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Finite-size analysis of the hard-square lattice gas
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We investigate the hard-square lattice-gas model by means of transfer-matrix calculations and a finite-size-
scaling analysis. Using a minimal set of assumptions we find that the spectrum of correction-to-scaling expo-
nents is consistent with that of the exactly solved Ising model, and that the critical exponents and correlation-
length amplitudes closely follow the relation predicted by conformal invariance. Assuming that these spectra
are exactly identical, and conformal invariance, we determine the critical point, the conformal anomaly, and the
temperature and magnetic exponents with numerical margins of 10211 or less. These results are in a perfect
agreement with the exactly known Ising universal parameters in two dimensions. In order to obtain this degree
of precision, we included system sizes as large as feasible, and used extended-precision floating-point arith-
metic. The latter resource provided a substantial improvement of the analysis, despite the fact that it restricted
the transfer-matrix calculations to finite sizes of at most 34 lattice units.
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I. INTRODUCTION

Hard-core lattice gases can be seen as limiting case
antiferromagnetic Ising models in a field. Here we consi
the model on the square lattice

H/kT52K(
x,y

sx,y~sx11,y1sx,y11!2H(
x,y

sx,y , ~1!

with spin coordinatesx,y subject to periodic boundary con
ditions. The antiferromagnetic transition atK52 1

2 ln(1
1A2) is stable under the application of a magnetic field, a
belongs to a critical line spanning the range2`,H,`.
The model has not been solved in a nonzero field, but
critical line is accurately known@1#.

The lattice-gas model applies in the limit where bothH
and2K become infinite, but balancing one another such t
the fully magnetized phase competes with the antiferrom
netic phase. In this limit, a spin can be oriented in opposit
to the field only if its four nearest neighbors are parallel
the field. ObviouslyH14K must remain finite in this situa
tion. The allowed Ising configurations can equivalen
be interpreted in terms of lattice-gas variablessx,y5(1
2sx,y)/2 wheresx,y51 represents the presence of a partic
andsx,y50 its absence. This transformation leads to

H/kT52(
x,y

sx,y @m14K~sx11,y1sx,y11!#, ~2!

where we have omitted an additional constant, andm
52(8K12H) is the chemical potential of the lattice-ga
particles. ForK→2` we have nearest-neighbor exclusion
pair of occupied neighbor sites contributes an infinite amo
of energy. This condition can be graphically depicted by
signing diagonally oriented squares to each particle, wit
diagonal size of two lattice units. These hard squares ca
overlap. Apart from this infinite hard-core potential, they
not interact. It is noteworthy that, in this sense, the mo
1063-651X/2002/66~4!/046140~10!/$20.00 66 0461
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differs from Fisher’s@2# and Baxter’s@3,4# hard-square mod-
els. To emphasize the difference, the somewhat impre
adjective ‘‘noninteracting’’ has sometimes been used for
model ~2! with K→2`. In this work, we simply refer to it
as ‘‘the hard-square lattice gas.’’

For a sufficiently large chemical potentialm, the model
undergoes an ordering transition where the majority of
lattice-gas particles settle on one of the two checkerbo
sublattices. The order parameter is defined as the occupa
difference between the two sublattices. Since it is a sca
just as in the ordinary Ising model, one may, on the basis
the principle of universality, conjecture that the universal p
rameters of the hard-square lattice-gas model areexactly
those of the Ising model. This conjecture is also in line w
Fisher’s@2# exact solution of a related lattice-gas model.

In the absence of an exact solution of the model~2!, there
exists a long and interesting history of numerical efforts
test this conjecture. An early series-expansion analysis
Gaunt and Fisher@5# yieldedb50.12560.005 for the mag-
netization exponent, in a good agreement with the ex
Ising valueb51/8. This result already greatly restricted an
possible deviations from Ising universality. Further restr
tions could follow from an accurate determination of a se
ond critical exponent. However, series expansions by Ba
et al. @6# surprisingly yieldeda50.0960.05 for the specific-
heat exponent, whilea50 for the exactly solved Ising
model. The numerical result fora could thus be interpreted
as mild evidenceagainstIsing universality. Although Baxter
et al. explicitly added the statement that Ising expone
were not excluded, their result has received considerable
tention, and led to a series of numerical investigatio
@7–10# aiming at much more precise tests of the hypothe
that the hard-square lattice gas belongs to the Ising uni
sality class. The results were strongly in favor of this hypo
esis; results for the scaling dimensions, reported by Kam
iarz and Blöte @9# and by Todo and Suzuki@10# agree with
the Ising values within numerical margins of 1026 and 1027,
respectively.
©2002 The American Physical Society40-1
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Nevertheless one can still ask the question whether s
able Ising models have some physical characteristics in c
mon that are not shared by a class of other Ising-like mod
which includes the present hard-square model, so that
may use that model as a test case. While there is no com
ling reason to doubt the general validity of the renormali
tion theory, which forms the basis of the universality hypo
esis, a rigorous justification is absent. Moreover, spec
applications are subject to significant difficulties; see, e
Refs.@11–13#.

For this reason we have revisited the hard-square la
gas, aiming at a considerably more sensitive test of uni
sality. In Sec. II we describe the transfer-matrix techniq
used to generate the numerical data for the finite-size-sca
analysis described in Sec. III. Section III A confirms that t
critical finite-size amplitude of the magnetic correlatio
length, and the correction-to-scaling exponents are consis
with those of the Ising universality class. Then, under
assumption that these parameters fit the Ising classexactly,
we perform another determination of the critical point a
other parameters. This procedure enables the detectio
extremely small deviations from universality. However, t
results, which are briefly discussed in Sec. IV, agree p
cisely with the known universal Ising parameters. The ana
ses include a test of conformal invariance, by means of
independent determinations of the critical exponents us
transfer-matrix methods. The first method~Sec. III E! uses
numerical differentiations of the free energy and the corre
tion length to the chemical potential and to the stagge
field. The second method uses the relation between cri
exponents and correlation lengths in a cylinder geometry
based on the assumption of conformal invariance. These
methods lead to identical results and are thus in suppor
the assumption made.

