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Superconducting Magnetic Energy Storage-Based
DC Circuit Breaker for HVDC Applications

Amir Heidary
Farzad Dehghan Marvasti

Abstract—Dealing with the fast-rising current of high voltage
direct current (HVdc) systems during fault conditions, is one of the
most challenging aspects of HVdc system protection. Fast dc circuit
breakers (DCCB) have recently been employed as a promising
technology and are the subject of many research studies. HVdc
circuit breakers (CBs) must meet various requirements to satisfy
practical and functional needs, among which fast operation, low
voltage stress, and economic issues are the key factors. This article
presents the procedure for designing a superconductive reactor-
based DCCB (SSR-DCCB) for HVdc applications. In the proposed
structure, a full-bridge power electronic configuration controls the
superconducting reactor to limit the dc fault current and create a
dc zero-crossing; it is connected to the HVdc line by a series trans-
former. After successfully suppressing the line fault current (cur-
rent zero current), an ultrafast disconnector isolates the faulty line.
The main advantage of the proposed HVdc CB is its ability to inter-
rupt the dc fault current without using the solid-state main breaker
and limit the magnitude of the fault current and voltage stress. The
proposed SSR-DCCB is investigated in MATLAB/Simulink, and
an experimental prototype setup validates the results.

Index Terms—High voltage direct current (HVdc) circuit
breaker (CB), HVdc protection, series limiting reactor,
superconducting reactor.

I. INTRODUCTION

IGH voltage direct current (HVdc) system’s technology
has advanced significantly, considering its ability to en-
hance the efficiency of long transmission lines [1]. The evolution
of the commercialized HVdc systems began in 1954 and has
steadily progressed, facing various challenges along the way
[2]. Nonetheless, ensuring the protection of the HVdc system
remains a vital concern [3].
In the occurrence of a dc fault, the HVdc grid’s low
impedances cause a significant challenge, leading to a faster and
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higher fault current increase compared to ac grids [S]. Moreover,
the dc fault current does not have a current zero crossing and a
high rate of rise [6]. Consequently, HVdc grids require suitable
circuit breakers (CBs) to promptly interrupt fault currents that
could cause damage [7].

Researchers have recently studied several concepts as poten-
tial solutions to address dc fault current interruption in HVdc sys-
tems [8]. These solutions, namely fault current limiters (FCLs)
[9] and fast HVdc CB [10], have emerged significantly. Within
the HVdc system, FCLs operate crucially in enhancing the
performance of fast dc breakers by mitigating the magnitude
and rate of dc current rise [11].

HVdc CBs are anticipated to have four crucial features: ul-
trafast breaking action within a period of milliseconds; minimal
conduction losses; prevention of excessive overvoltage during
breaking operations; and the ability to dissipate energy effec-
tively [12], [4].

Several types of HVdc CBs have been introduced, and are
broadly classified as resonance or hybrid CBs. Among the
resonance CBs, active and passive resonant CB schemes have
been proposed as potential solutions for dc systems [13], [14].
However, their speed is inadequate for effectively safeguarding
voltage source converter-based HVdc grids [15].

The hybrid HVdc CB has been introduced as an advanced
technology capable of efficiently breaking high dc fault cur-
rents safely and reliably [16], [17]. The hybrid CB provides
minimal conductive power losses attributed to its utilization
of a solid-state load commutation switch (LCS) structure [18].
Notable examples of commercialized HVdc CBs include the
ABB hybrid DCCB [19], the Alstom thyristor-based hybrid CB
[20], Zhangbei project 500kV HVdc breaker [21], the SciBreak
[22], Nan’ao project coupling mechanical HVdc breaker (CM-
DCCB) consisting of capacitor storage [23], and air-core HTS
pulse transformer for the S-HCB application [24]. Furthermore,
various DCCBs are operating based on the hybrid breaker and
controllable reactor principles, aiming to improve the perfor-
mance of well-established hybrid breakers [25], [26]. Primarily,
these breakers enhance the current limiter section of DCCB
[27], [28].

Although hybrid CB technology offers advanced features,
specific areas require improvement to enhance the overall perfor-
mance. Accordingly, this artic;e aims to introduce a novel con-
ceptbased on solid-state switches and superconducting magnetic
energy storage (SMES), namely the superconducting storage
reactor-based DCCB (SSR-DCCB). This configuration operates
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by taking into account the current injection of SMES and a
solid-state bridge, offering the following advantages.
1) There is no need to employ a solid-state main breaker.
2) Very low voltage stress across the breaker.
3) Shallow peak of fault current.
4) Relatively fast fault current interruption (less than 1 ms).
5) Limiting the rate of fault current before breaker operation.
6) The decrease of the main breaker dissipated energy.
7) No need to enormous surge arrester.
Moreover, the reasons for selecting SMES technology to
develop a new HVdc CB are as follows.
1) Minimal energy loss considering superconducting tech-
nology.
2) High transient current excitation capability.
3) Fastresponse time considering exciting circuit as a current
source.
4) providing very fast reverse current to interrupt fault cur-
rent.
5) Fast recharge capability, which provides swift reclosing.
The rest of this article is organized as follows. Section II
demonstrates the SSR-DCCB configuration and its operation
and provides an analytical study. Section III presents the sim-
ulation results. Section IV introduces the developed control
strategy. In Section V, experimental test results are presented.
In subsequent Section VI, the comparison study is presented.
Finally, Section VII concludes this article.

