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Abstract

With rapidly evolving threat landscape surrounding malware, intelligent defenses based
on machine learning are paramount. In this chapter, we review the literature proposed
in the past decade and identify the state-of-the-art in various related research directions
— malware detection, malware analysis, adversarial malware, and malware author
attribution. We discuss challenges that emerge when machine learning is applied to
malware. We also identify the key issues that need to be addressed by the research
community in order to further deepen and systematize research in the malware domain.

1 Introduction

Over the past two decades, malicious software (malware) has emerged as one of the
biggest security threats. AV-test, a security research institute, has reported detecting
more than 1000 Million malware samples in 20191. According to Accenture, a malware
attack on a company can cost $2.4M on average and can take 50 days to resolve2. Anti-
Viruses (AVs) are considered to be the first line of defense. However, according to a
survey by Ponemon Institute, 69% organizations do not believe that AVs can block the
threats that they monitor. Given these staggering numbers, classical rule-based malware
detectors can simply not be expected to detect the large influx of malware variants. The
main problem with rule-based defenses is that they are reactive, where a rule is added
only after experiencing an attack.

Machine Learning (ML) has become a promising ally for malware detection. The
security community has been investigating ways to incorporate machine learning for
intelligent malware detection, profiling, and analysis. Figure 1 shows a typical pipeline
for malware defense and the opportunities to introduce machine learning in it. It is
noteworthy that machine learning is also useful for attackers: Due to the intrinsic adver-
sarial nature of the threat landscape, machine learning has not only been used to build
intelligent defenses, but it has also been used to develop intelligent attacks that evade
detection. In the past decade alone, this arms-race has resulted in more than 20,000
research articles.

1https://www.av-test.org/en/statistics/malware/
2https://www.accenture.com/us-en/insight-cost-of-cybercrime-2017
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In this chapter, we conduct a systematic survey of the literature published in the
past decade to establish a taxonomy of the main research themes. For an unbiased
literature review, we select peer-reviewed papers containing a combination of fixed
search queries that are highly cited in their domain. We summarize the state-of-the-art
in various sub-fields of intelligent malware defenses, i.e., malware detection, malware
analysis, adversarial malware, and malware author attribution. The literature is greatly
dominated bymalware detection approaches with the aim of developing scalable behav-
ioral signatures. Approaches from other domains have been applied to perform malware
detection, such as natural language processing, image visualization, graph mining, and
bioinformatics. We categorize the research in this domain according to the data source
and feature representation used for their classifiers.Malware analysis is another research
direction that develops tools that provide the necessary insights to improve malware de-
tection. We discuss approaches that aim to increase interpretability, and provide smarter
ways to collect behavioral traces. Adversarial machine learning has recently gained
popularity, not only for machine learning-based offensive security, but also for harden-
ing machine learning classifiers. Finally, malware author attribution aims to associate
malware to its author(s), a field that is mainly driven by law enforcement agencies.
Although not a very active area, it serves as a powerful use-case for interdisciplinary
research. Figure 2 shows the literature overview in a chronological order, divided across
the aforementioned research directions.

We discuss important considerations that emerge when machine learning is applied
to malware, such as resilience against concept drift and evasion, handling imbalanced
datasets, using appropriate evaluation metrics, and providing privacy and performance
guarantees. We have observed that the absence of toy problems, representative datasets,
explainable approaches, and the usage of noisy ground truth has limited the repro-
ducibility of available research. Specifically, explainable approaches are necessary for
debugging existing techniques and developing newer ones based on obtained insights.
These issues need to be addressed by the research community in order to encourage
systematized research in the intelligent malware defenses domain.

This chapter is organized as follows. Section 2 serves as a roadmap for the rest of
the chapter: it identifies the feature sources and representations that have been used to
characterize malware in the literature, including several feature engineering modes. Sec-
tion 3 discusses the vast literature that explores effective and efficient malware detection
methods. We expand the discussion on malware research in Section 4 by covering rele-
vant areas, i.e.,malware analysis, adversarial malware, and author attribution. Section 5
enumerates the main challenges unique to machine learning-based malware defenses.
Section 6 highlights the four key issues that should be addressed to enable reproducible
research in the intelligent malware defenses domain. Finally, we conclude our discussion
in Section 7.

2 Malware characterization

The success of machine learning classifiers lies in finding the data that appropriately
characterizes malware. Determining these data and the input features required for ma-
chine learning is a difficult task since they will be used to detect new malware samples
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Fig. 1: Machine learning pipeline for malware defense: Raw input data gets transformed
into features during pre-processing, which are given as input for model training. The
raw data may be collected using ML-based sandboxing. Features may be automatically
learned using auto-encoders. Depending on the problem, the model may be deployed
at different locations, and the output may be used in several ways: Malware detection
typically raises alerts; Insights obtained from malware analysis can lead to improved
malware characterization; Detecting changes in data distribution can trigger model
retraining; Incorporation of adversarial malware in the training process can lead to
robust models.

that may behave in unexpected ways. Anderson et al. [1] suggest that effective feature en-
gineering, including features obtained from domain experts, plays a key role in classifier
performance. There exists a myriad of literature exploring the various features that can
be used to characterize different types of malware [2,3]. In this chapter, we provide an
overview of the past ten years of intelligent malware defenses from a technical machine
learning perspective, grounded in the types of features used to characterize malware:
statistical, graphs, images, and sequences. The type of input feature greatly influences
which machine learning technology can be employed. Other important considerations
are: (a) the target platform of themalware, (b) how to collect data from amalware, and (c)
how to extract features from such data. We briefly introduce these other considerations
below but will not go into detail.

2.1 Platform-specific malware and defenses

Malware often targets consumer devices, like desktop computers and handheld devices.
The firstmalwarewas a PC-based virus, called ElkCloner3, discovered over 35 years ago.
Since then, malware has targeted multiple operating system and browser vulnerabilities

3https://en.wikipedia.org/wiki/Elk_Cloner
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to infect desktop computers. It is important to keep in mind that most research in
intelligent malware defense also targets specific platforms, and this has a great effect
on the used input features. Recent ransomware [4] and cryptojacking malware [5] are
well-known for attacking desktops. A major strain in research therefore targets desktop
malware, most frequently Windows-based malware. Recently, Ucci et al. [2] presented
a survey of features characterizing Windows Portable Executable (PE) malware.

With the widespread use of Android smartphones, there is a growing amount of
literature on Android malware detection [6,7,8,9,10,11,12,13,14,15], mainly for two
reasons: Firstly, Android is an open-source operating system, so developers can investi-
gate various vulnerabilities that malware has exploited over the years; Secondly, multiple
large-scale and open-source datasets of malicious Android applications have supported
research in this field. This does not mean that iOS-based malware does not exist [16], it
is just not a frequent subject of research.

Nowadays consumer devices are increasingly becoming equipped with Internet con-
nectivity, known as the Internet of Things (IoT). This comes with new risks culminating
in a novel strain of malware specifically targeting IoT devices [17]. IoT devices are com-
monly made available on the Internet with their default configurations, which makes
them an easy target for the attackers. Since IoT devices have limited computational
resources, their built-in security is significantly inferior to other internet-connected de-
vices, making it an ideal use-case for intelligent malware defenses. Several recent works
have proposed to enhance IoT security using ML-based malware detection [18,19]. In
this chapter, we try to avoid this distinction between platforms, instead focusing on tech-
nological differences. However, often the platform and technologies are tightly linked,
and solutions are typically not directly applicable to other platforms.

2.2 Feature sources

There are two major approaches for analyzing malware: (i) static analysis, and (ii)
dynamic analysis. Machine learning has been applied successfully in both approaches.
For static analysis, static features are extracted from a malware’s code, i.e., without
executing it. For dynamic analysis, features are extracted by running malware and
monitoring its behavior. These features can be obtained from two sources: standard
dynamic features are generated on the host device, typically by interacting with the
operating system, while network features are created from network traffic generated by
hosts in a network.