II. THE TRANSFER MATRIX

We analyze the lattice-gas model on a squareL3m lattice
with periodic boundary conditions in the direction with sy
tem sizeL. Thus the sites of the lattice are divided inm
circular rows. There are free boundaries in the other dir
tion. According to Eq.~2! with K→2`, the partition sum is

Z(m)5(
$s i %

em(
i

s i)̂
i , j &

~12s is j !, ~3!

wherem is the reduced chemical potential, andm has been
added explicitly to indicate the number of rows. Next, w
divide Z(m) in a number of restricted sums, each of whi
corresponds with a given state of the particles in themth
row. We denote the particle configuration of rowi as sW i
5(s i ,1 ,s i ,2 , . . . ,s i ,L), so that the restricted sums are

Z(m)~sW m!5(
sW 1

(
sW 2

••• (
sW m21

F )
n51

m

)
k51

L

emsn,k~12sn,ksn21,k!

3~12sn,ksn,k11!G , ~4!
04614
v-
-

ls,
e

el-
-
-
c
.,

e
r-
e
ng

nt
e

of

-
-
o
g

-
d
al
as

o
of

c-

with sn,L11[sn,1 and s0,k[0. The restricted sums for a
system ofm11 rows are

Z(m11)~sW m11!5(
sW m

H (
sW 1

(
sW 2

••• (
sW m21

F )
n51

m

)
k51

L

emsn,k

3~12sn,ksn21,k!~12sn,ksn,k11!G J
3)

k51

L

emsm11,k~12sm11,ksm,k!

3~12sm11,ksm11,k11!. ~5!

Using the definition ofZ(m)(sW m), and that of the transfe
matrix as

T̃~sW m11 ,sW m![)
k51

L

emsm11,k~12sm,ksm,k11!

3~12sm11,ksm,k!~12sm11,ksm11,k11!,

~6!

one obtains

Z(m11)~sW m11!5(
sW m

T̃~sW m11 ,sW m!Z(m)~sW m!. ~7!

In vector notation, iteration of this recursion yields

ZW (m11)5T̃•ZW (m)5@ T̃#m
•ZW (1). ~8!

Expansion ofZW (1) in right-hand eigenvectors ofT̃ shows that

Z(M )5(
sW

Z(M )~sW !5(
i

cil i
M , ~9!

where theci are constants and thel i the eigenvalues ofT̃.
Thus the reduced free energyf (L) per site in the large-M
limit is

f ~L !5 lim
M→`

1

LM
ln Z(M )5

1

L
ln l0 , ~10!

wherel0 is the largest eigenvalue ofT̃.
To facilitate the numerical analysis, we define the e

ments of a symmetric versionT of the transfer matrix by a
similarity transformation

T~sW m11 ,sW m![)
k51

L

em(sm,k2sm11,k)/2 T̃~sW m11 ,sW m!.

~11!

To enable actual transfer-matrix calculations, we have
assign unique numbers to the particle configurations o
single row. This coding thus serves to define the trans
matrix indices. It is natural to use a coding by means of
binary numbers1s2•••sL , but this is not an efficient cod
0-2
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FIG. 1. Illustration of the ac-
tion of the sparse matrices com
posing the transfer matrix. A par
of the topmost rows of the squar
lattice is shown~a! after comple-
tion of a new row,~b! after ap-
pending a new site byT1, ~c! after
appending theLth new site by
TL , and~d! after deleting the site
labeledL11 and shifting the site
numbers byTL11.
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ing, because it includes configurations with occupied nei
bor sites. These configurations have a zero weight, due to
presence of the infinite hard-core potential. Following To
and Suzuki@10# we use an enumeration that includes allow
configurations only. Letns1 ,L,sL

denote the number of al

lowed configurations on a row ofL sites with givens1 and
sL . These numbers satisfy the recursions

n0,L11,05n0,L,01n0,L,1 , n0,L11,15n0,L,0 ~12!

so that n0,L11,05n0,L,01n0,L21,0. Since we haven0,1,051
and n0,2,051, the numbern0,L,0 is just theLth Fibonacci
numberF1,1(L) of the sequence starting with 1, 1. Furthe
more we findn0,L,15F0,1(L). On the basis of symmetry w
also haven1,L,05n0,L,1 so that the total numbernc(L) of
allowed configurations on a circular row ofL sites

nc~L !5n0,L,01n1,L,01n0,L,15F1,1~L !12F0,1~L !5F1,3~L !

~13!

is theLth number of the Fibonacci sequence starting with
and 3. For largeL this number is much smaller than 2L

which applies to the binary coding. In order to assign
unique number to each specific configuration, we need o
define an ordering of theF1,3(L) possible configurations
This ordering can be conveniently taken identical to the
dering of the corresponding binary numbers. This defines
coding of theF1,3(L) allowed configurations.