II. SSR-DCCB CONFIGURATION, OPERATION, AND ANALYSIS

This section introduces the components of the proposed SSR-
DCCB and discusses its operation principle. As demonstrated
in Fig. 1, SSR-DCCB comprises a series transformer (ST), the
primary winding of which is connected in series to an ultrafast
disconnector (UFD) and the dc line. Its secondary winding is
connected to the solid-state bridge switches and SMES reactor.
This reactor is created by a high-temperature superconducting
wire model, Bi2223, being cooled at a temperature of 77 °K
using liquid nitrogen, with a quenching point for the supercon-
ducting reactor 2.5 kA. The secondary circuit of the SSR-DCCB
includes four solid-state IGBT switches S;-S4, which create a
bridge, and its middle branch connects to SMES and its charging
circuit. Moreover, each IGBT switch is protected against voltage
stresses by a parallel surge arrester.

For charging the SMES, we have considered an external cir-
cuit comprising a transformer, a rectifier, a resistor, a capacitor,
a switch S5, and a current sensor. The charge circuit is shown in
the Fig. 1(b).

The operation principle of the SSR-DCCB is classified into
three statuses: normal steady-state condition, normal dynamic
condition, and short-circuit fault condition.

A. SSR-DCCB Operation in the Normal Condition
(Steady State)

For the first studied condition, it is considered that there is no
fault and current variation. In this state, UFD is closed, and all
the bridge IGBTs S;-S4 are turned ON to circulate the current
of the SMES, which is known as Isr. Considering that there is
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Fig. 2. (a) SSR-DCCB operation during normal steady-state condition.

(b) Equivalent circuit for a normal steady-state condition.

no current variation and voltage v, in the ST primary winding,
the voltage of the secondary winding v, is almost zero. This
operation is shown in Fig. 2(a).

The current circulation in the topology of SMES is provided
by an external IGBT bridge. Since this freewheeling current has
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its maximum value, the maximum energy of SMES is available
to interrupt the fault current.

The equivalent circuit of the SSR-DCCB in this state is shown
in Fig. 2(b), where there are three elements in series with the
power line as a leakage inductance of ST primary (L;; ), the resis-
tance of the primary winding (R ), and magnetization inductance
of ST (L,,,). By assuming that there is no current variation, the
voltage drop of the inductive term is zero and the only remaining
element is R;. The voltage drop of the SSR-DCCB is expressed
by (1), which is extremely small

va(t) = igc(t). Ry (D

Considering that SSR-DCCB mostly operates in this mode,
its power loss during the normal state is calculated as

ploss(t) = idc(t)2~R1- (2

In addition, the current of the SMES is a constant value that
is always prepared to operate for fault current interruption.

B. SSR-DCCB Operation in the Normal Condition (Dynamics)

This section focuses on the SSR-DCCB operation when the
system dynamic occurs in normal operation. Considering the
variation rate (increasing or decreasing of the line current), in-
duced voltage polarity in the secondary winding can be changed
where, in each state, D; and S5 or D5 and S conduct the current
of the secondary winding. These two operations for dynamic
conditions are illustrated in Fig. 3(a) and (b).

During the dynamic state, the secondary winding is short-
circuited by the solid-state switches, and the generated current in
the secondary circuit bypasses the ST magnetization inductance.
This equivalent circuit is illustrated in Fig. 3(c). In this circuit,
leakage inductance L;> and secondary winding resistance Ro
are in parallel with the magnetization inductance of the ST.
Considering that the values of Ry and L;5 are much smaller
than the magnetization inductance, L,,, can be removed from the
equivalent circuit. Consequently, the remaining elements in the
equivalent circuit are L1, Ry, L2, and R which are connected
in series to the DC power line. Also, a is the turns ratio of ST.
Therefore, the voltage drop of SSR-DCCB can be written by
expression as

va(t) = (R1 + &2 Ry)iac(t) + (Lin + 02 Lyp)diac()/ 5, (3)

Considering the value of the primary and secondary wind-
ing resistance and leakage inductances of both windings are
so small, it can be concluded that SSR-DCCB has almost no
effect on system dynamics and stability. To sum up, the series
impedance of SSR-DCCB is almost equal to zero during system
dynamics, and it has no system stability effects

ploss(t) = idc(t)2~ (Rl + 042R2) . 4)

C. SSR-DCCB Operation in the Fault Condition

This section provides information about the primary opera-
tion of the SSR-DCCB and how it can interrupt the dc fault
current. Fig. 4(a) and (b) illustrates the operation principle of
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the SSR-DCCB for both different directions of the fault current
(bidirectional operation).

In Fig. 4(a), it is assumed that the fault current passes from
the left to right direction where, in this state, to interrupt the fault
current, switches S7 and S will be turned ON, and switches S3
and S4 will be turned OFF to redirect the SMES current to the
secondary coil of ST. This operation causes an induced transient
voltage in the primary winding of the ST, which is in the reverse
direction of the grid’s voltage, forcing the fault current to decline
and reach a current zero. By operating the control system with a
current zero-cross detection, the UFD will open the faulty line
and interrupt the current permanently. During the operation of
UFD, the voltage across this switch is near zero because, in
the current zero-crossing occurrence, the ST generates a reverse
voltage opposite of the dc system voltage. It means that the
voltage across the UFD is low enough to avoid arc formation
and provide time for the complete operation of the UFD.

