churn vs Survived Mutants computed with OPi+ for each class
(p=0.0029194), highlighted with orange Bad Smell Classes

Figure 5.17: Commons Compress Churn vs Survived Mutants computed with OPi+ for each
class(p=0.160202), highlighted with orange Bad Smell Classes
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Figure 5.18: Commons IO Churn vs Survived Mutants computed with OPi+ for each
class(p<0.0001)

5.4.3 Bad smells

Bad smells in the code are base are indicators of a potential problem. These types of prob-
lem increase the technical debt and are prime candidates for refactoring. We found that
surviving mutants can point to code that should be refactored, as described in Section 5.3.
Therefore we would expect to have more mutants in the classes that contain bad smells.

The systems analyzed are very well maintained by an active community. There are very
few classes that have symptoms of bad smells. The only bad smells we could find over the
entire code base are:

• God Class [64]: is a very complex class that contains functionality that should be
distributed in several different classes. They are all-knowing classes, communicating
with less complex classes.

• Feature Envy [35]: is a method that uses data from a different class to make its com-
putations. This means the method should most likely be in the other class.

• Data Clump [35]: is a set of objects that always show up together. They should have
their own object that contains them so that only one object reference is being passed
around.

We plot the positioning of the bad smell classes in contrasts with the positioning of all
classes based on surviving mutants x-axis and churn y-axis. This is done for both commit
history, OPi+, and last version of the files, Pitest. Nevertheless, we have to few data to infer
any correlation.
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• JSoup only has one bad smell class, highlighted in Figure 5.16.

• Commons Compress has 5 God classes [64], 2 Feature Envy [35] and one Data
Clump [35], highlighted in Figure 5.17.

• Commons IO has no bad smell classes.

5.5 RQ5: Can continuous mutation testing be used in the code
review process?

We analyzed the latest 5 pull requests (PR) from JSoup, since this is the most active out
of the 3 systems analyzed. By analyzing a PR with OPi+ we basically look at each com-
mit from the PR through the continuous mutation testing perspective. We used the same
approach we did when we analyzed an entire system commit history. This approach is de-
scribed in Sections 4.3.1 and 4.3.2. Based on the PR content and OPi+ insight we answer
these questions for each of the pull requests:

1. What is the branch coverage?

2. Which mutants were killed?

3. Did OPi+ find code that should be better tested? (Type-5)

4. Why was the code not tested? (not important enough to require tests, too simple or
too complicated)

The results are as follows:
PR862: Speed up matching CSS selectors and other tasks which use elementSib-

lingIndex()
The branch coverage at the beginning of the PR is 83.3% and drops to 82.8% after all

commits from the PR are merged. After performing continuous mutation testing analysis
on the commit set from the PR, we have 25 killed mutants, out of which the most popular
mutator is member variable with 9 killed mutants. The distribution for the line types is as
follows:

• Type-1: 3

• Type-2/3: 48

• Type-4: 55

• Type-5: 4

We found 4 instances of Type-5, which require more thorough tests.
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1 p r i v a t e Map<Element , I n t e g e r >
c h i l d E l e m e n t T o S i b l i n g E l e m e n t I n d e x = n u l l
;

2 i f ( t h i s . c h i l d E l e m e n t T o S i b l i n g E l e m e n t I n d e x ==
n u l l ) {

3 t h i s . c h i l d E l e m e n t T o S i b l i n g E l e m e n t I n d e x =
n u l l ;

4 c h i l d N o d e s = new C h a n g e N o t i f y i n g L i s t<Node>(
new A r r a y L i s t<Node>(4) ,
ge tOnChi ldNodeChangeRunnable ( ) ) ;

Three of them were variable initialization not tested and the other one required more
tests for the Element class. The missing test relates to the method that is supposed to return
the child’s position in element sibling list. The test class for Element has on average 5
asserts per test case. Several test cases do not offer full branch coverage. It may be that the
sibling list positioning is due to an overall overlooking of the Element class.

PR849: Improved node traversal (including skipping of subtrees, filtering)
The branch coverage at the beginning of the PR is 82.5% and increases to 82.6% after

all commits from the PR are merged. After performing continuous mutation testing analysis
on the commit set from the PR, we have 0 killed mutants. This is due to the fact that this
pull request contained 3 unparsable commits by Cobertura. This leads to very little data to
mutate and analyze. The distribution for the line types is as follows:

• Type-1: 9

• Type-2/3: 4

• Type-4: 0

• Type-5: 0

PR815: Fix for Issue#815, taking lowercase key in each case for Attribute and
BooleanAttribute

The branch coverage at the beginning of the PR is 82.2% and increases to 82.5% after
all commits from the PR are merged. After performing continuous mutation testing analysis
on the commit set from the PR, we have 1 killed mutant. This is due to the fact that Pitest
crashed for two of the commits. The distribution for the line types is as follows:

• Type-1: 4

• Type-2/3: 0

• Type-4: 1

• Type-5: 1

The Type-5 line is related to an untested variable initialization.

1 t h i s . key = key . t r i m ( ) ;
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Based on our research there are many untested variable initializations. However in this
case, the value comes from the Java lang package. Nevertheless the initialization should
still be tested in the context of the system.

PR717: Text within an element to be queried without doing normalization as is
The branch coverage at the beginning of the PR is 83.1% and remains the same after all

commits from the PR are merged. After performing continuous mutation testing analysis
on the commit set from the PR, we have 30 killed mutants. The most popular mutator is
remove conditional, with 18 killed mutants. The distribution for the line types is as follows:

• Type-1: 0

• Type-2/3: 4

• Type-4: 12

• Type-5: 1

This PR was the best in terms of continuous mutation testing because most of the lines
are Type-4 and a few of them are Type-23, incompatible with the operator set, with no
Type-1 lines. There was also one Type-5 line caused by an untested variable initialization.

PR384: Add Prototype Style DOM Navigation
The branch coverage at the beginning of the PR is 83.8% and remains the same after all

commits from the PR are merged. After performing continuous mutation testing analysis
on the commit set from the PR, we have 0 killed mutants. This is due to the fact that Pitest
crashes for one commit. The distribution for the line types is as follows:

• Type-1: 65

• Type-2/3: 18

• Type-4: 4

• Type-5: 0

In this case, continuous mutation testing does not discover any special cases. Most is
code is simply not tested.
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Chapter 6

Discussion

6.1 Result interpretation

Based on the data collected via OPi+, which we presented in Chapter 5, we draw the fol-
lowing conclusions.

6.1.1 RQ1: How is the mutant generation, time and developer effort of
mutation testing impacted in a continuous integration environment?

All resources required for mutation testing are reduced in the context of continuous mutation
testing. The number of generated mutants is reduced in all aspects. We have an 80%
reduction in classes analyzed, 91% reduction in mutants generated, with a 95% reduction in
generated surviving mutants. We can normalize the number of required mutants by dividing
them to the number of classes from the system(NOC). This gives us an absolute number of
166 mutants required for a class when analyzing the entire system. When analyzing the
system in a continuous mutation testing manner we only require an average of 20 mutants
for a class. For surviving mutants, we require 56 mutants for a class when analyzing the
entire system and 3 per class for the continuous approach. The most important outcome
of this data is that the absolute number of mutants is manageable whereas the system level
numbers are not.

Also, OPi+ requires fewer surviving mutants than Pitest, as shown by the difference
between the x-axis and y-axis in Figures 5.4–5.6. This is because by looking at changed
code, continuous mutation testing automatically ignores unused code.

