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Abstract
Interferometric particle imaging (IPI) is used to measure both the size distribution and concentration of microbubbles (with 
a diameter less than 100 micron) in water. Using a new method for calibration makes it possible to obtain quantitative results 
for the concentration of microbubbles. The results are validated using imaging with a long-range microscope shadowgraph 
(LMS). Estimates of the size distribution and concentration from both IPI and LMS agree within uncertainty limits. The 
relative uncertainty in the IPI concentration estimation is about 10% and is mostly due to the finite number of detected bub-
bles. It is shown that the performance of the bubble-image detection algorithm needs to be quantified to obtain a reliable 
estimate of the concentration obtained with IPI.

1 Introduction

Microbubbles of free and dissolved non-condensable gases 
are naturally present in water over a wide range of sizes and 
concentrations. The accurate measurement of the microbub-
ble concentration spectrum represents an arduous technical 
challenge. However, knowledge of this spectrum is of great 
importance, for example in the development of models pre-
dicting cavitation inception and sound emission by cavita-
tion (Friesch et al. 2002; Brandner et al. 2022).

There are several methods to characterize the microbub-
ble content in a flow. We can roughly divide these into two 
classes, i.e., acoustical methods and optical methods. Exam-
ples of techniques belonging to the first family are cavita-
tion susceptibility meter (CSM) (Oldenziel 1982) and the 
sonar (Medwin 1977; Thorpe 1982). Examples of techniques 
belonging to the second family are shadowgraphy, hologra-
phy, and interferometry (Mees et al. 2010). In this study, an 
interferometric technique is applied to measure the concen-
tration of microbubbles. Previous works using methodolo-
gies relying on interferometry to characterize microbubbles 

have adopted different nomenclatures, i.e., interferometric 
laser imaging technique (ILIT), Mie-scattering imaging 
(MSI), and interferometric particle imaging (IPI). Below, 
we refer to the applied technique as IPI.

We selected IPI for its proven effectiveness in study-
ing cavitation inception (Brandner 2018). The technique 
is non-invasive, sensitive to microbubble sizes relevant to 
cavitation inception (10-100  μm), and accommodates low-
concentration flows well due to its relatively large meas-
urement volume with respect to shadowgraphic methods 
(Khoo et al. 2020). Unlike shadowgraphy and holography, 
IPI allows flexible positioning of the light source and work-
ing distance, enabling its use on model ships during towing 
tests (Birvalski and van Rijsbergen 2017, 2018). Recently, 
field measurement on a full scale vessel has been performed 
(Stigter et al. 2024).

Initially developed for measuring droplet and bubble sizes 
(König et al. 1986), IPI has been extensively studied for its 
precision in estimating microbubble diameters (Dehaeck and 
Van Beeck 2007). Reported uncertainties in bubble diameter 
typically lie within a few percent (Russell et al. 2020). How-
ever, despite this examination of diameter uncertainties, the 
uncertainty on the concentration measured by IPI remains 
unexplored. Besides a precise estimate of the microbubble 
diameter, an accurate definition of the measurement volume 
and a foolproof detection algorithm are necessary to deter-
mine the microbubble concentration. Especially the latter 
task is complicated by impurities in the flow.
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To the best of our knowledge, estimates of the micro-
bubble concentration from IPI have never been success-
fully validated. Ebert et al. (2015) compare IPI with a 
phase-Doppler method, and the concentrations only agree 
to within an order of magnitude. Birvalski et al. (2019) 
determine the measurement volume of their setup inde-
pendently, but the estimated concentrations differ strongly 
from a benchmark measurement technique. Another 
attempt to determine the measurement volume is made 
by Russell et al. (2020), but they do not validate their 
concentration measurement.

The aim of this work is to validate the concentration 
measurement from IPI and assess its uncertainty. For 
the validation, we compare with a benchmark technique, 
i.e., long-range microscopic shadowgraphy (LMS). We 
explain the working principles of both techniques and 
present a novel calibration methodology to obtain the 
measurement volume of IPI. Finally, from a thorough 
analysis, we identify the factors contributing the most to 
the uncertainties in the estimated concentration from IPI.

The paper is organized as follows: Section 2 explains 
the measurement setups used for this research. Section 3 
describes the working principles and postprocessing algo-
rithms for both LMS and IPI. The calibration and uncer-
tainty assessment for both techniques are presented in 
Sect. 4. Section 5 presents and discusses the resulting size 
and concentration measurements. Section 6 summarizes 
the main conclusions of the study.

2  Experimental setup

A schematic overview of the experimental setup is shown 
in Fig. 1. The IPI equipment is oriented horizontally, con-
sisting of a camera (LaVision Imager sCMOS CLHS), a 
laser (Azurlight Systems 488 nm CW Fiber), and an optical 
band-pass filter (FGB7, Thorlabs) that transmits blue light 
(435-500 nm). The LMS equipment is shown in vertical ori-
entation, which includes a camera (LaVision Imager sCMOS 
CLHS), a back-light illumination (Schott KL1500 HAL), 
and an optical long-pass filter (FGL515M, Thorlabs) that 
transmits green, yellow and red light (cut-off wavelength 
of 515 nm).

The laser beam enters the glass water tank from below, 
pointing upwards. The long-pass filter in front of the LMS 
lens effectively blocks light scattered from the laser beam, 
ensuring no interference with the LMS image. Similarly, a 
band-pass filter placed in front of the interferometric parti-
cle imaging (IPI) lens prevents back-light illumination from 
being detected by the IPI setup. This strategic application 
of filters allows for simultaneous execution of both IPI and 
LMS measurements. Furthermore, careful alignment of the 
setups ensures that the measurement volumes of both tech-
niques overlap, facilitating the identification of the identical 
microbubble in both IPI and LMS images.

This setup is used to perform two different types of 
measurements, i.e., a validation of the estimated size by 
IPI and a validation of the estimated concentration by IPI 
using LMS as a benchmark. In case of the size validation, 
a microfluidic chip with a T-junction is used to generate 
relatively large microbubbles (200-1000  μ m diameter). 

IPI

Back-
light

Micro-
bubble

generator

Laser

LMS

0.5 A

Optical 

a

Electrolysis 
generator

x

x

b

Fig. 1  (a) A schematic of the top-view of the experimental setup. The 
microbubble generator can generate relatively larger microbubbles 
(200–1000  μ m) in a controlled manner. The electrolysis can gener-
ate relatively smaller microbubbles (20–150  μ m) in an uncontrolled 

manner. Next to the cameras, the definitions of the x-axis for IPI and 
LMS are shown. (b) A schematic of the experimental setup viewed 
under an angle. The laser beam is reflected upwards into the water 
tank
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The size and generation frequency is set by a pressure con-
troller (Elveflow OB1). The chip is able to generate only a 
few microbubbles per second, which enables capturing a 
single microbubble per image. For this measurement, the 
IPI and LMS setup use the same lens (Nikon AF Micro 
Nikkor 105 mm 1:2.8).