Static features. The source code of a malware, often obtained by decompiling its
binary, is the most reliable artefact to identify its objective. Early studies on malware
detection have mainly characterized malware using features extracted from its code.
These features are often obtained by doing a comparative analysis of goodware (benign
software) andmalware features, and selecting the ones that are observedmore frequently
in malware. PE headers are commonly used for Windows malware [20,21,22,23,24],
while some works extract features directly from the malware binary itself [25,26,27].
Most of the recent literature from static analysis comes from the smartphone domain
(i.e., Android), where the features are extracted from either the APK’s manifest file or
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the disassembled Dalvik bytecode for signature generation. Shabtai et al. [28] is one
of the earlier works on Android malware detection that uses features from the Dalvik
bytecode in order to perform binary classification (i.e., malware vs. goodware). One of
their major contributions is to apply a myriad of classification algorithms and select
the one that achieves the highest accuracy. Other features, such as Operational Codes
(OpCodes) [10,19] and function API calls [8,11,29,30,31], are also commonly used for
malware detection. Existing works also analyze the amount and types of permissions
that applications request to measure their maliciousness [7,8,12,32]. For a higher-level
semantic analysis, features from Control flow graphs [7,33] and Data flow graphs [34]
have also been used.

Dynamic features. With the widespread use of code obfuscation tools to evade detec-
tion and to generate malware variants, syntactic analysis has become increasingly more
difficult. Additionally, there has been a spike in fileless malware infections4, where the
malware code resides purely in the victim host’s memory without leaving any code
fingerprints. Hence, dynamic analysis is more popular for malware detection. In dy-
namic analysis, malware is executed in a controlled environment and its behavior is
monitored [35]. Information such as, system API calls [36,37,38,39], memory access
patterns [40,41], and running processes [42] are common sources for feature selection.
Some works consider inter-file relationships between files present on a system for mal-
ware detection [43,44]. There also exist hybrid approaches, where static analysis guides
dynamic analysis for thorough code coverage [45].

Network features. Network traffic analysis is popular because it can be performed
remotely and presents lower overhead than its system-activity counterpart. However,
machine learning has been slow to materialize in the network security domain because
of noisy ground truth and non-stationary data distribution [1]. Existing sandboxes also
have limited support for handling network requests due to the risk of lateral movement,
i.e., when the attacker who has gained access to the network spreads their reach to
other hosts [46]. Nevertheless, the use of HTTP header fields [14,47,48] and traffic
connections [6] is common for malicious traffic detection. Privacy concerns have also
been addressed in network security. Boukhtouta et al. [49] evaluate the differences
between Deep Packet Inspection (DPI) based methods and IP-header based methods
for classifying malicious network traffic. They conclude that IP-header features make
the machine learning model generalizable and can achieve higher accuracy due to the
independence from packet payloads. They also suggest that using IP-header features can
help fingerprint zero-day malware, i.e., malware never seen before.

2.3 Feature engineering modes

Most of the existing works perform manual feature engineering, where the features
are initially obtained from domain experts and are further cherry-picked based on a
classifier’s accuracy [47,29,8,31,24,20,21,25,19,10,30,11]. The downside to manually

4https://www.cybereason.com/blog/fileless-malware
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engineering features is that it is a laborious and (potentially) subjective process, which
may need to be repeated in case of concept drift, for example. The malware threats
also need to be fully scoped-out before arriving at the optimal feature-set. Nevertheless,
knowing the features beforehand helps with explaining and debugging a classifier’s
decisions.

In the recent years, deep neural networks have gained tremendous traction, making
automated feature engineering through representation learning (e.g.,with auto-encoders)
a popular choice. Pascanu et al. [50] propose a recurrent neural network approach, specif-
ically Echo State Networks, for automatically extracting time-domain features. They use
these features in a Logistic Regression (LR) model for malware classification, and
achieve better performance than a trigram based manual feature engineering approach.
David et al. [51] propose a system that uses Deep Belief Networks (DBN), which are a
type of generative graphical deep neural network that can perform unsupervised learn-
ing, with a deep stack of de-noising auto-encoders to automatically generate behavioral
signatures. Yuxin et al. [33] have also used DBNs as auto-encoders to automatically
extract features from malware executables.

A common critique faced by features that are automatically learned from deep neural
networks is that they are uninterpretable, and hence undesirable for building explainable
solutions. Building interpretable deep learning models is an open area of research. Zhu
et al. [9] have recently proposed an interesting approach that automatically engineers
features by mimicking human analysts’ feature engineering processes. Their system
mines academic documents and synthesizes their knowledge into interpretable features
that are later used for Android malware classification. They report comparable results
to state-of-the-art manual feature engineering approaches.

2.4 Feature representation

After having selected the data source and features to use, the next step is to determine
how to process these data. We identify four different kinds of feature representations
in this chapter, i.e., statistical, graphs, images, and sequences. Note that feature repre-
sentation means the format of the input given to a ML classifier, not the intermediate
representations from representation learning.

Represent as statistics. Themost common representation for features in the literature is
statistical [1,7,8,12,13,14,20,22,29,30,31,32,39,42,47,52,53,54,55,56,57]. Feature val-
ues are collapsed using aggregates or correlations. Some statistical features also capture
the temporal aspect of the behavior without having to deal with sequential data, e.g., the
Power Spectral Density of the FFT of the Command & Control communication [58].

Represent as graphs. One branch of literature represents malware using graphs, e.g.,
to represent the hosts a malware connects with, as an abstraction over the original
feature-set to get a high-level view of malware’s behavior. Graphs are used to either
ease analysis [59] or to extract semantic features for malware detection [43,44,60,61].
Graphs are also used to perform malware causality analysis [62,63,64].
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Represent as images. Another branch of literature explores various visualization meth-
ods in order to characterizemalware.Amalware binary can be converted into an image by
encoding the raw values of the binary as the color intensity of pixels [27,65,66,67,68,69].
The intuition here is that a malware family may share similar code pieces, which will
appear as similar motifs in the image. Visualizing malware, and hence exposing these
similarities to the human eye, can potentially aid manual malware analysis. Furthermore,
research has also applied standard image classification techniques to perform efficient
and reasonably accurate malware detection. Despite these encouraging initial results,
we note that image representation for malware classification should be considered with
caution, as discussed in more detail in Section 3.3.

Represent as sequences. There is an increasing amount of literature that is investigating
the use of sequential data in behavior characterization. Although sequential features cap-
ture the temporal aspect of behavior, machine learning algorithms with inherent support
for sequences are rare. The main difficulty lies in appropriately measuring the distance
between two sequences in the presence of noise, delays and misalignments. Methods
from other fields, such as sequence alignment adopted from bioinformatics [70,71], and
n-grams adopted fromnatural language processing [19,23,72,73,74] have been utilized to
that end. Increasinglymore approaches are using deep neural networks because they have
good support for sequences, e.g., Long Short Term Memory networks (LSTM) [37,38],
Recurrent Neural Networks (RNN) [21,75,76] and Word2Vec [77,11,78].

3 Malware Detection

A central objective of malware research is to develop behavioral signatures that can
automatically detect future malware variants. We make a distinction between two major
strains of research in the malware domain: Detection-based (this section) and Analysis-
based (Section 4.1).

Most of the existing literature is about malware detection and signature gener-
ation, with the end-goal of optimizing metrics, such as classifier accuracy and F1-
scores [58,56,57,79,47,52,80]. To this end, a plethora of research has been conducted
over the past ten years that explores various features, representations, and machine
learning algorithms. LeDoux et al. [81] summarize the research on malware detection,
particularly on code-reuse detection, using machine learning. They also enumerate mal-
ware analysis problems that machine learning is equipped to solve. The vast literature on
feature extraction and data mining techniques for malware detection is comprehensively
described byYe et al. [3]. Souri et al. [82] evaluate various signature- and behavior-based
intelligent malware detectors.