By filtering out unused code, OPi+ filters out unmodified code part that include dead
code. This has positive outcomes, since not analyzing dead code means there are no dead
code equivalent mutants generated. The main cause of equivalent mutants is mutating un-
used code [41]. Identifying equivalent mutants is a non-decidable problem, being one of
the main issues mutation testing is facing [41]. Nevertheless being able to not even generate
them is a very important improvement for mutation testing. We believe the smaller number
of generated surviving mutants is due to the fact that equivalent mutants were avoided, since
previous empirical studies showed that 10 to 40 percent of mutants are equivalent [56].

59



6. DISCUSSION

In our manual analysis, described in Section 5.1.3, we could not identify any equivalent
mutant from the surviving mutant pool. The equivalent identification should be made by a
system expert.

The amount of analyzed lines has a direct impact on the manual analysis required for
this process. As shown by the results from the empirical study, described in Section 5.1.1,
OPi+ analyzes less surviving mutants than Pitest. When comparing the number of lines
analyzed by OPi+ and Pitest per file we have a 95% reduction. More than this we have also
a 95% reduction in the number of surviving mutants generated by OPi+ and Pitest per file.
This is a direct consequence of the fact that OPi+ generates a significantly smaller number
of surviving mutants for large files. All files situated on the right side of the plot, in Figures
5.4–5.6, represent big files that were not changed very often but Pitest generates a lot of
surviving mutants for them. Avoiding manual analysis for most of the mutants generated
with Pitest, is the main factor that streamlines the continuous mutation testing process. In
the same Figure, we notice that we only have one class situated in the top right corner, in
all 3 systems analyzed, meaning this is the only case per system in which OPi+ generated a
similar number of mutants as Pitest.

The time of running mutation testing in a continuous environment is also highly
reduced as shown by the data collected, since analyzing a few changed classes takes a lot
less than analyzing the entire system. This data is presented in Section 5.1.2 We can notice
that the time for analyzing a commit is below the 10 minute threshold [52] in the context
of the median for build time being 8.3 minutes [22]. More than this, in our prototype tool
we only trigger the actual mutation testing step on selected commits. Nevertheless the steps
that lead us to infer the triggering are already custom steps in the build process(testing, diff
analysis and code coverage). This means that the continuous mutation testing approach
requires the actual mutation testing phase on only selected commits and does not influence
the build time of the remaining commits.

It needs to be considered that OPi+ does some extra analysis apart from running Pitest
on a subset of classes which adds some time. Also, considering the fact that OPi+ was built
on an infrastructure incompatible with continuous mutation testing, the time results show
very positive results.

The time for analysis reported in Chapter 5 does not represent the time it will take
for a real continuous mutation testing pipeline to run, but it is a maximum limit which no
real running time will surpass. In our case, the following limitations of Pitest and Operias
increase the time OPi+ takes to analyze the commits. In a real environment, where these
limitations do not exist, the time will definitely be smaller.

• Pitest analyzes more code than required by continuous mutation testing process

• The Operias algorithm for detecting the code change is being duplicated since the
code change is already recorded in the control version system
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6.1.2 RQ2: What are the implications of continuous mutation testing on the
completeness of currently available operator sets?

On average, 45% of the changed code lines could not be mutated because of the lack of
operators. This fact shows a need for additional operators. The high percentage needs to
be considered in the context of the fact that all systems analyzed are object-oriented. Even
though Pitest operators can be applied on these systems, they are not custom operators for
object-oriented features. There are mutation testing papers that propose object-oriented
mutation operator sets [41]. However, these operators were inspired by object-oriented
features not by real code for which no other operators were found.

Based on the most modified unanalysable lines, we propose an additional set of object-
oriented mutators, found in literature, to be implemented with priority. We describe the
object-oriented mutators selected from literature in Appendix C. The selection of the terms
is described in Section 5.2. We classify the terms computed from Type-2 lines via TFxIDF,
from Table 5.10, in 7 categories and suggest an appropriate mutator:

1. object-oriented modifiers (e.g. public, private, final, static) - AMC, JSI, JSD [48]
described in Appendix C. The object-oriented operators from literature would address
the modifiers. However, a valid mutator must pass the compilation phase. This means
the only valid mutations left regarding the modifiers would be increasing the visibility
scope (e.g. from private to public) or editing the static feature. Even though these
operators address the modifiers, they do not introduce relevant faults.

Nevertheless, the fact that the modifiers are in the top of our TFxIDF analysis means
that the lines that contain modifiers are frequently not mutated in the code base. Our
research does not necessarily point to mutating the modifiers but rather points to
mutating class attribute declarations. To this end we propose a new operator.

These modifiers most likely are part of a class attribute declaration that is not initial-
ized. If there would be an initialization(e.g. public int x=10;), the already available
Inline Constant Mutator from Pitest would have changed the constant value. Since
the variables are not initialized, there is no compatible mutation. Nevertheless these
lines should be mutated. This can be done through a similar operator that would ini-
tialize variables at declaration time. Bad initialization values is a realistic fault that
can stay in the system if the constructors are not properly tested.

RDI = Reference Declaration Initialization
Adds an initial value for a class attribute at the reference declaration time.

Original Code Mutant
private int x; private int x = 10;

2. data types (e.g. boolean, int): IHD, IHI [48] described in Appendix C. Here we
suggest the same previous new operator.

3. object-oriented features (e.g. new, this): PMD, PNC, JTI, JTD [48] described in
Appendix C.
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4. values (e.g. true, false): current Pitest Inline Constant Mutator should be improved
to cover all cases.

5. system specific data structures (e.g. node, archivers, zipfile, xmlstreamreader):
PMD, PNC [48] described in Appendix C.

6. system specific popular methods (e.g. add, update): MIR [42] described in Ap-
pendix C.

7. return statement: FAR [42] described in Appendix C.

We also recorded the type of mutant generated for each system for each size commit
cluster, presented in Figures 5.7–5.9. We can notice that regardless of the size of the com-
mit we have the same distribution of generated mutants. Jsoup is more prone to Remove
Conditionals Pitest mutator, whereas Commons Compress and Commons IO is also prone
to Inline Constant mutator. This distribution difference indicates there is a correlation be-
tween nature of the code base and the generated mutants. Due to this correlation and the
fact that each system had different popular untested terms, a system could benefit from a
few custom made mutators.

6.1.3 RQ3: What feedback information do the surviving mutants offer to
developers in the context of a continuous integration setting?

By manual analysis, we compared the current versions of the systems with old ones in order
to showcase the evolution of surviving mutants. There are 3 possible situations a mutant can
evolve into: deletion of the line for which the mutant was generated, changed or the same
mutant status. The distribution is presented in Figures 5.10–5.12. The data is described in
Section 5.3

We noticed that 79% of the cases where a line containing a surviving mutant was deleted
was due to refactoring. This shows that present surviving mutants might point to code that
will be refactored in the future.

A change in the mutant status means a decrease or increase in the number of surviving
mutant which was caused by a change in the test suite. Even though the systems we analyzed
have high coverage, we found a few cases where tests were deleted carelessly which led to
an increase in the number of surviving mutants. The ability of detecting these cases is useful
in the code review process in order to avoid deleting important tests. Test suites should be
cleaned but not by producing untested code. A decrease in the number of surviving mutants
meant the new test cases were added later, when they should have been added earlier. This
could have happened because of more time and resources allocated later. This shows that
detecting the area that will require testing at the time of the commit could turn out to reduce
the resources required over the entire development process.

The rest of the surviving mutants selected by OPi+ pointed to missing test cases. How-
ever, not all these cases are relevant for the system’s functionality. Almost half of them
pointed to variables that had no tests for the initialization value. We manually analyzed the
other cases and discovered some potentially useful missing test cases. Nevertheless, the
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real value of these cases must be analyzed by a system expert. Each case is described in
Appendix B. Also the impact of the missing test case is part of a mutation testing study
which is partially outside the scope of this study.