In the reverse fault current direction, as shown in Fig. 4(b), the
operation procedure of SSR-DCCB is the same as the previous
operation, while the turned-ON switches in the secondary circuit
are S3 and Sy, and switches S; and S5 will be turned OFF. In the
second operation, the state current of the secondary winding and
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Fig. 4. (a) Operation SSR-DCCB in a direct fault current condition. (b)
Operation SSR-DCCB in a reverse fault current condition.

induced voltage to the primary winding are reversed compared
to the previous operation.

In this operation state, the SSR-DCCB voltage of the primary
winding is computed using (5). In this equation, ¢y is the total
linked flux in the ST core. This flux can be calculated by
considering (6), where L; and Ly are primary and secondary
inductances of ST. Here, N; and N5 are turns of primary and
secondary coils, and igg is the current of SMES, which is
this state equal to the secondary current of the ST. Finally, (7)
presents the voltage of the primary coil throughout the fault, and
the resistive voltage drop of the primary winding is ignored

va(t) = Ny 92e() 1 + (Ry + o2 Ro)ige(1) )
@i(t) = @1(t) — pa(t) = (igeL1/N1) — (isrL2/Na)  (6)
va(t) = d (Lyiae(t) — a® Laisg(t)) /dt. (7)

Equation (7) can be used to calculate the required dc current
in the SMES to provide the needed reverse voltage on the ST’s
primary side by considering the condition that the voltage of
SSR-DCCB should be slightly higher than the dc system voltage.
In this equation, L; and Ly are inductances of ST’s primary
and secondary sides. « is the turns ratio of ST. ¢ and 9 are
magnetic fluxes of the core generated by primary and secondary
coils of ST.
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Fig. 5. (a) Illustration of the considered HVdc power system. (b) Simplified
diagram to consider SSR-DCCB operation. (¢) Simplified model for simulation.

III. SIMULATION OF THE SSR-DCCB OPERATION

To evaluate the main operation of the proposed SSR-DCCB,
the simulation is performed for the circuit as shown in Fig. 5,
where the fault is located on the point-to-point dc line and SSR-
DCCB will operate from a normal state to short-circuit fault
state. This simulation is carried out in MATLAB Simulink using
the simplified equivalent of a VSC circuit in the fault state, dc
power line model, and low impedance short circuit fault. The
simulated power system diagram is illustrated in Fig. 5.

In Fig. 5(a), a point-to-point HVdc line is illustrated, where
each line end is equipped with an SSR-DCCB. The rationale
behind selecting the point-to-point dc line is to simplify the dc
system and evaluate the SSR-DCCB features when operating
against the dc fault current. Fig. 5(b) demonstrates a fault occur-
rence in the positive pole line, and the operation of SSR-DCCB
will be observed only at the sending end of the HVdc line. In
Fig. 5(c), the simplified model of the VSC, including the RLC
branch and dc source as a charging circuit of the capacitor, is
represented [29]. This circuit is connected to SSR-DCCB, HVdc
line (a short length of a cable modeled by one PI-section with
a fault occurring near the dc terminal), and the fault is shown,
which is the practical way to demonstrate the performance of
the proposed SSR-DCCB thoroughly. The data of the simulated
HVdc power system are given in Table 1. The assumptions for the
simplified model of VSC during fault transient are the capacitor
of VSC is fully charged by a dc source (in reality, by solid-state
switches), and the power is injected into the dc line by an RL
series impedance.

One important consideration when designing the ST of the
proposed SSR-DCCB is the saturation. To avoid ST saturating in
both normal and fault conditions, the parameters of the ST given
in Table I are calculated according to [30]. In this calculation, a
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TABLE I
SIMULATED HVDC POWER SYSTEM SPECIFICATIONS
Parameter description value
Series resistance of the VSC (Rc) 50 mQ
Series inductance of the VSC (L) 30 mH
E) Shunt capacitor of the VSC (Ce) 5000 uF
2 Voltage of the VSC (vac) 200 kV
5 Line equivalent resistance (Ri) 100 mQ
a Line equivalent inductance (L) 0.5 mH
E Line equivalent capacitance (Ci) 0.2 uF
Fault resistance 0.1Q
DC line normal current 1 kA
Primary coil turns 280 turns
Primary coil inductance 100 mH
Permeability of core 0.005
Primary coil resistance 10 mQ
Secondary coil turns 28 turns
8 Secondary coil inductance 1 mH
8 Core normal magnetic flux density 07T
~ Core maximum flux density 18T
A ST core cross section 0.5 m?
Secondary coil resistance 0.8 mQ
SMES Inductance 500 mH
SMES Charged current 1400 A
SMES critical current 2500 A
IGBTSs' turned oON resistance 0.1 mQ

SMES Activation
15 Max current 1.5 p.u |
=
&
- 17 4
=
e |
5 | <«— UFD opearation
S o0sf >« 1
Delay of control
o ‘ . ‘
9.6 9.8 10 10.2 10.4 10.6 10.8 1
Time (ms)
Fig. 6. HVdc line current.

line normal and maximum fault current, core cross-section, and
primary turns of ST are considered to be ST operating under the
saturation region.