In case of the concentration validation, electrolysis is 
used to generate a cloud of relatively small microbubbles 
(diameter < 200  μm). A mechanical stirrer is added to 
distribute the microbubbles throughout the glass tank and 
increase their residence time in the tank. The electrodes 
(Sigma-Aldrich) are two graphite rods with a thickness 
of 6 mm and a length of 150 mm. A power supply gener-
ates a constant current of 0.5 A. Because these microbub-
bles are relatively small, the magnification of the LMS 
setup is increased to 2.7 using a telescopic lens (Navitar), 
which consists of a zoom lens (1-60123) and an adapter 
(1-62922).

Sample images acquired for size validation and for con-
centration validation are shown in Fig. 2 and in Fig. 3, 
respectively. Figure 2a shows a typical fringe pattern from 
a microbubble. However, the fringe pattern from IPI can 
be distorted in a number of ways. First, due to interference 
of light scattered from nearby microbubbles, a tilted fringe 
pattern can emerge on top of the correct fringe pattern 
(Fig. 2b). Second, when a small object is located between 
the microbubble and the lens, an image is created that 
we refer to as a hologram, which is projected onto the 
microbubble image (Fig. 2c). Filtering the water from 
particles larger than 4  μ m could reduce the distortion by 
holograms.

Particles influence the IPI image as well. Non-spherical 
objects are known to generate speckle patterns (Fig. 2d). 
These speckle patterns hamper the detection of fringe 
patterns from microbubbles. Spherical particles create a 
fringe pattern that is identical to that from a microbubble 
(Fig. 2e), resulting in false counts.

3  Method

3.1  Interferometric particle imaging (IPI)

Interferometric particle imaging is based on the Mie-scat-
tering pattern generated when a monochromatic, coherent 
light source hits a spherical object, where the object has a 
diameter significantly larger than the wavelength of the light. 

Fig. 2  Typical examples of 
fringe patterns in IPI images 
and corresponding LMS images

(a) A typical fringe pattern from
a spherical bubble.

(b) A tilted fringe pattern changing orientation
over time as a result of proximity between two
microbubbles.

(c) A small particle in the
proximity of a microbub-
ble generating a hologram
in the microbubble image
from IPI.

(d) A non-spherical par-
ticle producing a speckle
pattern in the IPI image.

(e) A spherical hollow glass
bead producing a fringe
pattern similar to that
typically obtained from a
microbubble.

Fig. 3  Typical images of the microbubbles generated by electrolysis. 
The red box in the latter images highlights the measurement volume 
of the other technique. Therefore, microbubbles inside these boxes 
are visualized by both techniques
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The diffraction pattern is visible as a fringe pattern in the 
out-of-focus image of the spherical object.

The complete Mie-scattering solution for a spherical 
object is mathematically complex. However, the correla-
tion between the object diameter (d) and the number of 
fringes in the diffraction pattern ( Nfr ) can be described 
with a linear relationship. From an IPI image, Nfr can be 
found by dividing the image diameter (D) by the wave-
length of the fringes in the image ( � ), which leads to the 
following expression for the object diameter,

where K is a proportionality constant and � is the collection 
angle. This relation also applies to microbubbles, provided 
that they are spherical. In Fig. 4, the quantities � and D are 
shown in a sample IPI image of a microbubble.

As pointed out by Graßmann and Peters (2004), both 
D and � vary as a function of the out-of-focus distance 
z0 . The exact relationship for � and D as function of z0 
depends on the optics used in the measurement. We can 
approximate these relationships for the optics used by 
means of a double-lens model. This model contains six 
degrees of freedom, i.e., the distance between focal plane 
and front lens ( z1 ), the distance between the lenses ( Δz ), 

(1)d = K
Nfr

�
= K

D

��
,

the distance from rear lens to screen ( z2 ), the aperture 
diameter ( Da ), and the focal length of both the front lens 
and the rear lens ( f1 and f2 , respectively).

Figure 5 shows the double-lens model for an IPI setup 
visualizing a microbubble in water. In this case, two degrees 
of freedom are added, i.e., the distance between the front 
lens to the glass having air as medium, and the thickness 
of the glass. These distances can be measured in our setup. 
The distance from focal plane to front lens is increased in 
our setup with respect to the case in air ( z1 ) due to the larger 
refractive index and is referred to as z1,m , as can be seen in 
Fig. 5.

The model provides relationships for the collection angle 
� , the image size D, and the magnification M as a function 
of z0 . These relationships depend on z1 instead of z1,m . The 
correction for the influence of the different media is incorpo-
rated by multiplying z1 by the refractive index n of the water, 
where the microbubble is located:

where M0 is the magnification at z0 = 0.
The advantage of this approach is that a calibration of 

the expression for M(z0) is sufficient to determine �(z0) and 
D(z0) . A calibration of M(z0) provides the parameters z1 and 
M0 , which are the only unknowns in Eqs. 2 and 3. The cali-
bration of M(z0) can be done by moving a calibration plate 
in front of the lens, to certain positions of z0 . This procedure 
is relatively easy, as opposed to the more difficult procedure 
used to calibrate �(z0) directly.

The position z0 of a microbubble is not known a-priori, 
but D can be computed directly from the microbubble 
images. By inverting Eq. 3, z0 can be calculated from D, 
after which z0 can be inserted in Eq. 2 to find � for each 

(2)�(z0) =2 tan
−1

(
Da∕2

z1n + z0

)
,

(3)D(z0) =
||||
M0Da

z0

z1n + z0

||||
,

(4)M(z0) =M0

z1n

z1n + z0
,

Fig. 4  Graphical definition of the parameters used to estimate the 
microbubble diameter from IPI, see text

Fig. 5  A schematic overview 
of the double-lens model. This 
arrangement models our IPI 
setup, with the optics in air and 
the microbubble in water, sepa-
rated by a transparent medium. 
The larger refractive index of 
the water causes an increase in 
working distance from z1 to z1,m . 
z0 is positively defined in the 
direction of the lenses
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individual microbubble. It is important to stress that a sin-
gle-lens model would not be adequate to model the behavior 
of the optics we use, because it does not correctly capture 
the relationships for M(z0) , �(z0) and D(z0).

Russell et al. (2020) discuss several methods to determine 
the fringe wavelength � , i.e., the peak-finding method, the 
fast Fourier transform (FFT), the auto-correlation, and the 
wavelet transform. They conclude that the auto-correlation 
method is the most accurate one, especially for the relatively 
small microbubbles, with the FFT method giving almost 
identical results. However, we selected a 2-D FFT method, 
because it provides the orientation of the fringe pattern as 
additional information. Using this orientation, it is possible 
to distinguish between microbubble images and images from 
other objects. These aspects are discussed in further detail 
later in the paper.

