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We construct a two-dimensional higher-order topological phase protected by a quasicrystalline eightfold
rotation symmetry. Our tight-binding model describes a superconductor on the Ammann-Beenker tiling
hosting localized Majorana zero modes at the corners of an octagonal sample. In order to analyze this
model, we introduce Hamiltonians generated by a local rule, and use this concept to identify the bulk
topological properties. We find a Z2 bulk topological invariant protecting the corner modes. Our work
establishes that there exist topological phases protected by symmetries impossible in a crystal.
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Introduction.—All topological phases known to date can
exist in crystalline systems. Strong topological insulators
(TI) occur in crystals [1,2], in quasicrystals [3–9], and even
in amorphous systems [10–12], and show gapless modes
on any boundary, as a consequence of the topologically
nontrivial gapped bulk. Weak topological insulators and
topological crystalline insulators, on the other hand, rely
on crystal symmetries [13–17]. Their gapless topological
states appear only on boundaries preserving, at least on
average, a subset of lattice symmetries [18,19].
In contrast, in higher-order topological insulators

(HOTI) both the bulk and the boundaries are gapped.
Instead, the protected gapless modes form at the inter-
sections of two or more boundaries—the corners and
hinges of a crystal [20–26]. Unlike in topological crys-
talline insulators, the corners or hinges may break the
lattice symmetry responsible for protecting the HOTI. In
those cases, the protection of the boundary modes relies
on a discrete symmetry of the entire finite-sized sample.
Examples of HOTIs enabled by global symmetries include
a three-dimensional (3D) TI placed in a magnetic field
[27], hosting chiral hinge modes protected by inversion
symmetry, as well as elemental bismuth [28], with helical
hinge modes protected by time-reversal symmetry, three-
fold rotation, and inversion.
Since the set of allowed crystal symmetries is known, it

is possible to list all weak, crystalline, and higher-order
topological insulators that appear in a crystal. This program
has been carried out throughout the past decade, starting
with the effect of single symmetries such as mirror or
inversion, followed by considering the effect of any order-
two symmetry [29,30]. Today, the topological classification
spans all known nonmagnetic crystalline compounds
[31–33]. Furthermore, the possible band topologies of free

fermions have been listed for all 528 two-dimensional and
1651 3D magnetic space groups [34].
In this work, we explore a new class of topological phases

by constructing a HOTI phase that is incompatible with a
crystalline symmetry, and was therefore overlooked in the
previous works. This topological phase relies on the combi-
nation of an eightfold rotation and an in-plane reflection.
Its hallmark signature is the presence of eight Majorana
zero modes bound to the corners of a finite-sized octagonal
sample. These modes are robust against any symmetry-
preserving perturbation, provided the bulk remains gapped.
Because eightfold rotations are forbidden in two dimensions
by the crystallographic restriction theorem, the resulting
phase has no crystalline counterpart. We propose a modified
notion of symmetry protection of HOTI phases applicable to
locally generated quasiperiodic Hamiltonians. Using this, we
show that the protection of the corner modes does not rely on
global symmetry of the sample. We pin down the nontrivial
nature of this phase by studying zero modes at topological
defects and identifying a bulk topological invariant that
determines the formation of Majorana corner modes.
Model.—Our starting point is a tight-binding model

describing a pair of oppositely spin-polarized p� ip
topological superconductors in class D [35]. The real-space
Bogoliubov–de–Gennes Hamiltonian is obtained by asso-
ciating sites and hoppings to the vertexes and edges of
an eightfold symmetric Ammann-Beenker tiling [36,37]
(see Fig. 1):

H ¼
X
j

Ψ†
jHjΨj þ

X
hj;ki

Ψ†
jHjkΨk; ð1Þ

with Ψ†
j ¼ ðψ†

j;↑;ψ j;↑;ψ
†
j;↓;ψ j;↓Þ, ψ†

j;σ the fermionic crea-
tion operator for a particle on site j with spin σ, and
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with h� � �i denoting sites connected by a bond (see Fig. 1).
The on-site Hamiltonian is

Hj ¼ μσzτz; ð2Þ

where μ is the chemical potential, and Pauli matrices τ and
σ act on the electron-hole and spin degrees of freedom,
respectively. The hopping terms have the form

Hjk ¼
t
2
σzτz þ

Δ
2i
½cosðαjkÞσzτx þ sinðαjkÞσzτy�; ð3Þ

where t is the normal hopping strength, Δ is the p-wave
pairing strength, and αjk is the angle formed by the hopping
with respect to the horizontal direction.
The system obeys particle-hole symmetry (PHS),

fH;Pg ¼ 0, with an antiunitary operator P ¼ τxσ01K,
where K denotes complex conjugation and 1 is the identity
operator in the space spanned by the sites of the tiling.
In addition, Eq. (1) has an in-plane mirror symmetry,
½H;M� ¼ 0, with M ¼ τ0σz1. Moreover, due to the shape
of the tiling, the finite-sized model obeys a global eightfold
rotation symmetry about its center, ½H; C8� ¼ 0. The
rotation operator is