6.1.4 RQ4: Is there a correlation between surviving mutants and system
characteristics such as: code coverage, churn and bad smells?

If code coverage would be an accurate indicator of the test suite quality we would expect
files with high coverage to have less surviving mutants. However, our data, presented in
Section 5.4.1, shows this is not the case. We could not infer any correlation between branch
coverage and surviving mutants selected by OPi+. In our study files that are not tested at
all generate no coverage mutants. No coverage mutants are ignored and not considered sur-
vived mutants within this study. This disassociation is more visible in the branch coverage
bin plots, Figures 5.13–5.15.

Based on all the data collected we could infer a correlation between churn and survived
mutants selected by OPi+. Data is presented in Section 5.4.2 When we plot the number of
lines analyzed by Pitest and OPi+ we see the influence of the change history. This shows
that the number of survived mutants that have to be analyzed with the OPi+ approach is
related to the change history.

We could not infer any reciprocity between continuous mutation testing and bad smells.
This is due to the fact that the analyzed systems had very few bad classes. The data collected
is presented in Section 5.4.3. The one class from JSoup that has bad smells was changed
less than 50 times therefore has no surviving mutants selected by OPi+, see Figure 5.16.
Common Compress has 8 bad smell classes, 3 of which have surviving mutants selected by
OPi+ and were changed more than 100 times, see Figure 5.17. Out of these only one class
refactored the lines that contained survived mutants. OPi+ focuses on classes that have a
high churn. It is possible that classes with bad smells are less edited, thus being ignored by
OPi+. Further research is needed in this area.

Nevertheless, the fact that we have a correlation between the number of changes per file
and the number of surviving mutants selected by OPi+ per file, supports the approach of
change driven mutation testing.

6.1.5 RQ5: Can continuous mutation testing be used in the code review
process?

As shown by our JSoup pull request analysis, described in Section 5.5, the feedback from
continuous mutation testing describes the quality of the tests that cover the changed area.
Not only can it provide an update on the mutation score, but it can also identify specific
lines that are not tested well enough. Therefore OPi+ can be used to assess mutation score
improvement just like Operias provides updates on the code coverage evolution.

6.2 Threats to Validity

The main threats to validity are caused by one of the following facts:
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1. not all commits could be analyzed

2. the limitations of the systems analyzed

3. inaccurate timing

4. limitation of the available operator set

We were not able to analyze all commits. Nevertheless, the crash threshold is quite
low, and we don‘t believe those commits would have changed the outcome of this study. We
recorded all situations where the commit could not be analyzed and clustered them based
on their root cause. An overview of the distribution of crashes is given in Table 6.1, as
described in Section 4.3.1.

Continuous mutation testing checks every commit that contains at least one change in
the code base. Therefore, one type of commit that could not be analyzed is the one that
contains no change of the code base. Detecting these commits is done in the prefiltering
step, which was improved using the first system analyzed. To ensure the integrity of the
empirical study, we did not change the prefiltering for the following systems that were
analyzed. In Table 6.1 we show how many of the total commits from these systems passed
the prefiltering step even though they should have been filtered out.

Table 6.1: Unanalysable Commits Overview

Also, the analyzable systems space was narrowed by the constraints imposed by the
systems used in OPi+. Both Pitest and Operias are compatible with Maven projects, so
we only targeted our system selection procedure toward Maven projects. Nevertheless, not
all the selected projects were Maven projects from their beginning or had always a stable
state (where all tests pass). This added a temporal limitation on the analysis of this kind of
projects, since we could not analyze their entire history. An overview of the incompatible
commit distribution is given in Table 6.1.

6.3 Future Work

Continuous mutation testing study can improve in one of the following ways:
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1. further develop OPi+ from prototype to product (improve compatibility, performance,
user interface)

2. research if prioritization of the lines of code could streamline the process

3. use a different way for evaluation

4. research the impact of continuous mutation testing on other development practices

OPi+ was built as a prototype to research continuous mutation testing. Even though
this tool is compatible with popular frameworks such as Java Maven projects the compat-
ibility should be extended to other languages and platforms. The first prefiltering step,
that identifies whether actual code was changed, must be developed for more languages.
The compatibility can also extend to the type of repository used. Nevertheless, the current
modular architecture of OPi+ can easily accommodate the interfaces required for all these
upgrades.

At the same time, the performance of this tool can be improved by parsing information
straight from GitHub. The information of the actual change is currently being duplicated
by the Operias diff algorithm. Operias is used by OPi+ for getting branch coverage infor-
mation. In order to avoid code duplication we propose two solutions. The first proposal is
that Cobertura can be run as an independent step. The second solution can be incorporating
branch coverage analysis in Pitest.

In order to upgrade a prototype to a product, a user interface is also required. This
should contain new reports and GitHub notifications. Since OPi+ offers a more thorough
analysis than Pitest, the reports must be upgraded to include only the data considered im-
portant by OPi+. More than this, based on our preliminary results, continuous mutation
testing can also be used in analyzing the quality of a pull request, thus becoming part of
the code review process. Even though the connection to the GitHub API is already imple-
mented via Operias, the final reports and code review information have to be linked back to
the repository.

Due to the time limitation of this study we were not able to research the prioritization
of the lines of code in the context of continuous mutation testing. Currently OPi+ does not
prioritize the Type-5 lines. This could be done based on the type of change committed.
Fluri et al. [30] implemented an automatic change classifier, ChangeDistiller. This is an
Eclipse plugin that classifies changes and rates their importance for Java systems. It uses
an algorithm (described in [31]) that detects changes between two versions of the system,
based on tree edit operations (insert, delete, move,or update of tree nodes). The authors,
described all the types of changes detected by the algorithm and classified it as changes that
modify or preserve functionality which we summarize in Table 6.2. Also, they gave to each
of these type an importance rating (low, medium or high). In our study, only functionality-
modifying changes are within the scope of mutation testing since functionality-preserving
changes will result in equivalent mutants. Table 6.2 highlights in blue all changes that are
functionality-modifying and have a crucial impact. Since each type of change has an oper-
ator that can be applied to it, we can prioritize the operators based on the importance rating
of the type of change from this table. Prioritizing the mutants based on potential impact can
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maximize the potential of mutation testing, even if the process can not be finished due to
time constraints.

The purpose of this study was to research the potential of continuous mutation test-
ing. The value of mutation testing in itself is an independent study conducted by several
researchers [41]. Apart from the method used in our study, another good way to evaluate
continuous mutation testing would be to apply this process on a system that has previously
been analyzed to showcase the benefits of mutation testing. This way, we can check if all
Type-5 lines detected by OPi+ contain the most important mutants discovered by mutation
testing. This would prove that continuous mutation testing is a viable solution because it
produces faster the same results as applying mutation testing in the way it is currently ap-
plied. In our current study, the evaluation of Type-5 mutants lacks a system expert that can
accurately evaluate their impact on the system. To our knowledge, there are few papers
concerning the impact of surviving mutants (e.g. [70]). The projects used by [70] are 18
popular short algorithms written in C, such as Bubble Sort, Min, Prime numbers etc. For
an evaluation like ours, we would require a Java Maven project, developed for production,
with an open source history analyzed by a mutation testing paper.

