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We investigate the hard-square lattice-gas model by means of transfer-matrix calculations and a finite-size-
scaling analysis. Using a minimal set of assumptions we find that the spectrum of correction-to-scaling expo-
nents is consistent with that of the exactly solved Ising model, and that the critical exponents and correlation-
length amplitudes closely follow the relation predicted by conformal invariance. Assuming that these spectra
are exactly identical, and conformal invariance, we determine the critical point, the conformal anomaly, and the
temperature and magnetic exponents with numerical margins oft 1 less. These results are in a perfect
agreement with the exactly known Ising universal parameters in two dimensions. In order to obtain this degree
of precision, we included system sizes as large as feasible, and used extended-precision floating-point arith-
metic. The latter resource provided a substantial improvement of the analysis, despite the fact that it restricted
the transfer-matrix calculations to finite sizes of at most 34 lattice units.
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I. INTRODUCTION differs from Fisher'd2] and Baxter’qd 3,4] hard-square mod-
els. To emphasize the difference, the somewhat imprecise

Hard-core lattice gases can be seen as limiting cases afdjective “noninteracting” has sometimes been used for the
antiferromagnetic Ising models in a field. Here we considemodel(2) with K— —c<. In this work, we simply refer to it
the model on the square lattice as “the hard-square lattice gas.”

For a sufficiently large chemical potential, the model
— _ undergoes an ordering transition where the majority of the
HIkT= KxEy Sky(Scr1y T Scyra) HxE,y Sxy: (D) lattice-gas particles settle on one of the two checkerboard
sublattices. The order parameter is defined as the occupation
with spin coordinates,y subject to periodic boundary con- difference between the two sublattices. Since it is a scalar,
ditions. The antiferromagnetic transition &=—3In(1  just as in the ordinary Ising model, one may, on the basis of
+4/2) is stable under the application of a magnetic field, anche principle of universality, conjecture that the universal pa-
belongs to a critical line spanning the rangec<<H <o, rameters of the hard-square lattice-gas model extactly
The model has not been solved in a nonzero field, but théhose of the Ising model. This conjecture is also in line with
critical line is accurately knowil]. Fisher's[2] exact solution of a related lattice-gas model.

The lattice-gas model applies in the limit where bbth In the absence of an exact solution of the md@gl there
and—K become infinite, but balancing one another such thaexists a long and interesting history of numerical efforts to
the fully magnetized phase competes with the antiferromagtest this conjecture. An early series-expansion analysis by
netic phase. In this limit, a spin can be oriented in oppositionGaunt and Fishel5] yielded 8= 0.125+ 0.005 for the mag-
to the field only if its four nearest neighbors are parallel tonetization exponent, in a good agreement with the exact
the field. ObviouslyH + 4K must remain finite in this situa- Ising valueB=1/8. This result already greatly restricted any
tion. The allowed Ising configurations can equivalently possible deviations from Ising universality. Further restric-
be interpreted in terms of lattice-gas variableg,=(1  tions could follow from an accurate determination of a sec-
—Sxy)/2 whereo, ,=1 represents the presence of a particle,ond critical exponent. However, series expansions by Baxter
ando, ,=0 its absence. This transformation leads to et al.[6] surprisingly yieldedw=0.09+ 0.05 for the specific-
heat exponent, whilew=0 for the exactly solved Ising
model. The numerical result far could thus be interpreted
as mild evidenceagainstlsing universality. Although Baxter
et al. explicitly added the statement that Ising exponents
where we have omitted an additional constant, gad were not excluded, their result has received considerable at-
=—(8K+2H) is the chemical potential of the lattice-gas tention, and led to a series of numerical investigations
particles. FoK — — we have nearest-neighbor exclusion: a[7—10] aiming at much more precise tests of the hypothesis
pair of occupied neighbor sites contributes an infinite amounthat the hard-square lattice gas belongs to the Ising univer-
of energy. This condition can be graphically depicted by assality class. The results were strongly in favor of this hypoth-
signing diagonally oriented squares to each particle, with a&sis; results for the scaling dimensions, reported by Kamien-
diagonal size of two lattice units. These hard squares cannddarz and Blde [9] and by Todo and SuzuKilO] agree with
overlap. Apart from this infinite hard-core potential, they dothe Ising values within numerical margins of 70and 10 7,
not interact. It is noteworthy that, in this sense, the modelespectively.

H/kT:_XEy oxy [ntaK(ox1ytoxyr)]l (2
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Nevertheless one can still ask the question whether solwith o, | ,1=0,; and oq,=0. The restricted sums for a
able Ising models have some physical characteristics in consystem ofm+1 rows are

mon that are not shared by a class of other Ising-like models,
which includes the present hard-square model, so that we
may use that model as a test case. While there is no compel-
ling reason to doubt the general validity of the renormaliza-
tion theory, which forms the basis of the universality hypoth-
esis, a rigorous justification is absent. Moreover, specific
applications are subject to significant difficulties; see, e.g.,
Refs.[11-13.