The measurement volume of IPI is defined by applying 
a minimum threshold ( Ith ) on the intensity (I) of the micro-
bubble images. This intensity is proportional to the laser 
beam intensity profile, the microbubble diameter squared 
( d2 ) (Zangwill 2013, chapter 21.5.2), and inversely propor-
tional to the microbubble image diameter squared ( 1∕D2 ). 
The latter effect describes the fact that when the image size 
is enlarged over a larger image area by defocusing, the light 
has to be distributed over a larger area, resulting in a lower 
image intensity. Assuming the laser beam intensity profile 
as Gaussian, the microbubble image intensity is found to be:

where Ĩ0 is a proportionality constant, �b is a measure for 
the width of the laser beam, and � the distance of the micro-
bubble position to the laser beam axis in a polar coordinate 
system.

Microbubbles having an intensity larger than Ith are 
included in the estimation of the measurement volume, so 
the edge of the measurement volume is defined by microbub-
bles having an intensity exactly equal to Ith . Rewriting Eq. 5 
gives the distance from the laser beam axis to the edge as

Clearly, the measurement volume depends on the diameter 
of the microbubble. The effect of this dependency is shown 
later (Fig. 12b).

The variation in D due to the microbubble position 
z0 causes the volume to be elliptical rather than circular, 
slightly stretched toward the focal plane. The stretching of 
the measurement volume toward the focal plane happens 
because for decreasing z0 the microbubble images become 
relatively much brighter due to their relatively smaller size D 

(5)I(𝛿) = Ĩ0 exp

{
−

(
𝛿

𝛿b

)2
}

d2

D2
,

(6)𝛿edge = 𝛿b

√

ln

(
Ĩ0

Ith

d2

D2

)
.

( I ∝ 1∕D2 ), which leads to exceeding the threshold intensity 
Ith over a wider area when approaching the focal plane. On 
this regard, Fig. 6 shows the cross section of the measure-
ment volume along a plane orthogonal to the camera lens. 
The circle formed by the dashed line represents the cross 
section of the measurement volume when D is assumed to 
be constant, while the ellipse formed by the solid line repre-
sents the measurement volume for varying D.

Figure 6 shows how the area of the cross section of the 
measurement volume can be computed. From this figure, we 
see that z0 = zb + �edge(�) cos(�) , where zb is the out-of-focus 
distance of the laser beam axis. Because D depends on z0 , 
it also depends on �edge . Substitution of D(�edge, �) in Eq. 6 
results in an implicit relation for �edge . Solving this relation 
gives �edge as a function of � . Finally, the area of the cross 
section, AMV , can be computed by integration of 1/2 �edge(�)2 
over � . To obtain the total measurement volume, this area 
should be multiplied by the length (L) over which the laser 
beam appears in the image.

The smallest � that can be measured is theoretically set 
by the Nyquist limit, which is equal to two pixels (Nobach 
et al. 2002). Closer toward the focal plane (smaller z0 ), D 
decreases and the fringe pattern is compressed. When z0 is 
small enough, the fringe spacing will be smaller than the 
Nyquist limit and the correct diameter can no longer be 
determined. This results in a reduction of AMV , which is 
represented by the gray area in Fig. 6. If d is large enough, 
this gray area surpasses the red area, and AMV becomes equal 
to zero.

A fringe spacing that is smaller than the Nyquist limit 
will lead to an underestimation of the corresponding 

Fig. 6  The cross section of the measurement volume ( AMV ) along a 
plane orthogonal to the lens. Because D varies with z0 , AMV is ellip-
tical. Both saturation of the sensor and the Nyquist limit reduce the 
area of AMV . The graph shows the definition of a coordinate system, 
which can be used to calculate the area of the AMV . zb is the posi-
tion of the laser beam center with respect to the focal plane. All areas 
highlighted in the graph depend on the microbubble diameter
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microbubble diameter due to aliasing. If a significant amount 
of microbubbles has a diameter that is larger than the maxi-
mum detectable diameter of the IPI setup, the aliasing will 
influence the estimated microbubble concentration. It is, 
however, important to note that, with reference to Fig. 6, 
only the microbubbles that are located in the portion of 
measurement volume where the gray region intersects with 
the ellipse described by �edge(�) are exposed to aliasing.

The maximum detectable microbubble diameter, dmax , is 
found when the area represented by the Nyquist limit (the 
gray area) exactly covers AMV (the red area). The position 
of this microbubble will therefore be on the � = 0 axis, at 
the edge at the right-hand side of AMV in Fig. 6. With � = 0 , 
the coordinate systems of the lens and the laser beam can 
be related as z0 = zb + � . The intensity I of a microbubble 
has a fringe distance equal to the Nyquist limit ( � = 2 ) and 
is located at a position � can be found using Eq. 5, where 
Eq. 1 can be used to eliminate d/D, and Eq. 2 to determine 
the collection angle:

where we assume � = 0 . When setting this equation equal 
to Ith , two solutions can be found for � , i.e., one close to the 
object focal plane and one closer to the lens with respect to 
the laser beam center. The latter one corresponds to the posi-
tion of the microbubble with the maximum diameter. This 
position can be used to determine � and D of this microbub-
ble from Eqs. (2 and 3), and the maximum microbubble 
diameter dmax using Eq. 1.

AMV can also be reduced by image saturation: microbub-
bles can scatter so much light that the microbubble image 
is (partly) saturated. For a Gaussian beam intensity profile, 
this typically happens when the microbubble is close to the 
beam center. The corresponding area can be calculated by 
replacing Ith in Eq. 6 with IBD , i.e., the bit-depth intensity 
of the camera; see the blue shaded area in Fig. 6. The diam-
eter for which saturation occurs can be approximated using 
Eq. 5, assuming saturation to happen at the laser beam center 
( � = 0 , z0 = zb ), as follows

To measure larger microbubbles at fixed D, one can reduce 
the laser power or use an imaging sensor with a higher full 
well capacity.

The IPI technique also presents a limit on the small-
est diameters that can be measured. This limit typically 
depends on the lowest number of detectable fringes. This is 
approximately two, which corresponds to a fringe spacing 

(7)I(𝛿) =
K2Ĩ0

16

[
tan−1

(
Da∕2

z1n + zb + 𝛿

)]−2
e
−

𝛿2

𝛿2
b ,

(8)dS = D(zb)

√
IBD

Ĩ0
.

of �max = D∕2 . From Eq. 1, we see that the corresponding 
lower microbubble diameter limit is then given by

Furthermore, Eq. 6 shows that �edge , and correspondingly, 
the measurement volume becomes zero if the microbub-
ble diameter is small enough. This introduces an additional 
lower limit on the microbubble diameter, which can be esti-
mated by setting �edge = 0 in Eq. 6 as

This expression shows that, in order to decrease the mini-
mum detectable microbubble diameter, one could use either 
a stronger laser (increasing Ĩ0 ), or move the laser beam closer 
to the focal plane (reducing D(zb) ), or reduce the threshold 
value Ith . However, when Ith is close to the background noise 
level of the image, detection algorithms typically become 
less accurate.

