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ABSTRACT:  According to ISO 2394, structures shall be designed, constructed and maintained in such 
a way that they are suited for their use during the design working life in an economic way. To fulfil this 
requirement one needs insight into the risk and reliability under expected and non-expected actions. A key 
role in this respect is played by the structural reliability analysis (SRA). In this paper the present state of 
the art will be summarised, including the simplifications to semi-probabilistic calculations as being used 
in daily practice. Although in principle the adopted Bayesian reliability approach should be able to take 
care of all uncertainties involved, present practice still uses other safety concepts like Robustness Design 
and Quality Assurance as tools for achieving the safety objectives of design and assessment.
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2  SRA in a Nutshell

The response of a structural system depends on the 
loading characteristics and the geometrical and mate-
rial properties of the structure itself. Two main cat-
egories of structural responses may be distinguished: 
the desired state and the adverse or undesired state. 
The boundary between the two is referred to as the 
limit state. A structure being in the undesired state 
is considered as having failed. Given the scatter and 
uncertainties in the various loading and structural 
parameters as well as in the models, we may derive 
the probability of failure according to:

P P g X f x dxXg xf = ≤ =
≤∫( ( ) ) ( )

( )
0

0
	 (1)

where X is the vector of basic random variables, 
g(x) is the limit state function for the failure mode 
considered and fX(x) is the joint probability density 
function of the random variables X. The limit state 
function g(x) is defined in such a way that negative 
values correspond to failure and positive values to 
non-failure.

Instead of the failure probability Pf the reliabil-
ity of the structure may also be expressed by means 
of the so called reliability index β, which may be 
obtained from:

β  = − Φ −1(Pf)	 (2)

where Φ (..) is the standard normal cumulative dis-
tribution function. For β in the range from 1 to 4 

1  Introduction

Structural reliability analysis (SRA) comprises a 
set of methods and models that can be used for 
the probability and risk based decision making 
with respect to design and assessment of structural 
systems. The widest application may be found in 
building, civil and offshore engineering, sometimes 
explicit but in most cases in the form of so called 
semi probabilistic procedures.

The core business of  SRA is the estimation of 
the lifetime (or annual) failure probability for a 
given structure. As input the calculation pro-
cedure requires structural behaviour models as 
well as a probabilistic description of  all relevant 
actions, material properties and geometrical 
parameters. The establishment of  these models 
themselves is in fact already an essential part of 
the SRA. Failure may be defined with respect to 
all kinds of  structural performances, but usually it 
is related to collapse or to the violence of  service-
ability limits.

One should realise that the calculation of  the 
failure probability is not a goal is itself. The final 
goal is to make decisions with respect to the design 
of  new structures and inspection or repair pro-
grams for existing ones. This means that we also 
need to have insight into the consequences of 
failure, the corresponding risks and cost optimisa-
tion. This final goal also determines the choice of 
Bayesian probability theory as the basis of  SRA. 
We will return to this statement later on in this 
paper.
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the approximation Pf = 10−β is adequate and serves 
the purpose of getting a first impression of the 
relation between these two equivalent measures of 
reliability.

In many SRA-techniques all random variables 
X are transformed into the so called U-space, that 
is a set of independent normal variables with zero 
mean and unit standard deviation. If  the variables 
Xk are independent, the transformation may be 
performed by:

Φ (Uk) = FXk (Xk)	 (3)

for every variable Xk. For a Gaussian distributed 
variable, the relation between Xk and Uk is simply 
given by Xk = µk + Uk σk. In case of dependent varia-
bles the transformation is more complex and usually 
referred to as the Rosenblatt transformation (Rosen-
blatt, 1952, Hohenbichler and Rackwitz 1981).

The integral (1), of course, can be solved by 
straightforward numerical integration. This, how-
ever, requires a large number of so called “limit 
state function evaluations”. If  the limit state func-
tion g( ) is a simple ‘one liner’, we may still be able 
to handle problems with say a maximum of 7–10 
random variables. For more complex limit state 
functions, requiring the call of large computer 
codes, the method may hardly be feasible. An alter-
native is Monte Carlo simulation. This method at 
least is not sensitive to the number of random vari-
ables, but also requires a large number of limit state 
function evaluations in case of small probabilities. 
Some special Monte Carlo techniques exist to 
reduce this problem (Rubinstein, 1981). Examples 
are Directional Sampling, Importance Sampling, 
Latin Hypercube sampling, possibly in combina-
tion with response surface techniques. However, 
for large systems this still may be cumbersome.