For this reason we have revisited the hard-square lattice
gas, aiming at a considerably more sensitive test of univer-

n=1k=1

Tm g1 02 Om-1

DG =3 [2 S 3| en

X(1— O'n,ko'nfl,k)(l_ Un,ka'n,kJrl)

l

L
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sality. In Sec. Il we describe the transfer-matrix technique
used to generate the numerical data for the finite-size-scaling
analysis described in Sec. Ill. Section Il A confirms that the L -
critical finite-size amplitude of the magnetic correlation USing the definition ofZ(™(ay,), and that of the transfer
length, and the correction-to-scaling exponents are consisteAtatrix as

with those of the Ising universality class. Then, under the L

assumption that these parameters fit the Ising adasstly 5, > — Tt 1kl 1 —

we perform another determination of the critical point andT(Um“'Um _1;[ (1= Om k1)

other parameters. This procedure enables the detection of

extremely small deviations from universality. However, the X(1=0ms1k0mi) (1= Oms1x0ms1x+1)
results, which are briefly discussed in Sec. IV, agree pre- (6)
cisely with the known universal Ising parameters. The analy- _

ses include a test of conformal invariance, by means of tw®ne obtains

independent determinations of the critical exponents using
transfer-matrix methods. The first meth¢8ec. Ill B uses
numerical differentiations of the free energy and the correla-
tion length to the chemical potential and to the staggered
field. The second method uses the relation between criticdh vector notation, iteration of this recursion yields
exponents and correlation lengths in a cylinder geometry, as
based on the assumption of conformal invariance. These two

methods lead to identical results and are thus in support of
the assumption made. Expansion oZM in right-hand eigenvectors Gf shows that

><(]—_ffm+1,k0'm+1,k+1)- (5

ZM™ () =2 T(Omi1,0mZM™ (o). (7)

Tm

ZMmD=F.zm=[Fm.Z1D), (8)

Il. THE TRANSFER MATRIX YAREDY z<M)(&)=2i i, 9)

We analyze the lattice-gas model on a squaxem lattice
with periodic boundary conditions in the direction with sys- where thec; are constants and the the eigenvalues of.
tem sizeL. Thus the sites of the lattice are divided im  Thus the reduced free enerdyL) per site in the largd4
circular rows. There are free boundaries in the other direclimit is
tion. According to Eq(2) with K— —oo, the partition sum is

1 1
f(L)=lim —InzM=— In)\o, (10)

LM
(m) 2 eMZ UlH (]_ O'U'J (3) M=

i
il o where), is the largest eigenvalue Gf.

To facilitate the numerical analysis, we define the ele-
ments of a symmetric versioh of the transfer matrix by a
similarity transformation

where u is the reduced chemical potential, amdhas been
added explicitly to indicate the number of rows. Next, we
divide Z(™ in a number of restricted sums, each of which

corresponds with a given state of the particles in it L
row. We denote the particle configuration of rdwas o, T(omi1,om=] e4omk=omi102 T (g 1 0m).
=(0i1,0i2, ...,07), SO that the restricted sums are k=1 (11)
m L . .
To enable actual transfer-matrix calculations, we have to

(m) . - . L

z (‘T E 2 2 Lﬂl kll (1= o k- 1k) assign unique numbers to the particle configurations of a
0'1 0’2

single row. This coding thus serves to define the transfer-
matrix indices. It is natural to use a coding by means of the

X(1=0nkOnk+1) | 4 binary numbero,o,- - - o, but this is not an efficient cod-
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L+l FIG. 1. lllustration of the ac-
| | | tion of the sparse matrices com-
posing the transfer matrix. A part

of the topmost rows of the square
(a (©) lattice is shown(a) after comple-
tion of a new row,(b) after ap-
® ® ® ® ® ® ® pending a new site by, (c) after

appending theLth new site by
T, , and(d) after deleting the site
labeledL +1 and shifting the site
numbers byT| . ;.

@

ing, because it includes configurations with occupied neighnearest-neighbor exclusion constrainétween sitek and 1,

bor sites. These configurations have a zero weight, due to thend then translates the site label by one unit as shown in Fig.
presence of the infinite hard-core potential. Following Todol(d). Further details of numerical transfer-matrix techniques
and Suzuk[10] we use an enumeration that includes allowedin general were given by e.g., Nightingdl®4], and for the
configurations only. Let, | o denote the number of al- present case of the hard-core lattice gas by Todo and Suzuki

lowed configurations on a row df sites with givensy and  [10]-

o, . These numbers satisfy the recursions The transfer matri>§ is symm_etric, which enables the use
of the conjugate-gradient algorithm to compute some of its
NoL+1,0=NoLotNoL 1, Nopr+11=NoLo (12 eigenvalues\;(i=1,2, . ..), andtheir associated eigenvec-

torse; . The iterative procedure to find the largest eigenvalue
2 X .\ starts from an initial vector that is translationally invariant
and ngz0=1, the numbemg o is just theLth Fibonacci ;o "ynder cyclic permutations of the site numbes well as
numberF, (L) of the sequence starting with 1, 1. Further-j,ariant under a geometric inversion, i.e., an interchange of

more we findno, ,=Fo4(L). On the basis of symmetry We ¢ sjte |abelk« L +1—k. The corresponding eigenvector

