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summary

This thesis investigates the potential of solving large-scale linear systems of equations (LSEs) in the
Tensor Train (TT) format. First, we study when this approach can outperform traditional solvers like
Conjugate Gradient (CG) and Gaussian Elimination (GE). In turn, we examine the time complexity of
the TT-solve technique when applied to ill-conditioned, sparse, and symmetric positive definite (SPD)
matrices. This enables us to assess the scenarios where TT-solve may offer significant advantages.

During this exploration, we have also identified a handful of research gaps that could further optimize
the TT-solve process. These include challenges related to poorly factorizing matrix sizes, as well as the
need for a deeper understanding of the trade-offs between TT-matrix (TTM) rank and maximal mode
size during the decomposition process. Additionally, the study examined the potential for altering the
coefficient matrix through techniques like variable reordering and partial Gaussian elimination (PG) to
achieve lower TTM-ranks without affecting the solution of the LSE.

The research led to several important insights. Methods like padding and PG effectively addressed
issues with matrices that have sizes with poor prime factorizations, although they were less effective
in runtime reductions for matrices with well-factored dimensions. Balancing mode size and TTM-rank
was crucial, with the largest prime factor generally providing good results, though alternative factors
occasionally performed better. The impact of matrix structure on TT-decomposition was significant;
techniques such as variable reordering and the reverse Cuthill-McKee (RCM) algorithm could improve
factorizations, though results varied depending on the matrix. The improved TT-solve approach showed
potential to be competitive with traditional solvers like Conjugate Gradient (CG) and Gaussian Elimina-
tion (GE), though further refinements are necessary for consistent advantage.

A practical method for assessing TT-solve suitability through runtime estimates and minimal padding
checks was highlighted, offering a way to predict potential performance improvements. However, TT-
solve has limitations and cannot yet replace existing solvers for all types of sparse, ill-conditioned,
symmetric, positive definite systems, that we have studied.

The study’s limitations include reliance on theoretical runtime assessments that may not fully capture
practical factors like hardware optimizations. The dataset was limited to symmetric, positive definite
matrices from computational fluid dynamics, which constrains the generalizability of the findings. The
analysis also assumed rapid convergence of TT-solve, which may not apply in all cases. Furthermore,
strong assumptions were made regarding the TT-ranks of the right-hand side and solution vectors in
the LSEs. Comparative analysis with traditional solvers was based on theoretical estimates, potentially
overlooking existing improvements such as preconditioners.

Future research should focus on expanding the dataset to include a wider variety of matrices and
incorporate statistical methods to better isolate the effects of different enhancements. Investigating
the impact of the proposed strategies on TT-ranks of the right-hand side and solution vectors could
provide additional insights. Exploring iterative solvers like GMRES with appropriate preconditioning
for TT-subproblems and alternative matrix reorganization methods are expected to further enhance
efficiency.

The thesis has made significant strides in optimizing TT-decompositions for solving large-scale sparse
LSEs. The proposed methods, including padding, PG, RCM and tile size optimization, have shown
promise in improving TT-solve efficiency. These advancements address practical challenges in com-
putational problem-solving and offer valuable insights for further research and application in scientific
and engineering fields that aim to utilise TT for solving LSEs.
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Introduction

In many fields such as economics, climate science, finance, and engineering, mathematical models
play a crucial role in understanding complex systems and predicting future outcomes. These models
often involve partial differential equations (PDEs), which, when discretized, lead to large linear systems
of equations (LSEs). The accurate and timely solution of these LSEs is essential for making informed
decisions, be it predicting floods or implementing economic policies. Naturally, we aim to uncover
the mechanics of more and more complex systems, run simulations at larger scales and increase the
accuracy of our predictions. This means that the computational burden also increases, making existing
methods often too slow to keep up with the changing requirements.

A significant portion of these computational challenges can be traced back to the need to solve large
LSEs, as elaborated in Appendix A in the context of hydrodynamic simulations. To address these,
various strategies have been developed to accelerate computations. One common approach is to
reduce redundancies in the data, such as using sparse matrix representations instead of dense ones.
Here, instead of storing and working with each entry explicitly, we only use the nonzero entries for the
computations. This method leverages the fact that many entries in these matrices are zero, allowing
for fewer operations and reduced storage requirements, which in turn lead to faster computations that
scale better with the problem size.

Beyond simply exploiting sparsity, another promising direction is to compress the nonzero entries them-
selves by identifying and utilizing additional structure within the data. One such approach is low-rank
approximation, where a matrix can be represented with significantly fewer entries as a product of smaller
matrices, without losing (much) accuracy. We illustrate the idea in Figure 1.1.

| ——
red = 1
= white = 0
e [ — C—1
blue =1 white = 0 orange = -1

Figure 1.1: The flags of Austria and Greece as matrices, illustrating low rank decompositions. Image source: [1].
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In turns out that many matrices that occur in practice can have low numerical rank [1, 2]. There are
various arguments why this happens. It may occur due to the well-separated nature of variables [1].
For instance, considering the weather, given enough distance in space or time, factors of interest will
have little to no influence on each other. Therefore, one has no need to encode the connections
between every single element in a model. On the other hand, our world often appears to be 'smooth’.
I.e. phenomena that are 'close’ to each other, e.g. in space or time, can be often described by slowly
varying functions. This means that we can represent a whole set of data points with a polynomial
function that has only a handful of parameters, yielding small ranks [2]. In the context of water flows,
for example, the velocity tends to be close to how it was a few seconds ago or how it is a few meters
along a river bed. Of course, it is not hard to find exceptions to these examples - think of a waterfall
for instance - however, these should help with gaining some intuition why low rank structures appear
in our models. Lastly, we note that there are more arguments for the common appearance of low-rank
structures, including correlations and the so called Sylvester equation [1].

Generally speaking, flattening higher dimensional data to a matrix breaks the patterns that would allow
for low rank approximations. For alower dimensional illustration, consider Figure 1.2. In such scenarios,
tensor decompositions can offer value over matrix factorizations.

Figure 1.2: Information loss due to data flattening. Image source: [3]. In the original image, the neighboring pixels - meaning
the adjacent entries in the matrix - are placed next to each other. Therefore, the patterns such as the TUDelft sign are clearly
identifiable. When we slice up the image and flatten the data, the entries that previously showed clear arrangements together,
are now separated. This breaks the structure present in the starting picture. We note that for a true mode size reduction, we
would have to slice up the mode-2 image so that each slice only contains a single row of pixels. Concatenating these would
yield a single (very long) row of pixels. For the purposes of this illustration, it is sufficient that more than one pixel row per slice
was taken.

Having a low-rank factorization of the LSE is not the end of the story. A challenge remains: the system
still needs to be solved efficiently after the decomposition. This is where formats like the Tensor Train
(TT) representation become useful. TT not only allows for a more compact representation but also
supports a range of operations that can be performed cheaply, including solving LSEs [4, 5, 6, 7, 8].

Despite the potential of the TT format, one of the key challenges has been the time required for the
conversion and solution in the TT format. Considering the time it takes to convert a LSE to the TT-
format can already be prohibitively expensive. The classical conversion algorithm, called TT-SVD, for
example, is too slow to be practical for converting large systems [9, 10]. However, recent advances
in TT research, particularly in sparse decomposition methods for matrices and tensors, offer promis-
ing directions. For instance, works such as [9] and [10] have developed faster algorithms that could
make the TT approach more viable for real-world applications. While these new algorithms, represent
significant progress, there remain open questions.

In this thesis, we uncover and propose strategies to address the following two research gaps. First,
the size of a matrix can largely hinder the possibility of achieving a low-rank TT-decomposition, despite
the matrix possessing low-rank structure across its entries. Second, there are tradeoffs to be made
between the parameters of sparse TT-decompositions to minimize the time needed to find the LSE
solution. Additionally, we revisit a previous inquiry in [10] that made alterations to the matrix, leading
to better TT-decompositions, while leaving the solution to the linear system unchanged.

The rest of this study is organized as follows. In Chapter 2, we give the necessary background on a num-
ber of topics that are crucial for this exploration. First, we look at ways to assess runtime complexities



of algorithms, followed by a recap of existing solvers for LSEs. Then, relevant matrix decompositions,
and tensors are introduced. Additionally, we build up to the TT-decomposition and introduce the avail-
able algorithms to solve LSEs in this format. We close the chapter by looking at a few matrices and
their different types of ranks. The next part, Chapter 3 presents our methodology, and our insights
regarding the time complexity analysis of the TT-solve approach. This assessment leads us to uncover
a number of research gaps, which we develop strategies for to tackle. We close this chapter by detail-
ing our experiment setup. Afterwards, Chapter 4 illuminates our experimental results for the proposed
strategies in isolation and when they are combined. Adding to this, we assess how TT-solve compares
to the state of the art solvers for LSEs, with and without our improvements. As we come to the end of
our study, in Chapter 5 we discuss the limitations of our approach, point out the key takeaways and
give suggestions for future research. Lastly, Chapter 6 concludes our inquiry to this subject.






Background

In this chapter, we introduce the relevant literature that constitutes as the background of our study. First,
we look at how runtimes of algorithms can be analysed. Next, we give details regarding the standard
solvers for linear systems of equations (LSEs), with a focus on their time complexity. This is followed by
revising a handful of matrix decomposition approaches that serve as building blocks for other methods
we consider. The next topic is tensors, and algorithms to find low-rank approximations of these higher
dimensional generalizations of matrices. We concentrate on the Tensor Train (TT) decomposition and
how LSEs can be solved in this format. Lastly, we highlight some observations regarding the different
types of ranks that matrices can have.

2.1. Runtime analysis approaches

The runtime of algorithms is a central theme in this thesis, therefore it is important to understand the
framework available for its analysis. In this section, we explore various time complexity analysis ap-
proaches, including their limitations.

Empirical analysis This involves measuring the actual runtime of algorithms on various inputs using
experimental techniques. By conducting experiments on real-world data sets or synthetic test cases,
empirical analysis provides concrete insights into algorithm performance under specific conditions. Its
simplicity comes with various drawbacks such as high computational resource needs, limited gener-
alizability, sensitivity to the software and hardware environments and challenges with interpretation.
Nevertheless, this approach is valuable when theoretical analysis is impractical or when considering
factors not captured by theoretical models.

Counting primitive operations In order to enable a more generalizable runtime assessment, one
can count the number of primitive operations of an algorithm as a function of the input size and other
relevant parameters. This provides a direct measure of computational workload. These primitive oper-
ations include, for instance, assigning a value to a variable, performing an arithmetic operation, com-
paring two numbers or calling a method [11].

In numerical algorithms and scientific computing applications so called floating point operations (FLOPs)
dominate, which are a subset of the primitive operations. Due to their prevalence, in such applications
other type of primitive operations are often ignored for simplicity and since they don’t have significant
effect on the time complexity.

An important assumption here is that each primitive operation can be done in constant amount of
time as memory access is unrestricted. In certain cases, memory bandwidth can dominate runtime,
rendering this type of analysis ill-posed. Another limitation is how different primitive operations may be
much faster than others thanks to dedicated hardware circuits [12]. A good example is using a GPU to
perform fast matrix-matrix multiplications.
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Finally, it should be noted that counting all such operations can be very tedious, especially for complex
algorithms. Therefore, in practice, we often only consider the "most time consuming parts”. This is
formalized using the big-O notation which is described next.

Big-O notation This technique provides an asymptotic upper bound on an algorithm’s time complex-
ity, indicating how its runtime grows with the size of the input. It abstracts away constant factors and
lower-order terms, focusing on the dominant behavior as the input size approaches infinity [13]. While
widely used for its simplicity and generality, it has clear limitations. By neglecting constant factors and
smaller order terms it often cannot capture the nuances of performance for smaller inputs. Also, it
only gives an upper bound, therefore in many algorithms, depending on the structure of the input, the
runtime may be significantly reduced.

Average-case analysis Instead of looking at the worst-case, one can consider the expected perfor-
mance of an algorithm over all possible inputs. This provides insights into the typical behavior of the
algorithm. By accounting for input distributions, average-case analysis can offer a more realistic as-
sessment of algorithmic efficiency. In practice, it is often difficult to assess the distribution of inputs
which hinders the applicability of this approach.

2.2. Solvers for linear systems of equations

Linear systems of equations (LSEs) are fundamental mathematical problems encountered across var-
ious fields including physics, engineering, computer science, and economics. As elaborated in Ap-
pendix A, they also arise when discretizing PDEs via FDM or FVM, as it is the case in hydrodynamic
simulations. In this approach, solving LSEs remains computationally the most intensive part of the
process [14].

Given a set of linear equations, the goal is to find a solution vector that satisfies all equations simulta-
neously. There are two main approaches to solving such systems: direct and iterative methods. Let
Az = b be a linear system of equations, where A € R™*", x € R™ and b € R™. While in most cases,
the linear systems in this study have n = m, in certain subproblems we work with rectangular matrices
where m > n. We use z to denote the number of nonzero entries in A.

2.2.1. Direct solvers

Direct solvers aim to find the exact solution to the linear system in a finite number of steps, typically
through a series of algebraic manipulations. These methods provide accurate solutions but may be-
come computationally expensive for large-scale problems due to their high memory requirements and
computational complexity. In this subsection, we introduce the main idea and time complexity of the
standard algorithms of this approach.

Gaussian elimination (GE)

Gaussian elimination is one of the most widely used direct methods for solving linear systems. It
involves transforming the system of equations into an equivalent upper triangular form through a se-
quence of row operations, such as row additions and row swaps. Once the system is in triangular form,
back substitution is used to find the solution. The time complexity of this approach in terms of flop
count, is 2n® + 3n% — In+ O(1) [15, 16]. We note that for a matrix with a bandwidth of w (as defined in
Appendix C.8) and size n, we get a runtime of O(w?n) [17]. This can be much faster than O(n?) when
w <L n.

LU decomposition

LU decomposition is another popular direct method that decomposes the coefficient matrix of the linear
system into the product of a lower triangular matrix (L) and an upper triangular matrix (U). This decom-
position allows for efficient solving of multiple linear systems with the same coefficient matrix by solving
two sets of triangular systems. Using partial pivoting, LU decomposition takes %n?’ —1n?2 - %n +0(1)

2
flops [18] to obtain the decomposition.