C8 ¼ exp
�
−i

π

8
σ0τz

�
R; ð4Þ

where R is an orthogonal matrix permuting the sites of the
tiling to rotate the whole system by an angle of π=4.
For t ¼ Δ ¼ 1 and μ ¼ −1.7, the model describes a

bilayer system of two 2D class D topological supercon-
ductors with opposite Chern numbers, hosting a pair of

counterpropagating Majorana edge modes on its boundary
(see Fig. 1). The edge modes are prevented from gapping
out by the in-plane reflection symmetry. To obtain a HOTI,
we introduce a perturbation that breaks both the reflection
and rotation symmetries, but preserves their product C8M.
We modify the hoppings by adding the term

V ¼
X
hj;ki

Ψ†
jVjkΨk; Vjk ¼

V
2
σyτ0 cos ð4αjkÞ: ð5Þ

It anticommutes with the reflection symmetry, fV;Mg ¼ 0,
and opens a gap in the edge spectrum. However, it also
anticommutes with the eightfold rotation, such that the gap
of the edge states changes sign a total of eight times across
the perimeter of the system. This results in the formation of
eight Majorana zero modes, as shown in Fig. 1. These
modes are localized at the corners of the octagonal sample
and are separated from all other states by an energy gap.
Protected corner modes.—Majorana zero modes bound

to the corners of the octagonal tiling are a manifestation
of the nontrivial bulk topology of the HOTI. As long as
the tiling obeys PHS and the global C8M constraint, the
gapless corner states cannot be removed by any perturba-
tion restricted to the system boundary. There is an intuitive
explanation for this (see also Ref. [22]): the minimal
surface manipulation compatible with PHS and C8M
consists of gluing a Kitaev chain onto each of the eight
edges of the tiling, such that adjacent chains are mapped
onto each other under C8M. This process changes the
number of corner Majoranas by an even number and the
original zero modes cannot gap out. This suggests that
the octagonal HOTI has a Z2 classification.
To verify that the corner states are not merely an artifact

of an exact C8M symmetry of the entire sample, we also
consider asymmetric cutouts of the quasicrystal. The
quasiperiodicity of a quasicrystal implies that any finite
region of an infinite sample repeats infinitely many times
[4]. Hence, there are infinitely many locations in the
quasicrystal that look identical to the vicinity of a corner
of an exactly eightfold symmetric sample at a scale much
larger than the extent of the bound state. By the locality of
the Hamiltonian, such a corner (in either a semi-infinite
system or an asymmetric finite sample) will also host a
Majorana zero mode, as illustrated in Fig. 2(a). These zero
modes are “extrinsic” [25], as there is no exact symmetry
relating the two edges emanating from such a corner. This
implies that, analogous to crystalline HOTIs, attaching a
Kitaev wire to one of the edges but not to the other does not
break any symmetries and the zero mode can, in principle,
be gapped out by an edge perturbation.
Therefore, we impose the physical restriction of quasi-

periodicity on the Hamiltonians we consider in the follow-
ing. We demand that the Hamiltonian is generated by a
local, eightfold symmetric rule: every term is determined
by the quasicrystal configuration in a finite radius

FIG. 1. We define a tight-binding model on an eightfold
symmetric patch of the Ammann-Beenker tiling by associating
a site to each vertex and a hopping to each of the edges that
connect neighboring vertices. Both panels show the real-space
distributions of the wave function amplitudes in the eight lowest
energy states of the model defined in Eqs. (1) and (5) for Δ ¼
t ¼ 1 and μ ¼ −1.7. Darker colors denote larger amplitudes. For
V ¼ 0 (left), the system hosts counterpropagating Majorana
modes on any edge, protected by mirror symmetry. Setting
V ¼ 1 (right) gaps out the edge, leading to a HOTI phase. A
single Majorana zero mode is localized to each of the eight
corners of the tiling.
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environment, in a symmetric fashion. The quasiperiodicity
of the tiling means that the semi-infinite edges emanating
from an approximately symmetric corner, while not exact
symmetry images, are indistinguishable by only inspecting
finite regions. This prevents a deformation of the
Hamiltonian that produces a gapped Kitaev chain on only
one of these edges, resulting in protected corner modes.
Disclination modes.—We now prove that the phase