also haven;, o=ng, ; so that the total numben(L) of - - .
allowed configurations on a circular row bfsites € satisfies these symmetries, as a consequence of the sym-
metry properties ofH{ and the Perron-Frobenius theorem.
Ne(L)=Ng o+ Ny o+ Nop 1=F11(L)+2Fg4(L)=F;4L) The second .Iarge$in .absolute vqlu)eeigenvglue is denoted
(13) Nq. Just as in the Ising quel, its ratio W|.th respect to the
largest eigenvalue determines a correlation length of the
is theLth number of the Fibonacci sequence starting with 1“magnetic” type, i.e., it pertains to the staggered particle,
and 3. For largeL this number is much smaller thart 2 gensity. The associated eigenveogris antisymmetric un-
which applies to the binary coding. In order to assign ager a geometric inversion. Therefore the iterations started
unique number to each specific configuration, we need onlyom an antisymmetric initial vector, and precautions were
define an ordering of thé&, j(L) possible configurations. taken to prevent the buildup of a symmetric component due
This ordering can be conveniently taken identical to the org the finite numerical precision of the iterative multiplica-
dering of the corresponding binary numbers. This defines thgon process. Furthermore we computed a third eigenvalue
coding of theF, (L) allowed configurations. N, namely, the second largest eigenvalue in the symmetric
To reduce the memory and the computer time requiresypspace. Its gap with respectg determines the correla-
ments, the transfer matrix is decomposed. il sparse ma- tjon |length associated with the energy-energy correlation
trices function. This eigenvalue was obtained using a symmetric

T=T .1 T Ty Ty, (14) initial vector, and orthogonalization With res.pecté@

In general one can relate a subleading eigenva|usf T
whereT; acts as to add a new site to a complete row. More© the correlation length associated with an appropriate cor-
precise|y, it renames site 1 as- 1' and it p|aces a new site relation function. In the case of eVQﬂ the inverse correla-
with number 1 above site number 2. Since sites 1 And tion lengthsg *(L) are equal to
+1 are not nearest neighbors, one obtains a rovi 6fL
sites with open boundari¢see Figs. (a) and(b)]. A slightly
different coding algorithm has therefore to be used. Each of §i’1(L)=In
the matricesT,, ..., T, adds an elementary square to the
lattice, i.e., it replaces an old site by a new site which is
added diagonally, as shown in Figcifor T, . Finally T, .,  where the case=1 applies to the magnetic correlation
disposes of sitd+1, constructs a bond.e., imposes the length¢, while i=2 applies to the energy-energy correlation

SO that nO'LJr 1'02 nOYL’O"' nO’L,l’O. S'nce we haVE’]O’Lo: 1

ﬁ, (15)
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length &, . We restrictL to be even because the ground state TABLE I. Numerical solutions u®)(L) of the equation

does not fit a lattice with odd, in which case the scaling *h(#:L—=1)=Xx(u,L+1) for different system sizet, and the
behavior is modified. corresponding values of.

The expectation value of the particle densityis deter-

. . - . . . L #OL) XAL)
mined by the eigenvecta;, associated with . To this pur-
pose we define a diagonal matrix with elementsD; ; 3 1.411266 7 0.110726 3
el L hato— & - ' 5 1.349 010 5 0.120 460 6
= 05,0 2k=101 ) SO thatp=e,-D- & 7 13393570 0.1227605
_ Next we de_scrlbe hO\{y the deflnltlpn ?f the transfer matrixq 1.336 487 4 0.123 673 6
is adapted to include a “staggered field” or a staggered con;

L . . - 11 1.3353504 0.124 126 2
tribution ug to the chemical potential. The chemical poten-

L . . 13 1.3348147 0.124 382 1
tial is then u+ ug for particles on one sublattice, and

. . 15 1.334530 6 0.124 540 5

— ug On the other. The staggered chemical potential can . 1334 366 4 0.124 645 1
straightforwardly be included in Eg&5) and(11). However, 19 1'334 265 0 0'124 2177
since the contributions gk, per site alternate between sub- o 1'334 1091 0'124 270 2
sequent rows, the definition df must be adapted to append : :
two rows at a time. Another technical problem, namely, tha 1.3341545 0.1248093
the above-mentioned geometric inversion symmetry is de®® 1.3341232 0.124 8392
stroyed by a nonzero staggered field, so that the second & 1.334100 6 0.124 862 6
genvector can no longer be selected on the basis of this sym?® 1.3340838 0.124 8813
metry, can be solved by orthogonalization with respect to thél 1.3340712 0.124 896 4
eigenvector associated with the largest eigenvalye 33 1.334 0615 0.124 908 8

IIl. NUMERICAL RESULTS . . . .
finite-size amplitude of the correlation length, and the tem-

We performed calculations up to=36; the transfer ma- perature exponent; and the irrelevant exponewt are like-
trix is then 33,385,282 dimensional. These calculations usedise unknown. In addition one may expect corrections with
standard double-precision arithmetic. However, as a consévigher powers of and 1L. Let us now consider the differ-
guence of this limitation of the numerical accuracy, theseence
failed to provide a significant improvement over existing re-
sults. First, the iterative process to obtain the eigenvaluesy, (,, L +1)— X, (u,L—1)=2L Yaty,LYt+by,LYi+---).
which involves linear operations on long vectors, already (17)
induces a loss of accuracy of a few decimal places, and sec-

ond, the inaccuracy is further enlarged during each step ofjce we have an algorithm to computg(u,L), we can
the subsequent iterated fitting procedures. For this reason Whply “phenomenological renormalization[’1’4] e nu-
have performed the transfer-matrix calculations as well anerically solve for w in Xp(u,L+1)—Xn(x,L—1)=0.

the subsequent fits in quadruple precisi@f-bytg floating- e solgtions, which are denoted® (L), agree with earlier

point arithmetic as available on the Cray J-90 computer of,merical result§l,10]. These data, truncated to seven deci-
the HPaC center in Delft. Its 2480 Mbyte of available 5, places, are shown in Table I. For system sizes up to

memory restricted the finite-size calculationslte=34. Al- =33, they already suggest convergence up to the fifth deci-
though this range of finite sizes does not exceed that used i place. The same data, but in quadruple precision, are

a recent analysigl0], the higher precision of the eigenvalues presented in Table | in Ref16]. According to finite-size

allows one to account for additional corrections to the Iead'scaling they behave as

ing scaling behavior, and thus leads to more precise results.