When the LU factorization is used to solve Ax = b, after the decomposition, we also need to compute
the forward and backward substitutions. These take an additional n? — n and n? flops, respectively [19,
20]. Therefore, the LU solver requires in total %nd + %nQ — %n + O(1) flops to solve Az = b.
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Cholesky decomposition

Cholesky decomposition is a specialized form of LU decomposition applicable to symmetric and pos-
itive definite matrices. It decomposes the matrix into the product of a lower triangular matrix and its
conjugate transpose, resulting in faster and more memory-efficient solutions compared to general LU
decomposition. This takes %n3 + O(n?) flops to compute, making it about twice as efficient as LU
factorization when applicable [21, 22].

2.2.2. Iterative solvers

Iterative solvers, unlike direct methods, generate an approximate solution through iterative refinement.
These methods are often favored for large, sparse linear systems where direct methods may be im-
practical due to their O(n?®) computational complexity. Iterative solvers start with an initial guess for the
solution and iteratively refine it until convergence criteria are met.

In this work, we mainly focus on symmetric, positive definite matrices, however a number of subprob-
lems do not meet this requirement. To this end, we introduce both the Conjugate Gradient method (CG)
[23] and the more widely applicable Generalized Minimal Residual (GMRES) [24] approach.

Conjugate Gradient (CG) method

The conjugate gradient method is an iterative solver specifically designed for symmetric positive definite
matrices. It minimizes the error in the solution space by iteratively generating conjugate directions. The
conjugate gradient method is particularly efficient for large sparse systems. For a detailed explanation
about the method, see [25].

When considering the CG method, the dominating operation at each iteration is computing the matrix-
vector product. This can be done in O(z) time [25]. Furthermore, in many application areas A is sparse
enough to have z € O(n) [25]. To quantify its overall runtime, we denote the condition number of the
matrix as « (see Appendix C.9 for the definition). Then, it can be shown that the number of iterations
needed to satisfy an error bound ¢ is upper bounded by /. Thus, we have O(z\/x) time complexity
and O(z) space complexity for CG [25].

Generalized Minimal Residual method

The GMRES algorithm is the recommended algorithm in Matlab when solving LSEs formed by square
matrices that don’t have the positive definite property [26, 27]. While in certain cases, the related
biconjugate gradient algorithms (e.g. BICG [28], BICGSTAB [29], CGS [30]) yield solutions quicker,
their convergence behaviour is not well understood in general, making GMRES better suited to try first
[26].

GMRES relies on computing a sequence of orthogonal vectors, combining them using a least-squares
solution and update. It needs to store this sequence, yielding excessive storage requirements. This is
mitigated in practice by the restarted GMRES(k) method, where & is the number of iterations before the
algorithm is restarted [24, 27]. As described in Appendix B.2, assuming O(1) restarts are enough, the
time complexity of the method is O(k?n + kn?) for the dense case. When faced with a sparse system,
i.e. z € O(n), this reduces to O(k?n) flops.

Choosing k is problem dependent and no general guidelines are available. Another notable result is
that, assuming exact arithmetic, the algorithm converges in at most n iterations [27]. However, this has
little practical use as that means a runtime of O(n?) which is prohibitive for large LSEs.

2.2.3. Preconditioners

The spectral composition of the coefficient matrix largely influences the convergence rate of iterative
methods. To this end, we are often interested in transforming the LSE to an equivalent system with
spectral properties that yield faster convergence. A preconditioner is a matrix that performs such an
adjustment [27]. As an illustration, consider a matrix M that approximates the coefficient matrix A
in some way. Then the system M ~!Axz = M~'b has the same solution as Az = b and may have
favourable spectral properties.

Depending on the iterative solver in use, the preconditioner should have different characteristics. In the
case of CG, the goal is to have (M 1 A) < x(A) as the convergence of the algorithm directly relates to
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the condition number. On the other hand, for GMRES one aims to choose one so that the eigenvalues
of M~'A are better clustered [31].

Using preconditioners is not free, it takes time to construct a suitable M/ ~! and also at each iteration
we need to apply it. Therefore, there is a tradeoff to be made between the time saved and the extra
computational time spent [27]. While constructing universal preconditioners is easy, their effectiveness
is highly problem dependent [32].

2.3. Matrix decompositions

In this section, we introduce the most prominent matrix factorization approach: Singular Value Decom-
position (SVD) with a focus on its time complexity. Additionally, we look at the QR factorization. Both
of them are key components of the Tensor Train algorithms we utilise in the rest of this study. Lastly,
we make a note of other rank revealing factorizations that can serve as alternatives to SVD.

2.3.1. Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is a widely used matrix factorization technique that decom-
poses a real or complex matrix into three matrices. An orthogonal matrix U, a diagonal matrix ¥ con-
taining the singular values, and the transpose of another orthogonal matrix V. Mathematically, for an
m x n matrix A, the SVD is represented as A = UXVT, where U is an m x m orthogonal matrix, ¥ is
an m x n diagonal matrix with non-negative real numbers on the diagonal (singular values), and V7 is
the transpose of an n x n orthogonal matrix V [33]. The singular values in ¥ represent the importance
or strength of the corresponding singular vectors (columns of U and V'), enabling low-rank approxima-
tions and noise reduction by discarding small singular values and their associated vectors [33, 34, 35].
Notably, it is proven to give the best low-rank approximation of a matrix [34].

Several approaches exist to compute the SVD. Depending on which method is used and what parts of
the decomposition are needed, the time complexity changes up to a constant factor. Computing it is of
order O(mn? + n?) for an m x n matrix (m > n) or O(n?) in the square case. The constant factor of the
cubic term, hidden by the big-O notation, is generally in the range of 4 — 30 [36].

Truncated SVD tSVD is a variant of the SVD method, where only the k& most significant singular
values and their corresponding singular vectors are computed. In applications where k is known in
advance, this approach can be much faster, especially when k& < min(m,n), since classical algorithms
give results in O(mnk) time for dense matrices. Randomized variants reduce this to O(mn log(k)) flops.
For sparse inputs the time complexity is retained, however, randomized methods are often more robust
and can exploit multiprocessor architectures better than classical, Krylov subspace-based ones [37].

2.3.2. QR decomposition

The QR decomposition is a matrix factorization technique that takes an m xn matrix A and decomposes
it into the product of an orthogonal m x m matrix ¢Q and an upper triangular m x n matrix R, such that
A = QR. To avoid unnecessary computations when m > n, in practice, often only a m x n matrix Q
and an upper triangular n x n matrix R are computed [36].

One of the widely used algorithms to compute it is based on the numerically stable Householder trans-
formations. Constructing the m x n Q and n x n R each take 2n?m — %n?’ flops. This yields a total of
4mn? — 3n? flops. In case, one needs the full m x m @ matrix, its computation takes 4m?*n —4mn?*+ 3n>.
The m x n version of R takes the same flops to compute as earlier, therefore, we have 4m?2n flop count

for this case [21, 36].

2.3.3. Rank revealing factorizations

SVD is the most well-known rank revealing factorization, however, there are various alternatives. There
are rank revealing versions of the QR (RRQR) [38, 39], LU (RRLU) [40, 41] and Cholesky (RRCh) de-
compositions [42]. While the algorithms for these alternatives come with better theoretical time complex-
ity (up to a constant factor), in practice, the lack of optimized LAPACK routines mean slower runtimes
for RRLU and LLCh [43]. There exists better optimized versions of RRQR decomposition implemen-
tations that outperform SVD in practice [44]. The main reason why SVD remains preferable in most
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applications, is that these alternatives are not guaranteed to give the optimal ranks. l.e. if we want to
find a low rank approximation with error tolerance ¢, then SVD is guaranteed to give an approximation
with the smallest possible rank that meets this criteria. On the other hand, the alternative methods
tend to need higher ranks to meet the specified error tolerance [44, 45]. Additionally, for instance, the
RRQR algorithms can fail to give a result on specific inputs, however, for most cases in practice this is
not a concern [36, 46, 47]. Finally, it's worth mentioning that this is an active research area. Various
algorithms have been proposed with different tradeoffs on computation time and guarantees on how
good ranks they give [45].

Low-rank matrix approximations are a very powerful technique. However, as we have seen in Figure
1.2, when flattening higher dimensional data, we can lose essential patterns. This motivates the intro-
duction of decomposition algorithms that can operate directly on higher dimensional arrays, also known
as tensors. We look at these approaches next.

2.4. Tensors

Tensors are the higher dimensional generalization of matrices as illustrated by Figure 2.1. An Nth-
order tensor is denoted as X € RI1xl2xxla A gpecific entry indexed by iy, is,...14 iS given by
Tiyin,.ig = X(i1,92,...,14) € R. We refer to the order of the tensor as the number of "modes”,
"dimensions” or "ways” it has. Size refers to the number values an index can take within a chosen
mode [48].

Curse of Dimensionality First coined in [49], the term mostly refers to the exponentially increasing
number of parameters needed to capture a high dimensional system’s behaviour. In the case of tensors,
this refers to the exponential number of entries with respect to the order of the tensor. l.e. for a tensor
of order d, where each mode has size I, we need I¢ entries to describe it exactly [48].

Scalar Vector Matrix 3rd-order Tensor:  4th-order Tensor

- 868 &

Figure 2.1: Graphical illustration of tensors (multi-way arrays), with increasing complexity. Source: [48].

2.5. Tensor decompositions

In certain cases, tensor decompositions allow one to alleviate the curse of dimensionality for tensors.
This is achieved by exploiting inherent dependencies between the modes to find low-rank approxima-
tions of the data. While this comes at a cost of some accuracy, large amount of compression can be
achieved [48].

One of the most well-known approach is the Canonical Polyadic Decomposition (CPD) that factorizes a
tensor into a sum of rank-one tensors [50]. While CPD can reduce the exponential data size I to dIR
where R is the number of summands in the factorization, it has a number of drawbacks. The minimal
R needed to represent a tensor in this format is called the tensor rank, however, its computation is
NP-Hard [4, 51]. When approximating with a fixed rank, computing CPD can be ill-posed [52] leading
to failed convergence of numerical algorithms or getting stuck in local optima [4, 48].

Another famous approach is the Tucker format which does not suffer from such numerical instabili-
ties, however, it does not scale well with the number of modes of the tensor as it has an exponential
dependence on it with its rank [4, 53, 54].

2.5.1. Tensor Train (TT) decomposition
The TT method, also known as the Matrix Product State (MPS) in the quantum physics community,
occupies a middle ground between the CPD and Tucker formats. While it doesn’t exhibit an inher-
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Figure 2.2: Graphical representation of tensors and the contraction operation. Source: [48].

ent exponential relationship with dimensionality (d), it maintains stability. This stability means that a
high-quality approximation, with bounded TT-ranks, is always attainable. Achieving this quasi-optimal
approximation (i.e. approximation error is bounded by a constant €) generally involves a series of SVDs
on auxiliary matrices [4, 5, 55].

It can be written in a handful of equivalent ways [4, 48]. In this work, we adopt the following notation. Let
X € RIixIzxxIa hg an order-d tensor. Then, the TT-decomposition may be written, using multilinear
products of TT-cores, as X = G x1 ... x1 G Here, G¥) e Rsx*Irxsi+1 js the k" TT-core in the
TT, k € {1,2,...,d} and s; = s41 = 1. We refer to the largest rank as TT-rank: s = maxy, si.

The Tensor Train Matrix (TTM), also known as the Matrix Product Operator (MPO), is a convenient
way to apply the TT method for matrices. In particular, this approach, firstly represents a huge scale,
structured matrix X € R™*™, as an order-2d tensor, X € RI1x/ixlaxJ2x..laxJa \where n = I} I --- I
and m = J;Jy --- J4. Then the tensor can be transformed into a TTM with order-4 TT-cores. Thus, we
have X =2 G x!... x1 G@ ¢ RIxNixIaxlax..laxJa where GF) ¢ Rrx*IxxJkxri+1 ig the k" TT-core
andr; = rgp1 = 1 asfor TT [48]. We will denote the maximal mode size of the TT-cores as I = max;, I,
and J = maxy, Ji. We call the TT-rank of a TTM, the TTM-rank, which is given by r = maxy, r.

Besides the aforementioned advantages, it is possible to perform various linear algebra operations in
TT-format without exiting the TT-structure. These include the efficient computation of addition, matrix-
by-vector multiplication and elementwise multiplication. Unfortunately, after such operations, the TT-
ranks begin to grow. TT-ranks largely determine the storage needs of the TT representation and the
time-complexity of these operations, therefore large TT-ranks must be mitigated. This is achieved by
the TT-round procedure which can be used as a post-processing step after mathematical operations
[4, 5, 55].

In the TTM approach, instead of employing conventional global low-rank matrix approximations, com-
pression of large matrices involves low-rank approximations of block-matrices, organized hierarchically.
However, to achieve a low-rank TTM and thereby achieve effective compression, the ranks of all cor-
responding unfolding matrices within a specific structured data tensor must be low, This means that
their singular values must diminish quickly. Although this holds for numerous structured matrices, re-
grettably, it is not generally the case [48].

2.5.2. TT-decomposition algorithms

Given a higher order tensor or a matrix in a tensor format, a key question is how its TT representation
can be computed. The classical algorithm for this purpose is the TT-SVD [4]. The key idea of the
method is to compute successive truncated SVDs on the auxiliary matrices that originate from the
reshaped input tensor. In this process, we have control over the TT-ranks or the error (¢) tolerance of
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Figure 2.3: The TT-SVD algorithm for a tensor with 5 modes. Image source: [48]. Here tSVD is the algorithm from Section
2.3.1 when the TT-ranks are known in advance. Otherwise, it refers to the full SVD computation followed by a truncation. The
top panel shows that the tensor X with size I; x Iy x - - - x I5 is reshaped to an auxiliary, long matrix M, of size I1 x Iz --- I5.
In the 2nd stage, tSVD is applied to produce a low-rank matrix decomposition with Uy and slv”{ as factor matrices, such that
M, = U181V}‘. The third panel illustrates that U; becomes the first TT-core xX@® and slv"lf is reshaped to be M. In the
next stage, tSVD is applied again, now to M. This procedure is repeated until each mode has been processed and as the
bottom panels illustrate, the last TT-core is obtained from S4V:f. We note that in our notation we use s, for the kth TT-rank,
this diagram refers to it as Ry.

the approximation. When the TT-ranks can be determined in advance the tSVD algorithm mentioned in
Section 2.3.1 leads to faster runtimes. In most cases, however, we want to specify the error tolerance
€, i.e. the TT-ranks must be determined adaptively. In such scenarios, the full SVD must be computed
followed by a truncation. Figure 2.3 illustrates the procedure. We refer the reader to [4] for an in depth
understanding of the algorithm.