To reduce the memory and the computer time requ
ments, the transfer matrix is decomposed inL11 sparse ma-
trices

T5TL11•TL•••T2•T1 , ~14!

whereT1 acts as to add a new site to a complete row. M
precisely, it renames site 1 asL11, and it places a new sit
with number 1 above site number 2. Since sites 1 andL
11 are not nearest neighbors, one obtains a row ofL11
sites with open boundaries@see Figs. 1~a! and~b!#. A slightly
different coding algorithm has therefore to be used. Each
the matricesT2 , . . . ,TL adds an elementary square to t
lattice, i.e., it replaces an old site by a new site which
added diagonally, as shown in Fig. 1~c! for TL . Finally TL11
disposes of siteL11, constructs a bond~i.e., imposes the
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nearest-neighbor exclusion constraint! between sitesL and 1,
and then translates the site label by one unit as shown in
1~d!. Further details of numerical transfer-matrix techniqu
in general were given by e.g., Nightingale@14#, and for the
present case of the hard-core lattice gas by Todo and Su
@10#.

The transfer matrix is symmetric, which enables the u
of the conjugate-gradient algorithm to compute some of
eigenvaluesl i( i 51,2, . . . ), andtheir associated eigenvec
torseW i . The iterative procedure to find the largest eigenva
l0 starts from an initial vector that is translationally invaria
~i.e., under cyclic permutations of the site number! as well as
invariant under a geometric inversion, i.e., an interchange
the site labelsk↔L112k. The corresponding eigenvecto
eW0 satisfies these symmetries, as a consequence of the
metry properties ofH and the Perron-Frobenius theorem
The second largest~in absolute value! eigenvalue is denoted
l1. Just as in the Ising model, its ratio with respect to t
largest eigenvalue determines a correlation length of
‘‘magnetic’’ type, i.e., it pertains to the staggered partic
density. The associated eigenvectoreW1 is antisymmetric un-
der a geometric inversion. Therefore the iterations star
from an antisymmetric initial vector, and precautions we
taken to prevent the buildup of a symmetric component d
to the finite numerical precision of the iterative multiplic
tion process. Furthermore we computed a third eigenva
l2, namely, the second largest eigenvalue in the symme
subspace. Its gap with respect tol0 determines the correla
tion length associated with the energy-energy correlat
function. This eigenvalue was obtained using a symme
initial vector, and orthogonalization with respect toeW0.

In general one can relate a subleading eigenvaluel i of T
to the correlation length associated with an appropriate c
relation function. In the case of evenL, the inverse correla-
tion lengthsj i

21(L) are equal to

j i
21~L !5 ln

l0

ul i u
, ~15!

where the casei 51 applies to the magnetic correlatio
lengthjh while i 52 applies to the energy-energy correlatio
0-3
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lengthj t . We restrictL to be even because the ground st
does not fit a lattice with oddL, in which case the scaling
behavior is modified.

The expectation value of the particle densityr is deter-
mined by the eigenvectoreW0 associated withl0. To this pur-
pose we define a diagonal matrixD with elementsDsW i ,sW j

5dsW i ,sW j
(k51

L s i ,k so thatr5eW0•D•eW0.
Next we describe how the definition of the transfer mat

is adapted to include a ‘‘staggered field’’ or a staggered c
tribution mst to the chemical potential. The chemical pote
tial is then m1mst for particles on one sublattice, andm
2mst on the other. The staggered chemical potential
straightforwardly be included in Eqs.~6! and~11!. However,
since the contributions ofmst per site alternate between su
sequent rows, the definition ofT must be adapted to appen
two rows at a time. Another technical problem, namely, th
the above-mentioned geometric inversion symmetry is
stroyed by a nonzero staggered field, so that the secon
genvector can no longer be selected on the basis of this s
metry, can be solved by orthogonalization with respect to
eigenvector associated with the largest eigenvaluel0.

III. NUMERICAL RESULTS

We performed calculations up toL536; the transfer ma-
trix is then 33,385,282 dimensional. These calculations u
standard double-precision arithmetic. However, as a co
quence of this limitation of the numerical accuracy, the
failed to provide a significant improvement over existing
sults. First, the iterative process to obtain the eigenvalu
which involves linear operations on long vectors, alrea
induces a loss of accuracy of a few decimal places, and
ond, the inaccuracy is further enlarged during each step
the subsequent iterated fitting procedures. For this reaso
have performed the transfer-matrix calculations as well
the subsequent fits in quadruple precision~16-byte! floating-
point arithmetic as available on the Cray J-90 computer
the HPaC center in Delft. Its 2480 Mbyte of availab
memory restricted the finite-size calculations toL<34. Al-
though this range of finite sizes does not exceed that use
a recent analysis@10#, the higher precision of the eigenvalue
allows one to account for additional corrections to the le
ing scaling behavior, and thus leads to more precise res

A. Preliminary analysis

We first use minimal assumptions, withouta priori
knowledge of critical exponents and amplitudes, to estim
the critical value of the chemical potential and a few oth
parameters that play a role in the finite-size behavior of
correlation length. This is done by means of an analy
of the L and m dependence of the magnetic scaled g
Xh(m,L), defined asXh(m,L)5L/@2pjh(L)#. For small t
5m2mc , i.e., close to the critical point, finite-size scalin
@15# suggests the following behavior:

Xh~m,L !5Xh1atLyt1bLyi1•••, ~16!

whereXh is an~in principle! unknown number related to th
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finite-size amplitude of the correlation length, and the te
perature exponentyt and the irrelevant exponentyi are like-
wise unknown. In addition one may expect corrections w
higher powers oft and 1/L. Let us now consider the differ
ence

Xh~m,L11!2Xh~m,L21!52L21~atytL
yt1byiL

yi1••• !.

~17!