Another way to reduce the calculation time is 
provided by first and second order approximations 
(FORM, SORM) that have become very popular 
in SRA (Hasofer and Lind, 1974; Hohenbichler 
and Rackwitz, 1983). Standard FORM is based 
on a linearization of the limit state function in 
the U-domain and SORM provides a local second 
order correction (Breitung, 1994). The method 
works very well for linear or almost linear failure 
surfaces in the U-domain. FORM usually is for-
mulated as an optimisation problem. The reliabil-
ity index β, found by the method can be interpreted 
as the minimum distance in the U-space from the 
origin to the limit state equation g(u) = 0:

β = min || u ||,  sub g(u) = 0	 (4)

The point in the U-space where the minimum 
occurs is called beta point or design point. It has 
to be found using an iterative calculation scheme. 

In the case of n variables every calculation step 
requires (n + 1) limit state function evaluations (one 
at the design point and one for finding all deriva-
tives). The number of iterations depend on the 
type of problem and the calculation method. In the 
course of time a large variety of possible calculation 
procedures have been developed and can be found 
in the literature (see Rackwitz 2001). When using 
FORM, three types of problems may however be 
encountered: (1) no convergence is achieved, (2) 
convergence is achieved but at a local (instead of 
a global) minimum and (3) convergence is achieved 
but there is loss of accuracy due to high non-linear-
ity. The first problem at least has the advantage that 
it is recognised, the other two may go unnoticed.

In some cases it may be advantageous to use a 
mix of methods, including analytical results. As an 
example, consider a case where one or two variables 
are known to be responsible for a heavy non-linear 
aspect. In that case we may combine the method 
of numerical integration and FORM by the using 
Total Probability Theorem:

Pf = ∫P(g(U) < 0 | un)) ϕ (un) dun	 (5)

In this approach we may derive the conditional 
probabilities P(g(U)  <  0  |  un) using FORM for a 
series of un-values.

3  Time dependency

The parameter time plays an important role in reli-
ability engineering. Practically all statements on 
the reliability of a structure are meaningless with-
out making reference to a certain period of time. 
It is helpful to state this explicitly in the problem 
statement and to reformulate (1) as:

Pf = P(min{g(X, t)}< 0)	 (6)

The elements of X may refer to random vari-
ables as well as to time dependent random proc-
esses. The minimisation is performed over the 
period of consideration, say 0  <  t  <  T. The time 
dependency may be the result of variation in the 
loads, but also of various degradation processes in 
the structure.

Loads on a structure may have short and long 
scale fluctuations. Slowly varying, long term fluc-
tuations may represent changes over hours of 
even years. In SRA the slow component is often 
modelled as a time series of constant blocks (FBC 
processes). Fast and short scale mechanical load 
fluctuations are often modelled as Poisson pulse 
processes or continuous Gaussian processes. The 
short term fluctuations may cause dynamic effects 
in the structure. In that case spectral analysis 
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techniques are often used to deal with them. In 
some load models both types of fluctuations may 
be present. Figure  1  shows a schematized wind 
load as the sum of a slowly changing hourly mean 
vale and a fast fluctuating Gaussian gust process.

Also the resistance is usually not constant in time. 
In most cases structural properties may deteriorate 
under the influence of (random) mechanical, chem-
ical, physical or biological influences. Typical exam-
ples are fatigue (mechanical), corrosion (chemical) 
and freezing-thawing (physical) mechanisms. In 
all these cases it is preferred to have physics based 
models for the deterioration processes to feed the 
limit state functions in the reliability analysis. Many 
deterioration processes, however, are so complex 
that no physics based models exists. In that case a 
classification system of structural states as indicated 
in Fig. 1 could be useful. Markov models may be 
applied to describe the transition probabilities from 
one state to another in an empirical way. Another 
option is to formulate an empirical function for the 
conditional failure rate h (see next section).