3.2  Analysis of IPI images

We use the Hough gradient method (Duda and Hart 1972) to 
identify microbubble images within each IPI image. Before 
applying this method, we subtract a background image 
and apply a Gaussian blur filter with a 5 px kernel size. 
After this, we apply a minimum intensity threshold and cal-
culate the edges from the remaining objects. Finally, the 
Hough gradient method determines the position and area of 
the microbubble images based on the previously detected 
edges1.

A first estimate of D can be gained from the area A of 
the microbubble image, using the relationship D ≈ 2

√
A∕� . 

However, this estimate depends on the intensity of the 
microbubbles with respect to the threshold value and on 
possible overlapping images. Therefore, we apply a more 
accurate method, the steps of which are graphically eluci-
dated in Fig. 7. We identify a cross section in the middle 
of the microbubble image, in the direction parallel to the 
fringe pattern. The high-frequency components are previ-
ously removed using a Gaussian filter with a 5 px kernel 
size, resulting in a smooth envelope. The maximum gradient 
of the envelope corresponds to the left edge, while the mini-
mum gradient corresponds to the right edge; see Fig. 7c. The 
estimate of the edge positions is improved using a Gauss-
ian fitting procedure on the 3 pixels around the extremes 
in the gradient (Shinpaugh et al. 1992). From these edges, 

(9)dmin = 2
K

�(zb)
.

(10)dmin,I = D(zb)

√
Ith

Ĩ0
.

1 We use the Hough gradient method as implemented in the Python 
distribution of OpenCV (Bradski 2000)
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we compute D as the distance between the edges, and as an 
uncertainty for this estimate we take the full width at half 
maximum (FWHM).

An estimate of the scattering intensity is obtained from 
taking the 95-percentile of the intensity of the pixels within 
the microbubble disk, following Russell et al. (2020).

The fringe spacing is determined using the 2-D FFT 
method, which provides the orientation of the fringe pat-
tern as an additional parameter. Before we can apply the FFT 
method, the microbubble image should be pre-processed. 
These steps are graphically elucidated in Fig. 8. First, we 
remove parts of overlapping microbubbles (Fig. 8b). Sec-
ond, to reduce the effect of curved fringes at the microbub-
ble image edge, we inscribe the largest possible rectangle 
that fits the microbubble image after the removal opera-
tion. This results in a rectangular image containing only the 
fringe pattern (Fig. 8c). Third, we compute an envelope of 
the microbubble image using an uniform filter with a kernel 
size of 30% of the microbubble image size. The envelope is 
subtracted from the square image to reduce any large-scale 
intensity gradients. The 30% is found to be a convenient 
value to remove the large-scale intensity gradients, while 
keeping the fringe pattern intact. Fourth, the mean intensity 
is subtracted to remove the DC peak in the FFT pattern. 
Finally, the resulting image is multiplied by a 2D Hann filter 
to reduce spectral leakage (Fig. 8d).

The third step necessitates some further explanations. 
This step is effectively a high-pass filter, and it is impor-
tant because there are large intensity differences between 
the side of the microbubble where the laser beam enters 
and the side where the beam leaves the microbubble. This 
is especially the case when the scattering angle is 90◦ and 
the laser beam is parallel polarized. The application of this 
high-pass filter might lead to a complete removal of the sig-
nal when the fringe pattern has a relatively large spacing. 
However, without this operation large-scale intensity gra-
dients typically have more spectral weight than the fringe 
pattern itself, which makes it impossible to resolve the actual 
fringe spacing.

After these operations, the 2-D FFT algorithm is applied, 
and the power spectral density (PSD) is computed (Fig. 8e). 
The position of the PSD maxima is approximated using a 
1-D Gaussian interpolation method in both x and y-direction 

Fig. 7  Estimation method for D. (a) A cross section of the middle of 
the microbubble is selected, perpendicular to the fringe pattern; (b) a 
smooth envelope is calculated from the original signal; (c) the deriva-

tive of the envelope is determined. The maximum of the derivative 
corresponds to the left edge, and the minimum to the right edge

Fig. 8  Steps of the pre-processing and 2D-FFT method to estimate 
the fringe wavelength and the singal-to-noise ratio
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(Adrian et al. 1991). From the comparison between the peak 
positions and the DC position, we obtain the fringe spacing 
frequency and the orientation of the fringe pattern. To deter-
mine the signal-to-noise ratio (SNR), we select the points 
that are on a line through the two peaks (Fig. 8f). From these 
points, the signal power and noise power are determined, and 
the SNR is computed according to

where the signal power is the sum of the harmonic contri-
butions of the signal multiplied by the frequency resolution 
Δf  of the PSD, and the noise power is defined as all other 
harmonic contributions multiplied by Δf .

The length of the rectangle cutout (Fig. 8c), Ns , is an 
important parameter. At first, this parameter is necessary 
to determine the uncertainty in � as it describes the num-
ber of samples of the PSD. Moreover, it also increases the 
minimum detectable microbubble diameter, dmin . Typically, 
Ns ≤ D , resulting in less space to fit the minimum number 
of two fringes.

3.3  Long‑range microscopic shadowgraphy (LMS)

We use LMS to validate the estimates of microbubble con-
centration from IPI. With this technique, it is possible to 
obtain the 3-D microbubble position using a single camera. 
After calibration of the magnification factor, it is possible 
to obtain the 2-D location of the microbubble in the object 
plane. Additionally, the sharpness of the microbubble image 
contains information about the position of the microbubble 
perpendicular to the object plane (the out-of-focus distance 
z0 ) (Pentland 1987), resulting in the full 3-D microbub-
ble position. When the full 3-D position of the microbub-
ble is known, it is possible to determine the microbubble 
concentration and compare this with the IPI concentration 
estimation.

The intensity field of the image of a point object can be 
described using a point-spread function (PSF). For non-
monochromatic (white) and incoherent light, the PSF can be 
approximated by a 2-D Gaussian function (Lebrun et al. 1993). 
The sharpness of the image is related to the width, � , of the 
Gaussian PSF, relating � to the out-of-focus distance z0 . Fdida 
and Blaisot (2010) show that � is proportional to z0 for rela-
tively small values of � (and thus z0).

Fdida and Blaisot (2010) define � as proportional to the 
edge width ΔR,

(11)SNR = 10 log10

(
signal power

noise power

)
,

(12)� =
ΔR

pr(C
0
M
)
,

where pr is a third-order polynomial function of C0
M

 , which 
is the normalized Michelson contrast. pr(C0

M
) corrects for 

both the transparency of the microbubble object and relative 
size of the microbubble image.

The Michelson contrast CM is typically used in images 
where both bright and dark features are equivalent and take 
up similar fractions of the area. It is defined as

where Imin and Imax represent the highest and lowest intensi-
ties in the image, respectively. The maximum contrast CM is 
set by the transparency � of the microbubble image, which 
is defined as the minimum value of Imin∕Imax of all micro-
bubbles detected. The normalized contrast, C0

M
 , is helpful, 

because it removes the influence of the transparency on the 
contrast. C0

M
 is defined as

and its value ranges between one (maximum darkness, � ) 
and zero (no detectable contrast).