Since we have an algorithm to computeXh(m,L), we can
apply ‘‘phenomenological renormalization’’@14#, i.e., nu-
merically solve for m in Xh(m,L11)2Xh(m,L21)50.
The solutions, which are denotedm (0)(L), agree with earlier
numerical results@1,10#. These data, truncated to seven de
mal places, are shown in Table I. For system sizes up tL
533, they already suggest convergence up to the fifth d
mal place. The same data, but in quadruple precision,
presented in Table I in Ref.@16#. According to finite-size
scaling they behave as

m (0)~L !5mc1byiL
yi2yt/~ayt!1•••. ~18!

This suggests that even better estimates of the critical p
are obtained by a three-point fit with a variable expone
solving for the unknownsm (1)(L), b1, andx1 in

m (0)~L1 l !5m (1)~L !1b1~L1 l !x1, ~19!

for l 50 and62. Indeed we then find an even faster app
ent convergence to the critical point. Moreover, the resu
for the exponentx1 provide a strong sign thatx15yi2yt
523, just as in the exactly solved Ising model. The so
tions for x1 are found to approach the value23 within 5
31022 in the available range of finite sizes.

TABLE I. Numerical solutions m (0)(L) of the equation
Xh(m,L21)5Xh(m,L11) for different system sizesL, and the
corresponding values ofXh .

L m (0)(L) Xh
(0)(L)

3 1.411 266 7 0.110 726 3
5 1.349 010 5 0.120 460 6
7 1.339 357 0 0.122 760 5
9 1.336 487 4 0.123 673 6
11 1.335 350 4 0.124 126 2
13 1.334 814 7 0.124 382 1
15 1.334 530 6 0.124 540 5
17 1.334 366 4 0.124 645 1
19 1.334 265 0 0.124 717 7
21 1.334 199 1 0.124 770 2
23 1.334 154 5 0.124 809 3
25 1.334 123 2 0.124 839 2
27 1.334 100 6 0.124 862 6
29 1.334 083 8 0.124 881 3
31 1.334 071 2 0.124 896 4
33 1.334 061 5 0.124 908 8
0-4
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We therefore assume thatx1523 holds exactly, and at
tempt to resolve the next correction exponentx2 in the ex-
pansion

m (0)~L !5mc1b1Lx11b2Lx21b3Lx31•••. ~20!

A fit involving the correction termb2Lx2 suggests thatx25
24, although this exponent cannot be determined as
cisely asx1, apparently because the amplitudeb2 is rela-
tively small.

Thus we assumex2524 and try to find the next expo
nentx3. This is done by means of a first fit using correcti
terms with fixed exponents23 and24; the resulting esti-
mates ofmc are then subjected to a three-point fit with va
able exponent such as in Eq.~19!. This process can be iter
ated several times; Fig. 2 shows the exponents of subseq
corrections obtained in this way.

While the results obtained above for the exponentsxj are
not very accurate, it is possible to apply more sensitive te
For instance we may assumex2524 and x3525 in the
first step, to obtain iterated estimates ofx1 by a three-point fit
to the resulting values ofm in the next step. These estimat
rapidly approach the value23 to within 1022; another it-
eration by means of a three-point fit with a variable expon
decreases this numerical margin by another order of ma
tude.

Similarly one can assumex1523 andx3525 and then
focus on the determination ofx2; the resulting estimates ar
found to approach the value24 to within 331023.

The results suggest that the spectrum of finite-size cor
tion exponents isxj5222 j . This reveals a difference with
respect to the spectrum of the exactly solved Ising mo

FIG. 2. Exponentsxi ~Eq. 20! of finite-size corrections in the
solutions m (0) of the equationXh(m (0),L21)5Xh(m (0),L11),
versus finite sizeL. The correction exponents were estimated
several iteration steps in the analysis. Starting from above, the
line shows the exponent of the leading finite-size correction
vealed by a three-point fit to the values ofm (0). It indicates that the
dominant correction is proportional toL23. The second line dis-
plays the result of the second iteration step, which was based
fit using a fixed exponent23 as a first step. It suggests that the ne
exponent is24. Assuming this value, the next iteration yields t
third line which shows that the next exponent is close to25. Then,
assuming exponents23, 24, and25, we obtain the fourth line
that is consistent with a correction exponent26.
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where only corrections with oddj occur; this follows from a
finite-size expansion@17# of the transfer-matrix eigenvalue
as given e.g., by Domb@18#. A fit procedure involving such
correction exponents for j 51 to 8 yields mc
51.334 015 100 278(1).

Next, we consider the solutions forXh , denoted as
Xh

(0)(L), of the equationXh(m,L11)2Xh(m,L21)50.
These first estimates~see Table I! are already found to ap
proach the valueXh51/8 to within four decimal places. This
is in a good agreement with the universal finite-size am
tude of the magnetic correlation length of the exactly solv
Ising model, and also with earlier numerical results for t
hard-square lattice gas.

The finite-size dependence of theXh
(0)(L) is closely re-

lated to that ofm (0)(L), as follows from the substitution o
Eq. ~20! in Eq. ~16!:

Xh~m (0),L !5Xh1a1Lz11a2Lz21a3Lz31•••. ~21!

The exponentszj in Eq. ~21! are equal to2 j 21 if yt51 and
yi522, as in the Ising model, and ifxj5222 j as above.
Indeed, power-law extrapolation analogous to Eq.~19!
shows thatz1'22; furthermore it confirms thatXh51/8 in
six decimal places.