One popular option to elaborate (6) is by dis-
cretizing the time axis and looking to the survival 
probability:

1-Pf �= P(g(t1) > 0 ∩ g(t2) > 0 ∩ ….)  
= P(g(t1) > 0) Π{P{g(ti) > 0 | ∩ g(tj) > 0}	 (7)

where i = 2 … n, j runs from 1 to (i - 1) and n is the 
number of time intervals. Within one time interval, 
one may consider the g-functions as being constant 
in time. By taking load parameters on their maxi-
mum and resistance parameters on their minimum 
an approximation on the safe side is obtained. The 
result of (7) can be further developed into:

P T h d
T

f ( , ) exp ( )0 1
0

= − −{ }∫ τ τ 	 (8)

where h(τ) dτ is the probability to fail in the inter-
val (τ, τ + dτ ), conditional upon no failure before 

that interval. In terms of the discrete time intervals 
and limit state functions this comes down to:

h(ti) = lim P(g(ti) < 0 | g(tj) > 0 for 0 < tj < ti)/∆	 (9)

with ∆ = ti – ti − 1. The function h is referred to as 
the conditional failure rate; in many engineering 
mechanics applications it is often taken as a con-
stant value: h = λ.

Cramer and Leadbetter (1967) showed that if  
the random vector process X(t) is a sufficiently 
mixing process, the above expressions may be 
approximated by replacing the conditional failure 
h( ) rate by the outcrossing rate ν( ):

P T v d

v t P g t g t

T
f

i i i

( , ) exp ( )

( ) lim ( ( ) | ( ) ) /

0 1

0 0
0

1

= − −{ }
= < >

∫
−

τ τ

 ∆
	 (10)

Note that (10) usually is obtained by assum-
ing that individual outcrossings are independent 
events. If  failure at the start of the period (t = 0) is 
also taken into account we arrive at:

P T P

P v d
T

f f

f

( , ) ( )

[ ( )] exp ( )

0 0

1 0 1
0

=

+ − − −









∫ τ τ 	 (11)

The outcrossing approach is quite accurate in 
case of ergodic processes. So when substantial non 
ergodic elements are present (e.g. the resistance) 
one can better take care of them separately. The 
same holds for slowly varying processes. So, for 
instance, in the case of windloading we may have:

Pf = ER{Pf(0) + (1 - exp n EQ(1 - exp(- ∫νRQ) dτ))}	
	 (12)

where ER and EQ indicate expectations over the 
constant variables R and the intensities Q of  the 
slowly varying processes respectively and νRQ is the 

Figure 1. E xample of the sum of an FBC Block process 
and a Gaussian process.

Figure  2.  Relative frequency of structural conditions 
states as function of time (Kallen and Noortwijk, 2005).
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outcrossing rate of the fast fluctuating gust proc-
ess conditional upon R and Q. The integration 
runs over the duration Ts of  an individual FBC 
block (single storm, sea state..) and n = T/Ts is the 
number of FBC-blocks.

4  System Failure

In reliability theory a system failure is a failure 
defined as a combination of events and condi-
tions, using logic operators like AND and OR. 
Structural system behaviour is often represented 
using elementary parallel and series models, fault 
trees, event trees, failure trees, Bayesian Networks, 
and so on.

The distinction between a single mode failure 
and a system failure however is often very subtle. 
Consider for instance a series system of two ele-
ments 1 and 2, for which we have:

Failure ≡ {g1 < 0 ∪ g2 < 0}	 (13)

One may now simply introduce the function 
g = min (g1 < 0, g2 < 0) and claim that this is a sin-
gle mode limit state function. It would not help 
to “forbid” the use of “min” of “max” operators, 
because we can easily produce analytical functions, 
continuous and infinitely many times continuously 
differentiable, but showing effectively the same 
behaviour as (13).

Monte Carlo and Numerical Integration can 
easily take system complications on board, but 
FORM-procedures are not giving appropriate 
results in the case of  strong system effects, hid-
den or not. In those cases one needs to address 
the system effects explicitly. The general proce-
dure is that as a start for all individual modes 
a FORM analysis is performed, resulting in a 
vector of  reliability indices βi and a matrix of 
influence coefficients αij. Based on these results 
a treatment of  the system effects is possible. 
Methods for this type of  System Analysis are 
widely available in the literature (Stevenson and 
Moses 1973, Ditlevsen 1979, Hohenbichler and 
Rackwitz 1983). One of  the advantages of  such 
an explicit system procedure compared to direct 
calculation is that valuable intermediate results 
become available.