. . pO(L)=petby LYY (ay) +- - - (18)
A. Preliminary analysis
We first use minimal assumptions, withoat priori  This suggests that even better estimates of the critical point

knowledge of critical exponents and amplitudes, to estimat@re obtained by a three-point fit with a variable exponent:
the critical value of the chemical potential and a few othersolving for the unknowng:.(*(L), by, andx; in

parameters that play a role in the finite-size behavior of the

correlation length. This is done by means of an analysis O+ =u®(L)+b.(L+ 1% 19
of the L and x dependence of the magnetic scaled gap w J=u L)+ by )™ (19
Xn(u,L), defined asX,(u,L)=L/[27&,(L)]. For smallt

= pu— ., i.e., close to the critical point, finite-size scaling for =0 and= 2. Indeed we then find an even faster appar-

[15] suggests the following behavior: ent convergence to the critical point. Moreover, the results
' for the exponenix; provide a strong sign that,=y;—V;
Xn(u,L)=X,+atlyt+bLYi+- -, (16) =—3, just as in the exactly solved Ising model. The solu-

tions for x; are found to approach the value3 within 5
whereX, is an(in principle) unknown number related to the X102 in the available range of finite sizes.
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-2 T T T T T where only corrections with oddoccur; this follows from a
25 ] finite-size expansiofl7] of the transfer-matrix eigenvalues
as given e.g., by Dom[l8]. A fit procedure involving such
correction exponents forj=1 to 8 vyields pu,

1 =1.3340151002781).

] Next, we consider the solutions fax,,, denoted as

XO(L), of the equationX,(u,L+1)—Xq(u,L—1)=0.

These first estimatesee Table )l are already found to ap-

proach the valu&y=1/8 to within four decimal places. This

. is in a good agreement with the universal finite-size ampli-

tude of the magnetic correlation length of the exactly solved

35 Ising model, and also with earlier numerical results for the
hard-square lattice gas.

FIG. 2. Exponentx; (Eq. 20 of finite-size corrections in the The finite-size dependence of théf’)(L) IS C'°$e'>_’ re-
solutions x© of the equationXn(x®,L—1)=X, (@ L+1), lated to that ofu(®(L), as follows from the substitution of
versus finite sizeL. The correction exponents were estimated in Ed- (20) in Eq. (16):
several iteration steps in the analysis. Starting from above, the first ©) 1\ _ , , ,
line shows the exponent of the leading finite-size correction re- Xn(p™,L)=Xp+a L2t al2+agl 3+ . (21)
vealed by a three-point fit to the values@f?. It indicates that the . i .
dominant correction is proportional io~2. The second line dis- The exponer\tzj in EQ'(ZD are equal _tO_J -1 'f_ yr=1and
plays the result of the second iteration step, which was based on¥a= — 2. a&s in the Ising model, and ifj=—2—] as above.
fit using a fixed exponent 3 as a first step. It suggests that the next Indeed, power-law extrapolation analogous to E@9)
exponent is—4. Assuming this value, the next iteration yields the Shows thaiz,;~ —2; furthermore it confirms tha,=1/8 in
third line which shows that the next exponent is close-®. Then,  Six decimal places.
assuming exponents 3, —4, and—5, we obtain the fourth line In analogy with the analysis gk. we have assumeg
that is consistent with a correction exponen6. =—2, found thatz, is close to—3, assumed that,=

—3, and so on. We proceed to determine Xpeon the basis

We therefore assume thai=—3 holds exactly, and at- of Eq. (21) and the assumption, = —j—1. Thus we solve
tempt to resolve the next correction expongptin the ex-  for the three unknownX(V(L), a{®(L), andal?)(L) in the
pansion three equations

-3

-35
-4

exponents

-4.5

pOWL)=petbiLa+boL2+bgl e+ (200 XO(L+1)=XD(L) +al(L)(L+DA +a@ (L)L +h)%,

A fit involving the correction termb,L*2 suggests that,= 22

—4, although this exponent cannot be determined as preor =0 and+2, with z{"=—2 andz{"’=—3. This leads
cisely asx;, apparently because the amplitude is rela-  to a sequence of iterated estima)éé)(L) which is shorter
tively small. than the original sequendéwo less entriesbut converges

Thus we assum&,=—4 and try to find the next expo- faster. On the basis of Eq21) with z;=—1—] we expect
nentxs. This is done by means of a first fit using correctionthat, in leading orders, thggl)(L) behave similarly as Eq.
terms with fixed exponents 3 and —4; the resulting esti- (22), but with different exponents
mates ofu. are then subjected to a three-point fit with vari-
able exponent such as in EQ.9). This process can be iter- XA(L+1) =X (L) +a@(L)(L+DH2 +a@ L)L +1)2,
ated several times; Fig. 2 shows the exponents of subsequen 23)
corrections obtained in this way.