discussed above is indeed a bulk topological phase pro-
tected by C8M symmetry by showing that pointlike fluxes
(topological defects) of this symmetry capture a Majorana
zero mode [38,39]. The C8M flux is inserted into the
system by the following procedure (similar to Ref. [40]):
first, we take a large eightfold symmetric sample and cut
out one octant bordered by a cut C, connecting the center of
the tiling with the boundary, and by its symmetry image
C8C [see inset of Fig. 2(b)]. Then, we glue the two sides of
the cut back together by identifying sites on the two sides of
the cut related by C8M symmetry. The hoppings across the
cut are HC8j;k ¼ UC8MHj;k, where C8j is the C8 image of
site j and UC8M is the on-site unitary action of the C8M
symmetry. The cut C, similar to a Dirac string, is not
detectable locally. Indeed, applying a basis transformation
UC8M to a single site neighboring the cut (and identity
elsewhere) moves the site to the other side of the cut.
This makes the location of the cut basis dependent and
locally indistinguishable from the bulk with no cut, with
the exception of the center of the system where the cut
terminates.
As illustrated in Fig. 2(b), the resulting sample has eight

Majorana zero modes: seven at the corners and one at the
disclination core. The disclination mode cannot be removed
without closing the bulk gap, proving that the HOTI phase is
separated from the trivial phase by a bulk phase transition.

Bulk topological invariant.—We now develop an invari-
ant that characterizes the bulk topology of the quasi-
crystalline system. For this purpose, we consider the
momentum-dependent effective Hamiltonian Heff ¼ G−1

eff ,
defined through the projection of the single-particle
Green’s function onto plane-wave states:

GeffðkÞn;m ¼ hk; njGjk;mi; ð6Þ

where jk; ni is a normalized plane-wave state with
nonzero amplitude only in the local orbital n, and G ¼
limη→0 ðH þ iηÞ−1 is the zero-energy Green’s function of
the full Hamiltonian (see Supplemental Material [41]).
An important property of Heff is that its gap closes only

when the gap of the full Hamiltonian closes. We are going
to use this to construct topological invariants: if an invariant
defined in terms of Heff can only change when the gap in
Heff closes, it implies a bulk phase transition of the full
Hamiltonian. The classification we derive below is thus a
subset of the full topological classification of C8M sym-
metric systems.
To define the topological invariant we inspect the

symmetry representations of C8M and P acting on Heff
at the C8-invariant momentum k ¼ 0 [38]. The eigenvalues
of C8M have the form ωn ¼ exp½iðπ=8Þn�, with n ¼
½�1;�3;�5;�7�, and eigenstates jni and −n〉 are related
by P. By restricting Heffðk ¼ 0Þ to C8M eigensubspaces of
ω�n, we calculate the zero-dimensional class D invariant of
each block, which is the sign of the Pfaffian in the Majorana
basis. This yields νn;k¼0 ¼ �1, for n ∈ ½1; 3; 5; 7�, resulting
in a Z4

2 classification. In our model, Heffðk ¼ 0Þ has two
invariant blocks corresponding to pairs of n ¼ �1 and �7,
respectively, while there are no states in the local Hilbert
space corresponding to the other C8M eigenstates with
n ¼ �3;�5. We find that Heffðk ¼ 0Þ goes through a
band inversion at μ ≈ −2 when both Pfaffians switch sign.
This, however, cannot be a stable topological invariant, as it
also distinguishes different atomic insulators with on-site
Hamiltonians of opposite sign and vanishing hoppings.
To provide an invariant that is insensitive to addition of

atomic insulators, we invoke the cut-and-project method
generating the 2D Ammann-Beenker tiling from a four-
dimensional cubic lattice (see Ref. [4] and Supplemental
Material [41]). Plane-wave states in the 4D Brillouin zone
provide a complete basis for all states on the 4D lattice, and
an overcomplete basis for the quasicrystal. Some of these
plane waves cannot be exactly represented by purely 2D
plane waves, but can be approximated by those to arbitrary
precision. We call these patterns of complex phases on the
quasicrystal generalized plane waves. The generalized
plane waves important for the topological invariant are the
ones at 4D momenta invariant under C8 modulo reciprocal
lattice vectors. Those are Γ ¼ ð0; 0; 0; 0Þ≡ 0, which we
have already discussed above, and Π ¼ ðπ; π; π; πÞ. The
latter produces alternating � signs on nearest-neighbor sites

(a) (b)