We survey malware detection methods by focusing on the feature representations
used by the applied machine learning or data mining technology. Both supervised
and unsupervised machine learning techniques have been used in the literature. We
categorize them into three classes: (i) Binary classification: Determine whether an
unlabeled software is goodware or malware, (ii) Multi-class classification: Given a set
of unlabeled malware samples and a set of known malware family names, perform
malware family attribution, and (iii) Clustering: Given a set of unlabelled software,
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Fig. 2: Overview of ML-based malware defenses proposed over the past decade.
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Table 1: Literature according to feature source and representation.
Source→

Representation↓ Static Dynamic Network

Statistical [7,8,12,13,20]
[29,30,31,32,52,53,54] [36,39,42,52,55] [1,14,47,52,56,57,58]

Graphs [7,60,61] [43,44,63,64] [62]
Images [26,27,65,66,67,68,69] - [83]

Sequences [9,10,11,18,19,21,23,24,25]
[33,50,51,54,70,73,77] [37,38,71] [79,80]

categorize them into distinct classes based on structural/behavioral differences. Table 1
summarizes the malware detectors reviewed in this chapter, categorized according to the
feature source (i.e., static, dynamic, network) and input representation (i.e., statistical,
graph, image, sequence) that they employ.

3.1 Statistical approaches

Anaggregated feature-set is themostwidespread feature representation used in literature.
Statistical features are fast to compute and simple to incorporate in a machine learning
classifier.

Experiments have shown that the prevalence of certain feature values is a decent
indicator of malware. Naturally, binary classification proves to be more successful un-
der this setting than multi-class classification. Hence, even if the experimental dataset
is composed of malware from multiple families, earlier works considered them together
as one ‘malicious’ class. Alazab et al. [30] perform binary classification for the task of
‘zero-day’ malware detection. They use the frequency of static API calls to characterize
Windows binaries, and show that it is indeed possible to distinguish between malware
and goodware using this characterization. Aafer et al. [31] propose a light-weight An-
droid malware detector based on the frequency of static API calls. They use K-Nearest
Neighbors (KNN) to detect and alert the user of malicious applications. Sahs et al. [7]
characterize Android applications using a binary vector of used permissions. Because
there exist significantly more benign applications thanmalicious ones, they utilize a one-
class Support Vector Machine (SVM) which characterizes benign applications well, and
helps detect Android malware. Yerima et al. [8] use Bayesian classification to detect
malware. They characterize applications using API call- and permission- frequencies.

Santos et al. [53] utilize the frequency of OpCode occurrence in executables to detect
malware. They show that Polynomial Kernel classifiers and Random Forests achieve the
best performance, which is not surprising because these algorithms have a long history
of performingwell in text classification. Suarez et al. [13] extract statistical features from
Control Flow Graph (CFG) code blocks, such as the number and redundancy of code
chunks, and common and discriminant code chunks. These text-based features are used
for multi-class classification. Earlier deep learning approaches have also characterized
malware using aggregates. For example, Saxe et al. [20] propose a malware detection
system that uses a feature-set of byte histograms and frequency of PE import calls.
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Although statistical features have been applied successfully in a supervised man-
ner, there are assumptions that may be difficult to realize in practice. For example,
AV-assigned family labels are noisy and novel threats are common. In contrast, un-
supervised learning can be used independently to identify novel threats. In the binary
classification setting, an anomaly detection approach is often used to model the benign
class and anomalies are labelled as malicious, giving the capability to detect novel
threats. For example, Burguera et al. [36] built a malware detection system using K-
Means clustering to identify anomalous system events by finding deviations from one
‘normal’ cluster. For the multi-class setting, clustering is used to identify different threat
classes. Perdisci et al. [47] present one of the first unsupervised clustering approaches
to detect HTTP-based malware. They propose multi-step clustering to enable large-
scale malware behavioral signature generation. Unsupervised machine learning is also
often used in combination with supervised approaches to improve detection capabil-
ities. Rieck et al. [55] propose an incremental analysis approach for malware family
identification: by first performing clustering to identify novel malware classes, and then
classifying unknown malware samples by assigning them to these discovered classes.
Burnap et al. [42] have recently developed an unsupervised learning method based on
Self Organizing Feature Maps (SOMs) that cluster similar malware behavior. They use
the clusters of similar behavior as features for later classification tasks. The key benefit
of this approach is an added layer of abstraction for improved classification — instead
of using raw features for classification, the system allows fuzzy boundaries that can map
new samples onto the existing decision boundary. David et al. [51] use Deep Belief
Networks, a type of unsupervised model, to automatically generate malware behavioral
signatures. Finally, Li et al. [14] build a network traffic-based malware classifier that
utilizes both supervised and unsupervised classifiers to improve classification accuracy.

Effective malware detectors provide stable and trustworthy results. Since statistical
features provide an aggregated view, a malicious application may appear similar to a
benign application from this point of view. Hence, the choice of feature representation
plays a crucial role in a classifier’s robustness. Recently, Milosevic et al. [54] compared
two text-mining approaches for Android malware detection — using statistical features
(i.e., permissions) and sequential features (i.e., bag-of-words of decompiled Dex code).
Their experiments show that the bag-of-words approach performs better due to better
malware characterization, indicating that statistical features may not be the optimal
choice in all cases. Another way to improve the robustness of malware detectors is
to use Ensemble learning, i.e., a learning paradigm that combines the decisions of
multiple classifiers to arrive at the final decision. Ensemble models, such as Random
Forests have been shown to be robust to non-stationary data distribution, such as network
traffic [1]. Recently, Zhu et al. [12] proposed an ensemble Rotation Forests model to
classify Android malware. Rotation Forests [84] are an ensemble of Decision Trees
where diversity through rotated principal components is given emphasis, resulting in
more stable decisions.
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3.2 Graph-mining approaches

Graph-mining approaches have been used to represent malware’s relationships in a
graphical format, in order to provide an added abstraction layer. Malware literature
adopts scalable graph mining approaches to perform fast detection.

Security products often have to mark files as malicious or benign based on a partial
view of the host’s file system. Approaches using inter-file relationships have emerged as
a solution. Chau et al. [43] performmalware detection using large-scale graph inference.
They consider files asmalware based on guilt-by-association—they exploit the inter-file
relationships present on multiple systems to compute reputation scores for unlabelled
files. They useBelief Propagation algorithm tomarkfileswith low reputation asmalware.
They evaluate their approach on a 60 terabyte dataset composed of a Billion-node graph,
and show significant improvement over existing approaches. Acar et al. [44] also use
a similar approach to detect malware, with the additional use of Locality Sensitive
Hashing (LSH) for efficiently binning similar files.

Hou et al. [60] build the first approach that uses a Structured Heterogeneous In-
formation Network (HIN) to characterize API-relatedness. The HIN edges are used to
measure the semantic similarity between API calls, that is used to measure malicious-
ness of an application using multi-kernel learning. Fan et al. [61] improve upon the
previous approach using a meta-graph to determine inter-file relationships for malware
detection. For cost-effectiveness, they use MetaGraph2Vec to learn low-dimensional
representations for the HIN that preserves its structure and semantics. MetaGraph2Vec
is a meta-graph approach that has shown competitive performance for heterogeneous
graph-mining tasks such as node classification and clustering.

Using graphs to perform causality analysis is also an area of interest. Zhang et al. [62]
detect malware by performing causality analysis on its network traffic. They build
Triggering Relation Graphs (TRG) that show the inter-dependency of various network
events. The TRGs show an absence of dependency between legitimate and malicious
network events, hence making it easier to detect malicious activities. Liu et al. [63] build
a backward- and forward-causality graph to detect abnormal system events, based on
their rareness and location in the causality graph.

3.3 Image visualization approaches

Malware visualization has opened a new research direction that uses ML-based image
classification to detect malware. These approaches rely on converting a malware binary
into an image which is then provided to an image classifier, either as a raw image or as a
set of extracted features. The key assumptions for thesemethods are: (a)malware families
have similar images because of code reuse, and (b) malware images are significantly
different from goodware images.

In 2011, Nataraj et al. [65] proposed a straightforward method to convert malware
into an image: a malware executable represented as a binary vector is reshaped into a
matrix of an arbitrary width and is viewed as a grey-scale image. The authors observed
that malware binaries belonging to the same family were visually similar in both layout
and texture. They extracted textural features from these images and applied K-Nearest-
Neighbors to perform malware family identification. This approach proved to be very
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efficient and achieved high accuracy, close to prior methods that used static features such
as n-grams. Furthermore, they showed that malware belonging to one family packedwith
the same packer, or containing sections encrypted with polymorphic engines, are still
categorized together as the same family, indicating some level of resilience to naïve
obfuscation. Motivated with the initial positive results, several follow-up studies [27,66]
expanded the research by investigating different types of image feature extractors and
machine learning classifiers. Approaches to malware classification based on image
similarity were confirmed to be effective on the commonly used Kaggle Microsoft
Malware dataset [85].