Besides the TT-SVD, there is the TT-Cross algorithm [56], which can be significantly faster, however
in various scenarios it performs slower [9]. Due to its speed inconsistency, we don’t consider it here in
more detail. Additionally, one can replace the SVD algorithm in TT-SVD with other rank-revealing fac-
torizations for better speed. Using randomized SVD yields the rTTSVD algorithm which is consistently
faster than TT-SVD [9, 57]. Additionally, the constrained Tucker-2 decomposition is a possibility too
[48, 58]. All these algorithms boil down to either computing low-rank matrix factorizations (LRMF) or
other decompositions such as the Eigenvalue decomposition (EVD) on auxiliary matrices to construct
the TT-decomposition [48]. These methods do not utilize sparsity patterns, leaving much value on the
table when the nonzero entries in the data only account for a smaller portion of the input.

More recent approaches, aim to find a TT-decomposition when the data is sparse [9, 10]. One of these
algorithms is the matrix2mpo method which partitions the input matrix into blocks so that each nonzero
block is converted into a rank-1 TTM that are added together to form the final TTM. This can be followed
by parallel-vector rounding and the TT-round procedures to reduce the TT-ranks of the resulting TTM
[10]. FastTT [9] works by a similar principle, however it starts with a tensor as an input as opposed to a
matrix. For both of these methods, their runtime bottleneck lies in the TT-round procedure which may
be skipped in certain cases. Notably, even with the TT-round procedure, their runtime can be several
to several ten times faster than TT-SVD for sparse inputs [9, 10].

The matrix2mpo algorithm has a central place in this study, therefore we illustrate its core idea in more
detail next. Suppose we have a block matrix A € R™*"™ with nonzero blocks A5, As3 and Az, € R/
sothatn = I -3. Let us denote a 3 x 3 zero matrix with a 1 at its ith row and jth column coordinate pair
as E;;. Then, using the Kronecker product, we can write A as shown in Eq. (2.1).
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A= 0 0  Ags | = E12® A1g + Ea3 ® Aoz + E31 ® Az (2.1)
<A31 0 0 )
The matrix2mpo uses this principle to construct a TTM from the input matrix. Each summand corre-
sponds to a rank-1 TTM with two TT-cores: A;; and E;;. After identifying the nonzero blocks, the
algorithm determines the correct nonzero coordinates in the E;; matrices. Finally, we add the rank-1
TTMs together, which is achieved by essentially merging the corresponding TT-cores [4]. In this case
the final TTM has two TT-cores, the first one is formed by stacking A5, A>3 and Az, while the second
one is formed by merging E1s, Fo3 and Fs;.

2.6. TT-solve methods

Let us consider a linear system of equations (LSEs) Ax = b, where A € R"*",x € R"andb € R". The
linear system can be converted to the TT format by computing the TTM of A and the TT of b. Afterwards,
different TT-solve algorithms may be utilized to find x as a TT, which can be easily converted back to
the solution vector of the LSE.

2.6.1. Quadratic form optimization

To solve the LSE in the TT-format, we can reformulate Ax = b as a minimization problem. Suppose A
is positive definite. Then the vector-valued function f(x) = 3(x, Ax) — (x, b) has a global minimum at
x, that satisfies Ax,,, = b [59]. Using this optimization formulation, the question remains how we can
find the minimum of this objective function when A b and x are in the TT-format.

Consider the task of minimizing the function, J(X), which depends on an N-th order tensor variable
represented in the TT-format. The goal is to find a solution in the form of a tensor train. However,
minimizing over all tensor cores X (™ simultaneously is typically too complex and nonlinear. To make
the problem feasible, this process is replaced by a sequence of optimizations, each focusing on one
core at a time [60].

The so called Alternating Least Squares (ALS) method (also known as Alternating Linear Scheme
or one-site Density Matrix Renormalization Group (DMRG) / DMRG1) operates by updating one core
tensor X(™ at a time during each local optimization (micro-iteration step), while keeping all other cores
fixed. Starting with an initial guess for all cores, the method first updates core X! while keeping cores
X@ . X fixed. Next, it updates X? while keeping X", X® ..., X) fixed, and so on, until
X ™) is optimized. After this forward pass (half-sweep), the algorithm proceeds backward, updating
cores from N to 1 in the backward half-sweep. A complete sequence of forward and backward passes
constitutes one full sweep (global iteration). These iterations continue until a stopping criterion is met
[6, 60].

A challenge arising in this method is that the desired TT-rank is unknown, so standard ALS must rely on
an initial guess for the TT-rank. This can lead to a very slow iteration process depending on the initial
conditions. To mitigate these problems, the modified ALS (MALS, two-site DMRG / DMRG2) scheme
merges two neighboring TT-cores (blocks) into a single "super-node” (also referred to as a "super-core”
or "super-block”). This combined entity is optimized, and then it is split back into separate factors
using low-rank matrix factorizations, usually through computing SVD. This allows for determining the
TT-ranks adaptively [6, 60].

For both ALS and MALS, it has been shown that, the cost function will only decrease with each iteration
[6]. However, for a general J(X), there is no guarantee of reaching a global minimum [6, 60]. In fact,
a global minimum might not even exists [52, 61, 62]. Thankfully, practical experience supports the
finding that getting stuck in local minima is a rare occurrence [6]. Also, there has been some work
on showing the local and global convergence of these methods, especially when J(X) is a convex
functional. However, the conditions to be satisfied are often highly technical and not straightforward to
verify in practice [61, 63, 64].

The MALS algorithm is further extended by a number of tricks in [5] to make it into a black-box solver.
Its implementation can be found in [65]. It is worth mentioning that this extended version of MALS is
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Figure 2.4: Graphical representation of the ALS and MALS sweeps.
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often referred to as the DMRG algorithm in the TT literature [5, 7, 8].

Another method called the Alternating Minimum Energy (AMEn) operates on single TT-cores ata time
(like ALS), making its time complexity per sweep comparable to the ALS approach. Simultaneously, it
is capable of choosing TT-ranks adaptively for a specified error tolerance ¢ like the MALS method. This
is achieved by using inexact gradient directions and the theory of steepest descent algorithms. For the
details, we refer the reader to [8, 65].

2.6.2. Pseudo-inverse optimization

Another formulation involves solving the LSE Ax = b in the TT format by finding the Moore-Penrose
pseudo-inverse matrix P7 of A. Once obtained, the LSE can be solved by computing x = P”b. In order
to find P, the following optimization problem should be solved (in the TT format): minp|I — P A|2.
Rewritten as a cost function, we need to minimize F(P) = trace(PT AATP — 2PT A). After different
techniques to rewrite this expression in the TT-format to make it tractable, we can use MALS, for
instance, to find P and then in turn x. See [66, 67] for more details on this methodology.

2.6.3. TT-GMRES

A completely different method to solve the Ax = b LSE is by following the GMRES algorithm (see sec-
tion 2.2.2) but in the TT-format. In particular, TT-GMRES operates by approximating the solution vector
and all intermediate Krylov subspace vectors in the TT-format, thereby reducing both storage and com-
putational complexity when such low-rank approximation is possible. This approach involves perform-
ing the TT-rounding operation and TT-matrix-vector products within the iterative GMRES framework.
By maintaining these vectors in a compressed TT-form, it can achieve a significant reduction in the di-
mensionality and size of the data being processed, facilitating the efficient handling of high-dimensional
problems [68].

2.7. Low-rank approximable matrix types

An important question to tackle is which matrices can be approximated well as a TTM. l.e. which
matrices have a low TTM-rank, while accurately representing the input, up to a small error (e.g. € =
le~7). Intuitively, one might turn to matrix ranks for guidance. Lower (numerical) ranks often yield
smaller TTM-ranks, as in the case of the Hilbert matrix in Table 2.1. However, TTM-ranks can be much
smaller than the (numerical) rank as we can observe for the other matrices in Table 2.1. Also, as we can
see in the case of the Vandermonde matrix, TTM-ranks may be higher than the (numerical) rank of the
matrix. These observations are in line with our reasoning around Figure 1.2, where we have illustrated
how flattening higher dimensional data can lead to pattern breaking. That is, tensor decompositions
can find a low-rank approximation, while matrix-based approaches cannot.

To the best of our knowledge, there is no methodology to assess whether a general (sparse) matrix
has a small TTM-rank without actually computing its TT-decomposition. However, advantageously,
TT-decomposition techniques like the matrix2mpo algorithm [10] can be computed very fast to assess
the suitability of TT-methods for a given sparse LSE. In the case of dense matrices, randomized-SVD
based techniques can help, however, their runtime still highly exceeds the matrix2mpo approach [10].
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Matrix n Rank Numerical rank TTM-rank
name e=le 3 Je=le VW |e=0]e=1le3]e=1e10
ex3 1821 | 1821 1821 1821 9 7 7
ex10 2410 | 2410 2404 2410 100 28 28
ex10hs 2548 | 2548 2537 2548 784 169 169
ex13 2568 | 1434 2193 2568 576 80 82
Hilbert 25 9 22 625 4 9
Vandermonde 2000 45 20 43 625 119 251
Hankel 2000 2000 2000 625 3 3
Toeplitz 2000 2000 2000 625 3 3

Table 2.1: This table shows the size (n) and the different ranks of a number of matrices. The first four matrices come from [69]
and are described in more detail in Section 3.5.1. The other four matrices are special matrices that are often used as examples
in this context [1, 2, 60]. We use numpy [70] and scipy [71] to generate them. For the Hankel and Toeplitz matrices, we use an
input vector of [1,2,...,n]. On the other hand, for the Vandermonde matrix we use a random vector with values between 0 and
1 to avoid numerical issues, resulting from too large scalars. By rank we mean the rank of a matrix in the linear algebra sense.
The rank values shown are taken from [69]. To compute the numerical ranks, we use the linalg.matrix_rank method from
numpy [70] which is based on SVD-truncation. In order to obtain the TTM-ranks, TT-SVD is run on the matrix, after it is
reshaped to a tensor with mode sizes as the prime factors of its size, n. For this part, we have utilized the Scikit-TT library [72].






Approach

In this chapter, first, we elaborate on our methodology that we use to compare TT-solve against the
Conjugate Gradient (CG) and Gaussian elimination (GE) solvers. Afterwards, we summarize the key
insights of this comparison. Our inquiry leads us to identify a handful of research gaps regarding the
sparse TTM-decomposition process. We propose a number of strategies to address these. Finally, we
design an experimental configuration to examine the suggested techniques.

3.1. Methodology

Our primary objective is to assess the competitiveness of the TT-solve approach against traditional
methods such as CG and GE. In particular, by TT-solve we mean the TT-MALS approach. We use
this as opposed to TT-ALS because it has control over the TT-ranks, i.e. the approximation error while
solving the system. As we are interested in (near) exact solutions of LSEs, this is a must have in
our setting. The AMEn and TT-GMRES solvers reviewed in Section 2.6 could have been selected as
well. However, these methods are significantly more complex and require a deeper understanding for
time complexity assessments. In our initial experiments using implementations from the TT-toolbox
[65], we found that these solvers were either slower or failed to converge when TT-MALS succeeded.
Furthermore, the existing literature on AMEn and TT-GMRES is much more limited, suggesting that
pursuing these directions may not be as fruitful.

CG and GE have been extensively optimized over the years, benefiting from highly specialized code
for specific hardware setups. This could result in an uneven comparison when introducing a newer
algorithm like TT-solve. To address this disparity, we propose a theoretical assessment methodology
designed to be performed quickly, facilitating rapid evaluations and comparisons. By not assuming a
particular hardware setup, the results remain broadly applicable across different computing environ-
ments. Additionally, the methodology minimizes the impact of code optimizations available to more
mature approaches, ensuring a fair comparison based on algorithmic principles rather than implemen-
tation details. Finally, it is crucial to demonstrate how the TT-solve algorithm scales with the size of the
input, providing insights into its performance for varying problem sizes.

To achieve these goals, our theoretical time assessment incorporates several simplifications. While
not capturing every nuance of practical execution, it still offers a robust estimate of expected runtime.
These simplifications allow us to focus on the core computational complexities and scaling behavior of
the TT-solve algorithm.

When possible, we rely on existing literature for theoretical runtimes of the algorithms. In certain cases,
the available research is insufficient for our analysis, prompting our own assessment. The detailed
time complexity derivations are given in Appendix B. Next we elaborate on our insights derived from
this investigation.

17
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3.2. Insights from TT-solve time complexity analysis
To solve a linear system of equations (LSE) in the TT-format, we need to perform three blocks of
computations:

1. Convert LSE to TT-format
2. Find solution in TT-format
3. Convert the solution back to vectorized form

As we will see, besides the matrix size n, the number of TT-cores d, the maximal mode size I, the TTM-
rank r and the TT-rank s of the solution vector and right-hand side vector are all needed to describe
the time complexity of the TT-solve approach. Therefore, let us first examine these individually and the
relations between them.

3.2.1. TTM-rank and TT-rank

As we have seen in Table 2.1, the TTM-rank of a (sparse) matrix is different from its rank and numerical
rank. While lower (numerical) rank often leads lower TTM-ranks, they are not strictly linked. Depending
on the method used to find the TT-decomposition of a matrix, we get different TTM-ranks. For example,
using TT-SVD is guaranteed to yield the best possible TTM-ranks for a chosen error tolerance [4]. On
the other hand, when dealing with sparse matrices, a much faster method, the matrix2mpo algorithm
can be utilised [10]. This approach, does not come with the same guarantee as TT-SVD. However, the
resulting TTM-rank corresponds to the number of submatrices needed to cover all nonzero entries in
the matrix as we illustrated in Eq. (2.1). We also refer to this submatrix dimension as tile size. The size
of these submatrices must be constant, and their multiple must add up to the matrix size n. Importantly,
this tile size corresponds to the mode size of the first TT-core, I,. Therefore we have that I - k£ = n,
ke N.

The TT-rank, s, in our context refers to the rank of the TT-decomposition of the solution vector and the
vector on the right-hand side of the LSE. To solve the LSE via TT-solve, besides converting the matrix,
we also need to compute the right-hand side vector to the TT-format. As this vector is rarely sparse,
using a TT-SVD type method is a reasonable choice for this task.