In analogy with the analysis ofmc we have assumedz1
522, found thatz2 is close to23, assumed thatz25
23, and so on. We proceed to determine theXh on the basis
of Eq. ~21! and the assumptionzj52 j 21. Thus we solve
for the three unknownsXh

(1)(L), a1
(1)(L), anda2

(1)(L) in the
three equations

Xh
(0)~L1 l !5Xh

(1)~L !1a1
(1)~L !~L1 l !z1

(1)
1a2

(1)~L !~L1 l !z2
(1)

,

~22!

for l 50 and62, with z1
(1)522 andz2

(1)523. This leads
to a sequence of iterated estimatesXh

(1)(L) which is shorter
than the original sequence~two less entries! but converges
faster. On the basis of Eq.~21! with zj5212 j we expect
that, in leading orders, theXh

(1)(L) behave similarly as Eq
~22!, but with different exponents

Xh
(1)~L1 l !5Xh

(2)~L !1a1
(2)~L !~L1 l !z1

(2)
1a2

(2)~L !~L1 l !z2
(2)

,

~23!

with z1
(2)5z3524 andz2

(2)5z4525. From Eq.~23! we can
now similarly solve forXh

(2)(L) on the basis of three value
Xh

(1)(L1 l ) for l 50 and62. This procedure can be carrie
on until z1

(4)528, z2
(4)529. Then we have applied a three

point fit with a variable exponentz(5)(L) by solving

Xh
(4)~L1 l !5Xh

(5)~L !1a1
(5)~L !~L1 l !z(5)(L). ~24!

This fit seems to converge rapidly with increasingL; we
estimateXh50.125 000 000 000(1).

B. Determination of the critical point

Next we attempt to find the critical point more precise
by analyzing the finite-size dataXh(m,L) for the magnetic
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scaled gap, under the assumption thatXh51/8 holds exactly.
We have thus solved the scaling equationXh(m,L)51/8 nu-
merically. This procedure offers the advantage that it is m
stable with regard to the limited numerical precision of t
calculation. The solutions form are denotedm (0)(L) ~note
that this notation has a different meaning than in the prec
ing subsection! and listed in Table II of Ref.@16#. Just as in
the preceding subsection we find that the solutions behav
accordance with Eq.~20! with xj5222 j ~but with different
amplitudesbj ). We thus proceed to determine the critic
point on this basis. Combining two of these corrections a
time, we solve for the three unknownsm (1)(L), b1

(1)(L), and
b2

(1)(L) in the three equations

m (0)~L1 l !5m (1)~L !1b1
(1)~L !~L1 l !x1

(1)

1b2
(1)~L !~L1 l !x2

(1)
, ~25!

for l 50 and 62, wherex1
(1)523 andx2

(1)524. This in
effect eliminates the corrections with powers23 and 24
and thus m (1)(L) converges much faster withL than
m (0)(L). On the basis of Eq.~20! with xj5222 j we expect
that them (1)(L) behave similarly as Eq.~25!, but with dif-
ferent exponents

m (1)~L1 l !5m (2)~L !1b1
(2)~L !~L1 l !x1

(2)

1b2
(2)~L !~L1 l !x2

(2)
, ~26!

with x1
(2)5x3525 and x2

(2)5x4526. From Eq.~26! we
can now similarly solve form (2)(L) on the basis of three
valuesm (1)(L1 l ) for l 50 and62. This procedure can b
carried on untilx1

(4)529, x2
(4)5210. Then we have applied

a three-point fit with a variable exponentx(5)(L) by solving

m (4)~L1 l !5m (5)~L !1b1
(5)~L !~L1 l !x(5)(L)

, ~27!

for l 50 and62. This yields our best estimate for the crit
cal point asmc51.334 015 100 277 74(1), which is consis-
tent with earlier analyses@9,10# and the result in the preced
ing subsection.

An indication for the correctness of our choice of t
correction exponents follows from the behavior ofx(5) as a
function ofL. Its values did not exceedx2

(4)5210. If we had
used a wrong choice missing a significant correctionbmLxm,
then we would have foundx(5)'xm , as may be checked
analytically and empirically. For instance, we have repea
the fitting procedure formc using a different spectrumxj5
2122 j . The missing exponent24 then immediately turns
up in a three-point fit with a variable exponent. These thr
point fits provide a means to check the validity of the a
sumed spectrum and were applied at several stages o
iterated fitting procedure. These tests also provide a sens
test to reveal, in addition to missing exponents, poss
logarithmic factors in the dominant corrections. No signs
such factors were seen.
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C. Bulk free energy and critical density

To determine the critical parameters of the present ha
square model, we have calculated the free energy per site
the density of particles at the extrapolated critical point
system sizes up toL534. These numerical results are show
in Table III of Ref. @16#. The critical free-energy density
f (L) is expected to depend on the finite sizeL as

f ~L !5 f `1
pc

6L2
1p1Ly11p2Ly21•••, ~28!

where the universal finite-size amplitudec may be identified
with the conformal anomaly@19# in the case of conformally
invariant models. The exponentsyj,0 of the correction
terms are, in principle, unknown. As in the preceding su
section we have attempted to determine dominant correc
exponents. We find thaty1524 with a numerical uncer-
tainty of 0.01. After an iterated two-point fit with fixed ex
ponenty1524, another iteration step by means of a thre
point fit yields the next exponent asy2526 with a
numerical uncertainty of 0.1. However, the next exponenty3
could not be accurately determined. See Fig. 3. We inclu
a correction with exponenty3528; if we fail to do so,
three-point fits in a later iteration step reveal that an ex
nent is missing.