While the results obtained above for the exponentare  with 2(12)223: —4 andz(zz)z z,=—5. From Eq.(23) we can
not very accurate, it is possible to apply more sensitive testow similarly solve forx{?)(L) on the basis of three values
For instance we may assumg=—4 andxz=—5 in the x| 1) for |=0 and+2. This procedure can be carried
first step, to .obtam |terateq estimatesgiby a three—pomt fit on until 2(14): -8, 2(24): —9. Then we have applied a three-
to the resulting values gk in the ne>_<t _step. Tzhese estlm_ates point fit with a variable exponert®(L) by solving
rapidly approach the value 3 to within 10 <, another it-
eration by means of a three-point fit with a variable exponent
decreases this numerical margin by another order of magni-
tude.

Similarly one can assume = —3 andxz=—>5 and then
focus on the determination of; the resulting estimates are
found to approach the value4 to within 3x 103,

The results suggest that the spectrum of finite-size correc-
tion exponents ix;=—2—j. This reveals a difference with Next we attempt to find the critical point more precisely
respect to the spectrum of the exactly solved Ising modelpy analyzing the finite-size daté,(u,L) for the magnetic

XOL+D)=XOL) +a@P(L)(L+DHZ70 . (29

This fit seems to converge rapidly with increasibhgwe
estimateX;,=0.125 000 000 00Q(1).

B. Determination of the critical point
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scaled gap, under the assumption tkat 1/8 holds exactly.
We have thus solved the scaling equatiy{u,L)=1/8 nu-

merically. This procedure offers the advantage that it is more
stable with regard to the limited numerical precision of the

calculation. The solutions for are denotegu(®(L) (note

that this notation has a different meaning than in the preced-

ing subsectionand listed in Table Il of Ref{16]. Just as in

the preceding subsection we find that the solutions behave in

accordance with Eq20) with x;=—2—] (but with different

amplitudesb;). We thus proceed to determine the critical
point on this basis. Combining two of these corrections at a

time, we solve for the three unknowps$®)(L), b{)(L), and
b{Y(L) in the three equations

/-L(O)(L"‘|):M(l)(L)+b(11)(L)(L+|)X§Ll)

+bB(L) (L4174, (25)

for I=0 and =2, wherex{"=—3 andx{"=—4. This in
effect eliminates the corrections with powets3 and —4
and thus u(L) converges much faster with. than
©©(L). On the basis of E¢20) with x;= —2—j we expect
that theu®(L) behave similarly as Eq25), but with dif-
ferent exponents

uO(L+D) = (L) +bP(L)(L+1)4

+hP(L)(L+1)E, (26)

with x{¥=x3=—5 andx{?=x,=—6. From Eq.(26) we
can now similarly solve foru(®)(L) on the basis of three
valuesuM(L+1) for =0 and+2. This procedure can be
carried on untik{¥= -9, x{/= — 10. Then we have applied
a three-point fit with a variable exponexi®)(L) by solving

pOL+1)=p®L)+bP L)L +)PC, (@7

for =0 and=2. This yields our best estimate for the criti-
cal point asu.=1.334 015100277 741), which is consis-
tent with earlier analysg®,10] and the result in the preced-
ing subsection.
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exponents
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35

FIG. 3. Exponents of finite-size corrections in the critical free
energy, versus finite sizé. These exponents were obtained by
means of three-point fits with a variable exponent, in different it-
eration steps. From abovét) fit of the free energy(2) after one
iteration step using a fixed exponentd; (3) after two iteration
steps with exponents 4 and—6, and so on.

C. Bulk free energy and critical density

To determine the critical parameters of the present hard-
square model, we have calculated the free energy per site and
the density of particles at the extrapolated critical point for
system sizes up tb=34. These numerical results are shown
in Table Il of Ref.[16]. The critical free-energy density
f(L) is expected to depend on the finite slzas

mC
f(L)=f,+ —+p,LY1+ |_y2+..., 28
(L=fut S +pliiep, (29

where the universal finite-size amplitudenay be identified
with the conformal anomal{19] in the case of conformally
invariant models. The exponentg<<0 of the correction
terms are, in principle, unknown. As in the preceding sub-
section we have attempted to determine dominant correction
exponents. We find thag;=—4 with a numerical uncer-
tainty of 0.01. After an iterated two-point fit with fixed ex-
ponenty, = —4, another iteration step by means of a three-
point fit yields the next exponent ag,=-—6 with a
numerical uncertainty of 0.1. However, the next expongnt
could not be accurately determined. See Fig. 3. We included

An indication for the correctness of our choice of thea correction with exponeny;=—8; if we fail to do so,

correction exponents follows from the behaviord?® as a
function ofL. Its values did not exceed,”= —10. If we had
used a wrong choice missing a significant correchbgih*m,
then we would have founat®)~x,,, as may be checked

three-point fits in a later iteration step reveal that an expo-
nent is missing.