Continuous mutation testing (CMT) is a software development practice because it is
applied at every change of code. This is why, if used, it will impact the entire development
process. We would recommend a real time monitoring of how this practice would impact
the team and other software development practices.
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Table 6.2: Types of change as described by Fluri et al. [30]. Blue highlighted changes
are functionality modifying and crucial impact. This makes them prime candidates for
important mutation testing operators

Category Type Functionality Impact
STATEMENT ORDERING
CHANGE

modifying low

Method STATEMENT PARENT CHANGE modifying medium
body STATEMENT INSERT modifying medium
changes STATEMENT DELETE modifying medium

STATEMENT UPDATE modifying low

Increasing statement insert modifying high
Structure Decreasing statement delete modifying high
statements Condition expression change modifying medium

else part insert modifying medium
else part delete modifying medium
Additional object state preserving low

Class Removed object state modifying crucial
body Additional functionality preserving low
changes Removed functionality modifying crucial
Access Increasing Accessibility Change modifying medium
modifier changes Decreasing Accessibility Change modifying crucial

Final modifier Final Modifier Insert modifying crucial
changes Final Modifier Delete preserving low

Attribute Attribute Type Change modifying crucial
declaration
changes

Attribute Renaming preserving high

RETURN TYPE INSERT modifying crucial
RETURN TYPE DELETE modifying crucial

Method RETURN TYPE UPDATE modifying crucial
declaration METHOD RENAMING preserving high
changes PARAMETER INSERT modifying crucial

PARAMETER DELETE modifying crucial
PARAMETER ORDERING
CHANGE

modifying crucial

PARAMETER TYPE CHANGE modifying crucial
PARAMETER RENAMING preserving medium

Class CLASS RENAMING preserving high
declaration PARENT CLASS INSERT modifying crucial
changes PARENT CLASS DELETE modifying crucial

PARENT CLASS UPDATE modifying crucial
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Chapter 7

Related Work

7.1 Improving Continuous Integration

Even though the continuous integration approach improved the software development pro-
cess, a high number of failing builds in the history of a project can be a threat to the effi-
ciency of the approach by Leitner et al. [63]. Through empirical study [63] the authors
found that more than 80% of build failures are caused by failing integration tests as shown
in Figure 7.1. They also discovered that the strongest influencing factor for failing builds is
the stability of the build system in recent history. The impact tests have on the build process
shows a need for ensuring their correct functionality.

In order to avoid failing tests, projects use code analyzing tools that are especially cre-

Figure 7.1: Distribution of common build error categories [63]
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ated to pair with the continuous integration pipeline. For example, Infer1 is a tool that looks
for bugs such as null pointer references, resource and memory leaks and concurrency issues.
It is a static code analyzer that does not change the code base or inject faults, but it achieves
additional code checking, independent of the test suite, in a continuous integration setting.

Aside from static analysis, “Software testing is well established as an essential part
of the software development process and as a quality assurance technique widely used in
industry.” [23]. However, maintaining an effective test suite is a problem most projects
struggle with. There are best practices for how to write good quality code but only a few
guidelines on how to write good tests [51]. This creates a need for a more thorough way of
analyzing the effectiveness of a test suite.

7.2 Techniques to Optimize Mutation Testing Usability

A solution for testing the effectiveness of a test suite is mutation testing, presented in Chap-
ter 2. A recent study by Zhu et al. [62] from 2016 presents the practical usage of mutation
testing as described by other studies. The researchers based their findings on 159 papers
making this survey very thorough. More than half of these papers do not mention how they
deal with one of the biggest problem mutation testing faces, labeling the seemingly similar
faulty versions. The rest of the papers either ignored those cases or labeled them by manual
analysis. Even though most papers do not mention how they dealt with overcoming the
challenges that come with mutation testing there are some studies that exclusively proposed
solutions to improve mutation testing. Other studies even developed an infrastructure to
make mutation testing easy to use. These studies are presented in the following sections.

7.2.1 Cost Reduction Techniques

The mutation testing process requires significant amount of computational resources. There-
fore, efforts have been made to reduce this cost. The cost reduction techniques developed
so far focus on one of two directions: 1) reducing the number of generated mutants or 2)
reducing the overall costs required by the process [41].

Methods proposed for reducing the number of generated mutants focus on finding
the subset of all generated mutants that would output a similar mutation score. The way
the mutants that belong to that subset are chosen, is so far computed using four different
approaches [41].

Methods proposed for reducing the execution cost are focused on optimizing the mu-
tant execution process. This can be done through runtime optimization techniques [27]
which implement the mutants at bytecode level thus canceling the compilation process. An-
other way of reducing the cost is the concurrent execution of mutants on different machines
[45]. A final proposed solution is weak mutation. This approach is checking intermediate
states of the system. This way if an intermediate state is not correct the mutant can already
be considered killed. This way the killed mutants can be identified faster and execution time
is shorted since not all states must be computed [69].

1http://fbinfer.com/docs/about-Infer.html
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Mutation testing is a very expensive approach also because of the need for manually
labeling the surviving mutants. There are also a few techniques proposed to streamline this
process [21, 21, 16, 29, 37, 60, 66]. One solution is to detect the equivalent generated
mutants by optimizing the code [21] or by analyzing the input constraints [67]. Automat-
ically detecting the equivalent mutants can be done through the co-evolutionary approach
[16] which uses a fitness function designed to have poor value for the equivalent mutants.
Another way is to consider that equivalent mutants are the ones with the same output but
different execution time or memory usage [29], or those that have the lowest impact on
coverage change [37]. The code coverage is computed by looking at the bytecode [60],
however this method does not apply to mutants that are already implemented in the byte-
code. Another proposed solution is called Infection Analysis [66] and it is based on the
probability of a mutant changing a data state.

7.2.2 Infrastructure

Even though the cost reduction techniques described in the previous section streamline mu-
tation testing, current mutation testing tools do not focus on them [62]. The lack of interest
in identifying equivalent mutants is not only observed in research papers but also in the
available features of mutation testing tools. Current mutation testing tools provide basic
equivalent mutant detection techniques in the best cases. As described by Zhu et al. [62],
only 1 in 7 tools for Java provide an equivalent mutant detector feature. None of the 2
tools presented by Zhu et al. [62] for C# have this feature. For other non object-oriented
languages that make use of mutation testing, out of the 10 tools, Zhu et al. [62] found only
3 tools have this option.

The most well maintained mutation testing tool, Pitest, does implement several cost
reduction techniques but the time required to run Pitest and manually sort the useful infor-
mation from the Pitest reports is longer than the time limit required by a CI feedback loop.
In a continuous integration environment the average for receiving feedback for a change is
less than the time required for running mutation testing in its current state ( e.g. Facebook
feedback rule is 10 minutes [52]).

The current OPi+ mutation black-box makes use of Pitest, one of the most popular and
compatible mutation testing tools. Just as all the other mutation testing tools, Pitest was
designed to be run on the entire system. However the Pitest community contributed with a
feature that allows to run Pitest on all the files that were changed in the last commit [15].

In principle Pitests compatibility with Maven facilitates a CI compatible infrastructure.
Unfortunately, in order for mutation testing to be usable in a continuous integration envi-
ronment, more steps need to be added because of the following problems: Pitest analyzes
more than required, it provides no filtering nor prioritization of cases, it does not help in
any way with the manual analysis still required after the mutation testing is done. Also, the
reports Pitest generates are very well structured, but since they contain all the information
regarding the mutation process, the useful information is hard to find.
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7.2.3 Operator Set Improvement

The current operator set of Pitest is proven to be feasible and practical on real world pro-
grams [26]. Nevertheless, the community recognizes a need for additional operators. One
example is the Pitest-Descartes research conducted as part of the Stamp project [5]. They
base the need for additional operators on a study conducted to evaluate the validity of code
coverage as a measure of test effectiveness [54]. However, to our knowledge, our study
is the only research that proposes a set of new operators based on high impact code that is
incompatible with the current operator set.
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Chapter 8

Conclusions

”I vividly remember one of my first sightings of a large software project... My manager,
part of the QA group, gave me a tour of a site and we entered a huge depressing warehouse
stacked full with cubes. I was told that this project had been in development for a couple
of years and was currently integrating, and had been integrating for several months. My
guide told me that nobody really knew how long it would take to finish integrating. From
this I learned a common story of software projects: integration is a long and unpredictable
process. But this needn’t be the way.”, Martin Fowler [33].