These findings would suggest the same spectrum as
curs in the free energy of the Ising model@17#, namely,yj
52222 j . However, after a next iteration step for th
lattice-gas free energies, with exponents210 and212, a
three-point fit indicated the presence of a correction with
exponent close to27.8, with a small amplitude. This hints a
the presence of a small contribution proportional toL28ln L,
or perhaps at the presence of odd powers ofL. The small
magnitude of this effect does not allow us to make a m
firm statement.

Thus, in analogy with the procedure to determine the cr
cal point, more rapidly converging estimates of the bulk fr

FIG. 3. Exponents of finite-size corrections in the critical fr
energy, versus finite sizeL. These exponents were obtained b
means of three-point fits with a variable exponent, in different
eration steps. From above:~1! fit of the free energy;~2! after one
iteration step using a fixed exponent24; ~3! after two iteration
steps with exponents24 and26, and so on.
0-6
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TABLE II. Best estimates of the conformal anomalyc, the magnetic scaling dimensionXh , the tempera-
ture scaling dimensionXt , the critical chemical potentialmc , the critical bulk free energyf (mc), and the
critical particle densityr(mc) of the hard-core lattice-gas model.

c Xh Xt

0.500 000 000 000 0~1! 0.125 000 000 000 0~1! 1.000 000 000 00~1!

mc f (mc) r(mc)
1.334 015 100 277 74~1! 0.791 602 643 166 112~1! 0.367 742 999 041 0~3!
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energy are obtained by solving the unknownsf (1)(L), p1
(1) ,

andp2
(1) in

f (0)~L1 l !5 f (1)~L !1p1
(1)~L !~L1 l !y1

(1)
1p2

(1)~L !~L1 l !y2
(1)

,

~29!

wheref (0)(L)[ f (L), y1
(1)522, andy2

(1)524, in the three
equations forl 50 and 62. Iterated fits, using exponen
pairs (26,28), . . . , (214,216), followed by a three-poin
fit with a free exponent as in Eq.~27!, lead to our best esti
mate for the bulk free energyf ` . It is included in Table II.

The particle densityr plays the role of the energy in th
Ising model. However, our numerical data for the critic
densityrc display a clear finite-size dependence, while t
energy of the exactly solved critical Ising model on a cyl
der is independent of the finite size. Three-point fits to
densities computed at the critical point yield clear eviden
for an exponent24. However, after a fit with a fixed expo
nent 24 in the first step, a three-point fit to the resultin
values ofr yields anotherexponent close to24 ~with in-
creasing system sizes it approaches this value within 0!.
The use of an exponent a little different from24, e.g.,
24.1, in the first step, makes only little difference. One s
finds estimates of a next exponent that approach24 within
0.1. These findings indicate that the term with power24 is
actually a combination of two terms with powers that a
~almost! coincident. The simplest interpretation is the pre
ence of a logarithmic termL24ln L, although we cannot ex
clude the presence of a small fractional power in the sys
sizeL. The next exponent ofL is found to be close to26,
but again modified with a similar factor resembling a log
rithm. We thus performed the finite-size analysis ofrc on the
basis of the formula

r~L !5rc1u1L24 ln~v1L !1u2L26 ln~v2L !1•••.
~30!

As implied above, fits without such logarithmic factors fa
to converge satisfactorily. The first iteration step in the d
termination of rc is to solve for r (1)(L), u1

(1)(L), and
v1

(1)(L) in

r (0)~L1 l !5r (1)~L !1u1
(1)~L !~L1 l !x(1)

ln@v1
(1)~L !~L1 l !#,

~31!

for l 50 and62, usingx(1)524, on the basis of the finite
size datar (0)(L) for rc as calculated at the estimated critic
point. The next iteration steps proceed similarly, but w
04614
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exponentsx(2)526, andx(3)528. This leads to the ex-
trapolated critical density shown in Table II.

D. Conformal anomaly and critical exponents

On the basis of Eq.~28! we obtain estimates of the free
energy amplitudec by solving the unknownsf (1)(L) and
c(0)(L) in

f (0)~L1 l !5 f (1)~L !1
pc(0)~L !

6~L1 l !2
, ~32!

for l 561 and a range of odd values ofL, using the available
finite-size results forf (0)(L1 l )5 f (L1 l ) at the estimated
critical point. The next iteration step is to solve the equatio

c(0)~L1 l !5c(1)~L !1d1
(1)~L !~L1 l !x1

(1)
1d2

(1)~L !~L1 l !x2
(1)

,

~33!

for l 50 and62, with x1
(1)522 andx2

(1)524, in accor-
dance with Eq.~28! and the aforementioned values ofyj
therein. Following iteration steps used exponent pairs (26,
28), . . . , until (214,216). However, three-point fits the
reveal a ‘‘missed’’ correction with exponent26 which cor-
responds with a term proportional toL28 ln L as mentioned
in the analysis of the free energy. After including this corre
tion, the resulting best estimate for the free-energy amplit
c is included in Table II.

Our transfer-matrix calculations include results for t
magnetic and energy-energy correlation lengths,jh(L) and
j t(L), respectively, at the calculated critical point. These
sults are shown in Table IV of Ref.@16# in terms of the
scaled magnetic gapsXh

(0)(L)[L/@2pjh(L)# and the scaled
thermal gaps Xt

(0)(L)[L/@2pj t(L)#. Finite-size-scaling
predicts the following finite-size dependence of the sca
magnetic gap:

Xh
(0)~L !5Xh1b1Ly11b2Ly21•••, ~34!

and a similar relation for the scaled thermal gap. The fin
size amplitudesXh andXt are universal numbers. For mode
with conformally invariant fixed points, they are equal to t
magnetic scaling dimension@20# 22yh and the temperature
scaling dimension 22yt , respectively.