3.2.2. Mode sizes

When decomposing the matrix, besides the TTM-rank, we also need to keep an eye on the size of
the modes, where the maximum mode size is I. This is important, as this parameter also frequently
appears in the time complexity bounds. Thus, we aim to have I as small as possible. Due to the
structure of TT-decompositions, we know that I; - I --- I; = n, thus I > ¥/n = n'/?. This means that
the bigger d is, the smaller I can be. A practical lower bound is I > 2 because I € N and having
smaller sized modes is pointless.

When aiming to compute the TT-decomposition of a LSE, we need to reshape our matrix and right-
hand side vector as tensors in order to use TT-SVD. To achieve this, we need to find positive integers
I, I5,...,1;st. I, - Io---1; = n. Then, we can reshape a matrix of size n x n to a tensor of size
Iy x I x I x Iy x --- x I x I;. Similarly, a vector of size n x 1 can be reshaped as a tensor of size
I x I, x --- x 1. In the case of matrix2mpo, having a matrix input is assumed. Nevertheless, we
have to find I, ... I; first in this setting too. This is necessary, as the algorithm takes these as input
besides the matrix. Additionally, a choice has to be made regarding which integer factor will be ;. This
determines the tile size used to capture the nonzero entries.

On top of these observations, it is important to realize that there is a close relationship between the
mode sizes and TT(M)-ranks. For example, as stated in Theorem 3.2 of [10], the product of mode sizes
can be used to bound the TT(M)-ranks. Moreover, when working with the matrix2mpo approach, the
mode size of the first TT-core determines the submatrix size used to capture nonzero entries. Since
the number of tiles needed to capture all nonzero entries will be the TTM-rank, the link between the
two is apparent.

The time complexity of TT-operations are determined by the largest mode size I. Thus keeping this
small is desirable. On the other hand, choosing I; to be one of the larger factors means a (generally)
smaller TTM-rank, as it is much easier to capture all nonzeros when the used submatrices are bigger.



3.2. Insights from TT-solve time complexity analysis 19

To this end, our suspicion is that the authors in [10], chose to use the largest prime factor of n as I, as
the largest mode size cannot be smaller. Additionally, choosing a smaller tile size (i.e. a smaller factor
as I) would most likely just increase the TTM-rank.

Method Use Time complexity
TT-SVD Convert tensor to TT format O(s%In)
TTM-SVD Convert tensor to TTM format O(r31’n?)
modeSize2Rank Find achiev_ablg TTM-!'ank of 0(2)
sparse matrix via matrix2mpo
matrix2mpo Convert sparse matrix to TTM format O(z + dI*r?)
TT-MALS (direct solver) Solve LSE in TT(M)-format O(cd(sr?I? + s°rI° + s°1°))
TT-MALS (iterative solver) Solve LSE in TT(M)-format O(cds®r?I3)
TT-sol2vector Convert solution in TT-format to a vector O(dns*)
CG Solve SPD sparse LSE O(z+/k)

Table 3.1: This Table summarizes the time complexity of the TT-algorithms relevant for solving LSEs in the TT-format. The
derivations can be found in Appendix B.1. The variables meaning is as follows. r is the TTM-rank, s is the TT-rank of the
right-hand side and the solution vector. I is the maximum mode size of the TTM. d is the number of TT-cores and is known to
equal log(n) approximately. « is the condition number of the matrix, z is the number of nonzero entries and finally c is the
number of half-sweeps TT-MALS needs to converge. SPD stands for symmetric, positive definite.

3.2.3. The number of TT-cores
Taking the above reasoning further gives the upper bound d < log,(n) which can be derived as follows.
We use thatn > 2and d > 1.

ILi-Ih---Ig=n (relation between I and n in TT format) 3.1)
2¢ = (choose smallest possible value V1) (3.2)

log,(29) = log,(n) (take logarithm of both sides) (3.3)
d = log,(n) (use logarithm rules) (3.4)

To find a lower bound for d, we solve the following inequality:

I>nt/d (relation between I, d and n in TT format) (3.5)
1
log(I) > p log(n) (take logarithm of both sides) (3.6)
1 N
d> og(n) (reorder terms) (3.7)
log(1)
d > log;(n) (use logarithm rule) (3.8)

We conclude that d = ©(log(n)). Therefore, we cannot influence the TT-decomposition by changing
the parameter d when starting with a fixed (e.g. 2) dimensional problem. Finally, we note that the
TT-decomposition with fixed mode sizes I, = I, = --- = I; = 2 is termed the Quantized Tensor Train
(QTT) format [5, 73].

3.2.4. Runtime comparison of TT-solve and CG

In this section, we look at how the theoretical time complexities of the CG solve and TT-approach com-
pare. The time complexity derivations of the TT-algorithms relevant for solving LSEs are in Appendix
B.1. We summarize the relevant algorithms’ time complexity in Table 3.1.

In order to be able to compare the runtime of CG with the TT-solve approach, we need to make a
number of assumptions. Firstly, let us suppose that z = O(n) since we work with sparse matrices. As
we have seen in Section 3.2.3, we can safely write that d = O(log(n)). CG’s runtime is linear in the
number of nonzero entries z and thus the matrix size n. If any of the TT-parameters like r, s, I become
O(n), CG will be faster as these terms appear with higher exponents than 1. Thus, we can conclude
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Runtime comparison of CG and conversions to TT
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(a) This Figure shows a comparison between the CG solver runtime and the time it takes to convert the LSE to TT-format. In
particular, we can observe the big difference between the matrix2mpo approach and TT-SVD for converting the coefficient matrix.
Additionally, we can see how the TT-SVD runtime for converting the vector on the right-hand side (rhs) scales.

Runtime comparison of CG and TT-solution to vector conversions
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(b) This Figure compares the runtime of the CG solver with the method (TT-sol2vector) used to convert the TT-solution back to a
vector.

Figure 3.1: This Figure illustrates the theoretical time complexity of converting a sparse LSE to the TT-format and then
converting the solution back to a vector. These runtime complexities are contrasted with the runtime of the CG solver,
assuming a sparse matrix (2 = O(n)) with different condition numbers «. The unit of runtime is a floating point operation
(FLOP), which is plotted as a function of the matrix size n. For all TT-parameters such as d, r, s, I we assume that they are
O(log(n)), unless specified otherwise.
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(a) This Figure illustrates how the TT-solve approach compares to the time complexity of the CG solver. For this plot, the TT-solve
runtime does not include the time needed for converting to and from the TT-format. l.e., here it is assumed that the LSE is given in
the TT-format from the start and we desire the solution in this format as well.

Runtime comparison of CG and TT-solve with conversions
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(b) This Figure illustrates how the TT-solve approach compares to the time complexity of the CG solver. For this plot, the TT-solve
runtime includes the time needed for converting to and from the TT-format. In particular, we assume the use of matrix2mpo for
converting the coefficient matrix, TT-SVD for converting the right-hand side (rhs) and the TT-sol2vec procedure to convert the

solution back to a vector.

Figure 3.2: This Figure illustrates the theoretical time complexity of solving a LSE via CG and in the TT-format. We show the
TT-solve time complexities both with and without conversions to and from the TT-format. The use of TT-MALS is assumed with
a direct solver for local LSEs. Additionally, the input matrix is presumed to be sparse, i.e z = O(n) and we show runtimes for

different condition numbers «. The unit of runtime is a floating point operation (FLOP), which is plotted as a function of the

matrix size n. For all TT-parameters such as d, r, s, I and the number of half-sweeps needed for convergence, we assume that
they are all O(log(n)), unless specified otherwise.
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that these parameters should be of lower order than O(n). In particular, smaller than O(/n), as the
largest factors have exponents of 6. As there are many terms to consider in the TT-approach, we go
with the assumption that r, s, I, ¢ are at most O(log(n)), to be on the safe side. With these assumptions,
now we are ready to measure the TT-approach runtimes as a function of n.

Let us first look at the time complexity of converting the LSE to the TT-format and then the solution back
to a vector, in Figure 3.1. We can notice in Figure 3.1a, how using the classical TT-SVD approach for
matrix inputs is impractical in practice due to its runtime. On the other hand, using it for converting the
right-hand side vector is more feasible, especially when its TT-ranks can be kept really small. This plot
also shows the superior runtime of the matrix2mpo algorithm used to convert a sparse coefficient matrix
into the TTM-format. From the plot it is evident that these assumptions on keeping TT-parameters
O(log(n)) or smaller is not enough. We can only hope to achieve any speedups, if the matrix is ill-
conditioned, rendering the CG runtime higher than usual. Similar conclusions hold for Figure 3.1b,
where we illustrate the runtime of converting the solution in the TT-format to a vector. In addition, we
can see how the TT-rank (s) of this vector can be a bottleneck when it is too large.

Next, in Figure 3.2, we reflect on the runtime of TT-solve with and without the conversions showcased
in Figure 3.1. Again, we contrast this with the runtime of CG, assuming differently conditioned matrices.
Firstly, Figure 3.2a displays the runtime of TT-MALS with direct solvers for the local problems. As also
suggested by Table 3.1, the bottleneck variables are s and I which is evident in the plot as well.

Figure 3.2b combines the TT-conversions with TT-MALS. In particular, we use the matrix2mpo for
converting the matrix into TTM-format, while TT-SVD is utilized for transforming the right-hand side.
Additionally, after solving the LSE via TT-MALS, we also add the runtime of transferring the solution
back to a vector. We can see that keeping the TT-rank s constant is more important than the mode size
I as this is a bottleneck both for the TT-MALS and the TT-sol2vector procedures. However, keeping
either of these as a constant, while assuring that the others are O(log(n)), gives the TT-solve approach
a considerable edge over CG for ill-conditioned matrices.

3.3. Research gaps

In this section, we look at some challenges that one faces when attempting to decompose a LSE to the
TT-format.

3.3.1. Achievable TT-decompositions

Matrices come in various sizes. Depending on this size, n, the prime factorization largely determines
the possible TT-decompositions that are possible, both via TT-SVD and matrix2mpo. In the worst case,
the matrix size n is a prime number, making its (meaningful) reshaping to a tensor impossible. In such
a situation, the TT-decomposition has just one TT-core that is the original matrix, with TTM-ranks of
1 on each end. Notably, the matrix size does not need to be prime to make the TT-decomposition
problematic. For instance, if the largest prime factor is relatively large, then, this will lead to a bottle-
neck when attempting to solve the LSE in the TT-format. This is because of the I term in the time
complexity of TT-MALS, as seen in Table 3.1. To the best of our knowledge, this challenge has been
left unaddressed in existing literature.

3.3.2. Tradeoff between TTM-rank and mode size for matrix2mpo

In this section, we explore another untapped possibility to improve the runtime of TT-solve. We do this
by utilizing the inherent link between the maximum mode size I and the TTM-rank » which we have
seen in Section 3.2.2.

Given a sparse n x n matrix A with z nonzero entries, we know the following of its TT decomposition
when the matriz2mpo algorithm is used. The dimensions of AW arer; x Iy x I; x o, where r; = 1. I
defines the size of the submatrices which are used to partition A. r, equals the number of submatrices
in the partitioning that contain a nonzero entry. Therefore, it is crucial to create a partitioning with
minimal number of partitions that capture all nonzero entries. The trivial partition with minimal rank
r = 1 is achieved when we choose I; = n. Choosing I to be small is also important while minimizing
r. Therefore, a tradeoff has to be made when using this decomposition approach. Finding an optimal
pair of » and I depends on various factors that we uncover in this section.
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We assume that a TT-MALS type solver will be used. From a time complexity point of view, there
are two cases one needs to consider separately. The TT-solve method can use either a direct or an
iterative solver to find solutions to the local optimization problems. As pointed out earlier, this is the
computational bottleneck of the whole process. Also, depending on which local solver is used, the time
complexity depends on I and r differently. For this analysis, we look at the direct solver case. We note
that an analogous assessment can be made when iterative solvers are applied. However, due to the
unpredictability of iterative solver convergence, such an analysis is less robust.

As noted in Appendix B.1.3, the direct solver complexity does not depend on the rank of TTM, only
the TT-ranks of the solution and right-hand side vectors. As the right-hand side vector is generally
not sparse, its decomposition is best done via a TT-SVD type algorithm. Additionally, the ranks of the
solution vector in the TT format can be directly controlled by the TT-MALS algorithm. It is important to
note that the TT-MALS algorithm still has lower order dependencies on the TTM-ranks. Namely, we
need O(r21?) for micro-iteration preparations per TT-core and O(rI?) for contractions in between.

While the time complexity is mainly dependent on the chosen mode sizes (O(1°)), we also need to be
careful with the TTM-ranks. For instance, we might be able to achieve I = 2, i.e. I is O(1) but getting
TT-ranks of order O(n), then O(r?) = O(n?) will dominate the time complexity leading to infeasible
computation times.

This means that minimizing I is more important than r, however, we cannot fully neglect the TTM-ranks
either. This analysis motivates the development of techniques that optimize this tradeoff between I and
r in the context of the matrix2mpo algorithm. Following the above analysis, we propose the following
objective function to evaluate different pairs of r and I:

f(r, 1) =16 4 7I% + 1212 (3.9)

3.4. Strategies to optimize sparse TTM decompositions for TT-solve

In this section, we propose a number of strategies to improve the estimated TT-MALS runtime by
addressing the research gaps that we have uncovered in Section 3.3.

3.4.1. Reducing TTM-ranks

The resulting ranks directly depend on how well the matrix2mpo algorithm can capture the nonzero
entries. That is, the fewer tiles it needs, the better. In this part, we look at two different approaches that
aim to help with this.

Choosing tile size from factors

The mode sizes of the TT-cores produced by the matrix2mpo algorithm are determined by the integer
factors of the size of the given matrix (n). For instance, if we have a matrix of size 2410 x 2410, then
since 2410 = 241 - 5 - 2 is the prime factorization of n, the modes of the TTM will be I, = 241, I, =5
and I3 = 2.

When using the matrix2mpo algorithm, any of these modes can be chosen as the tile size for the sub-
matrices used to capture nonzero elements. Choosing the biggest mode to size the tiles, often yields
the smallest TTM-rank, because it is easier to cover all nonzero entries with bigger blocks. However,
smaller submatrices can also prevail because they tend to capture the nonzero patterns better. Addi-
tionally, we can choose to combine factors to form a differently sized submatrix for nonzero capture. In
the above example, we could combined I, = 5 and I3 = 2 as a new factor I}, = I - I3 = 10. It should
be noted that combining factors to increase the mode sizes directly increases the TT-solve runtime.
Therefore, it is important to keep in mind the tradeoff between TT-ranks and mode size at this step.