Recent work has started applying deep neural networks for the classification task,
inspired by their encouraging performance in the image classification domain. Kalash
et al. [67] successfully perform malware family identification with a two-dimensional
Convolutional Neural Network (CNN) architecture, and Singh et al. [69] convert mal-
ware binaries into colored-images to classify obfuscated malware with a ResNet-50
architecture, i.e., a CNN architecture with shortcut connections providing superior per-
formance. Yakura et al. [68] applied a CNN with attention mechanism [86] that allows
to explain which areas of an image contribute to particular classification decisions. Le
et al.[26] have recently proposed a fully automated malware classification approach
for non-domain experts. They represent raw binary files as grey-scale images using the
approach by Nataraj et al. [65]. The images are given to a hybrid network, i.e., CNN
with Bi-directional LSTM model, which outperforms a traditional CNN model.

Despite promising performance on benchmark datasets, representing binaries as im-
ages for malware detection comes with several limitations. Apart from some empirical
results, there appears to be little evidence to strongly support the aforementioned un-
derlying assumptions of malware classification based on visual similarity of binaries.
Some studies have encountered images from different malware families that exhibited
such similar patterns that they were classified in one class [66]. Naturally, only pre-
viously seen malware can be identified, while zero-day malware which is structurally
different will likely evade detection [27]. Even for known malware, a common case of
false negatives is observed when malicious content of relatively small size is embedded
within a goodware, such that the resulting image remains very similar to other benign
examples. Additionally, when global image features are used, merely relocating sections
in a binary or adding large sections with redundant data may be sufficient to alter the
image texture and mislead a classifier. These issues illustrate that generalizability of this
approach, beyond particular datasets, remains an open question.

While image representations allow large-scale malware classification in a computa-
tionally feasible way, deep neural networks do not necessarily require this intermediate
transformation. One-dimensional CNN architectures and sequential deep neural net-
works are directly applicable to raw one-dimensional binaries. Meanwhile, reshaping an
initially one-dimensional binary sequence to a two-dimensional image with an arbitrar-
ily chosen width introduces artificial spatial relations that are not present in the original
file. Additionally, this representation does not appear stable, as adding or removing bi-
nary data in one location may completely change the positional relations in the vertical
direction of the converted image [68]. Such artefacts may obscure naturally occurring
patterns in data and negatively impact classification. This line of reasoning may also
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apply to a few studies that attempt to use CNN on dynamic features, such as malicious
network traffic: Wang et al. [83] perform malware detection by representing network
traffic as images. In any case, it is very challenging to make such two-dimensional CNNs
capable of recognizing the temporal dependencies required for processing traffic data.

3.4 Sequence learning approaches

Sequential pattern mining has emerged as a promising approach for malware detection
due to increasingly better-performing sequential ML classifiers.

Earlier sequence learning works utilize n-grams to characterize temporal behavior.
Jain et al. [23] represent PE files as n-grams (with varying values for =) to perform
binary classification. They select the prominent n-grams using Class-wise Document
Frequency method. Their experiments show that trigrams with Random Forests give
the best malware detection performance. Similarly, Canfora et al. [73] use n-grams
generated from OpCode sequences to detect malware families. They show that bigrams
with Random Forests give the best performance. We believe these differences exist due
to different datasets and feature selection approaches. Fan et al. [24] uses function call
sequences and an All-Nearest Neighbors (ANN) classifier for PE-malware detection.
ANN is a modification of K-Nearest Neighbors algorithm that makes a decision based
on all neighbors. ANN makes a compromise on run-time efficiency for the sake of
robustness.

In recent works, deep learning-based approaches have dominated malware detection
using sequence learning. Convolutional Neural Networks (CNN) are used due to their
ability to detect complex and non-linear patterns in data. Raff et al. [25] build a CNN
framework that takes an entire PE binary as input for automated feature engineering and
malware detection. Their method consumes the entire executable as opposed to only
the PE-header to avoid over-fitting on the header features. However, their results do not
show significant improvement over their baseline — a byte n-gram model. Mclaughlin
et al. [10] perform Android malware detection using a CNN framework that utilizes raw
OpCode sequences. Azmoodeh et al. [18] also use OpCode sequences to perform binary
classification on IoTmalware that is specifically used for military purposes. They reduce
the feature dimensions using Principle Component Analysis (PCA) by providing only
the first two components to the classifier. Recently, Cakir et al. [77] have usedWord2Vec
feature embedding on OpCode sequences to characterize malware. They use Gradient
Boosting, which is a type of ensemble learner, for binary classification of malware.
Karbab et al. [11] use CNN and Word2Vec feature embedding on API call sequences
for malware family identification. They evaluate their system on multiple datasets, such
as the MalGenome dataset [87], the Drebin dataset [88], and benign applications from
Google Play5. Kolosnjaji et al. [21] perform multi-class classification using hybrid deep
learning, i.e., Convolutional and Recurrent Neural Networks (CNN/RNN), for Windows
malware family identification.

Recently, Haddadpajouh et al. [19] have explored various configurations of Long
Short Term Memory networks (LSTMs) for IoT malware classification. They charac-
terize binaries by their OpCode sequences, and then choose the features that maximize

5https://play.google.com/store/apps

https://play.google.com/store/apps
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the Information Gain (IG). However, it is unclear how generalizable their results are as
they only use ∼500 binaries for the classification task. Zhang et al. [37] use so-called
behavior chains based on API call sequences to characterize malware’s behavior. They
use LSTMs to perform binary classification and report a false positive rate of less than
2% (in the best case). Mishra et al. [38] use deep learning and the sequence of dynamic
system calls for malware classification in the cloud environment. Their system uses two
layered approach – CNN for feature engineering and Bi-directional LSTMs for mal-
ware detection. They evaluate their system on a university’s network traffic and show
promising results.

Sequential features are a common occurrence in bioinformatics. As computer viruses
attain their characterization from similarity to natural viruses, bioinformatics-inspired
solutions have also been proposed to detect malware variants. A common approach to
detect similar DNA sequences is through the use of sequence alignment algorithms, such
as the Smith-Waterman algorithm. Sequence alignment methods work by assigning a
score based on matches, mismatches and gaps. These values are embedded in a substitu-
tion matrix. Domain-specific substitution matrices exist for bioinformatics applications.
Chen et al. [70] map malware’s binary code to Amino acid characters, and use the
so-called Residue substitution matrix, while Naidu et al. [89] report that the PAM-350
substitution matrix performs the best for malware variant detection. Chen et al. [70] also
develop a multiple sequence alignment method that uses neural networks to classify
viruses and worms. They show that alignment-based methods allow classifiers to find
similarities with more ease compared to other methods.

3.5 Performance Optimizations

Malware detectors need to be efficient to cope with the exponential increase in malware
attacks. Hence, some works propose extensions to existing works for improving the
performance of traditional malware detectors.

Feature reduction. A classifier’s performance is directly dependent on the quality
of features used for model learning. The key idea is to select the least number of
features that maximally characterize a malware. Hence, a straight-forward optimization
is to conduct a feature reduction step that eliminates redundant features. Li et al. [32]
develop a fast Android malware detector using an SVM classifier. As a feature reduction
step, they perform ‘significant permissions’ analysis, that selects only the permissions
that distinguish between malicious and benign applications with high confidence. Their
results achieve up to 32 times speed-up compared to two competing approaches, i.e
Drebin [88] and Permission-induced Risk Malware Detection [90]. Similarly, Yerima
et al.[8] select only the features with maximum Mutual Information (MI) to speed up
their malware detector. Firdausi et al. [39] demonstrate elevated performance of their
malware detector after conducting a best-first feature selection process.