In accordance with our findings in Sec. III A, we assum
that the spectrumzj5212 j applies. The first iteration step
thus involves the solution of
0-7
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Xh
(0)~L1 l !5Xh

(1)~L !1b1
(1)~L !~L1 l !z1

(1)
1b2

(1)~L !~L1 l !z2
(1)

,

~35!

for l 50 and62, with z1
(1)522 andz2

(1)523. The itera-
tion process can be continued untilz1

(6)5212 and z2
(6)5

213, followed by a three-point fit with a free exponent as
Eq. ~27!. The final result is shown in Table II.

For the scaled thermal gaps, we have applied the s
iterated fit procedure with the same series of correction
ponents. The extrapolated finite-size amplitude is include
Table II.

E. Test of conformal invariance

The interpretation of the universal correlation length a
plitudesXh andXt in terms of the scaling dimensions is on
valid in conformally invariant models. In the absence o
proof of conformal invariance, one can still determine t
scaling dimensions independently by means of numer
differentiation of the free energy and the scaled gap. Fr
the m dependence of the magnetic gap, Kamieniarz a
Blöte @9# obtained the temperature renormalization expon
as yt51.000 01 (2) while Todo and Suzuki@10# reported
yt50.999 9(3). This is in a good agreement with the inte
pretation ofXt as the temperature scaling dimension 22yt .
Here we extend this test to include second derivatives of
free energy and the scaled gap with respect tom and the
staggered chemical potentialmst, which plays the role of the
magnetic field in the Ising model.

Including magnetic and temperature scaling fieldsh andt,
respectively, Eq.~28! becomes

f ~h,t,L !5 f a~h,t !1L22 f̃ ~Lyhh,Lytt !1(
j

t jL
yj1•••,

~36!

wheref a is the analytic part of the free-energy density, anf̃
is the finite-size-scaling function of the singular part of t
free-energy density. Expansion off̃ , which is supposed to be
analytic, in powers ofh andt yields the dominant finite-size
scaling behavior of the derivatives off (h,t,L). Corrections
arise due tot dependence of the coefficientst j on h and t.
Similarly we include the dependence of the scaled magn
gap onh and t,

Xh~h,t,L !5X̃~Lyhh,Lytt !1(
j

ajL
yj1•••, ~37!

where also the scaling functionX̃ is supposed to be analytic
Up to irrelevant corrections, we may associatet with the
distancem2mc to the critical point, andh with the staggered
chemical potentialmst. The finite-size correction amplitude
aj are still dependent onh and t.

Thus we obtained free energies and scaled gaps amst
50 for a range of values ofm about the critical pointmc ,
and also for a range of values ofmst about 0 atm5mc .
Polynomials inm2mc and mst ~up to eighth order! were
fitted to these results. The widths of the ranges were cho
such as to optimize the numerical precision of the results
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the derivatives off andX. These calculations were performe
in double-precision arithmetic, for even system sizes up
L530. The numerical differentiations have to be restrict
to relatively narrow ranges~about 1022 to 1023), which
leads to a loss of accuracy of several decimal places.
numerical analyses, which are only briefly summarized
low, involve iterated fitting procedures. Each iteration st
increases the numerical inaccuracy even further, so that
a few steps are feasible.

~1! According to Eq.~36!, atm5mc , mst50 the specific-
heat-like quantity]2f /]m2 behaves as

]2f

]m2
5c01L2yt22~r 01r 1Lyi1••• !. ~38!

Three-point fits, withc0 , r 0, and the exponentyt as free
parameters and ignoring further contributions, show that
result foryt rapidly approaches 1 with increasingL; the dif-
ference is only 631024 for the largest value ofL. Results of
iterated three-point fits converge even faster, and the e
mated values ofyt now approach 1 up to 531026. More-
over, the iterated fits reveal that the correction exponentyi is
close to22.

~2! At the critical point m5mc , mst50 we expect that
the susceptibilitylike quantity]2f /]mst

2 behaves similarly as
Eq. ~38!, but with yt replaced byyh . Three-point fits lead to
estimates ofyh rapidly approaching 15/8 with increasing fi
nite sizes. The difference is about 1024 for the largest avail-
able sizes. For iterated three-point fits, this difference
creases to 1025. Again, the results foryi approach22.

~3! Analysis of the derivatives of the scaled gap~or the
correlation length! has the advantage that an ‘‘analytic
background is absent. The first derivative to the chem
potential should, according to Eq.~37!, satisfy

]X

]m
5Lyt~ t01t1Lyi1••• !. ~39!

Two-point fits withyt andt0 as free parameters, and neglec
ing all other terms, yielded estimates ofyt rapidly approach-
ing 1, with a difference of 431024 for the largest pair of
system sizes. After an iteration step using three-point fits,
difference decreases to 1025, while the results foryi again
approach22.

~4! Similarly, we expect for the second derivative of th
scaled gap that

]2X

]m2
5L2yt~q01q1Lyi1••• !. ~40!

Two-point fits with yt and q0 as free parameters produc
estimates ofyt that approach 1, but more slowly than for th
first derivative: the difference is still 1022 for the largest
system sizes. A second iteration step using three-point
reduces the difference to 531024, and a third step to 2
31025.

~5! The scaled gap is an even function ofmst, so that we
focus on its second derivative. We expect similar behavio
0-8
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in Eq. ~40! but with yt replaced byyh . Two-point fits show
that the results foryh rapidly approach 15/8, until a differ
ence of 1023 at the largestL values. After a second iteratio
involving three-point fits the difference reduces to abo
1025, and after a third step to 1026.