The way to solve integration problems is by integrating continuously. The practice of
continuous integration (CI) implies that developers integrate at least daily [33]. Each change
is processed by the CI pipeline, which decides whether the change should be included in
the master trunk version of the system. Once the change is merged, the new version of
the system is turned into an executable artifact. This process, the CI pipeline, traditionally
contains steps for compiling and linking the change. This new version of the system may
be able to run, but that does not mean it does the right thing [39].

Within this context, ”Testing has moved to a front and central part of programming.” [51].
This is due to the fact that automated testing is a ”good way to catch bugs” [33]. Practicing
automated tests is a ”huge opportunity to programming teams” [51] since it enables ”teams
to make drastic changes to a code-base with far less risk...but with these opportunities come
new problems and new techniques.” [51]. In the event of a change breaking the system,
having a test case fail, the entire build process should fail, thus rejecting the change. There-
fore, the test suite ensures the correct functionality of a continuously integrated software
system [39].

Since the system’s quality is described by the tests’ outcome, there is a need for a good
quality test suite. Currently, in order to assess the quality of a test suite, the code coverage
is used as a metric [36]. This approach is very basic since it only checks whether the code
is being tested, but not how it is tested.

A method that checks the fault finding capability of a test suite is mutation testing.
This approach is based on seeding faults in the system and then checking whether the tests
can find the known fault [41]. Therefore, the goal of this thesis has been to explore how
mutation testing can be applied to changes under analysis in a continuous integration setting.
No other study paired mutation testing with CI, so there is no current infrastructure for a
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CI environment that includes the mutation testing process. For our study, we developed
OPi+, a prototype tool for experimenting the infrastructure was required for a continuous
mutation testing approach. Using real-world systems for analysis, we give initial evidence
of the usefulness of continuous mutation testing in terms of costs and benefits when
applied to realistic software changes.

Through setting up a prototype infrastructure, we were able to discover specific out-
comes of mutation testing within the continuous integration environment. We defined 5
types of outcomes together with a continuous mutation testing behavior flow, both de-
scribed in Chapter 3. The OPi+ architecture combines current technologies for code re-
viewing(Operias), control versioning(Github), optimized mutation testing(Pitest) and our
own implementation of analysis that streamlines the manual analysis phase of the mu-
tation testing process. This analysis contains prefiltering and line analysis based on a more
in-depth code coverage analysis combined with mutant output. Due to the well setup fil-
ters, we reduce the code base analyzed which reduces the number of generated mutants,
which also reduces the scope of the manual analysis. The filters select only impactful code
changes, removing isolated parts of code that are the main source of equivalent mutants and
trivial missing test cases.

We then used the continuous mutation testing prototype infrastructure to perform ex-
periments in order to infer the potential of this method on 3 popular, open source, highly
tested Java Maven systems. We performed analysis on the entire commit history of the
systems, inferring a specific output for each line from all compatible commits. By fur-
ther studying the OPi+ labelled lines we also analyzed the potential impact on technical
debt and code reviewing process. The data from the empirical study showed that there
is a correlation between churn and the presence of surviving mutants. This fact backs up
the proposed way of using mutation testing in continuous integration environment. More
than this, we showed that there is no correlation between code coverage or bad smells and
the distribution of surviving mutants. However, the entire process can be used within the
context of code reviews. We also found specific untested cases that can impact the entire
system.

The main disadvantages of mutation testing are the need for a significant amount of
computational resources and the fact that manual analysis is required. No other research
paper proposed solving the high cost of mutation testing by reducing the scope of mutations
to real time changes, which is what happens in our continuous integration environment.
Based on our empirical study we showed not only that mutation testing in a CI environ-
ment requires significantly fewer resources but they are also within the limits required
by a CI pipeline. The infrastructure we created keeps the entire process below the 10
minute feedback time limit, having an 80% reduction in analyzed classes, 91% reduction in
generated mutants with a 95% reduction in surviving mutants when compared with current
usage of mutation testing over the entire system.

Mutation testing cost reduction techniques are very well studied [41]. Nevertheless, by
combining them with a change driven focus, we get an overall higher impact. At the same
time we cancel out the main disadvantages that make mutation testing unusable. Based on
our thorough line analysis within the scope of continuous mutation testing we were able to
also identify relevant code that is currently unmutable. In order to solve this problem,
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we analyzed the unmutable code and proposed a set of operators that should streamline the
entire process. Most operators are proposed in literature but we also propose a new operator
and suggest improvements for existing mutators.

We also analyzed the evolution of surviving mutants through the development of the
systems. More than half of the lines with surviving mutants where eventually deleted, most
of them because of a refactoring process. This leads us to conclude that surviving mutants
should either be killed by a new test case or by refactoring the code.

In our study, we showed initial evidence that mutation testing can successfully be made
compatible with a CI environment. Continuous mutation testing can find specific missing
test cases and detect code that should be refactored, both with minimum noise and manual
analysis. The results are very positive, therefore we proposed a few ideas that could possibly
streamline the entire continuous mutation testing process further.

Integrating your software improvements should not be depressing, instead it should be
a confident continuous process based on tests made thorough through continuous mutation
testing. ”Its hard enough for software developers to write code that works on their machine.
But even when thats done, theres a long journey from there to software thats producing
value - since software only produces value when its in production.”, Martin Fowler [32].
With continuous mutation testing the system can be deployed into production with a higher
degree of confidence.
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Appendix A

Manual Analysis

This Appendix describes the manual analysis done on the data collected by OPi+ as de-
scribed in Chapter 4. We selected all files that were changed more than 100 times and had
surviving mutants. Then for each line we record the following: commit ID, code line con-
tent, line number, the type of change, number of survived and killed mutants at commit time
and in last version of the system. NC stands for Not Covered mutants. In total we manually
analyzed 319 changed lines (94 for JSoup, 101 for Commons Compress, 124 for Commons
IO).

Based on this data we identify the line evolution label inferred manually. If the line was
deleted we record the reason for the deletion in the Deleted column (R for refactored and F
for change in functionality). If the number of mutants changed we note the scenario type
in the Changed column (I for improved and D for decreased). If the mutant number is the
same we differentiate the initialized cases in the Same column(init for initialized). We use
! to mark important missing test case described in Appendix B.

The complete data collected in stored on the Google Drive Repository and can be ac-
cessed at the following links: Jsoup1, Commons Compress2 and Commons IO3. Some of
the information recorded for the systems analyzed is found in Tables A.1, A.2 and A.3.