Hardware-assisted detection. Hardware-assisted Malware Detection
(HMD) has emerged as an alternative for improving malware detection using Hardware
Performance Counters (HPC). HMDs are light-weight detectors that live on the micro-
processor to provide a first-line of defense, and to reduce overhead on software-based
detectors. Khasawneh et al. [40] show that hardware-detectors reduce performance over-
head by up to 11 times compared to software-only detectors. Xu et al. [91] propose a
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novel HMD that monitors system calls’ memory access patterns, which are used to
classify malware, e.g., kernel rootkits.

Existing studies suggest that HMDs execute a malware sample multiple times in
order to collect the required data, due to the limited number of HPCs available on
microprocessors. Most of the methods propose to use an ensemble of light-weight
classifiers to resolve this issue. Khasawneh et al. [40] propose an ensemble of specialized
LR classifiers to improve the performance of HMDs, while only inducing minimal
additional overhead on the cycle-time and power consumption. Specialized classifiers are
malware-family specific classifiers, i.e., one classifier is trained for one class of malware.
They use LR due to its cheap and simple implementation on the microprocessor. Sayadi
et al. [92] propose ensemble learning to collect the required data while using even less
HPCs. Their results show that ensemble learning approach using only 4 HPCs can match
the robustness and performance of standard classifiers that use 16 HPCs. In a recent
work, Sayadi et al. [93] demonstrate that the performance of HMDs is directly related
to the number of available HPCs. They propose a feature reduction step in order to
select the most significant HPCs. They propose a two-step classification approach: a
course-grained classifier that categorizes a software as either goodware or one of the
malicious classes (i.e., rootkit or trojan); followed by a fine-grained specialized classifier
(i.e., one for each type of malicious class). To further reduce the run-time, they utilize
ensemble learning in the coarse-grained classifiers and show that using merely 4 HPCs
outperforms state-of-the-art classifiers with 8 HPCs by a factor of 1.31.

3.6 Trend.

There is a growing interest towards alternative approaches for malware detection, such
as causality-based, and ant-colony optimization-based approaches [94], and a more
targeted focus on Android malware detection. The use of sequence learning is growing,
especially due to superior performance of recurrent neural networks, such as LSTMs, but
also due to sequences being better equipped to characterize behavior. For example, Amer
et al. [78] have used a combination of Word2Vec and Markov chains to establish the
relationship betweenmalware API call sequences. Despite that, works on network-traffic
based sequential models are meagre due to the difficulty of handling non-stationary and
noisy sequences. There is also a growing concern for the brittle nature of neural networks,
to be discussed in Section 4.2, which is driving research towards better interpretability
of such models’ output.

4 Additional research directions

Although malware detection is a central research objective, there are additional re-
search directions that have been gaining traction lately. Malware analysis, as opposed
to detection, aims to improve malware understandability rather than to optimize detec-
tion rates [13,95,96]. Adversarial machine learning techniques have gained particular
popularity in recent years in relation to detecting evasive malware. Finally, attributing
malware to its author(s) is also an area of interest, mainly driven by law enforcement
agencies. In this section, we discuss the seminal works in these three popular research
themes.
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4.1 Malware analysis

Malware analysis methods aim to improve malware understandability, and provide es-
sential insights that can improvemalware detectionmethods. Althoughmalware analysis
and detection are often seen together in literature, below we present approaches that:
(a) aim to improve malware understandability, e.g., by providing insights into malware
relationships, and (b) enable malware analysis, e.g., by collecting traces and building
analysis environments.

Ucci et al. [2] present a recent survey on ML-based malware analysis techniques.
The survey provides a taxonomy of research objectives, features andML algorithms used
for Windows PE malware. They identify topical trends on malware triage. They also
present the concept of Malware Analysis Economics that studies the trade-off between
detection accuracy and the resources required for detection.

Increasing interpretability. Malware analysts have to frequently monitor large-scale
network traffic, which is a laborious task. Zhang et al. [59] propose a framework to
visualise the causal relationships between network requests to help detect abnormal
events. Their user studies reveal that visualising network traffic in this way enhances
analysts’ malware detection capabilities. Mariconti et al. [64] perform causality analysis
on user actions that trigger a malware infection. They characterize malware samples
by the trigger-actions commonly performed by users. Their method can successfully
infer relations between, e.g., information-stealing malware and web pages asking for
user credentials. Suarez et al. [13] build a dendrogram of malware families showing
overlapping code snippets, which helps them to generate evolution-invariant signatures.

Smith et al. [97] have pointed towards the semantic gap between themachine learning
and malware analysis communities. One of their proposals is to reposition the task from
identifying malware to identifying behavior, making it possible to understand what a
malware is doing. Along these lines, Nadeem et al. [98] have proposed the use of
behavioral profiles to describe malware samples as opposed to using black-box family
names. They develop MalPaCA, a clustering-based framework that discovers distinct
behaviors present in network traffic and uses the cluster membership information to
generate a profile for each malware sample.

Collecting traces. Collecting malware traces, especially for dynamic analysis, is a
challenging problem due to the difficulty of finding live malware samples and setting
up sandboxes. Burguera et al. [36] addresses the unavailability of malware datasets by
setting up a crowd-sourcing system to collect system traces from unlimited number of
real smartphone users. Secondly, effective features for malware are often not shared
among the security community. Gu et al. [34] address this issue by introducing a
consortium blockchain framework. The blockchain is used as a database of malware-
characterizing features. Their classifier consumes the blockchain for malware family
identification. Recently, Shibahara et al. [75] have proposed a machine learning-based
data collection method for efficient dynamic analysis. Typically, malware traces are
collected for a fixed amount of time before moving on to executing the next sample.
The method proposed in [75] treats network traces as natural language, and uses the
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communication pattern as a heuristic to suspend analysis. They use RNN to learn the
underlying objective of communication and to detect when a change in purpose occurs.
They suspend analysis when a malware has stopped its activities. With this approach,
they report a reduction of 67.1% analysis time.

Sandboxing. Multiple works have proposed sandboxes that can forcefully trigger mal-
ware functionality in order to provide more holistic behavioral logs, but very few have
used machine learning to do so. There also exist other approaches that use search-based
algorithms to improve code coverage of malware samples, e.g.,Wang et al. [99] propose
a fuzzing-based approach to forcefully trigger malware’s hidden behaviors. Among the
literature that uses machine learning is the work by Spreitzenbarth et al. [45]. They pro-
pose an end-to-end analysis environment for Android malware where applications are
executed, traces are collected and a clustering algorithm categorizes them as malware or
goodware. However, they only use machine learning to post-process behavioral traces.
Additionally, their sandbox does not support latest Android versions. Yerima et al. [100]
have recently proposed a machine learning based malware analysis framework. They
learn a state machine of each Android application using code’s static analysis. They use
insights from the state machine to guide the so-called stateful event generation. They
also compare with an existing approach based on random event-generation and show
that the guided behavior-triggering approach results in better data collection.

An orthogonal research objective is sandbox evasion, where a malware uses machine
learning to detect whether it is being executed in a sandbox or on a live system. When
malware detects the presence of a sandbox, it either shuts down, or starts sending garbage
data tomislead analysis. Yokoyama et al. [101] show that it is possible for attackers to use
straightforward machine learning algorithms to differentiate between a sandbox and a
live system based on leaking characteristics ofWindows-based sandboxes.Miramirkhani
et al. [41] propose sandbox evasion techniques based on the natural ‘wear and tear’ of
a real system compared to that of a sandbox. They exploit the past usage of a system to
determine its age and degree of use. They show that a simple decision tree classifier can
differentiate between a sandbox and a real system with a very high accuracy.