C0
M

 decreases when the (blurred) edge of the microbubble 
image extends into the image. This happens when z0 is large, 
or when the microbubble image is small. The contrast is thus 
influenced by � and by the radius R of the microbubble image. 
C0
M

 affects the calculation of � as well as the microbubble 
image radius R. Fdida and Blaisot (2010) introduce a function 
pl(C

0
M
) to correct for the influence of C0

M
 on the estimated 

radius R, resulting in the following relation for the microbub-
ble diameter in object plane

 Fdida and Blaisot (2010) define R as the radius at a certain 
intensity level Il of the microbubble image, defined as an 
intensity level between the minimum intensity Imin and the 
background intensity Imax , i.e.

with l denoting the intensity level. The microbubble radius 
Rl corresponding to the level l is defined as Rl = R(Il) . We 
compute Rl by counting all pixels with an intensity below 
Il . This results in an area from which we obtain the radius 
as follows

 Fdida and Blaisot (2010) give l = 0.61 as the optimal 
intensity level to evaluate the microbubble radius and use 
R0.77 − R0.25 as the definition of the edge width ΔR . Figure 9 

(13)CM =
1 − Imin∕Imax

1 + Imin∕Imax
,

(14)C0
M
=

CM

(1 + CM)(1 − �) − CM

,

(15)d = 2 R pl(C
0
M
).

(16)Il = Imin + l
(
Imax − Imin

)
,

(17)Rl =
√
A∕�.
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shows these intensity levels in a typical LMS microbubble 
image.

Because � is proportional to z0 , a maximum limit ( �max ) 
on � defines the depth of the measurement volume, Δz0 . 
The criterion for the depth of the measurement volume is 
thus given by

The total measurement volume is calculated by multiplying 
Δz0 by the area of the field of view in the object domain.

Fdida and Blaisot (2010) argue that this criterion in 
Eq. 18 is independent of the diameter of the object. How-
ever, this assumption only holds for relatively small values 
of � . When � becomes larger than the microbubble image 
radius R, the microbubble image contrast reduces. If the con-
trast is too small, microbubble detection is avoided. Because 
this effect depends on R, it leads to a bias toward larger 
microbubbles in the concentration. Therefore, we define �max 
as the largest value of � for which this bias effect does not 
occur at the smallest microbubble diameters we intend to 
measure.

3.4  Analysis of LMS images

To prepare the images for analysis, we subtract a back-
ground image and apply a Gaussian blur filter with a 5 px 
kernel size. The next step is to determine the locations and 
to estimate the areas of the microbubble images. We use a 
threshold-based algorithm, where all objects below a certain 
intensity are labeled2 and their center positions are deter-
mined. The radius R is approximated from the labeled area 
of the microbubble image, using Eq. 17.

Individual microbubbles are selected by cropping regions 
of size 1.5R around their centers. The cropped region is 
always larger than the microbubble image, which makes it 
possible that microbubbles located in the close proximity 

(18)� ≤ �max.

are also partly included. This can deteriorate the estimate of 
R, because such estimate is based on the number of pixels 
having an intensity below a certain intensity Il . To overcome 
this limitation, we apply the labeling algorithm again on this 
cropped region and select the object that is the closest to the 
center of the region.

After the selection and filling of the microbubble images, 
we determine Imin and Imax , and subsequently I0.25 , I0.61 , and 
I0.77 , using Eq. 16. From the obtained intensity levels, we 
compute the corresponding radii Rl.

The images of the microbubbles generated by the micro-
fluidic chip are found to be characterized by a bright spot in 
the center. This anomaly can be associated with the back-
light illumination from the LED panel. Because the esti-
mate for Rl is defined by the number of pixels below Il , this 
bright spot causes an underestimation of Rl . We solve this 
by filling the selected region in the image using a binary fill-
ing method3. For a good performance of the filling method, 
the lower level is increased from 0.25 to 0.45, which also 
implies a different pr(C0

M
) polynomial.

To distinguish between images of particles and of micro-
bubbles, we introduce a parameter that quantifies the devia-
tion from circularity of the microbubble or particle image, 
as suggested by Blaisot and Yon (2005):

To estimate the value of � for each image, we select all pixels 
having an intensity level below 0.50 (i.e., I0.50 ). Then, we 
crop this region along the edges. Lmin is the shortest chord 
of this cropped region passing through its center, whereas 
Lmax is the longest one. We assume that microbubbles are 
spherical, and they should therefore have a value of � close 
to 1. By selecting only objects with � ≥ 0.9 , we can discard 
most of the odd-shaped objects.

4  Calibration and uncertainty assessment

4.1  Calibration of IPI

In this section, we explain the calibration procedure of K, 
� , Ĩ0 and �b . Moreover, we assess the uncertainties in the 
estimation of these parameters and additionally in D, SNR, 
and � . Finally, we quantify the uncertainty due to erroneous 
detection in the post-processing algorithm.

(19)� =
Lmin

Lmax
.

Fig. 9  Graphical definition of the parameters used to estimate the 
microbubble diameter from LMS

2 We use the connectedComponentsWithStats algorithm from 
OpenCV (Bradski 2000) for this task.
3 We use the ndimage package implemented within the SciPy library 
(Virtanen et al. 2020)
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We calibrate K by simulating the fringe pattern of micro-
bubble images over a large range of microbubble diameters 
and evaluating the corresponding fringe spacing using the 
2D-FFT method4. The resulting relation between K and D 
is shown in Fig. 10. This figure shows that K varies only lit-
tle with d. The average value of K over a diameter range of 
10-800  μ m is 36.60 ± 0.07  μm◦.

We calibrate the magnification of the lens by moving a 
calibration plate over a distance of −5 mm ≤ z0 ≤ 5 mm. 
This results in M0 = 0.977 ± 0.021 . Using Eq. 4 and the cali-
bration relation for M0(z0) , we find z1 = 177.7 ± 3.1 mm. 
This corresponds to a collection angle of 9.05 ± 0.160◦ for 
an object at the focal plane.

For validation of this result, we calibrate the collection 
angle � in a similar way as done by Russell et al. (2020). A 
thin plate with a hole is placed between the laser beam and 
the lens, so that it acts as the optical aperture of the sys-
tem. When a microbubble moves through the laser beam, 
the size of its image D is defined by the diameter dhole of the 
hole in the plate. Because the position of the laser beam and 
plate are known, the collection angle for this situation can be 
determined. By comparing the microbubble image diameter 
of the case including the plate with the case without plate, 
the collection angle of the optical system can be determined. 
From this calibration procedure, we find � = 10.38 ± 0.27◦ , 
for z0 = −32.46 mm. From Eq. 2 and the value of z1 found, 
our model predicts a collection angle of � = 10.48◦ for this 
value of z0 , which is within the uncertainty range of the 
calibration.

We validate the parameters in Eq. 3 by obtaining z0 from 
the LMS camera for 281 IPI microbubbles. The result is 
shown in Fig. 11a. The line in the graph represents Eq. 3, 
with values for M0 and z1 as found above. Similarly, we can 
compute � as a function of z0 using Eq. 2, with the result 
shown in Fig. 11b.