Variable ordering

An existing method to achieve smaller TTM-ranks by the matrix2mpo algorithm is to reorder the vari-
ables in the matrix [10]. In particular, they use the Cuthill-Mckee permutation [74] to minimize the band-
width (as defined in Appendix C.8) of the input matrix. Its runtime can be bounded by O(log(d;qz)2),
where d,,... is the maximum number of nonzero entries in a column [75].
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This strategy can be an effective way to reduce the TTM-rank of the matrix2mpo decomposition because
reducing the bandwidth often means concentrating the nonzero entries close to each other, near the
diagonal. Therefore, fewer number of submatrix blocks are needed to cover the nonzero entries. Its
impact is largely dependent on the original structure of the matrix, however, it can often reduce the
TTM-ranks by around 50% on various examples [10].

3.4.2. Better partitioning for mode size reduction
While the previous strategies are helpful to optimize TTM-ranks, as concluded earlier, minimizing the
mode sizes is even more crucial. To this end, next, we uncover ways to reduce them too.

The maximum mode size cannot be lowered by the previous strategies. In order to allow a reduction, we
need to change the factorization of n. We can do this in two ways, either by increasing » or by reducing
it. The strategy, we call padding corresponds to the former, while doing partial Gaussian-elimination is
linked to the latter. We describe these proposed strategies in the next sections.

Padding

The idea of padding is simple: add zero rows and columns after the last row and column, respectively.
Importantly, if we add zero entries extending on the diagonal as well, then we get a singular matrix. This
can cause problems for the solvers, therefore, we add ones on the diagonal extension. This allows us
to keep the matrix invertible and to create different factorizations, thus choosing different mode sizes
for the TT-decomposition. For example, changing n = 2410 = 241 -5 - 2 to n’ = 2412 allows us to have
2412 = 67 - 3% - 22, This reduces the maximum mode size, I, greatly. On the other hand, it may slightly
increase the TTM-rank due to the added nonzero entries on the diagonal extension.

It is important to keep in mind that we are zero-padding the coefficient matrix of a LSE. Therefore,
to ensure that the system is still solvable, we also have to add zero padding to the right-hand side.
Additionally, the solution will also contain variables that correspond to the padding. When everything
works as expected, these variables become zero and the solution of the original system can be obtained
by ignoring these at the end. As all padding entries are zeros, except the ones on the diagonal, we do
not alter the solution of the original system.

When using this strategy, we need to tackle two important questions.

1. What is the maximal padding that we should even consider?

2. What level of padding should we choose within this range?

Adding zero padding increases n, and z. Our matrices are stored in sparse format and the matrix2mpo
algorithm’s time complexity does not depend on n. Also, the TT-decomposition it produces does not
suffer from any drawbacks when n is increased. The story is different for z, the nonzero count changes
linearly with the level of padding. Therefore adding a lot of padding will also lead to increased TTM-
ranks, as additional nonzero tiles will be probably necessary to cover them in the matrix2mpo approach.
Additionally, we need to consider that for each row-column pad, computing the integer factorization of
n’ and checking how "good” it is, is necessary. In the best case scenario, we can do this in O(1) time
for each n’. To keep the time complexity of this method feasible in comparison to using a solver like CG,
we prefer to have sub-linear padding configurations to check. This also bounds the maximal TTM-rank
increase. Thus, we aim to have O(1) paddings or at most O(log(n)) to assess in practice.

As a side note, we point out that polynomial time algorithms are not known for integer factorization on
classical (non-quantum) computers [76]. However, for n < 26 = 65536 we can easily store and then
look up the prime factorizations in O(1) time. In case, 2!¢ < n < 232 = 4294967296 a list of precomputed
primes is advisable with a fast divisibility check [77].

The straightforward way of choosing the best padding within this range can be done as follows. We
can check the TTM-rank produced by each possible tile size for a given padding. Possible tile sizes
are all the different products we can make from the factors of n’, not necessarily using all of them. After
these are computed, we can check which combination of I and TTM-rank would minimize the runtime
complexity of the TT-solve method in use. Additionally, we can check if the best possible mode size
and TTM-rank combination makes it desirable to use the TT-solve approach or it is better to opt for an
iterative solver like CG.
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Partial Gaussian (PG) elimination

In order to change the integer factorization of n, we can also reduce the size of the matrix. In this case,
ensuring that we leave the solution of the LSE unchanged is less trivial. In particular, we cannot just
remove rows and columns of the coefficient matrix as that would clearly lead to different solutions.

Inspired by the Gauss-CG solver method [78, 79, 80] which is used at Deltares for the company’s
Delft3DFM product [81], we can use partial Gaussian elimination in this context too, to get a smaller
subproblem. This means that we row-reduce the system for the first £ < n variables, yielding a sub-
system of size n — k. Once this subsystem is solved (e.g. via CG or TT-solve), we need to apply
backsubstitution for the initial k& variables to get the complete solution.

A challenge with this approach is that row reduction creates fill-in, that is, additional nonzero entries in
the remaining subsystem [82]. This can be mitigated to a large extent by variable permutation. Notably,
finding a variable ordering that minimizes fill in is an NP-complete problem [83]. To this end, various
heuristic algorithms have been developed to ensure a tractable runtime, see for instance [84, 85, 86].
One of the most popular approaches is the so called approximate minimum degree (AMD) algorithm.
This estimates the number of nonzero entries in each column and reorders the variables so that the
variables corresponding to the most sparse columns are eliminated first [87, 88, 89]. The runtime of
the minimum degree approach O(n?z) is too expensive, however its approximate version is often used
in practice with its O(nz) time complexity [90]. It is important to consider whether, for our application
domain, this time complexity is prohibitively expensive. As concluded earlier, in Section 3.2.4, TT-solve
is competitive when the condition number of the matrix, «, is quite large. In such a situation the runtime
of CG O(z+/k) will be considerably higher than this. Nevertheless, this is just a small part of solving
the LSE in the TT-format. Thus its effectiveness must be investigated for its use to be justified.

Suppose, we are given a choice of k. Then, we need to evaluate how n — k factorizes and in turn the
possible mode sizes. Then, similarly to the padding approach, we can choose a pair of tile size and
TTM-rank that minimizes the estimated TT-solve runtime. Using this estimate, we can decide to use
the CG solver or the TT-solve method depending on the computed runtime estimate.

The next important question to tackle is how we can bound the value of k, so that we do not have to
assess every possible situation. Firstly, empirical evidence suggests that having k ~ 7 tends to give the
best runtime when using the Gauss-CG solve approach [91]. Unfortunately, this does not necessarily
mean that the overall runtime of Gauss - TT-solve will be worse than Gauss-CG when k > 3. Using a
more careful analysis of the Gauss-CG solver time complexity, one could bound k. However, we leave
this for future investigations as it is not a crucial detail for our research.

Thankfully, choosing the best k is more straightforward. This is made possible by accessing the interme-
diate steps of the AMD algorithm. These intermediate steps contain the (estimated) nonzero pattern
of the partially row-reduced system, therefore allowing the assessment of different tile size choices’
impact on TTM-ranks.

3.4.3. Coupled approaches
Besides assessing the proposed strategies in isolation, we also want to see their combined effects.
Here, we discuss sensible ways to join the methods, including their ordering.

Firstly, AMD should come before partial Gauss (PG) to reduce fill-in during the elimination process.
Choosing the best tile size should come last. If the added padding is what PG reduces, then, clearly
it is better to start with PG. The other scenario we do not explore here, but it may be interesting to try.
Therefore, for our experiments, we put padding after AMD and PG. Finally, RCM can be reasonably
placed in different places. In one interpretation, we can put it after padding and before choosing the
best tile size, in order to concentrate nonzero entries before that last step. In our experiments, we
follow this idea, however, it can be also worth to explore placing it before padding. The thought behind
this recipe is to first condense the nonzero entries, then find what tile size choice would be the best for
the result. Hence, adding padding after RCM to allow for better factorizations and thus better tile size
choices at the end.

In this work, we aim to get a better understanding of the effectiveness of these strategies in isolation
and together. Therefore, we will look at all possible combinations, while keeping the above described
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pecking order.

3.5. Experiment design

In this section, we outline our experimental setup to assess the previously presented techniques. First,
we describe our choices regarding test data, followed by the evaluation metrics and our baseline that
we compare against. After outlining our methodology to evaluate the effectiveness of the proposed
techniques, we give details regarding the implementation.

3.5.1. Test data

In our experiments, we focus on sparse matrices that are openly available at [69]. Additionally, we only
experiment with symmetric and positive definite matrices that come from computational fluid dynamics
(CFD) problems. In particular, we focused on problems that are related to the flow of water or at
least liquids. This decision was made because the original motivation for the project comes from the
hydrodynamics domain. Linked to this reason, we found that the matrices of interest at Deltares are
symmetric and diagonally dominant [91], thus symmetric positive definite (SPD) (see Appendix C).
While TT-MALS often converges for non-SPD matrices as well, mathematically it is unclear why it should
happen [5]. Additionally, to keep experiment runtimes feasible on a personal computer, we decided to
focus on smaller matrices with n < 15000 and z < 800000. The majority of the matrices satisfying these
requirements were initially created using the Fluid Dynamics Analysis Program (FIDAP) [92]. We have
excluded one matrix (FIDAP/ex5) which is an outlier in terms of its sparsity 1 — % = 0.62 (as defined
in Appendix C.10).

This procedure has left us with 7 matrices. Five of these, are from the FIDAP group. These are the ex3,
ex10, ex10hs, ex13 and ex15 matrices. These 5 have a banded structure. The other two, Pres_Poisson
and bcsstk13 are not banded. For the experiments that involve Gaussian elimination over many vari-
ables, the two largest matrices (ex15, Pres_Poisson) have been excluded due to infeasible runtimes.
Additionally, we note that all test matrices are relatively ill-conditioned with 1e+10 < k¥ < le+ 16, except
for Pres_Poisson that has k = 2.04e + 6.

3.5.2. Evaluation metrics

In order to assess our proposed strategies, we utilize a few different metrics. Our main objective is to
minimize the theoretical TT-solve runtime. That is, the time it takes to convert the LSE to TT-format,
find the solution via TT-MALS and then transform the solution back to a vector.

Based on our discussion in Section 3.3, Eq. (3.9) is helpful to assess the key tradeoff between r and
1. This captures well the compromise to be made between the two variables in the context of the TT-
MALS bottleneck. Additionally, its formula is simple, keeping interpretation easier. Therefore, we use it
throughout Section 4.1 to look at the effects of our techniques. However, when considering the overall
TT-solve time complexity - including the conversion times - means that slightly different pairs of » and
I are optimal. To this end, when such runtimes are in focus, such as in Figure 4.9 and Section 4.2, we
use the complete runtime complexity as the objective function. Based on Table 3.1, we can write this
as follows.

gle,r,s,1,d,n,z) = s*In convert right-hand side with TT-SVD (3.10)
+z +dI*r? convert matrix using matrix2mpo (3.11)
+ cd(s3r°1? + s°rI% + s51%)  TT-MALS (direct local solver) (3.12)
+ dns? TT-sol2vector (3.13)

Let us also propose another metric for more insight. However, first, we shall illustrate where it comes
from. In the context of the matrix2mpo algorithm, for a chosen tile size I, all submatrices that have a
nonzero entry are selected. For clarity, recall from Eq. (2.1) that these submatrices give a partitioning
of the (block) matrix. Stacking these blocks to create a mode-3 tensor gives the first TTM-core of the
decomposition. The fewer submatrices are needed to capture all nonzero entries, the lower TTM-rank
r we get for a chosen I;. More precisely, r, the TTM-rank is exactly the number of nonzero blocks
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in the partitioning. l.e. all the blocks that contain at least one nonzero entry. Assuming all entries of
interest are nonzero, a perfect partitioning means that for a chosen tile size, each block contains no
zero entries. In order to evaluate how close we are to this ideal situation we propose the following
metric. We divide the number of nonzero entries in the matrix by the number of entries (both zero and
nonzero) the nonzero blocks capture in the partitioning. We note that this number of nonzero entries
may be different from the count in the original matrix as some of our methods alter it. Therefore, we
denote this potentially modified count as 2’. Now we are ready to give the formula for this criterion.

Z/

= 72
rl;

h(r,I,2") (3.14)

3.5.3. A baseline

For what comes next, it is important to establish a baseline, we can compare our approaches against.
In the matrix2mpo algorithm paper, the authors utilize the largest prime factor from the matrix size’s
integer factorization as the tile length [10]. Therefore, we will regard this choice as our baseline.

3.5.4. Assessing the effectiveness of our methods

As we are investigating the effects of different strategies we proposed, it could be helpful to test for
statistical significance. In this section, we detail, why we have concluded that this approach is not
well-suited for our study and describe our chosen assessment methodology.

As a starting point, our data sample consists only of a handful of matrices. To mitigate this, relaxing the
CFD and fluid flow constraints is the easiest approach. Also, experimenting with larger matrices could
be achieved by utilizing non-local compute clusters. Assuming, we had the time and resources for such
adjustments, there are other challenges that remain. The dependent variable is the TT-solve runtime
estimate, while our predictor variables should be the chosen tile size, level of partial Gauss, padding
and whether we used AMD or RCM reordering. Checking the individual effects is already problematic.
The original matrix size n largely determines the possible tile sizes, which in turn have a large effect on
what is possible. Since matrices come in different sizes, the same level of padding or PG will have a big
influence on some matrices, while non at all on others. Therefore, statistical assessments of particular
predictor variables such as level-k padding, cannot be assessed reliably. Of course, there are ways to
mitigate this. Forinstance, using synthetic matrices of the same size would counter this effect. However,
generating realistic matrices of this type goes beyond the scope of this project. Another possibility is to
group experiment samples together that come from the same (reduced) matrix sizes. In any case, the
added complexity is significant. On top of this, it is important to assess the effects when our strategies
are combined together. While standard statistical tests assume the independence of these predictor
variables, this condition is not met in several cases for us. Consider tile size choices together with
padding or PG. Clearly, possible submatrix sizes directly depend on the level of padding or PG that
is applied. Naturally, there are ways to counter these. However, such adjustments, together with the
previously discussed challenges were deemed out of reach, when considering the resources available
for this study.