Trend. The security community appears to be heavily biased towards detection-based
solutions. Analysis is most often conducted as a precursor for detection methods, or as a
part of Systematization of Knowledge studies. Recently, there has been a push towards
using explainable machine learning for the malware domain, which specifically allows
to reason about classifier decisions. Fan et al. [102] have evaluated various explanation
techniques for malware analysis, and conclude that LIME [103] and SHAP [104] provide
the most robust and stable explanations. Also, machine learning has not yet been applied
to malware lineage — how a certain malware family evolves over time in terms of
structure, behavior and its target. Most of the work in this domain is manual and requires
a deep understanding of the evolving threat landscape: e.g., Black et al. [96] perform
an in-depth analysis of banking malware families, and Moubarak et al. [95] discuss the
structural relationship between several potentially state-sponsored malware. Evidently,
the success of this research is dependent on the quality and size of the used dataset.
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4.2 Adversarial malware

The security of machine learning is an active area of research that has been gaining
increasing popularity in the recent years. This theme addresses the arms-race between
crafting evasive malware samples (offensive security) and developing robust methods
to detect said samples (defensive security). Although the threat landscape is already
adversarial in nature, many approaches in this area have been borrowed from the com-
puter vision domain, where adversarial ML was pioneered. Biggio et al. [105] provide
an overview of the developments in adversarial machine learning in the past ten years.
An open problem in this area is using machine learning to craft adversarial malware
samples where the perturbations are big enough to mimic goodware while preserving
malicious functionality.

Offensive security. While evasive malware has existed for a long time, latest research
applies machine learning to automatically craft these samples. These techniques work
by performing small perturbations on a malware sample to create a variant that leads to a
misclassification by the ML model. Most of the proposed attacks are gradient-based, as
they target deep neural networks. White-box techniques require some knowledge of the
target, such as the structure and weights of the target model, while black-box techniques
do not assume any knowledge of the targeted classifier.

There are two main concerns in creating adversarial malware samples: (a) the per-
turbations are performed in the continuous domain, while malware binaries exist in the
discrete domain; and (b) the frameworks often create perturbations that break functional-
ity of the executable. Anderson et al. [106] have proposed a reinforcement learning-based
method to guide the search for functionality-preserving perturbations. However, since
their method is quite general, they report modest evasion rates. Grosse et al. [107] pro-
pose a method for crafting adversarial examples that operates in the discrete domain and
preserves functionality. They craft adversarial Android malware by adding constraints
to the perturbations — they only allow changes in the manifest file that adds a single
line of code to the application. They use the adversarial examples on Drebin [88] and
report a misclassification (evasion) rate of 69%. Hu et al. [76] target RNNmodels based
on sequential API features. They learn a local substitute (surrogate) model of the victim
RNN that propagates the gradients to a generative RNN that produces sequential ad-
versarial examples. Their results show that more than 90% of the adversarial examples
result in misclassifications. Kolosnjaji et al. [108] target a sequential model that learns
from raw malware bytes. They craft adversarial examples using a gradient-based attack
modifying the last 1% of the bytes that achieve misclassifications. They report a max-
imum evasion rate of 60%. Al-Dujaili et al. [22] adapt the saddle-point optimization
problem from the continuous domain to generate adversarial examples in the discrete
domain. They present a framework that discovers adversarial examples and incorporates
them in the training process to harden the learnt classifier. They conclude that the ran-
domized rounding technique helps discover four times as many adversarial examples.
Chen et al. [109] craft adversarial Android malware by optimally perturbing the Dalvik
byte code to target semantic features. They show the effectiveness of their adversarial
examples by using them on two famous Android malware detectors, MaMaDroid [110]
andDrebin [88], where they report an evasion rate of 100%. Recently, Verwer et al. [111]
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used [22] to develop GRAMS, which is a greedy approach that randomly flips bits to ob-
tain functionality-preserving high-quality adversarial examples in the discrete domain.
GRAMSwas successful in crafting evasive malware and defending against competitors’
evasion attempts during the robust malware detection challenge6.

Poisoning attacks are another important concern for machine learning classifiers.
Poisoning attacks refer to an attacker’s capability to inject adversarial examples during
classifier training phase, such that it learns to classify malicious entities as benign. For
example, Biggio et al. [112] poison behavioral malware clustering andMuñoz-González
et al. [113] propose a poisoning algorithm for deep learning classifiers. Chen et al. [114]
have specified attacker models for poisoning attacks in the malware domain: (a) a weak
attacker who injects malicious code in the non-logical part of the application, such
as manifest file; (b) a strong attacker who injects malicious code in resources, such
as jar or jpg; and (c) a sophisticated attacker who uses Dynamic Code Loading via
Reflection for injecting malicious code at run-time. Having concrete attacker models
provides terminology to develop more streamlined defenses, and to compute resilience
guarantees.

Defensive security. One approach for forensic malware analysis is to categorize mal-
ware based on similar evasion strategies. Kirat et al. [71] propose a bioinformatics-
inspired solution to generate and analyze evasion signatures — they cluster similar
evasive behavior among malware samples. They use a sequence alignment algorithm to
measure similarity among different system call sequences. Then, they extract evasion
signatures from the behavioral clusters. These signatures can be used to detect when a
future malware sample attempts to evade detection in a similar way.

One of the key benefits of adversarial machine learning is that it hardens the security
of an adversarially trained model [107]. When adversarial examples are part of the
training process, they allow to discover samples in the so-called blind spots of the
malicious domain, increasing its robustness to unseen evasive samples. Recently, there
has been a lot of interest in developing ML-based adversary-aware approaches. The
main difference from malware detectors previously discussed in Section 3 is that these
approaches actively anticipate evasion attempts. Demontis et al. [115] propose a so-
called secure-learning paradigm that suggests having the feature weights more evenly
distributed in order to bound linear classifiers’ sensitivity to feature changes. They
also propose attacker models based on their capabilities, knowledge and skills. Zhang
et al. [116] propose an adversary-aware feature selection method, since the choice of
features may also be a factor in adversarial robustness. Their wrapper-based framework
makes assumptions about the adversary and simulates evasion attacks at each step of
the training phase. The framework chooses the features that maximize the classifier’s
generalizability in the absence of adversarial examples and minimize the classifier’s
impact against evasion attempts. Chen et al. [117] present a robust malware detection
system based on two key components: (a) a feature selection method that picks features
thatmaximize attacker’s evasion costs, and (b) an ensemble learningmethodwith diverse
classifiers that incorporate a major part of the feature space. Li et al. [118] investigate
the resilience of ensemble classifiers and the effectiveness of ensemble attacks. Their

6https://github.com/ALFA-group/malware_challenge
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experiments show that while adversarial training for ensemble classifiers promotes
robustness, they are unfortunately no match for adversarial examples learned through
ensemble methods.

Another way to harden classifiers without explicit adversarial training is through the
special handling of suspicious files. Chen et al. [114] have developed a self-adaptive
learning scheme for detecting poisoning attacks. They introduce a so-called camouflage
detector that finds suspicious false negatives by performing similarity analysis with the
most-benign and most-malicious looking samples, and sends such camouflaged samples
back to the training phase as malicious examples.

Trend. At the moment of writing, the security community seems to have a strong
affinity towards offensive security research. Naturally, conducting defensive research
is especially challenging due to the strict requirements that a defensive framework is
expected to fulfill. In case of malware defenses, provable robustness to evasion is a
major milestone that cannot be reached by the community without public datasets of
evasive malware. We believe that adversarial learning for defensive model hardening is
an unfolding but promising research field.

4.3 Malware author attribution

In general, authorship attribution can be considered from two perspectives: (i) code
authorship attribution – attributing a software to its author(s); and (ii) family attribution
– identifying code similarities between unlabelled software pieces. In malware research,
the latter problem appears as malware family identification, which involves multi-class
classification already covered in Section 3. Hence, here we discuss the code authorship
attribution problem.

Code authorship attribution has a rich history in the Software Engineering literature.
The aim of this research is to extract features that capture an author’s programming style.
Existingwork can also be found in related fields, such as forgery and plagiarism detection
where the goal is to extract distinguishing stylistic or fingerprinting attributes from a
software that identifies where the code was copied from. Source code attribution is the
simplest variant since the author’s stylistic features can be relatively easily extracted.
One such work is proposed by Alsulami et al. [119] who extract features from the
Abstract Syntax Tree (AST) of source code collected from Google Code Jam (GCJ). In
fact, GCJ and Github are popular sources of experimental data for authorship attribution,
in general [120,121,122,123].