In the simulated model, the VSC voltage is 200 kV (taken
as 1 p.u.) the HVdc line’s normal current is 1 kA (taken as
1 p.u.), and a fault occurs at # = 10 ms. In this simulation,
the fault is detected 70 ps after the fault occurrence to activate
SSR-DCCB. After the operation of SSR-DCCB, the line current
drastically declines toward zero crossing, where the control
system sends a command to UFD to disconnect the power line
around a very low current. This scenario is clearly shownin Fig. 6
when the fault current maximum magnitude reaches 1.5 p.u.
(where 1 kA known as 1 p.u.), and the fault current interruption
duration is 0.4 ms. This current can be mathematically calculated
using (7).

Considering Fig. 7(a), the UFD starts operating when the
current zero is reached at 10.06 ms. At this instant, a current
zero-crossing occurs because of the reverse voltage generated
by the ST and SMES injected current. This means that the
voltage across the UFD is low enough to avoid arc formation,
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and provides enough time for the operation of the UFD. It is
observable that after 0.4 ms from fault inception, the voltage
of the UFD rises. The peak magnitude of the voltage across the
UFD after this time reaches 1.08 p.u. when the distance between
conducts is long enough to withstand the recovery voltage.
This voltage jump is suppressed by the ST reverse voltage,
which is shown in Fig. 7(b). The duration of the ST primary
voltage is nearly 1 ms and its peak magnitude reaches 1.08 p.u.,
which is in line with (7).

Fig. 8 shows the current of SMES during normal and fault
conditions. This curve depicts the oscillating trend of the SMES
current; hence, a port of its initial stored energy is used for the
HVdc line current interruption after the fault (during 10.06—
10.86 ms). After the falling trend of the SMES current, the
charger circuit turns on to recharge the superconducting reactor
again to reprepare it for the next required switching (if reclosing
is needed). This oscillation is because of the connection of the
charger to quickly transfer energy to the SMES. This current is
finally stabilized for more than 1 p.u. where SMES is recharged
by the energy resulting from the charger circuit.
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Fig. 10.  Control diagram of the SSR-DCCB.
TABLE I
CONTROL LOGIC OF THE SSR-DCCB
Sequences M S, | S5 | S4 | Dy | D,| UFD | 85
Normal 1 1 1 1 0 0 1 0
Dynamic 0 0 1 0 1 0 1 0
Current rising
Dynamic 1 0 0 0 0 1 1 0
Current falling
Fault 1 1 0 0 0 0 1 0
(right side)
Fault 0 0 1 1 0 0 1 0
(left side)
Fault interruption 0 0 0 0 0 0 0 0
SMES recharge 0 0 0 0 0 0 0 1

In Fig. 9, the voltage stress of the turned-OFF IGBT switches
(83, §2) is illustrated, considering that both voltages are the same
for the last arm (S1, $4). A surge arrester and reverse diodes
protect all the IGBT switches. The maximum magnitude of the
voltage reaches 0.17 p.u., which can be simply withstood by
applying conventional medium voltage (MV) IGBTs.

IV. CONTROL STRATEGY

The control strategy of the proposed SSR-DCCB is based on
the current measurement and detection of power flow direction.
The control system diagram is demonstrated in Fig. 10. By
measuring and comparing the current value with the reference
current via Comp. 1, as shown in Fig. 10, the HVdc line fault
is first detected. Then, the direction of the power flow regarding
the voltage difference between the sending and receiving end of
the power line determines which IGBT switches in the bridge
configuration must be turned ON or OFF. This decision is made
by using two NAND logic gates 1 and 2. Thereafter, generated
commands are driven to trigger IGBTs.

In the final stage of the control diagram, the dc line current
will experience a zero crossing, and a current zero crossing
detection block detects this state. It sends a command to the
UFD to disconnect the power line and provide permanent current
interruption. Table II gives the logical control of the switches
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TABLE III
CONTROL LoOGIC OF THE SSR-DCCB

States Timing
Normal condition t<10 ms
Fault occurrence t=10 ms
Fault detection t=10.06 ms
SMES activation t=10.065 ms
UFD activation t=10.4 ms
SMES Disconnecting and charger 1=10.8 ms
activation
UFD reaches the max. gap t=12.2 ms

Oscilloscope

Serics | Load and
CS | {UFD  yran,

or {fault relay

AC source

IGBT switches
Series transformer ——

Data monitoring

Load and fault relay

Ultra fast Superco
B8 disconnector (UFD)

Fig. 11.

Experimental laboratory test setup.

for all operation stages. Furthermore, this table shows whether
diodes are ON or OFF.

Considered operation sequences of the SSR-DCCB are likely
the operation stages as shown in Section II, encompassing
a normal operation, dynamic current rising, dynamic current
falling, fault condition on the breaker right side, fault condition
on the breaker right side, and fault current interruption.

Additionally, Table III gives the timing of the fault occurrence
and SSR-DCCB operation and clarifies the operation time of
each component in SSR-DCCB.