As our analysis is of an exploratory nature, not testing for statistical significance but focusing on under-
standing the relationships between our variables and uncovering patterns, are of value on their own.
To this end, we concentrate on gaining such insights by looking at our test matrices one by one and
visualizing the general trends our methods promote. Additionally, we assess how much each of our
proposals can improve the metrics described in Section 3.5.2. Finally, we use the best results to con-
trast the TT-solve runtime estimates with CG and Gaussian elimination, besides the original TT-solve
time complexity.

3.5.5. Implementation details
In this section, we outline our software setup for the experiments.

Firstly, a choice had to be made regarding the programming language to be used. While several TT-
related algorithms come implemented in Matlab [10, 65], Python has its fair share of available libraries
for this domain too [72, 93]. Matlab comes with faster execution times, however, as we look at theoret-
ical time complexities, this is not a primary concern. An important factor is the availability of efficient
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implementations of RCM and AMD variable ordering for sparse matrices besides partial Gaussian elim-
ination. We found that both languages come with AMD and RCM implementations. For Python, these
are available via the cvxopt [94] and scipy [71] libraries. However, we have not found readily available
partial row reduction algorithms in either language. As these aspects did not tilt the scale to either side,
the choice was made to use Python because of the following. It is an open-source, easy to read and
widely used programming language for data analysis. Having to analyse our experiments and ensuring
easy reproducibility, these characteristics aided the decision.

We have made custom implementations for padding, partial Gaussian elimination and the first stage of
matrix2mpo, the modeSize2rank algorithm. This latter is used for computing the TTM-rank of a given
sparse matrix for a chosen tile size. These implementations come complemented with extensive test
suits. In order to run our experiments in parallel and track the results, the wandb package [95] was
utilized. When experimenting with PG, we had to take extra precautions. As we work with ill-conditioned
matrices, after reducing only a handful of variables, floating point errors lead to entries turning nonzero
which should have remained zeros. For our use case this is particularly problematic. To mitigate this,
we have added rounding to PG. The correct level of rounding was calibrated as follows. We used
the LU decomposition implementation from scipy and counted the nonzero entries in the resulting U
matrix. This U matrix corresponds to the row echelon form of the original matrix after (partial) Gaussian
elimination is applied on all variables [96]. We choose the rounding level so that when we run our PG
implementation on all variables, the nonzero pattern and count matches with U. The highest level of
truncation threshold that we had to apply is 1e — 3.

On top of these, we implemented an extra measure for cases when the nonzero count explodes during
PG. As we aim to optimize the TTM-decomposition process via matrix2mpo, working with dense matri-
ces is pointless. To this end, when the sparsity ratio drops below 80%, we do not eliminate any more
variables in the PG approach.

Lastly, let us highlight our data analysis practices. We make use of Jupyter Notebooks [97], the pandas
library [98] for data manipulation and Plotly [99] for visualizations. The code repository of the project,
together with all the test data, is available at https://github.com/cbakos/sparse_tt_decomp_opt.
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Results

In this chapter, we detail our experimental results. We do this in two parts. First, we report how much
our proposed strategies can reduce the theoretical runtime of the TT-solve approach. This part also
includes an outlook on how much space is left for further improvements. Second, we compare the
original and improved TT-solve approach with classical solvers such as CG and GE in terms of time
complexity.

4.1. Sparse TTM decomposition optimization for TT-solve

In this section, we present the results of our experiments to assess the runtime reductions for TT-solve.
Each proposed module’s effects are examined individually. This is followed by the analysis of the
combined approaches.

4.1.1. Tile selection

In this part, we show how choosing different tile sizes impacts the TT-MALS runtime bottleneck. The
baseline tile size choices are indicated by the enlarged markers. That is, when the tile size choice
corresponds to the largest prime factor of the matrix size n.

Figure 4.1a illustrates the tradeoff between the TTM-rank r and the maximum mode size 1. Notably, as
we choose tile sizes that yield higher ranks, the maximum mode size does not decrease but flattens out.
This can be explained by the fact that choosing tile sizes smaller than the largest prime factor does not
decrease the maximum mode size. However, it does tend to increase the rank as we generally need
more tiles to cover all the nonzero entries in the matrix.

Figure 4.1b shows the TT-MALS runtime bottleneck as a function of the tile size for different matrices.
We note how increasing the tile size eventually leads to a sharp rise in the runtime estimates for all
matrices. This phenomena is caused by the I° term in Eq. (3.9). It blows up the time complexity as the
maximum mode size becomes larger than the TTM-rank, thanks to the tile size increase.

Let us consider how different tile size choices compare to the default setting, using the largest prime
factor. Based on Figure 4.1a, it appears that the largest prime factor indicates the breaking point in
the tradeoff curve between maximum mode size and rank. This makes sense because choosing lower
factors as tile sizes does not decrease the maximum mode size. In terms of runtime, because of the
dominating I° term in Eq. (3.9), in Figure 4.1b the baseline tile choices mostly appear on the right, just
before the runtime explodes due to bigger tile size choices. Interestingly, for ex710hs this is not the
case. For this matrix, thanks to the many integer factors of its size n, it is possible to combine these to
get slightly larger tile sizes than the baseline. These in turn yield smaller ranks, however, overall the
runtimes appear similar to the baseline. If the objective function was less dominated by the maximum
mode size, these newly constructed, slightly larger tile size choices likely lead to bigger reductions.
Also, for other matrices, with the same objective function, it is possible, that slightly larger mode sizes
- constructed from smaller prime factors - can reduce the TTM-rank enough to make that the optimal
tile size choice. Therefore, we can conclude that choosing the largest prime factor as tile size is a very
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effective heuristic. However, depending on the objective function being minimized, it may be less likely
to yield a result close to the optimal one.

Trade-off between rank and maximum mode size
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(a) This plot shows the relationship between the maximum mode size and the TT-rank for our test matrices. The
markers indicate feasible tile sizes for the matrices, which in turn determine the TT-rank and maximum mode size of
the TT-decomposition. While some matrices allow many different tile size choices (e.g. ex10hs), others like
bcesstk13 have only one possible combination as its size n = 2003 is a prime number.

Influence of tile size choice on TT-MALS runtime
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(b) This plot illustrates how choosing different factors as a tile size influences the runtime of the TT-MALS bottleneck.
O(I% + rI® 4+ r21?) is the estimated time complexity when taking the TTM-rank = and maximum mode size I as
variables. As the figure shows, the choice of possible tile sizes is largely constrained by the size of the matrix. Take
for instance ex3, where n = 1821 = 3 - 607 gives only 3 possible choices: 3,607 and 1821.

Figure 4.1: lllustration of the TT-decompositions that are possible on our test matrices when choosing different possible tile
sizes for matrix2mpo. The enlarged markers indicate when the tile size choice corresponds to the largest prime factor of n, i.e.
the baseline setting.
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Influence of RCM on ranks for different tile sizes
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(a) Reverse Cuthill-McKee (RCM) ordering.

Influence of AMD on ranks for different tile sizes
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(b) Approximate Minimum Degree (AMD) ordering.

Figure 4.2: This visual showcases how the rank is effected by RCM and AMD variable reordering for each test matrix,
choosing different tile sizes. The y-axis measures the ratio of the rank with respect to the original rank for a given matrix and
tile size choice. For example if the rank was 100 without variable ordering but now its rank ratio is 0.7, then the new rank is
0.7 - 100 = 70 using the chosen variable ordering algorithm.
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4.1.2. RCM variable ordering

We show the effects of the reverse Cuthill-McKee (RCM) variable ordering on our test matrices’ rank
in Figure 4.2a. We observe that for certain test matrices (ex10hs, ex15), when the tile size is under
100 the ranks are noticeably reduced. Assuming the prime factorization of the matrix size allows it, the
best runtime estimates often occur for tiles sizes between 10 and 100, (see Figure 4.1b). Therefore, for
some matrices, we can conclude the usefulness of RCM in this context. While useful, unfortunately,
given our objective function to estimate the bottleneck of TT-MALS (Eq. (3.9)), the overall runtime is
not significantly affected, as this approach leaves the maximum mode size unchanged.

In Figure 4.2a it is hard to tell whether RCM can be more effective for non-banded matrices
(Pres_Poisson, bcsstk13) than the banded ones. This is caused by the limited integer factorization
of the non-banded matrices’ size. To this end, we postpone this assessment, until Section 4.1.6, where
we consider RCM together with other modules that enable more tile size choices.

4.1.3. AMD variable ordering

The Approximate Minimum Degree (AMD) variable ordering algorithm’s main aim is to reduce fill-in
when computing an LU decomposition or doing Gaussian elimination [84]. Therefore, it is not expected
to enable better capture of the nonzero entries with the tiles used in matrix2mpo as a standalone module.
We include it here for completeness. Later, we assess whether it can have a positive effect when used
together with partial Gaussian elimination. Figure 4.2b confirms our suspicion that it does not improve
the ranks of the TT-decomposition, in fact, for most tile sizes of interest (above 10 for our test matrices),
it makes things worse.

4.1.4. Padding

In this segment, we look at the results when padding is applied to our test matrices. First, the case of
ex3 in Figure 4.3a is analysed. For this matrix, the initial factorization (0-padding) makes the choice
of possible tile sizes very constrained. This is because n = 1821 = 3 - 607 when doing integer fac-
torization. This means 3 possible tile size options: 3,607 and 1821. Adding padding mitigates this by
allowing better factorizations. For instance, adding 3 levels of padding provides the best result in this
case. This means that the new size of the matrix becomes n’ = 1824 = 2° - 3 - 19, which clearly opens
up many more tile size options.

To quantify the improvement, we can calculate the speedup ratio between the level-0 padding run-
time estimate and the level-3 padding. On the plot (Figure 4.3a) we can see that the level-0 padding
has around 38 on the y-axis in log-scale. On the other hand, level-3 padding gives a runtime of around
20 on the log-scale. Therefore, we get a speedup ratio of ;’; ~ 65.66 - 106.

For the ex70hs matrix, the original factorization (level-0 padding) is n = 2548 =2-2.7-7-13. This
allows for several different tile sizes choices: 2,4,7,13, 14, 26, 28,49,52,91,98, 182,196, 364, 637, 1274
and 2548. As Figure 4.3b illustrates, padding cannot improve the TT-MALS bottleneck estimate here
because the original factors already provide sufficient coverage. Interestingly, when adding level-8
padding to the matrix, we can see that we have more tile size choices under 100 compared to the
original setting. Nevertheless, level-0 padding gives the best result. This observation points out that
having more factors does not necessarily translate to better TT-MALS runtimes. The explanation for
this stems from the nature of padding. As we increase the size of the matrix, we tend to get slightly
different tile sizes that perform the best. Depending on the exact location of the nonzero entries, having
these slightly bigger or smaller tiles can mean that we need or do not need an extra block to capture
the same set of entries. In cases when such extra blocks are needed, the rank is higher, leading to
worse runtimes.
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Influence of tile size choice and padding on TT-MALS runtime (ex3)
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(a) This plot illustrates how different levels of padding for the ex3 matrix allows for various tile size choices (x-axis), which in turn
reduce the expected runtime bottleneck of TT-MALS (y-axis).

Influence of tile size choice and padding on TT-MALS runtime (ex10hs)
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(b) This plot illustrates how different levels of padding for the ex10hs matrix allows for new tile size choices (z-axis), yet, it cannot
reduce the expected runtime bottleneck of TT-MALS (y-axis).

Figure 4.3: Comparison of the effects of zero-padding on two different matrices. The enlarged markers indicate when the tile
size choice corresponds to the largest prime factor of n, i.e. the baseline setting.
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Effect of variable elimination and AMD
on nonzero entry count for complete matrix
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(a) This plot illustrates the change in nonzero entry count for the entire matrix.

Effect of variable elimination and AMD on nonzero entry count for submatrix
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(b) This plot shows the change in nonzero entry count for the submatrix that remains after the partial Gaussian elimination is
finished.

Figure 4.4: These figures illustrate how the nonzero entry count changes when partial Gauss is applied with and without AMD
to our test matrices that have n < 3000. The z-axis measures the ratio of reduced variables. For instance, if the matrix has
size n = 2410, then in the = dimension, 0.2 indicates the result when 0.2 - 2410 = 482 variables are reduced. On the other

hand, the y-axis measures the nonzero entry count change. The value 1 is the original one, e.g. 52685 for ex3 and a value of 2
means that the original rate has doubled. When the output is below 1, then the nonzero count is reduced. For example, 0.2

means that only 20% remains of the original count. We note that the data points for ex13 are available only for small ratios of
reduced variables and hence hidden by the other results on this plot. As mentioned in Section 3.5.5 we terminate experiments
where the sparsity drops below 80%. This was the case for this test matrix after a handful of eliminated variables, hence the
absence of complete results.
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4.15. Partial Gaussian elimination

In this part, we detail how partial Gaussian elimination affects the remaining submatrix which can be
decomposed via the matrix2mpo algorithm to allow solving it in the TT-format. First, we study how the
nonzero entry count is affected due to fill-in. This is important because having extra nonzero entries
may require more tiles to capture them, leading to higher ranks when using the matrix2mpo algorithm.
This is followed by checking the influence of Partial Gauss on the TT-MALS bottleneck estimate.

When looking at nonzero counts, we can do this in two different ways: either consider the complete
matrix or only the remaining submatrix that is solved in the TT-format for our investigation or via CG in
other studies [78, 80]. The former is in line with the nonzero entry count that AMD aims to minimize
by reordering the variables. Depending on the implementation of Gaussian elimination, the change
in nonzero count outside the submatrix may or may not be relevant. If a sparse-Gauss approach is
used, fill-in will be very relevant for the runtime for this part. However, if a dense-Gauss reduction is
applied, the runtime will not be affected as each entry will be iterated over outside of the submatrix
anyhow. Consulting the literature [78, 80, 91] that used the combined Gauss-CG solver, we found no
specification regarding these details. To this end, we look at both cases to capture the complete picture.
Figure 4.4 shows these effects with and without AMD variable ordering. For this section, we focus on
the case, when no AMD is applied.

There is a clear trend difference between the banded and non-banded (bcsstk13) matrices. Figure
4.4a shows that for the banded matrices the nonzero entry count for the full matrix does not grow over
more than 1.6 — 1.7 times the original number, when reducing up to 90% of the variables. In the mean-
time, for the non-banded matrix, the nonzero entry count explodes to over 5 times the original count,
already when 60% of the variables are reduced.

In Figure 4.4b we can see what happens for the submatrix. For the banded matrices, we can ob-
serve a relatively consistent, linear reduction in the nonzero count as more and more variables are
eliminated. However, the non-banded case largely deviates from this tendency. The nonzero count is
around 1.5-times the original value in the submatrix, when at least around 15% of variables are elimi-
nated.