In the case of continuum structural systems 
(beams, plates, slopes) the notion of one or more 
dimensional random fields enters the game. For 
relative simple problems the outcrossing approach 
mentioned before, but then in space domain, may 
be of value. For more complex systems the stochas-
tic FEM (Finite Element Method) may be applied. 
Many publications exist, below we give a short 
overview on the basis of (Karadeniz et al, 2004). 

In the linear elastic case the focus is on the deriva-
tion of mean values and the covariance matrix of 
the response (displacements, strains and stresses). 
In fact this is comparable to the mean value approx-
imation of the FORM family. Suitable methods 
based on perturbation techniques are outlined in 
(Sudret and Der Kiureghian, 2000, Chakraborty 
and Bhattacharyya, 2002). In the Neumann series 
expansion (Haldar and Mahadevan, 2000) the ran-
dom stiffness matrix is split up into its mean and 
deviatory parts as:

K = K0 + Kθ	 (14)

where K0 is the stiffness matrix associated with the 
mean value of the structural properties and Kθ is 
the stiffness matrix which contains deviatory part 
of the random properties. The resulting displace-
ment vector w may be found from a recursive solu-
tion of:

K0 w(i) = F - Kθ w(i-1)	 (15)

In deriving the solution one should keep track 
of the correlation between the (random) load vec-
tor F and displacement vector w.

For the nonlinear structural behaviour a variety 
of options exist. (Morutso, (1983), Gierlinski et al 
(1991), Guiterez (1999)). Very popular is the use of 
the Response surface method (Bucher and Bour-
gund, 1990): the idea is that the limit state func-
tion is generated for a number of selected points 
in the u- or x-space. One option is to set up the 
response surface first and do the reliability calcu-
lations afterwards. Another option is to develop 
the surface as a part of the reliability procedure 
and to adapt the set of selected points in order to 
get better and more accurate results. An advanced 
and interesting calculation scheme by mixing 
Directional Sampling and an Adaptive Response 
Surface Technique (DARS) has been proposed by 
Waarts (2000). He proved that the total number 
of actually needed limit state function evaluations 
may be as low as 7n, where n is the number of ran-
dom variables.

Clearly, at the operational edge of  SRA is the 
combined nonlinear dynamic analysis. The spec-
tral approach is usually restricted to linear sys-
tems but linearization techniques for nonlinear 
frequency domain analysis are available (Robert 
and Spanos, 1990, Schuëller et  al, 1991). Also 
time domain analysis is an option, again in com-
bination with FORM or Monte Carlo. In the lat-
ter case an interesting reduction in calculation 
time may be obtained if  use is made of  so called 
Constrained Simulation (Harland et  al, 1999), 
which may be conceived as a kind of  importance 
sampling.
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5  Inspection and maintenance

Once a structure has been built, it can be inspected. 
In order to combine the data from the measure-
ments with the original data, Bayesian updating 
procedures can be used. In principle two proce-
dures for updating are available (JCSS, 2000). In 
the first procedure one updates the probability 
density distributions of all random variables and 
then recalculates the probability of failure. One 
may also directly update the probability of failure. 
The first procedure is more informative, but some-
times more complex.

An essential point in the updating procedure is 
the reliability of the inspection method itself. First 
of all there is the Probability of Detection (PoD), 
for instance in the case of inspecting fatigue cracks 
in steel structures. For many techniques PoD 
curves are available but not for all. At present this 
is a typical omission in the reliability assessment 
of existing structures. A second important piece 
of information is the accuracy of the inspection 
method: if  we measure a fatigue crack of 3 mm, 
could in reality this also be 2 mm or 4 mm? The 
same holds for most non-destructive test methods 
estimating the strength of materials.

Apart from explicit inspections, all kinds of 
observed behaviour of the structure should be 
included in the updating analysis like permanent 
deformations, settlements, cracks, loose elements, 
corrosion and so on. It should be realized that these 
phenomena may require a double treatment in the 
SRA: (1) it directly affects the structural model as 
such (e.g. a cracked beam instead of a non-cracked 
beam as a starting model) and (2) a change in the 
statistical models of possibly all random variables: 
the presence of a crack might for instance may be 
an indication that the load is higher than originally 
expected.