V. EXPERIMENTAL STUDY OF THE PROPOSED SSR-DCCB

In this section, the implementation of the prototype scheme of
the proposed SSR-DCCB is shown as a laboratory scale-down
setup to validate the obtained results from the simulations.
Fig. 11 depicts the implemented SSR-DCCB, the laboratory
setup, and the diagram of connections and measurement.

The details of the equipment considering the electrical speci-
fications of the devices to carry out the laboratory tests are given
in Table IV.

The parameters of the prototype inductance, resistance, and
capacitance in the laboratory setup are the same as the presented
parameters in Table 1.

In the laboratory test procedure, firstly, the system operates
in a normal condition where the output voltage of the VSC is
300 V (known as 1 p.u.), and the steady-state current is 1 A
(known as 1 p.u.). The fault is applied by providing a short
circuit on the dc load connected to the VSC. After the fault
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TABLE IV
ELECTRICAL SPECIFICATION OF LABORATORY EQUIPMENT

Device name Specifications
oscilloscope Digital oscilloscope, model: WON ds5
UFD Mechanical magnetic based, 20 kV, 100 A, 1.6 ms
IGBT Bridge IGBT, 1200 V, 20 A
Deriver 3 A optocoupler IC series: FOD 3184
SMES 500 mH, HTS Bi2223
Cooler Liquid Nitrogen cooling box at 77 Kelvin degree
VSC IGBT-based, 500 W, 300 V, voltage source converter
AC source Variable 1000 W autotransformer
T.Div:5ms
1.5p.u
Ch 12V
3 tpu ] ena-
& ]
5l
5 EDGE
<
Freq O Hz
—> 04 ms
| 4 { Trigger
Time (ms)
Fault
Fig. 12.  Tested DC line current.

T.0n:5ms

ch2v

Voltage (p.u)

Freq OHz

Trigger

Time (ms)

Fig. 13.  Voltage across the UFD.

inception, the VSC experiences the rising trend of the current
until the internal controller of the VSC sends the command to
the IGBTs of the SSR-DCCB to decrease the fault current. At
the current zero crossing, UFD will operate to disconnect the
VSC from the faulty line. The current trend measured in the
laboratory setup is depicted in Fig. 12. This figure validates the
simulation presented in Fig. 6, where the current variation trend
is in good agreement.

Fig. 13 shows the voltage across the UFD of SSR-DCCB. This
voltage also validates the simulation results shown in Fig. 7. The
peak magnitude of the voltage reaches 1.05 p.u. and then quickly
declines toward the voltage of the VSC. Furthermore, after start-
ing the operation of UFD, its voltage for a duration of roughly
0.4 ms is close to zero. It reaches maximum voltage when its
contact moves for a distance of 25 cm between terminals.

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 39, NO. 10, OCTOBER 2024

T
1
: 1.05p.u T.Div:5ms
________ r-="m T mmm e
! Ch 12V
|
% : Ch.2-
£
> EDGE
freq 0 Hz
g : Trigger
Fault Time (ms)
Fig. 14.  Voltage of the primary side of ST.
T.Div:5ms
14p.u Ch.1:2V
g I Ch2
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£ EDGE
©
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Trigger
i i
= Fa?xll Time (ms)
Fig. 15.  Current of the laboratory SMES.
0.18 p.u T.Div:5ms
B} ch1:2v
S
&
E] Ch.2:-
c
>
> EDGE
Freq 0 Hz
Trigger
Time (ms)
Fault
Fig. 16.  Voltage across the SMES of the prototype.

Fig. 14 shows the primary induced voltage of ST, which is
in the reverse direction of VSC voltage to create a current zero-
crossing and decline the voltage across the operated UFD to
avoid arcing when the contacts of UFD are not far from each
other. The peak magnitude of this voltage is 1.05 p.u., and its
duration is nearly 1 ms.

Fig. 15 verifies the SMES current curve of the laboratory
setup, which is in good agreement with the simulation result in
Fig. 8. According to this figure, SMES current declines from 1.4
to 0.45 p.u. during the fault interruption operation, and then its
current oscillates, affecting the charging circuit to recharge and
stabilizes at 1.1 p.u.

Moreover, according to Fig. 16, the maximum stress voltage of
IGBTs (S1, 84 and S3, $2) is limited to the safe range, confirming
the results obtained in Fig. 9. The peak magnitude is less than 0.2
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p-u., and its voltage oscillates and declines to zero after almost
15 ms.

VI. FEASIBILITY OF IMPLEMENTING THE REAL-SCALE
SSR-DCCB

Technical justifications are provided to assess the feasibility
of implementing the proposed SSR-DCCB in both MV and
high voltage (HV) level grids. Here the discussion regarding
the feasibility of the SSR-DCCB in MV and HV dc grids is
structured around the examination of each of the three main
sections comprising the SSR-DCCB design.

Regarding the series reactor, the SSR-DCCB incorporates
a series dc reactor with an inductance in the range of
100 mH. This value of the inductance is suitable for both MVdc
and HVdc grids, as it aligns with the specifications commonly
utilized in the topology of recently designed limiter reactors
for dc grids. Employing a 100 mH series reactor is practical
for full-scale breakers, offering advantages in terms of stability,
power loss, and protection effects. We base our reasoning on the
findings of the following state-of-the-art studies referenced in
our manuscript [19], [20], [21], [22], [23].