In many real-world settings however, source code is not directly available, rendering
aforementioned techniques ineffective. It is also commonly believed that the compilation
process removes most of the stylistic features. Rosenblum et al. [120] perform one of
the first attempts to address this problem by using a ML approach that identifies the
surviving stylistic features for binary authorship attribution.

It is noteworthy that code authorship attribution for malware is significantly more
difficult because the authors have strong incentives to hide their identity. Using machine
learning to solve the attribution problem is also tricky because code samples from known
malware authors that are required to train a classifier are rarely available. Additionally,
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the availability of malware-as-a-service indicates that samples are authored by multiple
developers in a malware’s lifetime. Hence, research in this area is scarce because of the
difficulty of establishing a ground truth.

Saxe et al. [124] have written an introductory book on big data analysis for malware
detection. They show the usage of static and dynamic analysis for performing shared
code analysiswith the aim of identifying similar adversary groups. Alrabaee et al. [121]
propose a multi-layered approach to improve malware binary authorship attribution by
conducting both syntax- and semantic- analysis. They attempt to reconstruct the source
code from malware binaries, which they compare with code-based signatures of other
families. They also extract semantic features, such as the way registers are manipulated,
to establish strong evidence for attribution. Rosenberg et al. [125] use deep neural
networks for the attribution of nation-state Advanced Persistent Threats (APTs). They
observe that nation-state APTs have different styles and objectives, which makes their
classification feasible. To that end, they take raw dynamic logs as input to the neural
network that learns a high-level abstraction of the APTs. Their system is evaluated on
two major nation-state malware families and show it to be effective for the purpose.

Natural Language Processing has also been proposed for attribution purposes after
its success in attributing cyber-stalkers [72]. Kalgutkar et al. [74] build an Android
malware detection system based on ‘malware author’ signatures. Their system leverages
strings extracted from the malware binaries to generate profiles of malware authors, with
the expectation that future malware samples authored by the same person will match the
profiles. They use n-grams for feature representation and Support Vector Machine for
APK classification.

Research related to adversarial attacks also exists in code authorship attribution.
Simko et al. [123] propose adversarial stylometry attacks to defeat source code attribution
classifiers. They demonstrate that current code attribution classifiers are not robust to
adversarial attacks, even when they are executed by non-experts. The authors claim that
although not fool-proof, augmenting machine learning classifiers with human analysts
proves to be more resilient against adversarial attacks, especially when they are warned
about potential forgeries in the code. They analyze C/C++ programs and conclude that
semantic features, such as those extracted from ASTs are more resilient to forgery
attacks.

Alrabaee et al. [122] present a literature survey of existing techniques for malware
binary attribution. The survey also lists features that can be used for author attribution
because they survive compilation, e.g., compiler information, system calls, and the usage
of particular strings may characterize coding styles. Additionally, certain type of bugs
in the code may also point to semantic hints that can be used for author attribution. They
also note that a key research challenge is feature selection that captures author’s style
rather than functionality of the program. Following this, Murenin et al. [126] have used
LIME to understand the role of selected features in source code attribution for Android
malware.

Iqbal et al. [127] have recently published a book on authorship attribution and cyber
forensics using machine learning in which they comprehensively describe research
into authorship identification and attribution using few training samples, authorship
characterization and verification. Kalgutkar et al. [128] show how the field has evolved
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from basic software matching techniques to sophisticated methods based on API calls
and dependency graphs. They conclude that although there is no one-size-fits-all solution
yet formalware attribution, the existingwork on varying levels of abstraction has brought
us one step closer to the solution. Nevertheless, this field still has many open problems
that are yet to be explored.

Trend. The popularity of themalware attribution field is impacted by the adversarial and
ad-hoc nature of the threat landscape. Unavailability of open datasets further complicates
realistic evaluation. Further, having a narrow target audience (e.g., law enforcement,
intelligence agencies) means that the works do not get highly cited and thus remain
undiscovered. We believe that this field can get a new life with explainable approaches,
open benchmark datasets and access to ground truth.

5 Challenges in ML-applied malware defenses

The malware domain presents unique challenges for machine learning application. After
years of research, the security community hasmade a significant headway in highlighting
the proper usage of machine learning for malware defenses. As a result, additional
problems have emerged that require further investigation. Souri et al. [82] andYe et al. [3]
identify several unsolved problems in the data-mining based malware detection domain.
Onemust remember thatmachine learning is not a silver bullet that can solve allmalware-
related problems [128]. In this section, we describe common pitfalls and challenges that
emerge when ML is used for malware detection, which should be accounted for when
designing and evaluating such methods.

Robustness against time-decay. Some of the existing work is filled with unreal-
istic simplifying assumptions about the malware landscape. One of the most prevalent
assumptions is the closed-world assumption, which assumes that training data is fully
representative of all categories of samples that may appear at test-time. However, as
malware is an ever-evolving threat, static training data will inevitably become outdated.
Consequently, researchers have shown that ML-classifiers’ performance degrades over
time [20,129]. Recent works have incorporated concept drift detection in their ML clas-
sifiers for handling non-stationary data population. These classifiers continually re-learn
the changing concepts in order to maintain an acceptable detection accuracy. Jordaney
et al. [130] and Wang et al. [131] use P-values that can proactively detect concept drift
before the classifier’s performance starts to degrade. There is also a growing interest in
semantic features that are less affected by malware evolution and hence slow down the
aging of malware detectors [132].

Robustness against evasion. Evasion resilience is an important characteristic for
deployable classifiers. A misleading expectation from ML classifiers is that they should
be fully and provably evasion resilient. To this end, defensive adversarial machine
learning has emerged as a promising solution for evasion resilient classifiers, which has
been previously discussed in Section 4.2. The purpose of defensive adversarial ML is
to explore additional search space in order to harden models against evasion attempts.
However, this search is still bounded by the Independent and Identically Distributed data
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(i.i.d) assumption. As a consequence, out-of-distribution adversarial examples prevalent
in the open world are unlikely to be detected by an adversarially trained ML classifier.

Imbalanced training-set. Benign examples occur significantly more frequently
than malicious ones. Failure to incorporate this trait in the training dataset creates a
so-called spatial-bias [129] in the classifier. Existing works have often used unrealistic
class distribution, e.g., the use of inverted class distribution [6] and equal class distri-
bution [133,134]. Chen et al. [48] propose a solution for imbalanced network traffic
classification to perform accurate Android malware detection. They experiment with
various combinations of imbalanced classification algorithms, such as Synthetic Mi-
nority Oversampling Technique (SMOTE) with SVM, SVM cost-sensitive and C4.5
cost-sensitive. They also develop Simplex Imbalanced Data Gravitation-based Classi-
fication (S-IDGC) that works faster while maintaining the stability of IDGC. In the
deep learning domain, Le et al. [26] use the class re-balance sampling procedure in
bi-directional LSTMs to address the class imbalance problem.

Evaluation metrics. The usage of appropriate evaluation metrics is an underrated
challenge. For example, using accuracy to measure a classifier’s performance when it
is trained with a highly imbalanced dataset results in misleading conclusions. Similarly,
precision and recall values can also be altered based on the choice of empirical thresh-
olds and dataset-specific parameters. Meanwhile, evaluating approaches using such
varied metrics limits objective analysis, and the obtained results become incomparable.
Jordaney et al. [135] demonstrate that traditional evaluation metrics show misleading
information about classifiers’ performance. They propose two metrics based on non-
conformity measures for evaluating a classifiers’ performance. Credibilitymeasures the
homogeneity of a given label compared to others of the same class, and Confidence
measures the separation between a given label and other classes. Pendlebury et al. [129]
have recently identified experimental biases in existing Android malware classifiers,
namely (a) spatial bias due to unrealistic class distribution in training and testing data,
and (b) temporal bias due to incorrect time splits causing impossible configurations.
They propose a new metric, namely Area Under Time (AUT), to characterize classifier
robustness when time decay is present.