An estimate in the uncertainty in D is given by the widths 
of the peaks in the gradient plot (Fig. 7). When we assume 
that these peaks are Gaussian, the standard deviation is 
related to the FWHM as FWHM = 2

√
2 ln 2� . Combining 

the widths of both peaks results in

The uncertainty in � is based on the Cramer–Rao bound, 
which states that the minimum variance in the estimated 
fringe spacing is given by (Ibrahim et al. 1991)

where SNR is the signal-to-noise ratio defined in Eq. 11, 
Ns the number of samples (i.e., pixels), and fs the sampling 
frequency of the FFT signal. In our case, the sampling fre-
quency is equal to 1/px. The fringe spacing � is found by 
dividing Ns over the fringe spatial frequency f. Assuming 
no uncertainty on Ns , the uncertainty in the fringe spatial 
frequency, �f  , is equal to �� . It has been shown that Eq. 21 
is only valid when the product SNRNs is larger than 15 dB 
(Shinpaugh et al. 1992).

The parameters corresponding to the laser illumina-
tion, Ĩ0 and �b , are calibrated using a fitting procedure. 
Figure 12a shows the parameter ID2∕d2 versus the x posi-
tion of the microbubbles in the laser beam. According to 

(20)�D =
1

2
√
2 ln 2

�
FWHM2

left
+ FWHM2

right
.

(21)�2
f
=

12

(2�)2SNRNs(N
2
s
− 1)

f 2
s
,

Fig. 10  The relationship between the proportionality constant K and 
the microbubble diameter. This relationship is determined using a 
numerical simulation of the fringe pattern from microbubble images. 
In this simulation, the Mie-scattering pattern for a certain scattering 
angle and the collection angle is calculated to determine the fringe 
pattern

Fig. 11  The microbubble image diameter (a) and collection angle � 
(b) as a function of the out-of-focus distance. The shaded areas cor-
respond to a deviation of one standard deviation

4 We compute the fringe pattern using the Python library PyMieScatt 
(Sumlin et al. 2018)
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Eq. 5, the maximum values in the graph in Fig. 12a follow 
a Gaussian profile. We divide the x-direction into 200 bins 
and determine the 95th percentile of ID2∕d2 for each bin to 
estimate the normalized intensity maximum, after which we 
fit a Gaussian profile through these maximum values. From 
this procedure, we find Ĩ0 = 33383 ± 501 a.u. px2  μm−2 and 
�b = 1.577 ± 0.027 mm. The uncertainties on these param-
eters are the variances in the parameters according to the 
regression algorithm used for the fitting procedure5.

Figure 12b shows the influence of the intensity thresh-
old Ith on the edge size �edge . An increase in Ith results in a 
decrease in the measurement volume, and it increases the 
diameter of the smallest detectable microbubble. This results 
in a shift of the measurement range of the IPI setup toward 
larger microbubble diameters.

Using the parameters Ĩ0 and �b , we can estimate the 
measurement volume for IPI. To show the influence of the 

variation in D, the saturation and the Nyquist limit, we deter-
mine the measurement volume in all these cases, as shown in 
Fig. 13. The black solid line shows the measurement volume 
when only the intensity threshold is taken into account. The 
blue dashed line adds the saturation effect, resulting in a 
constant measurement volume for d > dS . The green dashed 
line adds the effect of variations in D, increasing the meas-
urement volume slightly. And finally, adding the effect of the 
Nyquist limit results in the red dashed line.

The influence of the Nyquist limit is already significant at 
relatively small microbubble diameters ( d ≈ 100  μ m) and 
causes the measurement volume to drop to zero at a certain 
maximum diameter dmax . Using the method explained in 
Sect. 3.1, we can determine dmax as 475  μ m. According to 
Eq. 9, the minimum detectable diameter is dmin = 7.9  μ m, 
while Eq. 10 sets the lower limit at dmin,I = 13.7  μ m for 
Ith = 300 . Equation 8 shows that saturation can happen for 
microbubble diameters larger than dS = 202.3  μm.

Errors in the detection of microbubbles contribute to 
the uncertainty in the concentration, which is not easy to 
quantify. An attempt is made by Nobach et al. (2002), who 
give a derivation of the probability that two microbubble 
images overlap. Overlap can lead to erroneous results for the 
localization of the microbubble images, or even could cause 
the microbubble images to be overlooked by the processing 
algorithm. This leads to an underestimation of the microbub-
ble concentration. Previous authors tried to reduce the over-
lap using an optical compression technique, reducing the cir-
cular microbubble image to a thin rectangular image (Maeda 
et al. 2000; Kawaguchi et al. 2002). However, knowledge of 
the full microbubble image is necessary to determine the 
fringe orientation.

We choose to reduce the negative implications of over-
lap by removing the overlapping parts of the microbub-
bles before calculating the fringe pattern (Damaschke 
et al. 2005). Furthermore, to quantify the detection errors 
we manually identify 3453 objects in 150 images, and 
determine their position and approximate radius, as well 

Fig. 12  (a) Scatter plot of the normalized intensity of the microbub-
bles versus their distance from the center of the laser beam in x-direc-
tion; (b) the expected edge size �edge of the measurement volume in 
the x-direction, as a function of the microbubble diameter. The meas-
ured microbubble positions are included for comparison

Fig. 13  The IPI measurement volume for four different cases, with 
increasing complexity: The measurement volume only from the inten-
sity threshold; including saturation effect; including variation in D; 
including the Nyquist limit

5 We use curve_fit from the SciPy library (Virtanen et al. 2020) to fit 
the curve.



 Experiments in Fluids           (2025) 66:14    14  Page 12 of 17

as whether their fringe pattern corresponds to a bubble. 
From these 3453 objects, we find 3199 objects that exhibit 
a clear fringe pattern. The 254 objects that do not present 
a correct fringe pattern are classified as speckle patterns 
(184), tilted fringe patterns (41), and holograms (29).

From the 3269 objects with a clear fringe pattern, a 
tilted fringe pattern or a hologram, 1017 objects have a 
higher intensity than Ith = 300 counts. So, by eye (man-
ually) we detect 1017 microbubbles in 150 images. 
However, our algorithm only detects 799 microbub-
bles when applying the same restrictions. We therefore 
multiply the IPI concentration by a correction factor of 
1017∕799 = 1.273.

This error due to the algorithm performance can be bro-
ken down into two parts, i.e., one associated with micro-
bubble image detection and one with the post-processing of 
the fringe pattern. The algorithm detected 905 microbubble 
images having Ith > 300 counts, which means that the image 
detection part was responsible for 112 of the 218 missing 
microbubbles. The other 106 missing microbubbles could 
be explained by the algorithm not being able to resolve the 
fringe spacing correctly. Increasing Ith reduces both types of 
errors, but especially the image detection error. The disad-
vantage of increasing Ith is that it reduces the measurement 
volume (Fig. 12b) and increases the minimum detectable 
microbubble diameter, as shown in Eq. 10.