Given the extra data we may update the prob-
ability of failure or the reliability index beta. 
Figure  3  gives an example of the original and 

updated reliability index after inspecting a crack 
in a steel structure, both as functions of time. It 
is interesting to see that the reliability index first 
increases, because of reduced uncertainty, but 
later on (in this example) becomes lower than the 
original one, because of a somewhat disappointing 
measurement result.

The ultimate test is the proof load. Although it 
looks an easy concept, it is recommended to con-
sider carefully the uncertainties still present.

Performing inspections and processing the 
results is a costly matter. So one should find out 
which inspections are worth the effort and which 
are not. The theoretical tool to support those deci-
sions is the so called Preposterior Bayesian Analy-
sis (JCSS, 2000). Preposterior means that we try 
to find out beforehand whether the result will be 
profitable or not. As the outcome of the inspection 
beforehand is random, we can only optimise on the 
basis of expectations. The idea is often presented 
in the form of an event-decision tree as in Figure 4. 
We first have to choose an inspection plan or strat-
egy “s”. Once we have chosen our strategy, nature 
will come with an inspection result “ω”. Given this 
inspection result we have to choose an action “a” 
(do nothing, repair option A, B, C.., reduce the 
use, demolish the structure, etc.) and finally this 
may result in costs (or utilities) “u” depending 
on the state of nature “θ”. For instance, we may 
choose to check some strength parameter, decide 
(in case of a positive result) to do nothing, but have 
a failed structure in the end after all. Taking the 
expectations over all random outcomes (ω,θ) and 
the optimum over all decisions (s,a) we arrive at 
the optimal strategy. In practice this might prove 
to be a tedious procedure, but even when using a 
more pragmatic procedure, it always pays to keep 
the principles in mind. A simple example is: try in 
advance to find out which outcome is necessary to 
change a decision and estimate how likely such an 
outcome is. The profit then should outweigh the 
product of inspection costs and the probability of 
a good outcome.

6  Types of Uncertainty

In the previous sections we discussed the elabora-
tion of equation (1). The structural models and 
probability distributions were assumed to be given 

Figure 3. E ffect of (fatigue) inspection at year 10 on the 
annual reliability index beta (example with disappointing 
inspection result leading to a lower reliability index after 
some time).

Figure 4.  Decision–event tree for inspection planning.
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and correct. But, how sure can we be about these 
models themselves. We might easily forget some 
important action or mechanism and we may have 
very limited technical and statistical information.

For the sake of discussion we will split the haz-
ards (actions or mechanisms) into the following 
three categories:

-	 Foreseeable and dealt with.
-	 Known in principle, but unrecognized or ignored.
-	 Unknown or unforeseeable.

Table 1 gives an overview of the category of fore-
seeable hazards in structural engineering. The list 
is not claimed to be complete, if  such completeness 
would ever be possible. In principle similar lists for 
degradation and collapse mechanisms exist on the 
resistance side. Information on the most relevant 
(deterministic) load and resistance models can be 
found in codes and text books. Information on the 
statistical modelling of the variables in those regu-
lar types of loads and resistances may be found in 
the literature or data bases and in particular in the 
JCSS Probabilistic Model Code (JCSS, 2001).

However, all models are approximations of 
reality for which reason we have to introduce the 
notion of so called model uncertainties and statis-
tical uncertainties Given the usually present sub-
stantial lack of substantial information to come 
to objective quantifications, a frequentistic prob-
ability in SRA interpretation is not meaningful. 
Therefore, in SRA the Bayesian intuitive degree of 
belief  approach is generally adopted as the basis to 
step forward (Ditlevsen, 1988). The advantage of 
this approach (above other options) is that treating 
aleatory and epistemic uncertainties in the same 
way opens the possibilities to combine them in a 
coherent probabilistic decision making processes. 
Further-more, when new or additional informa-
tion becomes available, it can easily be incorpo-
rated using the concepts of Bayesian updating.

If  we move to Column 4 of Table 1, we see a 
list of human influences, actions that are not acci-
dental but deliberate. These actions are extremely 
difficult to model as in general the aim is to get 
a load higher than the resistance. We will not dis-
cuss them here. Finally the last column shows the 
various types of human errors. Methods of human 
reliability analysis (HRA) are under progress but 
a meaningful interaction between SRA and HRA 
is still far away. In structural design procedures 
Quality Assurance and SRA, until now, live next 
to each other a separate life.