These findings would suggest the same spectrum as oc-
curs in the free energy of the Ising modél7], namely,y;

analytically and empirically. For instance, we have repeated= —2—2j. However, after a next iteration step for the

the fitting procedure fog using a different spectrum; =
—1-2j. The missing exponent 4 then immediately turns

lattice-gas free energies, with exponentd0 and—12, a
three-point fit indicated the presence of a correction with an

up in a three-point fit with a variable exponent. These threeexponent close te- 7.8, with a small amplitude. This hints at
point fits provide a means to check the validity of the as-the presence of a small contribution proportionalLte?In L,
sumed spectrum and were applied at several stages of tloe perhaps at the presence of odd powerd offhe small
iterated fitting procedure. These tests also provide a sensitivmagnitude of this effect does not allow us to make a more
test to reveal, in addition to missing exponents, possibldirm statement.

logarithmic factors in the dominant corrections. No signs of

such factors were seen.

Thus, in analogy with the procedure to determine the criti-
cal point, more rapidly converging estimates of the bulk free
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TABLE II. Best estimates of the conformal anomalythe magnetic scaling dimensio, , the tempera-
ture scaling dimensioiX,, the critical chemical potentigk., the critical bulk free energy(u.), and the
critical particle densityp(u.) of the hard-core lattice-gas model.

c X X,
0.500 000 000 000 Q1) 0.125 000 000 000 Q1) 1.000 000 000 0@1)
e f(uc) p(fic)
1.334 015 100 277 741) 0.791 602 643 166 11A) 0.367 742 999 041 B)
energy are obtained by solving the unknowifi8(L), p{),  exponentsx?=—6, andx®=—8. This leads to the ex-
andp$V in trapolated critical density shown in Table II.
fOL+1)=FDL)+pP(L)(L+I )y(11)+ pSH(L)(L+I )y(zl), D. Conformal anomaly and critical exponents
(29 On the basis of E¢(28) we obtain estimates of the free-

wheref O(L)=f(L), y(ll): o andy(21)= _ 4. in the three g(rg)c)e(r%/ i:r;:mphtudex: by solving the unknowng'*(L) and

equations forl=0 and *=2. lterated fits, using exponent

pairs (—6,-8), ..., (—14,—16), followed by a three-point 7cO(L)
fit with a free exponent as in E¢27), lead to our best esti- fOL+H)=FfD(L)+ 1 (32)
mate for the bulk free energfy. . It is included in Table 1. 6(L+1)

The particle density plays the role of the energy in the
Ising model. However, our numerical data for the criticalfor |= =1 and a range of odd values lofusing the available
density p. display a clear finite-size dependence, while thefinite-size results forf @(L+1)=f(L+1) at the estimated
energy of the exactly solved critical Ising model on a cylin- critical point. The next iteration step is to solve the equations
der is independent of the finite size. Three-point fits to the
densities computed at the critical point yield clear evidence_ (o) _ (1) (1) xB (1) X
for an exponent-4. However, after a fit with a fixed expo- (L+D=c L)+ (L)L DR+ L)L D™
nent —4 in the first step, a three-point fit to the resulting (33)
values ofp yields anotherexponent close te-4 (with in-
creasing system sizes it approaches this value within 0.1
The use of an exponent a little different from4, e.g.,
—4.1, in the first step, makes only little difference. One still

finds estimates of a next exponent that approaehwithin O y ) : .
reveal a “missed” correction with exponent6 which cor-

0.1. These findings indicate that the term with powet is ds with a t tional 1.8 In L tioned
actually a combination of two terms with powers that are'©sSponas with a term proportiona nLas mentione
(almos) coincident. The simplest interpretation is the pres-'n the analysis of the free energy. After including this correc-

ence of a logarithmic terrh ~“In L, although we cannot ex- tion, the resulting best estimate for the free-energy amplitude

clude the presence of a small fractional power in the systerﬁ Is included in Tablc-?‘ . . .
sizeL. The next exponent df is found to be close to-6, Our _transfer—matrlx calculations m_clude results for the
but again modified with a similar factor resembling a Ioga_magnetlc and energy-energy correlation leng¢l) and

. L ; &(L), respectively, at the calculated critical point. These re-
gg‘srg' ;/}/?htglgr[;?jgrmed the finite-size analysippbn the sults are shown in Table IV of Refl6] in terms of the

scaled magnetic gap§?(L)=L/[27&,(L)] and the scaled
p(L)=potugl % IN(01L)+ Upl 6 In(o,L)+ - - - thermal gaps X{?(L)=L/[27&(L)]. Finite-size-scaling
(30) predicts the following finite-size dependence of the scaled
magnetic gap:
As implied above, fits without such logarithmic factors fall

for =0 and =2, with x{'=—2 andx{Y=—-4, in accor-
dance with Eq.(28) and the aforementioned values wf
therein. Following iteration steps used exponent pait$,(
—8), ...,until (—14,—16). However, three-point fits then

to converge satisfactorily. The first iteration step in the de- XO(L)=Xp+byLY1+b,LY2+ - - -, (34)
termination of p, is to solve for pM(L), u{¥(L), and
0(11)(|-) in and a similar relation for the scaled thermal gap. The finite-

size amplitudeX,, andX; are universal numbers. For models
pOL+1)=pD(L)+uML)(L+ In[o{(L)(L+1)],  with conformally invariant fixed points, they are equal to the
(31) magnetic scaling dimensid20] 2—y,, and the temperature
scaling dimension 2y, , respectively.
for |I=0 and+2, usingx®)=—4, on the basis of the finite- In accordance with our findings in Sec. Il A, we assume
size datg®)(L) for p. as calculated at the estimated critical that the spectrunz; = — 1—j applies. The first iteration step
point. The next iteration steps proceed similarly, but withthus involves the solution of
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X§1°)(L+ B :Xgl)(L)_‘_ b(ll)(L)(L+ | )z(ll)+ b(zl)(L)(L+ | )2(21), f[he derivatives_oyc and)g. Thege calculations were pgrformed
in double-precision arithmetic, for even system sizes up to