FIG. 2. Wave function amplitudes of eight zero modes in
various finite geometries. (a) Asymmetric sample with corners
locally identical to corners of a symmetric sample. (b) Sample
with a C8M defect. Away from the defect at the center, the
system is locally identical to the original model. Inset: Sample
with one octant cut out, but without gluing together the two
sides of the cut.
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of thequasicrystal. Lookingat the symmetry representationof
Heffðk ¼ ΠÞ, we find a band inversion at μ ≈ 2, which is
similar to the one of Heffðk ¼ 0Þ at μ ≈ −2. As a conse-
quence, νn;0 ¼ −νn;Π for n ∈ ½1; 7� in the range −2≲ μ≲ 2.
Stable Z2 invariants are therefore defined by νn ¼ νn;0=νn;Π.
In the atomic limit, we have νn ¼ 1. Thus, the nontrivial

value signals an obstructed atomic limit. Moreover, we find
that phases with both gapped bulk and gapped edges have
only two independent invariants, since ν1 ¼ ν7 and ν3 ¼ ν5
(see Supplemental Material [41]). In the topological phase,
our model has ν1 ¼ ν7 ¼ −1 and ν3 ¼ ν5 ¼ þ1, as illus-
trated in Fig. 3. The Z2 invariant characterizing the
presence of corner Majoranas is the product ν1ν3, while
the corner modes do not distinguish between other phases
in the richer Z2

2 bulk classification.
Discussion.—We have demonstrated the existence of a

quasicrystalline higher-order topological phase. The topo-
logical protection of this phase explicitly requires broken
translation symmetry, since it is protected by a point group
symmetry incompatible with any periodic crystal structure
in two or three dimensions. In the nontrivial phase, both the
bulk and the edges are gapped, whereas eight Majorana
zero modes are bound to the corners of the octagonal tiling.
These modes are associated with a nontrivial bulk invariant
and are robust against symmetry-preserving perturbations
that do not close the bulk gap.

While we have treated the special case of a class D
topological superconductor with C8M symmetry, the ideas
we have presented generalize to a wider range of systems. It
should be possible to extend our work to other symmetry
classes, other point group symmetries, and higher dimen-
sions. We note, however, that the basic line of argument we
used to construct the model, reliant on an alternating sign
of the mass term at the boundary, does not work for odd
rotations, e.g., C5. For this, it would be necessary to
introduce topological protection in another manner.
Our investigation opens several directions for future

work. First, while we have shown a single example as a
proof of principle, the range of possible, purely aperiodic
topological insulators and semimetals remains unknown.
Furthermore, it is also unclear which tools would be
required to characterize all such systems in practice, as
most existing methods for obtaining topological invariants
in the presence of point group symmetries explicitly rely
on momentum space. We have presented one possible
approach applicable to translation-symmetry breaking sys-
tems. One might also consider real-space topological
invariants, similar to the ones defined for finite systems
with boundaries, as done in Ref. [47] for strong topological
insulators. Another interesting direction to explore would
be to consider classes of quasicrystals obtained by a cut-
and-project method from a higher-dimensional periodic
lattice, such as the one we used here, and attempt a
topological classification via dimensional reduction. The
results of this approach will, however, be limited, since
there are quasicrystals not obtainable by such a method.
Lastly, the new methods explored here are applicable to
crystalline systems as well. To show that we found a bulk
topological phase, we introduced the notion of a quasi-
periodic Hamiltonian, where terms are only sensitive to the
quasicrystal configuration in a finite radius environment.
This notion of locality also applies to crystalline, disor-
dered, and amorphous materials, promising a new direction
to establish the topological protection of “extrinsic” corner
modes via bulk invariants.
Finally, there is the question of how such a topological

phase may be observed experimentally. While we can
predict that this C8M protected phase will never be
realized in any crystalline system, it may be possible to
obtain eightfold symmetry protected corner modes in the
recently discovered superconducting quasicrystals [48,49].
Alternatively, one may consider a variety of so-called
“topological simulators,” including ultracold atoms
[50–52], photonic crystals [53,54], coupled electronic
circuit elements (called topolectric circuits [55]), as well
as acoustic and mechanical metamaterials [56,57]. These
systems allow for a site connectivity bypassing the chemi-
cal constraints inherent in crystal growth processes, and
have been successfully used to demonstrate both higher-
order topological phases [58–60] as well as topologically
nontrivial quasicrystals [61,62].

FIG. 3. Topological phase transitions in the quasicrystal HOTI
model as a function of chemical potential μ with t ¼ 1, Δ ¼ 2,
and V ¼ 1.5. Top: Spectrum of the 24 states closest to zero
energy in a finite sample. The line color shows the weight of the
state on the corners (red), edges (blue), and bulk (black). The bulk
gap closes at μ ≈�2, delimiting the phase with eight Majorana
corner modes. The edge gap closes at μ ≈�0.9 and the bulk gap
closes around μ ¼ 0 without affecting the topological properties.
Middle: Evolution of the bulk density of states, with lighter colors
denoting larger densities. Overlaid is the spectrum of the effective
Hamiltonian at k ¼ 0 (red) and k ¼ Π (pink). Bottom: Topo-
logical invariants ν1;0, ν1;Π and ν1 ¼ ν1;0=ν1;Π.
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The data shown in the figures as well as the code
generating all of the data are available in Ref. [63].
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