In addition to the uncertainties and errors in the 
treatment of the known and recognised hazards 
we must face the fact that certain phenomena may 
be completely overlooked or, until now, objectively 
unknown (the so called black swans). Let us first 
observe that the completely black swans are very 
seldom. More important, but essentially not very 
different, are the forgotten, neglected or under-
estimated hazards or mechanisms. To deal with 
those issues the notion of robustness has been 
developed.

Technically speaking, robustness is related to 
scenarios where due to unintentional or unforeseen 
exposures the resistance of the structural system 
has been reduced. An illustration is presented in 
Figure 5 (from Eurocode EN 1991-1-7). Due to an 
exposure of any nature (a), local damage (b) may 
occur. Given the direct or local damage the struc-
ture may survive or (partly) collapse. Robustness 
requirements are especially related to the step from 
(b) to (c), i.e. to avoid that a local damage, regard-
less its origin, develops to total collapse (Faber, 
2011).

Estimating some reasonable number for 
the pattern and probability of  the initial dam-
age may give the opportunity to bring robust-
ness design again within the scope of  structural 
optimisation.

Table 1.  Overview of foreseeable actions.

Normal loads  
(including tail values) Accidental/natural Accidental/manmade Human influences Human Errors

Self-weight Earth-quake Internal explosion Vandalism Design error
Imposed loads Landslide External explosion Demonstrations Material error
Car park loads Hurricane Internal fire Terrorist attack  Construction error
Traffic Tornado External fire Misuse
Snow Avalanche Impact by vehicle etc. Lack of maintenance
Wind Rock fall Mining subsidence Miscommunication
Hydraulic High ground-water Environmental attack

Flood
Volcano eruption
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7  Targets and optimisation

According to ISO 2394, structures shall be designed, 
operated, maintained and decommissioned such as 
to support societal functionality. Mathematically 
expressed one may state that one should aim at the 
optimisation of the total benefits, incorporating all 
relevant socio-economic cost items. In the elemen-
tary case one may search for the minimum of the 
sum of direct building costs and the risk:

Ctot = Cb + Pf Cf	 (16)

Such an optimisation may be performed over the 
intended lifetime of the structure, but one should 
keep in mind that the design lifetime of the struc-
ture may be an object of optimisation in itself.

Note that although the crisp limit state concept 
is very dominant in structural analysis (both deter-
ministic and probabilistic), one may also think of 
applications where the distinction between desired 
and undesired states is more gradual/diffuse or 
where the consequences of failure depend heavily 
on X. In those cases we may want to combine the 
probability and risk calculations, leading to:

C C C x f x dxtot b x= + ∫ ( ) ( ) 	 (17)

In many cases the function C(x) is so complex 
that FORM methods for reliability analysis can-
not be applied and only the more time consuming 
Numerical integration or Monte Carlo will work. 
One interesting exception is if  C is a monotonically 
increasing function from zero to one. In that case 
the integral can be interpreted as a convolution 
and a corresponding artificial limit state function 
can be formulated, enabling FORM to solve the 
case (Gollwitzer, 2004).

Optimising the costs for a given fixed design 
lifetime leads approximately to the result that the 
optimal life time failure probability is independ-
ent from the length of the design working life. 
(Holický, 2012). This means that the economically 

optimal annual failure probability is high for short 
periods and low for longer design lives. Spending 
money on safety makes sense if  one can have a 
longer period to profit from it.

When human safety is at stake, one should add 
an amount of money to the damage costs (either a 
formal compensation value or some real economic 
value). Techniques exist to make proper estimates 
(Nathwani, J. et al, 2009). However, there may also be 
ethical or legal reasons to consider limits on human 
safety. Usually they will be formulated as a maximum 
acceptable value per year. So, the target curves may 
be presented as in Figure 6: for short design periods 
the annual value form human safety is governing, for 
longer periods the economic optimum.

Eurocode EN 1990  gives a standard value of 
βt  =  3,8 (Pft  =  8  ⋅  10−5) for a design working life 
Td = 50 a. The target value of 3,8 is raised to 4.3 
for high failure consequences and lowered to 3,3 
for less consequences. The value does not depend 
on the structural costs involved to reach a higher 
safety level as theory demands. Also no informa-
tion is given as to which criterion (economy of 
human safety) is the governing one and no guid-
ance on what to do for shorter or longer design 
life time. This indicates that in the world of code 
makers this is still an unsolved problem.