(35 L=30. The numerical differentiations have to be restricted
for =0 and+2, with z{’=—2 andz{!’=—3. The itera- to relatively narrow rangesabout 10° to 10"%), which
tion process can be continued unzﬁﬁ)= —~12 and 2(26): leads to a loss of accuracy of several decimal places. The
—13, followed by a three-point fit with a free exponent as innumerical analyses, which are only briefly summarized be-
Eq. (27). The final result is shown in Table L. low, involve iterated fitting procedures. Each iteration step

For the scaled thermal gaps, we have applied the saniBcreases the numerical inaccuracy even further, so that only
iterated fit procedure with the same series of correction exa few steps are feasible.
ponents. The extrapolated finite-size amplitude is included in (1) According to Eq(36), at u= .,

Table II. ms=0 the specific-

heat-like quantity9®f/9u? behaves as

E. Test of conformal invariance 9%f

) ] ) ] A LT 2(par LY i),
The interpretation of the universal correlation length am- Ipu? CotL (ForyL" ) (38)

plitudesX;, andX; in terms of the scaling dimensions is only

valid in conformally invariant models. In the absence of aThree-point fits, withc,y, ro, and the exponeny, as free
proof of conformal invariance, one can still determine theparameters and ignoring further contributions, show that the
scaling dimensions independently by means of numericalesult fory, rapidly approaches 1 with increasihgthe dif-
differentiation of the free energy and the scaled gap. Fronference is only & 10 # for the largest value df. Results of
the u dependence of the magnetic gap, Kamieniarz andterated three-point fits converge even faster, and the esti-
Blote [9] obtained the temperature renormalization exponeninated values of/, now approach 1 up to 810 6. More-

as y;=1.00001 (2) while Todo and SuzuklO] reported over, the iterated fits reveal that the correction expogers
y;=0.9999(3). This is in a good agreement with the inter- close to— 2.

pretation ofX; as the temperature scaling dimension . . (2) At the critical pointu=pu., us=0 we expect that
Here we extend this test to include second derivatives of thehe susceptibilitylike quantity®f/du2 behaves similarly as
free energy and the scaled gap with respeciut@nd the  Eq.(38), but withy, replaced byy,,. Three-point fits lead to
staggered chemical potential;, which plays the role of the estimates ofy,, rapidly approaching 15/8 with increasing fi-

magnetic field in the Ising model. nite sizes. The difference is about T0for the largest avail-
Including magnetic and temperature scaling fifldsdt,  able sizes. For iterated three-point fits, this difference de-
respectively, Eq(28) becomes creases to 10°. Again, the results foy; approach— 2.
(3) Analysis of the derivatives of the scaled gap the
f(h,t,L)="fa(h,t)+ L ZF(LYrh,LYtt) + >, LY+ correlation length has the advantage that an “analytic”
i

background is absent. The first derivative to the chemical
(36)  potential should, according to E(B7), satisfy

wheref, is the analytic part of the free-energy density, and y v

is the finite-size-scaling function of the singular part of the @Z Lttty L1 --). (39
free-energy density. Expansion faf which is supposed to be o _

analytic, in powers oh andt yields the dominant finite-size- Two-point fits withy, andt, as free parameters, and neglect-
scaling behavior of the derivatives é¢h,t,L). Corrections ing all other terms, yielded estimatesyafrapidly approach-

arise due ta dependence of the coefficierttson h andt.  ing 1, with a difference of 410 * for the largest pair of

Similarly we include the dependence of the scaled magnetigystem sizes. After an iteration step using three-point fits, the

gap onh andt, difference decreases to 19 while the results fory; again
approach—2.

(4) Similarly, we expect for the second derivative of the

xh(h,t,L)=$<(Lyhh,Lytt)+; L+ (30 gealed gap that

: oy : X
where also the scaling functiotis supposed to be analytic. o =L (gptaslit - o). (40)

Up to irrelevant corrections, we may associateith the o
distancew — u . to the critical point, andh with the staggered
chemical potentiak;. The finite-size correction amplitudes Two-point fits with y, and q, as free parameters produce

a; are still dependent oh andt. estimates of; that approach 1, but more slowly than for the
Thus we obtained free energies and scaled gaps.at first derivative: the difference is still IG for the largest
=0 for a range of values oft about the critical poinj., system sizes. A second iteration step using three-point fits

and also for a range of values @fy about 0 aty= .. reduces the difference t0>610™4, and a third step to 2

Polynomials inu— ue and ug (Up to eighth orderwere X 10 °.
fitted to these results. The widths of the ranges were chosen (5) The scaled gap is an even functiongd;, so that we
such as to optimize the numerical precision of the results fofocus on its second derivative. We expect similar behavior as