Line Type Survived Killed LastVersion Label
S K Deleted Changed Same

158 UPDATE 2 2 0 4 I
210 UPDATE 1 0 1 0 !
15 UPDATE 1 1 1 1 init
71 UPDATE 2 2 R
164 UPDATE 1 5 8 I
276 UPDATE 1 6 1 6 !
297 UPDATE 1 0 1 init
273 ADD 1 2 R
308 UPDATE 1 12 R
321 UPDATE 2 11 19-NC !
116 UPDATE 3 13 R

1https://docs.google.com/spreadsheets/d/1dPZMEqutZWP6FtOjjxBxmJEkt7Cf2tf6Klcou1hQsCY/edit?usp=sharing
2https://docs.google.com/spreadsheets/d/1PpQD7lPHUmcfTxx9M64duwoD8I6EYdVRlf W2mmtTuo/edit?usp=sharing
3https://docs.google.com/spreadsheets/d/1MEdS-HInY3yT7nv85cxgWmYqw6c8s8nm4dTiTFbyncY/edit?usp=sharing
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196 UPDATE 2 4 R
95 ADD 6 0 R
97 ADD 6 0 R
56 UPDATE 2 0 R
24 ADD 1 0 F
25 ADD 1 0 R init
26 ADD 1 0
27 ADD 1 0
28 ADD 1 0
29 ADD 1 0
49 ADD 5 0 F
224 ADD 5 0 R
228 ADD 5 0 R
239 ADD 2 0 R
240 ADD 2 0
245 ADD 2 0
246 ADD 2 0
251 ADD 2 0
252 ADD 2 0
253 ADD 2 0
258 ADD 2 0
414 ADD 1 0 R
55 ADD 2 0 2 I
56 ADD 1 1 F
59 UPDATE 2 0 R
186 ADD 2 2 0 6 I
21 UPDATE 2 0 R
24 UPDATE 1 1 1 1
25 UPDATE 1 1 1 1
280 UPDATE 2 0 R
281 UPDATE 2 0 R
185 ADD 3 0 0 4 I
463 UPDATE 1 3 0 7 I
159 ADD 1 2 F
110 ADD 1 2 R
160 ADD 1 0 1 R I
28 UPDATE 1 0 R
238 ADD 1 0 R
21 ADD 1 1 1 1 init
238 UPDATE 1 0 R
143 ADD 3 2 6 NC D
156 ADD 1 2 5 NC D
100 UPDATE 3 0 3 NC D
1074 UPDATE 2 5 R
1079 ADD 1 2 R
1085 ADD 1 0 1 0 init
1086 ADD 1 0 1 0 init
1089 ADD 1 2 1 2 init
1092 ADD 3 6 1 11 !
1109 ADD 1 6 1 6 !
1110 ADD 1 1 1 4 !
1074 UPDATE 2 5 =
1079 ADD 1 2
1085 ADD 1 0
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1086 ADD 1 0
1089 ADD 1 2
1092 ADD 3 6
1109 ADD 1 6
1110 ADD 1 1
1066 UPDATE 2 5 =
1071 UPDATE 1 2
1080 UPDATE 1 2
1082 UPDATE 3 6
1097 UPDATE 1 6
1098 UPDATE 1 1
1036 UPDATE 2 5 R
819 UPDATE 1 1 0 2 R
888 UPDATE 1 7 9 I
109 ADD 1 5 1 9 R
368 ADD 3 0 R
258 UPDATE 1 2 4 R
277 ADD 1 2 1 2 !
48 ADD 1 0 1 0 init
248 ADD 1 2 3 I
181 UPDATE 1 2 F
103 UPDATE 1 2 F
98 ADD 1 4 F
181 UPDATE 1 2 F
94 ADD 1 0 F
173 UPDATE 1 2 F
38 ADD 2 0 2 init
55 ADD 3 0 5 !
41 ADD 1 0 2 init

Table A.1: JSoup Line Manual Analysis

Line Type Survived Killed LastVersion Label
S K Deleted Changed Same

244 UPDATE 1 2 0 5 I
110 ADD 1 0 R
811 UPDATE 1 1 3 I
819 UPDATE 1 1 3 I
833 UPDATE 1 1 3 I
835 UPDATE 1 1 3 I
1046 UPDATE 5 0 6 I
1049 UPDATE 5 0 6 !
812 UPDATE 3 0 4 I
828 UPDATE 1 0 R
831 UPDATE 2 4 8 I
834 UPDATE 1 3 2 3 !
891 ADD 2 0 R
892 ADD 3 0 R
894 ADD 3 0 R
895 ADD 1 0 R
665 ADD 1 0 R
585 ADD 1 0 init
304 UPDATE 1 0 R
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326 ADD 2 0 2 !
196 UPDATE 1 1 2 I
199 UPDATE 1 2 4 I
221 UPDATE 1 2 4 I
253 ADD 1 2 R
257 ADD 1 2 R
236 ADD 1 0 2 I
68 UPDATE 1 1 1 1 init
452 ADD 1 4 R
475 ADD 1 0 R
487 ADD 1 0 R
460 ADD 1 1 R
514 UPDATE 1 0 2 I
454 UPDATE 1 0 1 2 !
457 UPDATE 1 2 1 4 !
459 UPDATE 1 0 3 !
463 UPDATE 1 0 2 !
465 UPDATE 1 0 2 !
473 ADD 1 8 1 8 !
305 ADD 1 2 2 4 !
258 UPDATE 2 3 R
133 ADD 2 3 3 2 D
366 UPDATE 3 4 1 6 I !
370 UPDATE 5 0 3 2 I !
375 UPDATE 1 4 1 4 !
376 UPDATE 1 0 2 I
382 UPDATE 3 1 4 I
389 ADD 3 0 3 !
390 ADD 3 0 3 !
391 ADD 3 0 3 !
392 ADD 2 0 2 !
394 ADD 4 4 4 4 !
396 ADD 2 0 2 !
410 UPDATE 1 6 1 6 !
65 UPDATE 1 2 3 I
328 UPDATE 3 3 2 4 I !
330 UPDATE 2 2 R
357 UPDATE 1 0 2 1 !
600 ADD 1 0 R
601 ADD 1 0 1 I
602 ADD 1 0 1 init
605 ADD 1 5 6 I
607 ADD 2 8 10 I
609 ADD 2 3 R
610 ADD 4 0 R
611 ADD 1 0 R
615 ADD 1 2 3 I
616 ADD 1 0 1 I
196 ADD 1 2 1 3 init
226 ADD 1 0 1 I
227 ADD 1 0 1 I
262 ADD 2 0 2 init
264 ADD 1 0 R
267 ADD 1 0 2 init
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332 ADD 1 0 1 init
285 ADD 1 2 4 I
177 ADD 1 0 1 I
183 ADD 1 0 1 init
188 UPDATE 3 0 1 2 I !
484 ADD 1 2 3 I
524 ADD 1 1 1 2 init
530 ADD 1 0 F
545 UPDATE 1 1 1 init
217 UPDATE 2 0 2 init
218 UPDATE 2 0 2 init
545 UPDATE 1 0 1 init
548 UPDATE 4 2 1 5 I !
79 UPDATE 1 1 2 I
85 UPDATE 1 1 1 2 init
275 UPDATE 1 0 1 2 init
581 UPDATE 2 1 6 I
441 UPDATE 4 0
447 UPDATE 3 0
509 UPDATE 6 0
507 ADD 6 0
769 ADD 1 0
143 ADD 3 0 2 1 init
144 ADD 2 0 2 init
145 ADD 1 1 F
146 ADD 2 0 2 init
157 ADD 2 0 2 init
159 ADD 1 2 3 I