The fits mentioned in this subsection lead to unbiased e
estimates in the sense that they leave all the correction
ponents free. We have made some additional fits with cor
tion exponents fixed according to their value in the exac
solved Ising model~and consistent with the values foun
with iterated fits!. In a few cases, an additional iteration st
then becomes possible, which then produces values foyt

and yh that approach the exact Ising values even closer
approximately one order of magnitude.

In the fits presented here, the difference between su
quent estimates ofyt andyh typically decreases rapidly with
increasing system sizeL. Moreover, it tends to be roughl
the same as the difference with the exact Ising values. T
we conclude that the numerical uncertainty in the largesL
results are of the same order as the differences with the I
values as mentioned above.

IV. CONCLUSION

The numerical results in Table II are in a very prec
agreement with the exactly known resultsc5 1

2 for the finite-
size amplitude of the free energy, and the scaled correla
lengthsXh5 1

8 andXt51 of the Ising model. The numerica
margin of uncertainty, as estimated from the differences
tween subsequent finite-size results in the last iteration
of the fitting procedure, is only 10211 for Xt and 10213 for c
and Xh . We should mention another source of uncertain
which is due to the procedures that we followed in vario
steps of this analysis. Namely, we have fixed some~in prin-
ciple unknown! universal parameters in the fit formulas a
cording to the exact solution of the Ising model. We belie
that the resulting uncertainty is very limited for the followin
reasons. First, wherever we could determine these fixed
rameters independently in the lattice-gas model, they ag
with our assumptions. Second, the fixed parameters are i
evant in the sense that, even in the case of a wrong param
choice, our fit procedures still must converge.

For instance, we have fixed the magnetic correlat
length amplitude asXh5 1

8 in the determination of the critica
point. This choice is supported by earlier analyses@1,9,10#
and the independent determination ofXh in Sec. III A, but
deviations of the order of 1027 cannot be excluded on thi
basis. If~due to a hypothetical violation of universality! such
a deviation exists for the present lattice gas, then the s
tions of the equationXh(m,L)51/8 would obviously still
converge tomc as long asyt.0 in Eq. ~21!. In that case the
speed of convergence would be affected, but no indicati
thereof were seen. Such a very small deviation could at m
lead to an underestimation of the numerical uncertainty m
gins mentioned above. But it is reassuring that two differ
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procedures to determineXh , namely, those described i
Secs. III A and III D, agree within the estimated margins
10212 or less.

The reliability and consistency of the fit procedures d
scribed in the preceding section was tested by introducin
number of variations in these procedures. For instance,
stead of iteration steps involving two corrections, we m
alternatively fit for one correction at a time. This yielde
consistent results. For example, in the determination ofc we
have, besides Eq.~32!, also used Eq.~29! in the first step.
This led to a difference in the estimated value ofc of less
than 10211. Furthermore, the critical point was also analyz
using a sequence of exponentsxj52122 j instead of those
given under Eq.~21!. While the result was consistent wit
that given above, the apparent convergence was less g
and the answer therefore less convincing. In many cases
have applied three-point fits with a variable exponent in
der to estimate the exponent of the next correction te
These checks provided strong support that our choices o
correction exponents, as well as that ofXh5 1

8 in the deter-
mination of the critical point, were correct. It thus seems t
the exponents of the finite-size corrections in the lattice-
model include those of the solvable Ising model, but th
there are also correction terms that are absent in the I
model. Evidence for such corrections is found in the fr
energy and in the scaled gap. In particular, we find go
evidence for terms modified by logarithmic correction fa
tors in the critical density. It is interesting that logarithm
corrections in thermodynamicparameters have been pro
posed by Barma and Fisher@21#, also in the context of Ising
models outside the exactly solved category.

These new corrections need not be attributed to deviat
from Ising universality. Their absence in the exactly solv
Ising model can well be attributed to the vanishing of t
corresponding amplitudes in the latter model. Indeed s
duality already implies that finite-size corrections are abs
in the critical energies of these Ising systems on an infinit
long cylinder.

Thus we conclude that, from the viewpoint of universa
ity, the set of correction exponents of the lattice gas is c
sistent with that of the exactly solved Ising model.

Assuming the validity of the spectrum of exponents
suggested by the numerical analysis of the correction ter
we obtain a few universal finite-size amplitudes that agr
within estimated numerical margins not exceeding 10211,
with the exact Ising values. These results provide our m
sensitive test of the Ising character of the lattice-gas mo
Although the width of the estimated numerical error marg
depends on the mentioned assumption, the fact remains
the numerical results agree in 11 decimal places with
exact Ising values. If the lattice gas were not in the Isi
universality class, then it would seem extremely implausi
that so many decimal places coincide. In this light we can
very confident that the lattice gas belongs to the Ising u
versality class.

If the renormalization fixed point of lattice-gas model
conformally invariant, one may interpretXh and Xt as the
magnetic and temperature scaling dimensions, respectiv
and the scaled free-energy amplitudec as the conformal
0-9
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anomaly. First, we note the fact that our analysis of
finite-size amplitudes agrees very precisely with the pred
tions for thec51/2 conformal theory. In addition, we hav
performed independent tests, presented in Sec. III E, wh
confirm that the scaling dimensions indeed coincide w
Xt51 and Xh51/8, and thereby provide further evidenc
that the theory of conformal invariance@22,23# applies to the
present model.

Finally we remark that the classification of the prese
hard-square model in terms of Ising universality also s
ported by results for an amplitude ratio@24# defined on the
distribution of the sublattice densities, in analogy with t
Binder cumulant@25# for the Ising model.
s.
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