046140-8



FINITE-SIZE ANALYSIS OF THE HARD-SQUAFE . .. PHYSICAL REVIEW E 66, 046140(2002

in Eq. (40) but with y; replaced byy,,. Two-point fits show procedures to determin&,, namely, those described in
that the results foy,, rapidly approach 15/8, until a differ- Secs. Il A and Il D, agree within the estimated margins of
ence of 10° at the largest values. After a second iteration 10 %2 or less.
involving three-point fits the difference reduces to about The reliability and consistency of the fit procedures de-
10" °, and after a third step to 16. scribed in the preceding section was tested by introducing a
number of variations in these procedures. For instance, in-
The fits mentioned in this subsection lead to unbiased errostead of iteration steps involving two corrections, we may
estimates in the sense that they leave all the correction exlternatively fit for one correction at a time. This yielded
ponents free. We have made some additional fits with correcconsistent results. For example, in the determinatioo \wé
tion exponents fixed according to their value in the exactlyhave, besides Eq32), also used Eq(29) in the first step.
solved Ising modeand consistent with the values found This led to a difference in the estimated valuecobf less
with iterated fit3. In a few cases, an additional iteration stepthan 10 *. Furthermore, the critical point was also analyzed
then becomes possible, which then produces valuey,for USING & sequence of exponemjs- —1—2j instead of those

andy, that approach the exact Ising values even closer, b iven .under Eq(21). While the result was consistent with
approximately one order of magnitude hat given above, the apparent convergence was less good

In the fits presented here, the difference between subs ind the answer therefore less convincing. In many cases we

quent estimates of, andyy, typically decreases rapidly with ave applied three-point fits with a variable exponent in or-

) . ; b M it tends to b hl der to estimate the exponent of the next correction term.
INcréasing system size. Voreover, it tends 10 beé roughly rpege checks provided strong support that our choices of the
the same as the difference with the exact Ising values. Thu

i o Torrection exponents, as well as thatXgf= 3 in the deter-
we conclude that the numerical uncertainty in the lardest- yination of the critical point, were correct. It thus seems that
results are of the same order as the differences with the Ising,e exponents of the finite-size corrections in the lattice-gas
values as mentioned above. model include those of the solvable Ising model, but that
there are also correction terms that are absent in the Ising
model. Evidence for such corrections is found in the free
IV. CONCLUSION energy and in the scaled gap. In particular, we find good
. . . .__evidence for terms modified by logarithmic correction fac-
The numerical results in Table Il are In a very PreCiS€ors in the critical density. It is interesting that logarithmic
agreement with the exactly known resugts ; for the finite-  ,rrections inthermodynamicparameters have been pro-
size amplitude of the free energy, and the scaled corrglatloBosed by Barma and Fishi21], also in the context of Ising
lengthsXy,= 5 andX;=1 of the Ising model. The numerical models outside the exactly solved category.
margin of uncertainty, as estimated from the differences be- These new corrections need not be attributed to deviations
tween subsequent finite-size results in the last iteration stefpom Ising universality. Their absence in the exactly solved
of the fitting procedure, is only I8 for X, and 10*3for ¢ Ising model can well be attributed to the vanishing of the
and X,,. We should mention another source of uncertainty,corresponding amplitudes in the latter model. Indeed self-
which is due to the procedures that we followed in variousduality already implies that finite-size corrections are absent
steps of this analysis. Namely, we have fixed sdineprin-  in the critical energies of these Ising systems on an infinitely
ciple unknown universal parameters in the fit formulas ac- long cylinder.
cording to the exact solution of the Ising model. We believe Thus we conclude that, from the viewpoint of universal-
that the resulting uncertainty is very limited for the following ity, the set of correction exponents of the lattice gas is con-
reasons. First, wherever we could determine these fixed p&istent with that of the exactly solved Ising model.
rameters independently in the lattice-gas model, they agreed Assuming the validity of the spectrum of exponents as
with our assumptions. Second, the fixed parameters are irref!99€sted by the numerical analysis of the correction terms,

evant in the sense that, even in the case of a wrong parametdf Obtain a few universal finite-size amplitudes that agree,
choice, our fit procedures still must converge. within estimated numerical margins not exceeding 40

For instance, we have fixed the magnetic correlationWith the exact Ising values. These results provide our most

: e . o sensitive test of the Ising character of the lattice-gas model.
length amplitude aXy,= g in the determination of the critical thouah the width of th . d ical .
oint. This choice is supported by earlier analyfe®,1q Although the width of the estimated numerical error margin
point. 1h S . ' depends on the mentioned assumption, the fact remains that
and the independent determination Xf in Sec. Il A, but

L 19 . the numerical results agree in 11 decimal places with the
deviations of the order of 10 cannot be excluded on this gyact |sing values. If the lattice gas were not in the Ising

basis. If(due to a hypothetical violation of universalityuch niversality class, then it would seem extremely implausible
a deviation exists for the present lattice gas, then the solunat 5o many decimal places coincide. In this light we can be
tions of the equatiorX(u,L)=1/8 would obviously still  very confident that the lattice gas belongs to the Ising uni-
converge tqu. as long ag/;>0 in Eq.(21). In that case the versality class.

speed of convergence would be affected, but no indications |f the renormalization fixed point of lattice-gas model is
thereof were seen. Such a very small deviation could at mosfonformally invariant, one may interpréd, and X; as the
lead to an underestimation of the numerical uncertainty marmagnetic and temperature scaling dimensions, respectively,
gins mentioned above. But it is reassuring that two differenand the scaled free-energy amplitudeas the conformal
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