Privacy concerns. Machine learning classifiers typically perform better with fine-
grained contextual features. In an attempt to perform large-scale classification, classifiers
have access to both benign and malicious data. Privacy concerns arise as the feature-set
becomes more and more fine-grained. For example, DPI-based approaches analyze the
payload of each packet, which may contain privacy sensitive information. With data
protection laws being widely enforced, such methods are tricky to deploy at large-scale.
There are a couple of solutions for being privacy-aware: (i) selecting abstract features that
do not violate the privacy of user actions, while still being able to characterize malicious
behavior; (ii) deploying a distributed classifier, as in the case of federated learning, that
trains on local data provided by multiple clients [136]. In the latter solution, secure
multi-party computation (SMC) and differential privacy (DP) are required to provide
privacy guarantees.

Performance optimizations. Malware infections are a widespread security threat
faced by all network-connected devices. Classical machine learning solutions are often
not ideal for fending off millions of malware infections each day. Effective intelligent
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defenses should be fast, proactive and evolve with the changing threat landscape. Hence,
a dedicated research direction exists that designs online, optimized classifiers capable
of detecting malware in real-time. Federated learning, discussed earlier as a possible
solution to privacy issues, provides a distributed infrastructure that enables efficient
large-scale detection. Other works are discussed in Section 3.5.

6 Open problems in ML-based malware defenses

In this section, we discuss what we believe are the key problems that the research
community should address. At the heart lies the problem of reproducible research: the
absence of toy problems and representative datasets makes the results from different
papers incomparable. Furthermore, the results often cannot be taken at their face value
because malware ground truth is inherently inconsistent and unreliable. Crucially, many
solutions eagerly emphasize metric optimization but overlook explainability, providing
little new insight into the problem ofmalware detection.We believe that these four issues
hinder fair assessment of new contributions in the intelligent malware defenses domain.
It is very difficult to objectively compare new methods against state-of-the-art solutions
for the same problem, using the same data, and the same ground truth. An alarming
side-effect is the lack of meaningful contributions to the field even though many new
papers are published each year.

Toy problems. Toy problems are important in the early development of a research
field. These are simplified challenges that can help develop and test methodologies that
solve amore challenging problem. Computer science in general and artificial intelligence
in particular have established traditional toy problems that are still used to develop newer
methodologies. However, malware research has always aimed to solve real-world threats.
We observe that limited access to data and resources that are necessary for the evaluation
of proposed methodologies has constrained systematic and open academic research.
Moreover, building fool-proof methodologies in malware detection is an especially
challenging problem, because the adversaries keep evolving rapidly. Since malware
is constantly evolving, the research is driven by the availability of newer threats, and
is reactive in nature. In light of these inevitable issues, we urge the community to
introduce standardized toy problems, which could act as a starting point for developing
new methods in a more synchronized and proactive manner. Toy problems would allow
the assessment of proposed algorithms in isolation from the general practical limitations
of malware detection. Ultimately, as the algorithms become more mature, they should
be enhanced for deployment — practical feasibility should not be fully discarded at the
envisioning stage.

Representative datasets.The biggest hurdle inML-basedmalware analysis research
is the absence of representative datasets. These datasets are crucial for the development
of usable and generalizable defensive solutions. However, with the rapid evolution of
malware, any available dataset becomes obsolete in a matter of years, e.g., the well-
known VX Heavens dataset [137] from 2010, the Drebin dataset [88] from 2010-2012,
and the MalGenome dataset [87] from 2012 are arguably no longer representative. Since
most of the available datasets are not representative, the trainedmodels only describe part
of the real threat landscape. This is not to say that open-source datasets are not available.
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In fact, the Stratosphere IPS project7 has published large-scale network traffic, e.g., the
CTU-13 dataset [138] captures traffic for 13 botnet scenarios, and the recently published
IoT-23 dataset [139] captures 20 IoT malware scenarios and 3 benign ones. The Kaggle
Microsoft Malware dataset [85] was also widely used in multiple works. Other works
have also released their private datasets for reproducibility [29,140]. Nevertheless, one
promising way for the academic community to gain access to reliable and representative
data is to establish a long-term collaboration with industry partners who directly monitor
the threat landscape and can provide updated threat intelligence for the development
of robust machine learning solutions. This is an excellent way to keep up with the
rapidly changing threat landscape. The downside is that the data often contains highly
sensitive information that cannot be released to the public, thus exacerbating problems
of reproducibility.

Noisy ground truth. Existing literature has repeatedly shown that AV-provided
malware family labels are inconsistent. These labels are used as ground truth by re-
searchers to evaluate newer malware detection methods, making the results unreliable.
Popular tools, such as VirusTotal8, run multiple AV scanners and return an array of
labels predicted by each scanner, without any indication as to which is correct. There
is also an absence of a common vocabulary that all security companies can follow to
label malware samples. Research has shown that the consensus reached by AV scanners
regarding the labeling of a single malware sample is no better than a coin-toss (around
50%) [141]. Machine learning has also been slow to materialize in network security
domain due to non-stationary data and noisy ground truth [1]. Unsupervised ML can
already provide a foundation to address this issue. However, in practice, existing un-
supervised ML approaches often use some form of ground truth for evaluation. For
example, Perdisci et al. [47] evaluate their malware clustering by introducing a notion
of AV graphs that depict the agreement between AV vendors as a measure of cluster
cohesion and separation. Yuping et al. [142] use majority-voted family labels from 25
AV vendors as their ground truth to evaluate malware clustering. Li et al. [143] have
advised caution when deciphering highly accurate clustering results as they can be im-
pacted by spatial bias: performing majority voting on AV-provided labels is hazardous,
since if most of the AV vendors are in agreement, it typically indicates that the families
are already easy to detect. Hence, we either need better ground truth [144] or purely
data-driven unsupervised evaluation approaches.

Explainable solutions. In recent works, deep learning basedmalware detectors have
surpassed the performance of traditional ML classifiers. They have also automated the
detection pipeline for the most part. However, deep neural networks are inherent black-
boxes that provide limited interpretability. It is also alarming how brittle deep learning
is to adversarial attacks. Alternatively, non-deep learning approaches are not much more
interpretable — they are frequently packed with complicated filtering steps to maximise
performance [52], which also turns them into black-boxes. This concern has motivated
research on explainable machine learning. Explainable models enable identification of
bias in raw data, debug errors in trained models, enable model optimization, and allow
analysts to extrapolate advanced results, i.e., to get detailed insights from data instead

7https://www.stratosphereips.org/datasets-overview
8https://www.virustotal.com/

https://www.stratosphereips.org/datasets-overview
https://www.virustotal.com/
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of simply reading off detection rates. Without explainability, such extrapolation will be
difficult and error-prone. Mathews et al. [145] provide a summary of explainable ML
techniques formalware classification, including both intrinsic and post-hocmethods. The
research trend shows that moving forward, special emphasis will be given to explainable
and human-in-the-loop solutions.

7 Summary

Machine learning has emerged as a promising ally for developing intelligent malware
defenses. However, the research in this area is scattered across different venues and
domains. In this chapter, we identify the key research themes and assemble the state-
of-the-art literature that has been proposed in the past decade. In doing so, we highlight
trends in these research themes.

The literature is greatly dominated by malware detection approaches with the aim
of developing scalable behavioral signatures. We categorize the research in this domain
according to the data source and feature representation used for their classifiers. The
trends in the literature suggest that sequence learning and explainable machine learn-
ing are considered promising areas of research. Malware analysis is another research
direction that develops tools that provide the necessary insights to improve malware de-
tection. Adversarial machine learning has recently gained popularity to harden machine
learning classifiers. Also, malware author attribution proves to be a challenging field
with limited progress due to the unavailability of datasets, and an absence of concrete
problem statements that data-driven methods can realistically address.

We have discussed important considerations that emerge when machine learning is
applied in the malware domain, such as resilience against concept drift and evasion,
handling imbalanced datasets and using appropriate evaluation metrics. We have also
identified key issues that need to be addressed in our opinion by the research community
in order to encourage systematized research in the malware domain: toy problems, rep-
resentative datasets, noisy ground truth, and explainable solutions. Without overcoming
these issues, limited progress can be made due to the inability to compare research
results.

It is evident that intelligent malware defenses will continue to grow. However,
understanding the unique challenges that the malware domain brings to the table is
absolutely essential for developing effective machine learning enabled solutions that
can withstand the test of time.
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