Regarding SMES, in our simulation, the designed SMES has
a capacity of 500 kJ and is connected to the secondary circuit
of the ST at a voltage level of a maximum of 20 kV in transient
states. This SMES design is suitable for real-scale HVdc grids,
given its moderate capacity and MV range.

Regarding solid-state switches, the primary challenge in
designing HVdc CBs lies in employing multiple series of solid-
state switches to withstand the voltage stress during the cur-
rent interruption. In the designed SSR-DCCB, all solid-state
switches are linked to the secondary side of the ST, with a
maximum voltage stress of 32 kV, compared to the grid nominal
voltage of 200 kV. For practical implementation, only three
IGBTs (4.5 kV) modules are required for each arm of the bridge
rectifier, presenting a significant advantage over the conventional
approach of using numerous IGBTs in series for the main
breaker, as often suggested in research studies.

In summary, the feasibility of each key component of the
SSR-DCCB offers logical advantages over other types of HVdc
CBs.

Regarding the reclosing capability of the SSR-DCCB in prac-
tice, it is possible based on the following procedure: First, the
UFD closes the line to conduct the current. Second, when the
current does not exceed the normal value and voltage takes place
as its nominal value, power should flow as its nominal value
(fault removed). Third, when the current exceeds the normal
value and the dc-protected terminal faces under voltage (fault
remains), SMES switches will operate. Finally, the UFD will
open the line at the current zero-crossing.

VII. COMPARISON STUDY OF PROPOSED SSR-DCCB

In this section, the comparison study is carried out between
features of the studied SSR-DCCB and two well-known HVdc
CBs to prove the main contributions of the SSR-DCCB concept.
Regarding this comparison, the features of the breakers are
given in Table V. The comparison is carried out with hybrid
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TABLE V
COMPARISON OF THE HVDC BREAKERS
Hybrid CM-DCCB S-HCB
Sections breaker [23] [24] SSR-DCCB
[19]
Peak voltage 1.5pu. 2p.u. 1.8 p.u. 1.05p.u.
Peak current 9p.u. 18 p.u. 6p.u. 1.5pu.
Ope-ratlon <5 ms S ms <1 ms 0.4 ms
time
1 IGBT, Four fast
LCS 4.5KkV, mechanical - -
4.8 kA switch
Main 67 series LC
breaker IGBT, resonance I FMB )
Ultra-fast 1 UFD - - 1 UFD
disconnector
Limiter DC one one series one series
reactor reactor, - transformer transformer,
100 mH 100 mH
vl\(j[lzve MOV MOV MOV
Arresters 15 pgu voltage 1.5 voltage 1.8 voltage 0.16
275 MJ pu. O kA Pt
Four RC
Snubber 67 RCD snubber and| ) )
snubber Four shunt
resistor
Reactor 2 IGBTs 12 IGBT
itch - A SCR 12 kV, 200 4.5kV,4.8
switc A KA
Storage capacitor ~ [Two capacitorl  One SMES
& bank banks reactor
1 R Limi
Normal state eactor imiter ST loss ST loss
power loss loss reactor loss

breakers [23], which, in practice, utilized HVdc breakers and
designed SSR-DCCB. Considering that these breaker properties
are presented for different dc voltage levels, for the sake of clear
and reasonable comparison, the current and voltage magnitudes
are presented in per unit voltage and current. The focused
features are the number of used switches for each topology,
the transient interruption voltage, the peak magnitude of the
interrupted current, the duration of the current interruption, and
the dissipated energy.

Considering the rating of required equipment for designing a
real-scale SSR-DCCB, and the number of required solid-state
switches, arresters, capacitors, and mechanical switches, it can
be concluded from a cost-performance point of view that the
proposed SSR-DCCB has substantial economic benefits.

Considering the comparison provided in Table V, the overall
advantages of the SSR-DCCB over the three relevant technolo-
gies are as follows.

1) Lower peak magnitude of voltage stress and current.

2) Very fast operation time of less than 0.5 ms.

3) No need for a main breaker, either mechanical or solid-

state.

4) No need to use enormous metal oxide surge arrester.

The challenge of SSR-DCCB is as follows.

1) Designing the applicable SMES for an appropriate

performance.
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VIII. CONCLUSION

This article proposes the design of a crucial topology aimed at
significantly enhancing the performance of currently employed
DCCB in HVdc systems. The novel DCCB, referred to as
SSR-DCCB, comprises three essential components: controllable
reactors; SMES; and an MV IGBT full bridge. Through simula-
tion and experimental scale-down tests, the investigation results
in the following outcomes: SSR-DCCB can effectively interrupt
dc fault currents without relying on the main breakers and LCSs,
leading to a substantial reduction in voltage stress across the
breaker, eliminating the use of large surge arresters to dissipate
huge amount of energy and limit the fault current peak to an
exceptionally low value. Moreover, the operation of this CB is
fast, taking less than a millisecond. Notably, the achieved results
showcase a pioneering topology that operates distinctively from
the well-known hybrid or resonance HVdc breakers, marking a
significant advancement in the field.

(1]

(2]
(3]

(4]

[3]

(6]

(71

[8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

A. Alassi, S. Banales, O. Ellabban, G. Adam, and C. Maclver, “HVDC
transmission: Technology review, market trends and future outlook,” Re-
new. Sustain. Energy Rev., vol. 112, pp. 530-554, 2019.