Table A.2: Commons Compress Line Manual Analysis

Line Type Survived Killed LastVersion Label
S K Deleted Changed Same

1452 UPDATE 1 0 R
1503 ADD 1 0 R
1646 UPDATE 1 0 R
1695 ADD 1 0 R
1483 UPDATE 3 2 3 2 !
1633 UPDATE 3 2 3 2 !
476 UPDATE 1 2 1 2 !
1482 UPDATE 3 2 R
1631 UPDATE 3 2 R
1857 UPDATE 1 2 2 1 !
1861 UPDATE 1 2 1 1 !
1896 UPDATE 3 0 1 2 I
1900 UPDATE 1 1 1 2 !
1926 UPDATE 1 4 1 4 !
1793 UPDATE 1 0 1 2 !
347 ADD 1 2 F
1489 UPDATE 1 0 R
1481 ADD 3 2 R
1487 ADD 1 0 R
1497 ADD 3 2 R
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1630 ADD 3 2 R
1636 ADD 1 0 R
1646 ADD 3 2 3 2 !
426 ADD 1 2 1 4 !
1825 ADD 1 0 1 1 !
1869 ADD 1 0 1 1 !
381 ADD 1 4 F
405 ADD 1 2 F
367 ADD 3 3 3 3 !
1727 UPDATE 3 0 4 0 init
1732 UPDATE 4 1 4 1 !
1733 UPDATE 1 0 2 0 !
1736 UPDATE 1 0 4 0 !
2441 ADD 3 3 0 7 I
2455 ADD 1 2 1 3 !
2361 UPDATE 2 4 0 6 I
2368 UPDATE 2 0 R
2369 UPDATE 1 0 R
1143 UPDATE 1 2 4 1 init
1560 ADD 1 2 1 2 !
1565 ADD 1 2 1 3 !
1595 ADD 1 2 1 2 !
1727 UPDATE 3 0 4 0 init
1709 UPDATE 1 0 1 0 init
1712 UPDATE 4 0 R
1713 UPDATE 1 0 R
1714 UPDATE 2 0 R
1715 UPDATE 1 0 2 0 !
1719 ADD 1 0 4 0 !
1727 UPDATE 1 2 1 2 !
136 ADD 1 2 1 2 !
154 ADD 1 2 1 2 !
159 ADD 1 2 1 2 !
328 UPDATE 4 2 4 4 !
2380 UPDATE 1 2 2 2 !
2108 ADD 1 0 1 1 !
223 ADD 1 0 1 2 !
1498 ADD 1 0 1 1 !
1531 UPDATE 1 0 1 1 !
1585 ADD 1 0 1 1 !
1617 ADD 1 0 1 1 !
1656 UPDATE 1 0 1 1 !
1725 ADD 1 0 1 1 !
1362 UPDATE 1 2 1 3 !
1385 ADD 1 1 1 2 !
1391 ADD 1 2 1 3 !
1877 UPDATE 1 0 2 1 !
1903 UPDATE 1 0 2 1 !
1164 UPDATE 8 1 R
48 ADD 1 1 1 1 init
81 ADD 2 2 2 2 !
85 ADD 1 4 1 4 !
109 ADD 3 0 3 0 !
117 ADD 1 1 1 1 init
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138 ADD 2 2 2 2 !
142 ADD 1 4 1 4 !
121 UPDATE 3 0 3 0 !
451 UPDATE 1 0 1 0 init
404 UPDATE 2 1 0 3 I
170 UPDATE 1 0 1 0 init
184 UPDATE 1 0 1 0 !
222 UPDATE 1 0 1 2 init
189 ADD 1 0 1 0 init
201 UPDATE 1 0 1 0 init
223 ADD 1 0 1 0 init
334 UPDATE 1 2 1 2 !
352 UPDATE 1 5 1 5 !
372 UPDATE 1 2 1 0 !
170 ADD 1 0 R
222 ADD 1 0 R
31 ADD 2 0 2 0 init
33 ADD 2 0 2 0 init
35 ADD 1 1 2 0 init
37 ADD 1 1 2 0 init
70 ADD 1 2 R
100 ADD 2 0 2 0 init
30 UPDATE 2 0 2 0 init
32 UPDATE 2 0 2 0 init
34 UPDATE 1 1 2 0 init
36 UPDATE 1 1 2 0 init
69 UPDATE 1 2 R
100 UPDATE 2 0 2 0 init
375 UPDATE 1 0 3 0 !
507 UPDATE 3 1 4 2 init
518 UPDATE 3 1 4 2 init
564 UPDATE 5 1 4 2 init
570 UPDATE 5 1 4 2 init
577 UPDATE 5 1 4 2 init
205 UPDATE 1 0 0 2 I
321 UPDATE 1 0 0 1 I
204 UPDATE 1 1 R
324 UPDATE 1 1 R
361 UPDATE 1 0 3 0 !
372 ADD 1 2 1 2 init
203 UPDATE 1 0 1 0 init
491 UPDATE 1 2 R
561 UPDATE 5 1 6 2 !
570 UPDATE 1 2 0 4 I
577 UPDATE 5 1 6 2 init
588 UPDATE 5 1 6 2 init
551 ADD 3 1 6 2 init
555 ADD 3 1 6 2 init
630 ADD 5 1 6 2 init
641 ADD 5 1 6 2 init

Table A.3: Commons IO Line Manual Analysis
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Appendix B

Missing Test Case Contributions

After we run OPi+ on the systems’ commit history, we also manually analyze all files changed more than 100
times, as described in Chapter 4 and Appendix A. For all lines that keep the same number of mutants, we
further analyze them and divide them in 2 groups: lines with variables that had no tests for the initialization
value and lines for which test cases are missing. For each missing test case, we contributed to the projects with
pull requests that add them.

Not all these missing test cases are relevant for the system’s functionality. However, an accurate evaluation
of the value of these missing test cases can only be made by a system expert. Also, the impact of these
contributions are relevant for mutation testing research, not necessarily part of the scope of the continuous
mutation testing study. We further describe the contributions made for each project. It is important to note that
all folowwing cases have full branch coverage.

B.1 JSoup
Method Not Directly Tested: example for system expert as oracle

The method consumeToIgnoreCase() has full branch coverage. Nevertheless when generating a mutants
than cancels out the if(skip==0) all tests pass because the test case is the unique scenario where the
behavior on both branches is the same. The if branch states pos++, and the else branch states pos+=skip.
In the testing scenario skip is actually 1. By cancelling the if check the result will still be correct but it
will require more loops. A change in behavior can be notices only if we run the method twice. Then the
same call on the same TokenQueue will return a different string. This behavior is not checked in any
other test case, since they all use newly created TokenQueue. Nevertheless we cannot know if this is the
intended behavior or not. We provide a test case with the observation that the intended behavior is not
explicitly preserved by any test case.

Commit ID 4a470a028e1f146c04695819c48b9ec8b7950f36

Line content: if (skip == 0) // this char is the skip char, but not match, so force advance of pos

Line number: 210

Change type: UPDATE

Survived - Killed Mutants: 1 - 0

Mutator: REMOVE CONDITIONALS MUTATOR

Mutator description: removed conditional - replaced equality check with true

Contribution: Pull request with missing test case1

1https://github.com/jhy/jsoup/pull/925
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B. MISSING TEST CASE CONTRIBUTIONS

Code deleted good refactoring example
The Tag class was first created in this commit. In the beginning the Tag class had 5 boolean attributes.
All initialized through a constructor. In the current version of the system, the class evolved to have 8
boolean attributes, all initialized within their declaration. Each true or false value is being explained by
a comment. Nevertheless there is no test covering the initialization of this data set.

Commit ID 548ce13435a00bb447fbffdbca8c5ce3be752ee4

Line content: canContainBlock = false;
canContainInline = true;
canContainBlock = false;
canContainInline = false;
canContainBlock = false;
canContainInline = false;
empty = true;
optionalClosing = true;

Line number: 239-246, 251-253, 258

Change type: ADD

Survived - Killed Mutants: 2 - 0

Mutator: -

Mutator description: -

Contribution: This is a good example of surviving mutants pointing to a good candidate for refactoring.

Missing test case for wrong intermediate state hasClass()

The method hasClass() from the Element class test if an element has a class. Even though the method is
case insensitive it should be able to parse class names given with whitespace. The functionality is there
however the if branch that parses this is never tested. Nevertheless for different reasons test cases were
added and the mutant status in the last version of the system is 1 - 11.

Commit ID 6e295d4428e4f04baf65c704f00f3142b46f34ff

Line content: if(i-start == classNameLength && classAttr.regionMatches(true, start, className, 0, className-
Length)) {

Line number: 1092

Change type: ADD

Survived - Killed Mutants: 3 - 6

Mutator: INLINE CONSTANT MUTATOR; REMOVE CONDITIONALS MUTATOR

Mutator description: Substituted 1 with 0; removed conditional - replaced equality check with true

Contribution: Pull request with missing test case2

Duplicated logic by method called reparentChild(...)
The reparentChild() method calls setParentNode() after performing a check. Nevertheless the called
method perform the same check. The duplicated logic generates surviving mutants in code that has
branch coverage.