Decreasing the amount of overlap would also reduce 
both types of errors. From the manually detected micro-
bubbles, we find that 1535 objects appear to overlap with 
other objects, which is close to 44% of the total number 
of detected objects. This is a relatively high fraction and 
might indicate that the microbubble concentration during 
the experiment was close to the upper limit of what IPI is 
capable of dealing with.

The 2-D FFT method shows its strength in distinguishing 
solid particles from microbubbles. From the 184 speckle 
patterns, 179 are discarded for not respecting the condition 
on the fringe orientation.

Besides the detection error, we also analyze the propa-
gation of the uncertainty on the individual parameters into 
the total uncertainty on the concentration. To this purpose, 
we use a Monte–Carlo method. We compute 10000 times 
the microbubble concentration using estimates from the 
involved physical parameters, whose values are taken ran-
domly within their own uncertainty ranges. This number 
of realizations of the concentration is deemed sufficient for 
both the average and standard deviation to converge, such 
that an additional realization would only change the aver-
age and standard deviation of the concentration by less than 
0.1%.

From this analysis, we conclude that the uncertainty in 
� and K is negligible. For a better insight, we divide the 
different uncertainty sources into three groups, i.e., the 

uncertainty source from parameters that define the parti-
cle diameter d (K, D, � , z1 ), the uncertainty source from 
parameters that define the measurement volume ( ̃I0 , �b ), and 
the uncertainty source from statistics (the limited amount 
of microbubbles that could be detected). We determine the 
uncertainty propagation of these sources by evaluating the 
measured concentration while setting the uncertainties of 
the other groups zero.

Figure 14 shows the resulting uncertainties in the con-
centration defined as the standard deviation over the 10000 
concentration realizations. From this graph, it is clear that 
the uncertainty due to limited statistics is dominant. Increas-
ing the number of detected microbubbles will also reduce 
the error in the measurement volume, because the fitting 
procedure of Ĩ0 and �b might become more accurate.

From the analysis, we also find that the diameter range 
of the concentration spectrum plays an important role in 
the final uncertainty. A smaller diameter bin width results 
in less counts and therefore a larger error in the estimate of 
the number of microbubbles. Additionally, with a smaller 
bin size the probability that a microbubble can also be dis-
tributed into a different diameter bin due to the uncertainty 
in d increases.

4.2  Calibration of LMS

The normalized contrast C0
M

 is necessary to compute both 
the microbubble diameter (using Eq. 15) and the measure-
ment volume (using Eq. 18). In order to compute C0

M
 , we 

determine � using a bootstrapping method, which resulted 
in � = 0.082 ± 0.005.

As explained in Sect. 3.3, small microbubble images are 
increasingly harder to detect when � grows, which results in 
a loss of detected microbubbles for relatively high values of 

Fig. 14  Different uncertainty contributions to the total uncertainty 
in the microbubble concentration, �c , i.e., uncertainty in parameters 
corresponding to the microbubble diameter estimation (K, D, � , z1 ); 
uncertainty due to statistics; uncertainty in parameters corresponding 
to the measurement volume estimation ( ̃I0 , �b)
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� . Figure 15 shows the relationship between � and the num-
ber of microbubbles found, for different ranges of microbub-
ble diameters. Assuming a spatially constant microbubble 
concentration and a linear relationship between � and z0 , 
we expect a linear relationship between � and the detected 
number of microbubbles as well. The triangles in Fig. 15 
represent the points where the curve appears to flatten due 
to loss of detection. These triangles are therefore possible 
definitions of �max . This definition of �max depends on the 
minimum microbubble diameter of interest. We are inter-
ested in microbubbles with a diameter larger than 30  μ m, 
which results in �max = 38.22  μm.

The relationship between � and z0 is calibrated by moving 
a calibration plate with black dots over a range of positions in 
z-direction. Figure 16a shows that the relationship between � 
and z0 is linear for |z0| < 4 mm. From this figure, we obtain 
that �max = 38.22  μ m corresponds to Δz0 = 4.02 ± 0.14 mm. 
To check whether this calibration procedure is also appli-
cable for microbubbles, we obtain the z0-coordinate of the 
LMS microbubbles from the IPI images. Figure 16a shows 
the median value of the microbubbles’ � value correspond-
ing to that z0 coordinate. There is strong agreement between 
�(z0) for calibration dots and microbubbles if 𝜒 < 40  μm.

The magnification is calculated from the calibration 
plate located at z0 = 0 . Because it is unclear at what side 
of the focal plane a defocused microbubble is located, we 
take into account the variation of the magnification over 
Δz0 . From this analysis, we find a pixel size in the object 
plane of 2.390 ± 0.019  μ m. We neglect the microbubbles 
at 100 px from the edge, reducing the field of view (FoV) 
to 1960 times 2360 px. Multiplying the area of this FoV 
in the object plane with Δz0 results in a measurement vol-
ume of 106.2 ± 4.0mm3 , where the variance in the meas-
urement volume is found from combining the variances in 
each dimension.

To validate the theoretical description for pl(C0
M
) , 

we make a comparison with the trends obtained using 

calibration dots and microbubbles, similar as we did for the 
�(z0) case above. We determine the size of the LMS micro-
bubble image from the IPI counterpart. Figure 16b shows the 
comparison of D∕2Rl versus C0

M
 for both calibration dots and 

microbubbles, and the black line representing the theoretical 
relationship from Fdida and Blaisot (2010). The experimen-
tal data agree with the theoretical prediction for C0

M
> 0.3.

The uncertainty in pl(C0
M
) is determined from the vari-

ance in the estimation according to the calibration dots, as is 
visualized by the shaded area in Fig. 16b. After removing the 
outliers, we can approximate the uncertainty by a linear rela-
tion �pl = −0.0205C0

M
+ 0.0289 for C0

M
> 0.3 . For C0

M
< 0.3 , 

the uncertainty grows exponentially and the estimate of D 
becomes unreliable. Equation 15 shows that the uncertain-
ties in the magnification and in pl(C0

M
) will propagate into 

the uncertainty in the diameter. From the uncertainties found 
above, we can compute a maximum relative uncertainty of 
3.4% in the estimated diameter at C0 = 0.3.

The microbubble image is discretized, resulting in an 
uncertainty in the estimation of the microbubble image 
area A. The estimation of this uncertainty is known as the 

Fig. 15  The number of microbubbles found within a depth defined by 
�max . The diameters in the legend represent the minimum diameter of 
the microbubbles to be included

Fig. 16  (a) The blur radius � as function of out-of-focus depth, for 
microbubbles and calibration dots. (b) The ratio between d∕2Rl as a 
function of the normalized contrast C0

M
 . The shaded area represents 

one standard deviation for the calibration case, the black caps repre-
sents one standard deviation for the case of the microbubbles. The 
outliers are microbubbles that fall outside the 1st or 99th percentile



 Experiments in Fluids           (2025) 66:14    14  Page 14 of 17

Gaussian circle problem. Young (1988) shows that the error 
of the area estimate can be approximated by

The uncertainty in the concentration from LMS is estimated 
in a similar way as for IPI. After 10000 different realizations 
of the concentration, both the mean concentration and its 
standard deviation are well converged.