C. Facchin and H. Fissler, 60 years of HVDC, ABB Review, 2014.
[Online]. Available: https://library.e.abb.com

C. M. Franck, “HVDC circuit breakers: A review identifying future
research needs,” IEEE Trans. Power Del., vol. 26, no. 2, pp. 998-1007,
Apr. 2011.

Z. Liu et al, “A contribution to the development of high-voltage
dc circuit breaker technologies: A review of new considerations,”
IEEE Ind. Electron. Mag., vol. 16, no. 1, pp.42-59, Mar. 2022,
doi: 10.1109/MIE.2021.3085998.

M. Barnes, D. S. Vilchis-Rodriguez, X. Pei, R. Shuttleworth, O.
Cwikowski, and A. C. Smith, “HVDC circuit breakers—a review,” IEEE
Access, vol. 8, pp. 211829-211848, 2020.

A. Mokhberdoran, A. Carvalho, H. Leite, and N. Silva, “A review on
HVDC circuit breakers,” in Proc. 3rd Renew. Power Gener. Conf. (RPG
2014), 2014, pp. 1-6.

J. Thomas, G. P. Chaffey, and C. M. Franck, “Small-scale HVDC circuit
breaker,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 7, no. 7,
pp. 1058-1068, Jul. 2017.

K. Sano and M. Takasaki, “A surgeless solid-state DC circuit breaker for
voltage-source-converter-based HVDC systems,” IEEE Trans. Ind. Appl.,
vol. 50, no. 4, pp. 2690-2699, Jul./Aug. 2014.

A. Heidary, K. Rouzbehi, A. Mehrizi-Sani, and V. K. Sood, “A self-
activated fault current limiter for distribution network protection,” JEEE
J. Emerg. Sel. Topics Power Electron., vol. 10, no. 4, pp. 4626—4633,
Aug. 2022.

C. Li, J. Liang, and S. Wang, “Interlink hybrid DC circuit breaker,” IEEE
Trans. Ind. Electron., vol. 65, no. 11, pp. 8677-8686, Nov. 2018.

E. Taherzadeh, H. Radmanesh, S. Javadi, and G. B. Gharehpetian, “Circuit
breakers in HVDC systems: State-of-the-art review and future trends,”
Protection Control Modern Power Syst., vol. 8, no. 3, pp. 1-16, Jul. 2023.
A.R.F. Bento, F. Bento, and A. J. M. Cardoso, “A review on hybrid circuit
breakers for DC applications,” IEEE Open J. Ind. Electron. Soc., vol. 4,
pp- 432450, 2023.

R.Kinjo, R. Ohta, H. Matayosh, T. Senjyu, and A. M. Howlader, “Resonant
DC circuit breaker in MMC-HVDC transmission system,” in Proc. IEEE
12th Int. Conf. Power Electron. Drive Syst., 2017, pp. 71-74.

W. Grieshaber, J.-P. Dupraz, D.-L. Penache, and L. Violleau, “Develop-
ment and test of A 120 kV direct current circuit breaker,” in Proc. CIGRE
Session, 2014, Paper B4-301.

A. Hassanpoor, J. Hifner, and B. Jacobson, “Technical assessment of
load commutation switch in hybrid HVDC breaker,” IEEE Trans. Power
Electron., vol. 30, no. 10, pp. 5393-5400, Oct. 2015.

W. Simaetal., “A novel active mechanical HVDC breaker with consecutive
interruption capability for fault clearances in MMC-HVDC systems,”
IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 6979-6989, Sep. 2019.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 39, NO. 10, OCTOBER 2024

W. Wen et al., “Analysis and experiment of a micro-loss multi-port hybrid
DCCB for MVDC distribution system,” IEEE Trans. Power Electron.,
vol. 34, no. 8, pp. 7933-7941, Aug. 2019.

W. Wang, M. Barnes, O. Marjanovic, and O. Cwikowski, “Impact of
DC breaker systems on multiterminal VSC-HVDC stability,” IEEE Trans.
Power Del., vol. 31, no. 2, pp. 769-779, Apr. 2016.

M. Callavik, A. Blomberg, J. Hafner, and B. Jacobson, “The hybrid HVDC
breaker - an innovation breakthrough enabling reliable HVDC grids,”
Nov. 2012.

E. Kontos, T. Schultz, L. Mackay, L. M. Ramirez-Elizondo, C. M. Franck,
and P. Bauer, “Multiline breaker for HVdc applications,” IEEE Trans.
Power Del., vol. 33, no. 3, pp. 1469-1478, Jun. 2018.

A.Heidary, H. Radmanesh, K. Rouzbehi, and J. Pou, “A DC-reactor-based
solid-state fault current limiter for HVdc applications,” IEEE Trans. Power
Del., vol. 34, no. 2, pp. 720-728, Apr. 2019.

L. Angquist, S. Nee, T. Modeer, A. Baudoin, S. Norrga, and N. A. Belda,
“Design and test of VSC assisted resonant current (VARC) DC circuit
breaker,” in Proc. 15th IET Int. Conf. AC DC Power Transmiss., 2019,
pp. 1-6.

L. Liu et al., “Design and test of a new kind of coupling mechanical
HVDC circuit breaker,” IET Gener., Transmiss. Distrib., vol. 13, no. 9,
pp. 1555-1562, 2019.