8  Codification using 
semi-probabilistic methods

Most codes of  practice offer the reliability 
requirements in the form a Partial Factor (or 

Figure  5.  Illustration of the basic concepts in 
robustness.

Figure  6.  Schematic relationship between the annual 
and lifetime failure probability Pf and the design work-
ing life (from Bigaj, 2013).
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similar) format, where well defined characteris-
tic values for loads and resistances are combined 
with corresponding partial factors, combina-
tion factors, importance factors, and so on. To 
some extent these factors have been calibrated 
to consequence dependent reliability targets. 
This is also referred to as the semi-probabilistic 
method.

The partial factor method is based on the fol-
lowing assumptions:

-	 strength and loads are independent random var-
iables with known distributions;

-	 characteristic values of strength and loads (Xk) 
are defined as specified fractiles of the respective 
distributions.

-	 uncertainties are taken into account by trans-
forming characteristic values (Xk) into design 
values (Xd), by applying partial factors γ (mul-
tiplying with load factors, dividing by material 
factors) or additional elements for geometrical 
properties;

-	 the assessment of safety is considered as suffi-
cient if  the design action effects do not exceed 
the design strengths.

A relatively simple way (JCSS, 1996) of deriv-
ing partial factors is by first calculating the design 
or beta point values for each variable according to 
(assuming normal distributions):

Xd = µ(1 - α βt V)	 (18)

where µ is the mean value, V is the coefficient of 
variation, βt the target reliability index for struc-
ture and α the averaged FORM sensitivity factor 
(-1  <  α  <  1); averaging is over a well-chosen set 
of representative structural elements. Given for the 
same variables the characteristic value Xk,

Xk = µ(1 - k V)	 (19)

(usually with k  =  0 for actions and k  =  1.64 for 
material properties) the partial factor for resistance 
respectively actions follow from:

γ = Xk/Xd  or  γ = Xd /Xk	 (20)

If  loads of different types are involved several 
load combinations may have to be checked.

In the case of non-normal distributions the 
formulas become more complex, but the principle 
remains the same. More advanced methods for 
receiving partial factors exist. One may for instance 
minimize the sum of (β - βtarget)2 for a large set of 
structures in the area of application (Faber and 
Sorensen, 2003) or require that the averaged failure 
probability is less than the target.

9  Closure

In the course of the past half  century, Structural 
Reliability Analysis has developed into an impres-
sive set of computational techniques. High speed 
computers enable the use of these techniques for 
quite realistic structures, in particular in a research 
environment. Daily practice still uses primarily 
semi probabilistic methods, but good calibration 
procedures, linking safety factors to reliability 
requirements, are available.

Although much progress has been made, there 
still remains important research and development 
work to be done. To start with, an increased level 
of user friendliness of presently available computer 
codes is necessary in order to reach a larger group 
of engineers. Reliability methods should be cou-
pled to standard engineering calculation software 
in the same way as is available for partial factor 
methods. Consider by way of example an engineer 
who has assessed his structure using the standard 
code requirements and found that some of the unity 
checks were not satisfactory. In the ideal case it 
should then be not more than a relatively simple job 
to start up a reliability calculation for the same struc-
ture and the same limit states. The reliability analy-
sis should use the same structural (FEM) model and 
automatically transform the semi-probabilistic input 
into input formulated in terms of means, standard 
deviations and correlation patterns. The use of data 
bases like the JCSS Probabilistic model code could 
be of help. The user, of course, should select meth-
ods and strategies of calculation, but even there an 
expert system could give valuable suggestions.

Next to such integration of semi—and full prob-
abilistic methods, the probabilistic methods them-
selves still require improvements, both from the 
theoretical as from the operational point of view. 
The necessary research involves a wide spectrum 
of topics, like model uncertainties, degradation 
processes, fire safety, inspection and monitoring, 
repair, failure consequences and risk estimates. But 
also more fundamental issues like human safety 
considerations, cost optimisation, robustness 
requirements and interaction between SRA and 
Quality Assurance will ask in the years to come 
our full attention.
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