Based on these results showcased by Figure 4.4, we can make the following inferences. Firstly, for
non-banded matrices, we can expect to run into trouble with the nonzero count increase when partial-
Gauss is applied without any strategies to mitigate this. Secondly, for banded matrices, the nonzero
count in the submatrix approximately reduces by the same ratio as the fraction of variables that are
eliminated. In the meantime, the nonzero entry change for the complete matrix can slightly increase,
however, it won’t be as drastic as for the non-banded case.

Next, we look at Figure 4.5 to see how Partial Gauss influences the TT-MALS runtime bottleneck. Here,
we only use the data points with the best tile size choice at each variable elimination step. A tile size
choice becomes best by minimizing Eq. (3.9). Figure 4.5a illustrates how partial Gauss leads to better
maximum mode size and rank combinations. On the other hand, Figure 4.5b aims to show the change
in runtime estimates as more and more variables are eliminated. Additionally, it also unveils the large
fluctuation in runtime estimates originating from the factorization possibilities at different steps. The
coloring reveals that the more tile size choices are available, the better our chances to get the lowest
runtimes.
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Maximum mode size

Influence of variable elimination on TT-ranks and max mode size for ex3
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(a) This figure shows how different scales of variable elimination affect the TT-rank and maximum mode size.

Influence of variable elimination on TT-MALS runtime for ex3
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(b) This figure shows how different scales of variable elimination and the (lack of) tile size choices affect the estimated TT-MALS

runtime.

Figure 4.5: This figure illustrates the effects of partial Gauss on ex3, which gives representative insights for the other test
matrices as well. For these plots, only those data points are kept that minimize the TT-MALS runtime estimate by varying the

tile size while keeping the other variables fixed.
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4.1.6. Combined approaches
Here, we examine our experimental results for different combinations of the previously introduced ap-
proaches.

Padding then RCM

Once padding is applied, we can attempt to concentrate the nonzero entries using RCM. In Figure 4.6
we show the result of this approach. Firstly, we can observe that in the overwhelming majority of cases,
the estimated runtime does not change (see the huge peak at 0 on the x-axis). In those few cases, when
RCM does have an effect, depending on the matrix, the effect tendency is either positive or negative.
In particular, for Pres_Poisson, ex15, ex10hs RCM leads to reductions while for ex13, bcsstk13 we
see the opposite. Since the non-banded matrices, Pres_Poisson and bcsstk13 are split between the
two classes, we can only conclude that RCM'’s effectiveness in this context is matrix dependent. l.e. it
does not necessarily lead to improvements, just because the matrix has a non-banded structure.

Change in runtime estimates after adding RCM to Padding
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Figure 4.6: This histogram illustrates the change in the TT-MALS bottleneck estimate when we add RCM variable reordering
after padding. All test matrices and samples are used to make the plot. Note that the y-axis, count, is in log-scale to make the
smaller values visible too.

PG then Padding

After partial Gauss we can also apply padding. In Figure 4.7 we show what effect this has on the TT-
solve runtime bottleneck for the ex3 test matrix. A clearly visible pattern is how the runtime estimates
remain (nearly) constant on the skew-diagonals. This phenomena can be explained as follows. Each
skew-diagonal corresponds to a constant value when we take the difference between padding and PG
levels. Taking the difference between the level of PG and padding equals the absolute change to the
size of the matrix. As seen before, different matrix sizes allow for different integer factorization and in
turn different tile size choices. Therefore, if we want to observe the effects of PG and padding without
the effects of different factorizations, we need to compare entries within skew-diagonals. In most cases,
these changes are under 0.01 which corresponds to a factor of %! ~ 1.01. Meaning the shift in the
runtime estimate remains under 1%. However a few cases also exhibit an alteration of 0.05 on the
skew-diagonal. This latter situation corresponds to a factor of €% ~ 1.051, that means a shift of 5.1%
in the runtime.
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Influence of variable elimination with padding on TT-MALS runtime for ex3
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Figure 4.7: These heatmaps quantify the TT-MALS bottleneck estimate, when combining padding and partial Gauss for ex3.

Only the best tile size choice data points are kept, minimizing the log of Eq. (3.9). We rounded the values to 2 decimal places

for readability. Each column shows how different levels of padding alters the best possible runtime for a given level of partial
Gauss. Rows show the opposite; for a fixed padding level, how PG effects the runtime.

In addition to these observations, as we compare Figures 4.7a and 4.7b, we can see the skew-diagonal



41. Sparse TTM decomposition optimization for TT-solve 39

pattern remains unchanged as more variables are eliminated by PG. However, in agreement with the
observations in Figure 4.5b, we can notice a general reduction of runtimes as the number of eliminated
variables grows.

Change in runtime estimates when adding AMD before PG
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(a) This histogram illustrates the case when we add AMD variable ordering in addition to partial Gauss.

Change in runtime estimates when adding RCM after PG
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(b) This histogram illustrates the case when we add RCM variable reordering after partial Gauss.

Figure 4.8: These stacked histograms show how two different approaches change the TT-MALS runtime bottleneck for
different matrices. Note that the y-axis, count, is in log-scale to make the smaller values visible too. We only plot the data
points that correspond to the best tile size choices. The two largest matrices are excluded here because of the computational
infeasibility when doing PG.
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AMD followed by PG

We can apply AMD variable reordering before doing partial variable elimination to minimize fill-in. We
illustrate how this addition to PG affects the runtime estimates in Figure 4.8a. Similarly to the case
of Figure 4.6, the overwhelming maijority of cases show no change in runtime. For the ex3 and ex13
matrices we can observe a consistent runtime increase in those few cases when there is a shift, while
ex10 shows the opposite behaviour.

We also note an important observation regarding Figure 4.4 that shows how AMD and PG affect the
nonzero count in the matrices. When looking at Figure 4.4a, we can see that AMD reduces the gen-
erated fill-in. However, for bcsstk13, the non-banded matrix, the nonzero count still explodes. On
the other hand, in Figure 4.4b, AMD has a negative effect as the nonzero count is in fact increased
in almost all data points shown. These observations, motivate the exploration of alternative variable
ordering algorithms, in the hope of better fill-in reduction for the submatrix case as well.

RCM after PG

We can utilize RCM variable reordering after doing partial variable elimination to attempt to concentrate
the nonzero entries around the diagonal. We demonstrate how this addition to PG affects the runtime
estimates in Figure 4.8b. Similarly to the cases of Figure 4.6 and 4.8a, the overwhelming majority of
cases show no change in runtime. We can again see that ex3 and ex713 matrices consistently have a
runtime increase in those few cases when there is a shift, while ex70 shows the opposite behaviour.
Compared to 4.8a, here for ex70hs, RCM also appears to invariably lead to a lower runtime in a number
of instances.

Higher level interactions

We do not consider in detail the cases when more than two methods are applied together. This decision
was made because of the relatively small improvements of higher level interactions. As we will show
in Figure 4.9, for our test matrices, we have less than a factor of 1 improvement compared to the best
runtimes within level-two combinations.

4.1.7. Best performing methods

In this section, we assess which combination of our proposed approaches yield the best results. First,
we look at the speedup gains using Eq. (3.10)-(3.13), then our focus shifts to the nonzero ratio of
captured tiles by utilising Eq. (3.14). The latter analysis is particularly insightful in determining the
possibility of future improvements.

Speedup gains

In Figure 4.9 we showcase the performance of each proposed method, both individually and in a com-
bined fashion. We look at two variants, firstly, Figure 4.9a shows the results when no tile size selection
is performed, i.e. the tile size equals the largest prime in the integer factorization of the matrix size n.
In Figure 4.9b we show how different methods, together with choosing the best possible tile size, affect
the estimated runtimes. In both cases, the Baseline method uses the largest prime factor as tile size.

There are a number of observations we can make in Figure 4.9. Firstly, we note that the main con-
tributors to the speedups are padding and PG for all matrices. Looking at the ex70hs matrix, the
effectiveness of these methods is limited. This can be traced back to the observations made in Figure
4.3b. As mentioned earlier, the size of ex10hs factorizes well, giving several tile size options to choose
from. Therefore, the new factorizations enabled by padding and PG do not lead to significant changes.

While variable ordering techniques do not lead to speedups of several orders of magnitude, they play
a crucial role in achieving the best possible speedups. This is supported by the recognition that for
all matrices, except bcsstk13, RCM, sometimes together with AMD achieve the best speedup when
added to PG and padding.

We can also see that the methods’ effectiveness, in terms of speedup, is largely dependent on the
matrix at hand. As our matrix sample is really small, we cannot reasonably draw any conclusions for
these type of matrices in general.

Comparing Figures 4.9a and 4.9b we can also spot that the two heatmaps are very similar to each other.
This points us to notice the small effect enabling tile size choice has on the speedups for this objective
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function. This is in line with our previous results in Section 4.1.1. These improvements are of similar
magnitude to what AMD or RCM achieve on top of padding and PG. In 5 of of 7 cases, when looking at
the best performing strategy combinations, choosing the largest prime factor as tile size already yields
the best result.

Methods applied

Methods applied

Speedup ratio of TT-solve runtime by different methods, largest prime factor as tile size

Baseline RNV 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 Speedup ratio
1.00e+00 1.00e+00 1.00e+00 1.01e+00 1.00e+00 1.00e+00 1.00e+00 e+15
5.16e+05 1.71e+15 3.4%9e+05 1.88e+00 1.17e+13

Padding wRZYLEIE) 3.21e+12 2.94e+05 2.43e-01
1.00e+00 1.00e+00 1.00e+00 1.04e+00 1.00e+00 1.00e+00 1.00e+00

L\ole]  4.69e+05 1.42e+15 2.01e+05 2.00e+00 8.05e+12 e+10

AMD, Padding RISk 3.21e+12 1.77e+05 2.45e-01

AMD, RCM [Se[oI=230]0] 1.00e+00 1.00e+00 1.07e+00 1.00e+00 1.00e+00 1.00e+00
PG, Padding S EEERL) 1.73e+15 3.01e+05 1.90e+00 1.20e+13
PG, RCMESGIPIERIL] 1.79e+15 3.53e+05 1.96e+00 6.41e+12 e+05
Padding, RCM ERWACZIEHIE 3.21e+12 3.27e+05 1.03e-02
AMD, PG, PaddingZR:EI=EHIE) 1.45e+15 1.98e+05 1.96e+00 8.34e+12
AMD, PG, RCM AR 1.66e+15 3.62e+05 2.13e+00 7.88e+12
AMD, Padding, RCMESPIZE{EHI] 3.21e+12 3.18e+05 2.47e-01 e+00

PG, Padding, RCMEERSEIE 0L 1.93e+15 4.01e+05 2.05e+00 8.71e+12

AMD, PG, Padding, RCMECHEIEET0E 1.96e+1 3.20e+05 2.16e+00 8.40e+12

ex13 Pres_Poisson ex15 ex10hs ex10 bcsstk13 ex3

Matrix name

(a) In this visual, all methods use the largest prime factor of the matrix size factorization as the tile size.

Speedup ratio of TT-solve runtime by different methods, with best tile size

BRI 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 Speedup ratio
1.00e+00 1.00e+00 1.00e+00 1.01e+00 1.00e+00 1.00e+00 1.00e+00 e+15
7.49e+05 1.71e+15 3.49e+05 1.88e+00

[SEEY 2.47e+05 3.21e+12 2.94e+05 2.43e-01
1.00e+00 1.00e+00 1.00e+00 1.04e+00 1.00e+00 1.00e+00 1.00e+00

AMD, PGEECReV/EH 1)) 1.42e+15 2.01e+05 2.00e+00 8.54e+12

AMD, Padding [SRwAVIIE0] 3.21e+12 1.77e+05 2.45e-01

e+10

UMY  1.00e+00 1.00e+00 1.00e+00 1.07e+00 1.00e+00 1.00e+00 1.00e+00
PG, Padding VAPIHI 1.73e+15 3.42e+05 1.90e+00 1.63e+13
MY 7.40e+05 1.79e+15 3.53e+05 1.96e+00 7.92e+12 e+05
Padding, RCM PRI 3.21e+12 3.27e+05 1.03e-02
AMD, PG, Padding[BNHEIE NI 1.45e+15 2.13e+05 1.96e+00 9.32e+12
AMD, PG, RCMZCHZ L 1.66e+15 3.62e+05 2.13e+00 1.03e+13
AMD, Padding, RCM IRPIZEISHIL 3.21e+12 3.18e+05 2.47e-01 e+00

PG, Padding, RCMSWA{IEES05 1.93e+15 4.01e+05 2.05e+00 1.07e+13

AMD, PG, Padding, RCMESVAZIEX0E) 1.96e+15 3.24e+05 2.16e+00 1.03e+13

Pres_Poisson ex10hs besstk13

Matrix name

(b) In this visual, all methods (except the Baseline) utilise the possibility of choosing the best tile size, constructed from the integer factorization of

the matrix size.

Figure 4.9: These heatmaps illustrate the speedup ratio on the estimated TT-solve runtimes when different improvements are
applied per matrix. The best results per matrix are underlined and are shown in italic font. Here we apply at most 10 levels of

padding and/or PG. This is to ensure that the additional time complexity of PG does not ruin the overall runtime.
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Overall padding and PG appear as the most effective methods, however to achieve the maximal
speedup gains, combined approaches are needed. This is evident, as the best results are obtained
when all 4 methods are applied for 2 out of the 7 matrices. 3 cases need the combination of 3 methods
and lastly 2 matrices get the best speedups when 2 approaches are combined. When the tile size
choice is restricted, the best speedup for ex73 needs all 4 methods combined, instead of 3.

Nonzero ratio of captured tiles

In addition to evaluating the speedup gains, we also look at the nonzero ratio of the captured tiles for
matrix2mpo. The metric, we use to quantify this, is given by Eq. (3.14). In particular, in Figure 4.10 we
illustrate the results for this criterion for each matrix and proposed improvement.

Firstly, when comparing it to Figure 4.9, we can see high correlation between the (best) speedup and
the (highest) nonzero ratio for the tiles. I.e., having a higher nonzero ratio for a particular tile size choice
means a lower rank. This happens because we capture all nonzero entries with fewer tiles. Therefore,
having a higher ratio for a given tile size leads to better runtimes.