M. Alashi et al., “Design and optimization of air-core HTS pulse trans-
former for series-type hybrid circuit breaker (S-HCB),” I[EEE Trans. Appl.
Supercond., vol. 34, no. 6, Sep. 2024, Art. no. 5500211.

H. Pang and X. Wei, “Research on key technology and equipment for
Zhangbei 500kV DC grid,” in Proc. 2018 Int. Power Electron. Conf. (IPEC-
Niigata 2018-ECCE Asia), 2018, pp. 2343-2351.

A. Heidary, K. Rouzbehi, M. Hesami, M. Bigdeli, and C. Bor-
dons, “Bridge-type fault current limiter and hybrid breaker for HVDC
grids applications,” IET Gener., Transmiss. Distrib., vol. 14, no. 18,
pp- 3913-3919, 2020.

A. Heidary, M. Bigdeli, and K. Rouzbehi, “Controllable reactor based
hybrid HVDC breaker,” High Voltage, vol. 5, no. 5, pp. 543-548, 2020.
Q. Yang, S. L. Blond, F. Liang, W. Yuan, M. Zhang, and J. Li, “Design
and application of superconducting fault current limiter in a multiterminal
HVDC system,” IEEE Trans. Appl. Supercond., vol. 27, no. 4, Jun. 2017,
Art. no. 3800805.

C. Li, C. Zhao, J. Xu, Y. Ji, F. Zhang, and T. An, “A pole-to-pole short-
circuit fault current calculation method for DC grids,” IEEE Trans. Power
Syst., vol. 32, no. 6, pp. 4943-4953, Nov. 2017.

A. Heidary, M. G. Niasar, and M. Popov, “Series magnetic coupled reactor
saturation considerations for high voltage AC and DC power systems,” Int.
J. Elect. Power Energy Syst., vol. 1, no. 158, 2024, Art. no. 109909.

Amir Heidary (Senior Member, IEEE) was born in
Tabriz, Iran, in 1987. He received the B.Sc. and M.Sc.
degrees from the Electrical Engineering Department,
Islamic Azad University, Tehran, Iran, in 2009 and
2020, respectively. He is currently working toward the
Ph.D. degree with the Delft University of Technology
(TU Delft), Delft, The Netherlands.
/ He was a Researcher on electrical applications with
v Eleprotect Company, from 2012 to 2017. His research
has been published in books, journal articles, and
several patents. His main research interests inlcude

power system protection, power electronics, magnetic-based power applications,
smart grids, and fast transients.
Mr. Heidary invention was awarded to the Iranian elite committee in 2014.

e

Mohamad Ghaffarian Niasar (Member, IEEE) was
born in Tehran, Iran, in 1984. He received the M.Sc.
degree in power system engineering from the Sharif
University of Technology, Tehran, Iran, in 2008, and
the Ph.D. degree in electrical engineering from the
Royal Institute of Technology, Stockholm, Sweden,
in 2015.

He is currently an Assistant Professor with the
High Voltage Technology group, Technical Univer-
sity of Delft, Delft, The Netherlands. His main re-
search interests are the aging of electrical insulation,

2

HVdc insulation system, partial discharges, high-voltage power electronics,
high-frequency power transformers, power cables, and FEM modeling.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2024 at 11:04:08 UTC from IEEE Xplore. Restrictions apply.


https://library.e.abb.com
https://dx.doi.org/10.1109/MIE.2021.3085998

Farzad Dehghan Marvasti (Member, IEEE) re-
ceived the Ph.D. degree in electrical engineering from
Yazd University, Yazd, Iran, in 2018.

He is currently a Postdoctoral Research Fellow
with the intelligent electrical power grids group
(IEPG), Delft University of Technology, Delft, The
Netherlands. His major research interests include
application of machine learning in power systems,
multiterminal HVdc grids protection and dc breakers.

and protection.

HEIDARY et al.: SUPERCONDUCTING MAGNETIC ENERGY STORAGE-BASED DC CIRCUIT BREAKER FOR HVDC APPLICATIONS 13899

Marjan Popov (Fellow, IEEE) received the Ph.D.
degree in electrical power engineering from the Delft
University of Technology, Delft, The Netherlands, in
2002.

He is also a Chevening Alumnus and, in 1997, he
was an Academic Visitor with the University of Liv-
erpool, Liverpool, U.K., working in the Arc Research
Group on modeling SF6 circuit breakers. His major
fields of interest are in future power systems, large-
scale power system transients, intelligent protection
for future power systems, and wide-area monitoring

Dr. Popov was the recipient of prestigious Dutch Hidde Nijland Prize for
extraordinary research achievements in 2010 and the IEEE PES Prize Paper
Award and IEEE Switchgear Committee Award in 2011. He is currently an
Associate Editor for Elsevier’s International Journal of Electrical Power and
Energy Systems, and co-EiC of Elsevier’s e-Prime journal on Advances in
Electrical Engineering, Electronics and Energy.In 2017, together with the Dutch
utilities TenneT, Alliander, and Stedin he founded the Dutch Power System
Protection Centre to promote research and education in power system protection.
He is a Member of Cigre and actively participated in WG C4.502 and WG

A2/C4.39.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2024 at 11:04:08 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