Commit ID 674dab0387c4bfad01465574c4be6ea4b3f4f6e9

Line content: if (child.parentNode != null)

2https://github.com/jhy/jsoup/pull/924
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B.2. Commons Compress

Line number: 277

Change type: ADD

Survived - Killed Mutants: 1 - 2

Mutator: REMOVE CONDITIONALS MUTATOR

Mutator description: removed conditional - replaced equality check with false

Contribution: Pull request with deleted duplicated code3

Untested parsing feature convert(...)
The convert() method from W3CDom class, converts a jsoup file into a W3C document. This conversion
includes the parsing of the location, into a UIR document, which is never checked. The surviving mutant
generated a version of the system that would never add the location. More than this, test were eliminate
and the mutant status decreased to 5 - 0.

Commit ID a4883a448416031773bba432bc5bce4492f1e19d

Line content: if (!StringUtil.isBlank(in.location()))

Line number: 55

Change type: ADD

Survived - Killed Mutants: 3 - 0

Mutator: REMOVE CONDITIONALS MUTATOR

Mutator description: removed conditional - replaced equality check with false and true

Contribution: Pull request with missing test case4

B.2 Commons Compress

Untested method for octal conversion formatLongOctalOrBinaryBytes(...)
The method formatLongOctalOrBinaryBytes(long value, byte[] buf, int offset, int length) writes into
buf the long value as an octal string or as binary. Depending on the length value, it will set a maximum
limit against which it checks value. If value is smaller than the limit, it will write it as an octal string,
otherwise as a binary number. The surviving mutant removed the check, so buff would always contain
the octal string. The existing tests check this method by getting the returned buffer, converting the value
within it, back into a long and check if the initial value matches this one. Therefore it would matter if
the buffer contained an octal or binary value. This is why the mutant survived with full branch coverage.
So, in order to ensure that there is at least one test that will enter the octal string conversion, we added
a test that for value = Long.MAX VALUE with an insufficient small length of 8 for the buffer. This
will check that the value can not be converted into an octal and throw an exception with an appropriate
message which we check. Nevertheless for different reasons test cases were added and the mutant status
in the last version of the system is 3 - 2.

Commit ID: b90b1f445d5b2317360b797afae22ecfccbdac94

Line content: if (length ¡ 9) {

Line number: 370

Change type: UPDATE

Survived - Killed Mutants: 5 - 0

3https://github.com/jhy/jsoup/pull/923
4https://github.com/jhy/jsoup/pull/922
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Mutator: CONDITIONALS BOUNDARY MUTATOR

Mutator description: changed conditional boundary

Contribution: Pull request with missing test case5

Outcome: Coverage increased with 0.008% we received a ”Thank you for your patch. I will take a look
today.” by one of the top 3 contributors Gary Gregory, in 16 hours.

B.3 Commons IO

Untested method for negative offset value copyLarge(InputStream input, InputStream output, int offset, buffer)
The method copyLarge(InputStream input, InputStream output, int offset, buffer) copies the content of
input into output. If offset is a positive number, it will skip a number of bytes from input equal to
offset value. The surviving mutant came from the offset check, so after looking at the existing tests, we
noticed that the copyLarge method was never tested for a negative value for offset. The added test call
copyLarge with a negative value and check that the behaviour is the same as for offset = 0, where no
bytes are skipped from input.

Commit ID: 57ca8f6d878e3ff0955904cc9e261f254c0320b2

Line content: if (inputOffset ¿ 0) {

Line number: 1483

Change type: UPDATE

Survived - Killed Mutants: 3 - 2

Mutator: CONDITIONALS BOUNDARY MUTATOR

Mutator description: changed conditional boundary

Contribution: Pull request with missing test case6

Outcome: Coverage increased with 0.2% we received a ”Thanks!(y)” by the main current contributor in 17
hours.

Commit ID: 57ca8f6d878e3ff0955904cc9e261f254c0320b2

Line content: if (inputOffset ¿ 0) {

Line number: 1633

Change type: UPDATE

Survived - Killed Mutants: 3 - 2

Mutator: REMOVE CONDITIONALS MUTATOR

Mutator description: changed conditional boundary

Contribution: Pull request with missing test case (same as previous)

5https://github.com/apache/commons-compress/pull/50
6https://github.com/apache/commons-io/pull/41
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Appendix C

Selected Object-Oriented Mutation
Operators from Literature

This Appendix describes the Object Oriented Mutation Operators proposed in literature and mentioned in this
study. The description and examples are based on the original papers where the operators were proposed [48]
[42] [43] [61].

C.1 Encapsulation
AMC = Access modifier change

Changes the access level for instance variables and methods to other access levels. [48]

Original Code Mutant
public Stack s; private Stack s;

protected Stack s;
Stack s;

C.2 Polymorphism

PMD = Member variable declaration with parent class type
Changes the declared type of an object reference to the parent of the original declared type. [48]

Original Code Mutant
Child b; Parent b;
b = new Child(); b = new Child();

PNC = new method call with child class type
Changes the instantiated type of an object reference. [48]

Original Code Mutant
Parent a; Parent a;
a = new Parent(); a = new Child();
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C. SELECTED OBJECT-ORIENTED MUTATION OPERATORS FROM LITERATURE

C.3 Inheritance

IHD = Hiding variable deletion
Deletes a hiding variable, a variable in a subclass that has the same name and type as a variable in the
parent class. [48]

Original Code Mutant
class List { class List {
int size; int size;
... ... ... ...
} }
class Stack extends List { class Stack extends List {
int size; // int size;
... ... ... ...
} }

IHI = Hiding variable insertion
Inserts a hiding variable into a subclass. [48]

Original Code Mutant
class List { class List {
int size; int size;
... ... ... ...
} }
class Stack extends List { class Stack extends List {

// int size;
... ... ... ...
} }

C.4 Java-Specific Features Some

JTI = this keyword insertion
Inserts the keyword this. [48]

Original Code Mutant
class Stack { class Stack {
int size; int size;
... ... ... ...
void setSize (int size) { void setSize (int size) {
this.size=size; this.size=this.size;
} }
} }

JTD = this keyword deletion
Deletes uses of the keyword this. [48]

Original Code Mutant
class Stack { class Stack {
int size; int size;
... ... ... ...
void setSize (int size) { void setSize (int size) {
this.size=size; size=size;
} }
} }
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C.4. Java-Specific Features Some

JSI = static modifier insertion
Adds the static modifier to change instance variables to class variables. [48]

Original Code Mutant
public int s = 100; public static int s = 100;

JSD = static modifier deletion
Removes the static modifier to change class variables to instance variables. [48]

Original Code Mutant
public static int s = 100; public int s = 100;

FAR = Field Access expression Replacement
Replace a field access expression with other field expressions of the same field name [42]. Note that
this operator is very broad and was never implemented in a mutation tool or referred in following
publications. The following example is based on the operator‘s description, since the authors did not
provide any example.

Original Code Mutant
Class C { Class C {
private x; private x;
public m { public m {
return x; return x++;
} }
} }

Original Code Mutant
Class C { Class C {
public x; public x;
public m(); { public m();{
} }
... ...
A ob1 = new A(); A ob1 = new A();
A obj2 = new A(); A obj2 = new A();
obj1.x obj2.x

MIR = Method Invocation expression Replacement
Replace a method invocation expression with other expressions of the same method name [42]. The
following example is based on the operator‘s description, since the authors did not provide any example.

Original Code Mutant
obj.m(1,”abc”) obj.m(2,””)
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