5  Results

5.1  Microbubble sizes

The main results of this study concern the validation of 
microbubble sizes and concentrations as obtained from IPI 
using the estimates from LMS. Figure 17 shows the esti-
mated microbubble size from IPI compared with the esti-
mation from LMS. The inset focuses on the results for the 
electrolysis experiment, which generates microbubbles hav-
ing a diameter d < 100  μm.

The shape of the microbubbles is guaranteed to be spheri-
cal even at the largest diameters (1000  μ m) and velocities 
(10 cm s−1 ). In this case, the E ̈otvö s number ( Eo = Δ�gd2 � 
−1 ) is equal to 0.14, where we assumed Δ� = 1000 kg m−3 , 
g = 9.81 m s−2 , and the water surface tension � = 0.07 N 
m−1 . The Reynolds number for this diameter and velocity 
is approximately Re = Ud∕� = 100 , where we assumed 
� = 10−6 m2 s−1 . For these E ̈otvö s and Reynolds numbers, 
the microbubble is still in the spherical regime (Clift et al. 
1978).

(22)
|Estimated Area − True Area|

True Area
= 0.585D−1.6

In the analysis, we only accepted microbubble images for 
which the orientation deviates at most 2.86◦ from the expected 
orientation, the SNRNs ≥ 15 dB, Ith ≥ 100 counts, and where 
the overlap does not hamper the application of the identifica-
tion algorithm. We accept their LMS counterparts only when 
C0
M
≥ 0.3 and 𝜖 > 0.9 . As a first observation, estimates of the 

microbubble diameters from both IPI and LMS agree well, 
except at the largest diameters under investigation ( d ≥ 700  μ
m), where IPI yields slightly smaller diameters as compared 
to LMS, though the difference remains within the level of 
uncertainty.

There is a low number of outliers (3.0% of the microbub-
bles), for which the diameters do not compare favorably. A 
part of these outliers follows a linear trend described by the 
line dIPI = 0.8 dLMS or its sub-harmonic dIPI = 0.4 dLMS . It is 
unclear whether this is due to the fringe pattern itself not being 
perfectly sinusoidal, or due to the post-processing method. 
Without these outliers, the average of the difference between 
the IPI size estimation and the LMS size estimation for all 
microbubbles Nb is

5.2  Microbubble concentration

Figure 18 shows the microbubble concentration as a func-
tion of the diameter, for both IPI and LMS. Similar detec-
tion limits are applied as for the diameter comparison case. 
Microbubble images are retained when the fringe orien-
tation is at most 2.86◦ off, SNRNs ≥ 15 dB, and Ith ≥ 300 
counts. LMS microbubbles are accepted when C0

M
≥ 0.3 , 

� ≤ �max , d ≥ 30  μ m, and 𝜖 > 0.9 . For both cases, micro-
bubbles within 100 px from the edge are not included. Due 
to these restrictions, 6365 IPI microbubbles and 3671 LMS 
microbubbles are accepted out of, respectively, 9312 and 
14865 objects which were detected in 1000 images. The IPI 
concentration is multiplied by a correction factor of 1.273 
to account for erroneous detection and post-processing (see 
Sect. 4.1).

The influence of the Nyquist limit on the measurement 
volume became significant for microbubbles with a diameter 
larger than 100  μ m, as is shown in Fig. 13. The maximum 
microbubble diameter measured is approximately 120  μ m, 
but the concentration at diameters above 90  μ m is two orders 
of magnitude smaller compared with the concentration in the 
range 30 ≤ d ≤ 50  μ m. This implies that the concentration 
overestimation from the aliasing effect is negligible.

The concentration spectra found by LMS and IPI are 
very similar and fall within each others uncertainty range, 
as defined by the 5 th to 95th percentile. Figure 18a shows 
the concentrations in linear scale, which shows that both 

(23)1

Nb

Nb∑

i

|||||

dIPI,i − dLMS,i

dLMS,i

|||||
= 2.1%.

Fig. 17  Comparison between the microbubble diameters meas-
ured by long-range microscopic shadowgraphy and interferometric 
particle imaging. The open circles represent outliers. A number of 
these outliers seem to follow a linear trend, i.e., dIPI = 0.8 dLMS and 
dIPI = 0.4 dLMS
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measurement techniques present a very similar concentra-
tion spectrum shape. Because the concentration in the tail of 
the spectra is low, we also add the concentration spectrum 
in log-linear scale (Fig. 18b). In this representation, it is 
clear that the mean concentrations are very close to each 
other, even beyond 100 μ m, although the number of detected 
bubbles is too low to estimate a nonzero value for the 5 th 
percentile of the concentration estimation.

6  Conclusion

In this study, the size and concentration of microbubbles are 
measured using two different techniques, i.e., interferometric 
particle imaging (IPI) and long-range microscopic shadow-
graphy (LMS). The aim of this study is to validate the con-
centration as estimated from IPI and assess the uncertainty 
in such estimation.

We use LMS as an independent method to validate the IPI 
results. The IPI and LMS setups are designed such that the 
measurement volumes of both techniques overlap. Optical 
filters enable the simultaneous identification of the micro-
bubbles with both methods. This way, identical microbub-
bles could be detected and identified in images captured with 
both techniques. The experimental methodology enabled 
therefore to validate the microbubble size estimation with 
respect to the result from LMS. The difference between the 
estimated size from IPI and LMS over a diameter range of 
10 - 800  μ m was only of 2.1%.

We show that the diameter range of the IPI technique is 
limited among other parameters by the dynamic range of 
the camera (Eq. 10) and that this limit can be more stringent 
than the limit often shown in the literature (Eq. 9), which is 
based on the maximum detectable fringe spacing.

Additionally, we show that, for IPI microbubbles, the var-
iation of the image size D in the defocus direction z0 should 
not be neglected. Due to this variation, the diameter range, 
as limited by the Nyquist criterion, depends on the position 
of the microbubble in the measurement volume. This causes 
the measurement volume to decrease significantly already at 
smaller microbubble diameters than expected when assum-
ing D to be constant.

We find similar uncertainty levels in the estimated con-
centration of both IPI and LMS, of the order of 5 - 10% of 
the estimated concentration. The statistical error is the larg-
est contributor to this uncertainty, due to the small amount 
of microbubbles detected (6365 microbubbles according to 
IPI and 3671 microbubbles according to LMS). The error in 
the detection algorithm of IPI was quantified, resulting in a 
correction factor of 1.273 for the IPI concentration.

Finally, we find that the estimated concentration from IPI 
agrees with the estimated concentration from LMS within 
the uncertainty range. The agreement held over the complete 
range of measured microbubble diameters considered in the 
experiment, and for which the techniques were calibrated. 
From this, we can therefore argue that IPI is able to reliably 
estimate the microbubble concentration.
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