Figure 4.10 is especially helpful in understanding the limited speedup gains in the case of ex70hs. As
we can see, for every other test matrix, we start with a very small nonzero ratio (below 9%) in the
captured tiles. After our improvements, the best results correspond to the cases when the ratio has
significantly increased. In particular, these advancements mean a minimum absolute value increase
of 0.18, while for ex10hs this change is only 0.04. In combination with the high baseline ratio of ex70hs
of 0.13, this indicates the limitations of our proposed strategies. It appears that our methods are more
effective in cases when this nonzero ratio is lower at the start.

Average nonzero ratio of captured tiles for different methods

Baseline 0.1302 0.0267 0.0175 0.017 Average nonzero ratio
AMD 0.1319 0.017 0.0175 0.0132 of captured tiles
PG 0.1442 0.2155 0.2087 0.2075
Padding 0.1061 0.1545 0.1366 0.3
RCM 0.1436 0.0258 0.0175 0.0149
3 AMD, PG 0.1543 0.2127 0.1318 0.1797 0.25
2 AMD, Padding 0.1134 0.1631 0.0487 0.118
S AMD, RCM 0.1572 0.0258 0.0175 0.0149 0.2
g PG, Padding 0.1575 0.165 0.1461 0.2146 0.2189 0.2043
=) PG, RCM 0.2164 0.1512 0.233 0.1255 0.2117 0.15
3 Padding, RCM 0.162 0.0953 0.1586 ||10.0629 | 0.1454
AMD, PG, Padding 0.1247 0.1505 0.2219 0.165 0.1825 0.1
AMD, PG, RCM 0.2195 0.1674 0.1973 0.1466 0.1799
AMD, Padding, RCM 0.1588 0.1307 0.1623 _ 0.1458 0.05
PG, Padding, RCM 0.177 0.231 0.1598 0.2135 0.1496 0.2155
AMD, PG, Padding, RCM 0.1804 0.1599 0.1701 0.2197 0.1492 0.1879
ex13 Pres_Poisson ex15 ex10hs ex10 besstk13 ex3

Matrix name

Figure 4.10: This heatmap shows the average nonzero ratio of the tiles used in the matrix2mpo algorithm for each strategy
and matrix. The baseline uses the largest prime factor as tile size, while the other ones utilize the best possible tile choice
based on the TT-solve runtime. This ratio corresponds to the number of nonzero entries in the (modified) matrix, divided by the
number of entries the nonzero submatrices capture. l.e. the divisor is the TTM-rank multiplied by the tile size squared. We
report the average value because of two reasons. Firstly, the submatrices have different ratios across the matrix. As the
variance or distribution is not of interest at this time, we focus on the average only. Additionally, this mean value is the same as
the nonzero ratio of the first TTM-core in the TTM-decomposition.

4.2. TT-solve applicability for matrices

In this section, we look at how traditional techniques like Gaussian elimination and Conjugate Gradient
compare against the runtime of TT-solve, with and without the proposed improvements. Figure 4.11
shows the comparison per matrix across the different approaches. For this analysis, we include the
LSE conversion times to and from the TT-format. |.e. the runtime criterion is given by Eq. (3.10)-(3.13).
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Estimated runtimes of different solution methods

2.65e+21 PEICEEEREAN 2.17e+19  6.22e+19  5.05e+23 Runtime estimate
(FLOPs)

.e+30

e+20

TT-solve, baseline, O(log(n))

TT-solve, baseline, O(1)| 1.02e+26 3.14e+22 4.81e+10 7.54e+14 9.48e+14 2.40e+19

Gaussian elimination SRS VS5V 5.36e+09 9.34e+09 1.10e+10 1.13e+10 2.16e+11 4.03e+09

Conjugate Gradient SNoZEETE] 8.78e+09 5.23e+10 4.24e+10 2.61le+12 2.90e+11 6.84e+09

Solution technique

TT-solve, improved, O(log(n)) 4.43e+13 2.1%e+13 4.09e+13 2.78e+13 1.55e+14 2.60e+13

TT-solve, improved, O(1)PA:ELEES VI 1.12e+11 4.99e+10 3.80e+10 5.71e+10 2.23e+11 2.41e+10 e+10

Pres_Poisson bcsstk13 ex10hs

Matrix name

Figure 4.11: This heatmap illustrates the estimated runtimes of solving linear systems of equations by different methods. We
use the runtime estimates as stated in Table 3.1. The baseline TT-solve refers to the TT-MALS runtime without AMD, PG,
Padding, RCM or choosing the best tile size. The improved TT-solve indicates the best runtime achieved by a combination of
our proposed techniques. In both cases, the runtime estimates include the time needed to convert the LSE to the TT(M)-format.
Additionally, they also include the time needed to convert the solution back to a vector from the TT-format. We differentiate
between two different scenarios. The O(1) one happens when we assume that the number of iterations needed for TT-MALS
to converge is constant (c = 1). Additionally, the solution vector can be well-approximated with a TT-rank of O(1), w.r.t. the
matrix size n, in particular we take s = 2. In the O(log(n)) scenario, we take ¢ = log(n) and s = log(n). In both situations,
d = log(n), in line with our derivation in Section 3.2.3. In the baseline case I is given by the largest prime factor of the matrix
size. This in turn determines the value of . When looking at the improved situation, the » and I pair is chosen across our
evaluated strategies so that they minimize the TT-solve runtime, including conversions. Regarding the traditional solver
approaches we note the following. The Gaussian elimination runtime estimate does not utilize the potential gains which can be
achieved on banded matrices. Similarly, we show CG runtime estimates here without any preconditioning. This decision was
made because their effectiveness is largely problem dependent and the number of possible preconditioner techniques to try
are countless.

The best theoretical runtimes are achieved by Gaussian elimination and CG for all our test matrices.
As we have discussed earlier, our strategies have limited effects for ex70hs, which can be observed in
this plot as well. However, for the other test matrices, we can see that the significantly higher baseline
runtimes of TT-solve are reduced to the same order of magnitude as CG and GE, under the O(1) as-
sumption scenario. An exception to this is the Pres_Poisson matrix which comes with a lower condition
number, thus computing its solution is more efficient via CG. In the case of ex10hs, we can see that
the baseline TT-solve runtime is already comparable to GE and CG under the O(1) premise.

Overall, we can conclude that our proposed methods are able to bring down the TT-solve time to com-
parable FLOP counts to what CG and GE require. This is assuming that the expected time complexity
is not already comparable as in the case of ex70hs. Notably, we still rely on strong assumptions re-
garding the TT-MALS convergence and TT-rank of the right-hand side and solution vector. On the flip
side, our analysis is done on general sparse, CFD matrices which have no special structure to allow
for very low numerical or TTM-ranks as seen in Table 2.1. Recalling our observations regarding Figure
4.10, we know that our methods were able to increase the nonzero ratio in the captured tiles to at most
around 33%. This means, that for a given tile size I, the lowest possible TTM-rank is only at around
% of its theoretical limit. It remains a challenge to achieve better nonzero entry concentrations, how-
ever, our analysis shows the possibility. Therefore, we can conclude that the door is opened for future
research to achieve better TT-solve runtimes than CG and GE, for general, sparse and ill-conditioned
linear systems of equations.






Discussion

In this chapter, we highlight the limitations of this study, then discuss our main results, and finally give
pointers for future investigations in this subject.

5.1. Limitations

In this section, we review the restrictions of this research project. First, we recap the benefits and
drawbacks of our runtime assessment methodology. This is followed by the implications of our test
dataset used in the experiments. Lastly, we address the assumptions that were made regarding the
TT-solve approach and the runtime of the CG and GE solvers.

5.1.1. Runtime assessment methodology

The way we have assessed the runtimes of algorithms is highly theoretical. While this has several
advantages, there are obvious drawbacks to this approach too. This method of counting primitive oper-
ations or in certain cases just FLOPs, often combined with the big-O notation has been the backbone of
this project. Its ease of use contributed to the assessment of the time complexity of various algorithms
under a short period of time. This approach, does not just give reasonable estimates on how these
scale, depending on the size of the input, but also it does not suffer from runtime dependencies on our
particular hardware setup.

This, however, also means that we neglect several details that influence the true runtime of the algo-
rithms in question. For example, for Conjugate Gradient (CG) and Gaussian elimination (GE), there are
highly optimized code bases available [100, 101] that have been developed over several decades. In
the meantime, while TT-methods can partially reuse these libraries, overall, their codebases are not yet
optimized to this extent [65]. Another observation is that certain primitive operations are simply faster
than others in practice [12], although we assume that they all take the same amount of time. While
our analysis has taken into account lower order terms, we have neglected several constant factors for
the runtime assessment of the TT-methods. Therefore, our assessment shows the right trend for large
inputs, but for smaller ones, these constant factors could still dominate, yielding results different from
what our findings suggest.

5.1.2. Test data

Our study'’s reliance on a limited set of test matrices imposes constraints on the generalizability of our
findings. First, the matrices used are exclusively drawn from the sparse matrix collection available
at [69]. Our selection is further narrowed to symmetric and positive definite matrices originating from
computational fluid dynamics (CFD) problems related to the flow of water or other liquids. This focused
selection was motivated by the domain of interest at Deltares. We note however, that our test matrices
do not follow any special structure such as Toeplitz, Hankel or Cauchy matrices that are known to have
low numerical rank [2]. Therefore, we do expect our general findings to hold for similar, ill-conditioned,
sparse matrices, coming from CFD problems and potentially from other application domains.

45
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Our choice to work with smaller matrices (with n < 15000 and z < 800000) was driven by the practical
consideration of keeping experiment runtimes feasible on personal computing resources. We have
also excluded one matrix (FIDAP/ex5) due to its outlier status in terms of sparsity, further narrowing
our dataset. The resulting small sample size of just seven matrices, constrains the statistical power of
our analyses and limits our ability to generalize the results to larger or differently structured matrices.

Finally, the nature of our exploratory analysis, which aims to understand relationships between variables
and identify patterns, precludes the use of statistical significance testing. The complexity of interactions
between predictor variables, such as tile size, level of partial Gaussian elimination (PG), padding, and
reordering strategies (AMD or RCM), combined with the dependency on matrix size, makes it chal-
lenging to isolate the effects of individual factors. Although methods like using synthetic matrices or
grouping matrices by size could mitigate some of these issues, such approaches were beyond the
scope of our study.

In summary, while our findings provide valuable insights into the performance of the tested methods,
the limitations in matrix selection, sample size, and the exploratory nature of our analysis restrict the
broader applicability of our conclusions. Future work could address these limitations by expanding
the matrix dataset, including larger and more varied matrices, and employing more robust statistical
methods to evaluate the effects of individual and combined factors.

5.1.3. TT-solve assumptions

Our results stated in Figure 4.11 rely on strong low-rank assumptions which, if relaxed, would lead to in-
creased runtimes for the TT-solve approach. Specifically, the TT-rank of the solution vector, right-hand
side and the number of iterations required for the convergence of TT-MALS are assumed to be O(1)
or O(log(n)), depending on the scenario. As we saw, the former allowed us to reach the same order
of time complexity for several of our test matrices as traditional solvers, using our proposed improve-
ments. However, when only the weaker assumption was satisfied, it has been clear that the TT-solve
algorithm would be still considerably slower than Conjugate Gradient (CG) or Gaussian elimination.
This highlights the importance of the TT-ranks of the vectors involved in the linear system too. This, we
did not explore in detail, as our focus has been on improving the TT-decomposition of sparse matrices.
This primary objective was chosen as the main runtime bottleneck of TT-solve lies here. Additionally,
by itself, the matrix2mpo conversion method does not impact the TT-ranks of the vectors.

We have not looked at the effects of our improvements on the TT-ranks of the right-hand side or the
solution vector. We suspect that our strategies can also alter the ranks of these. For instance, in
the case of padding or PG, we change the mode sizes of the right-hand side vector as well, when
decomposed. Therefore, having an effect on the TT-rank, due to the link between them mentioned in
Section 3.2.2. Assessing the magnitude of such effects is left for future investigations into this subject.

For practical considerations, it is an important question to ask whether our low-rank and convergence
assumptions are reasonable or not. Based on the existing TT-literature [6, 7, 8, 61, 63], we could not
find definitive answers on the convergence of TT-MALS or low-rank TT-approximability of vectors of
LSEs. This is expected, as in general these properties are highly problem dependent. The good news
is, that existing TT-algorithms come with parameters to specify the maximum number of iterations and
maximal ranks [65]. Therefore, one can easily restrict these to allow reasonable runtimes and then
check whether the result is good enough by checking the introduced error.

5.1.4. Solver runtimes
When we compare the TT-solve runtime to CG and GE solvers in Figure 4.11, we use their runtime
estimates from Sections 2.2.1 and 2.2.2.

For GE, these estimates consider constant factors and lower order terms, giving a very accurate result.
However, in case of banded matrices, one can use other GE variants that run more efficiently. In
particular, for a matrix with bandwidth of w and size n, we get a runtime of O(w?n) [17], which is much
faster than O(n3) when w < n. While some of our test matrices have the banded structure, not all of
them do. Therefore, to be able to present consistent results, we used the generally applicable GE time
complexity estimates.

In the case of CG, the runtime estimate is known to be an upper bound [25], meaning runtimes can
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be faster than this. This is due to the iterative nature of the algorithm. On the other hand, constant
factors and terms are not given for this estimate. More importantly, when attempting to utilise CG for
ill-conditioned matrices, one usually applies a preconditioner to improve the convergence properties
of the system. While this incurs additional compute cost, it can lead to significant runtime savings
overall [27]. In our analysis, we considered the vanilla CG, without any preconditioning. This choice
was made because choosing an effective preconditioner technique is highly problem dependent and
its effectiveness varies from one matrix to the other greatly [27].

Lastly, we would like to point out a limitation related to the TT-solve runtime examination. As customary
when using the big-O approach, we have considered the worst case scenarios. While this aided the
relatively straightforward assessment, in certain cases, this was an unnecessarily pessimistic premise.
In particular, when considering the TT-ranks and mode size of each TT-core, currently, we take the
maximal value of these across all TT-cores. However, in most TT-cores, the mode sizes will likely be
lower. Additionally, most of the TT-ranks can be cheaply reduced without loss of accuracy, using the
parallel-rounding algorithm [10, 102].

5.2. Key takeaways

After a throughout understanding of our limitations, discussed in the previous section, we are ready to
recount the most important outcomes of this thesis.

5.2.1. Solving TTM-decomposition problems caused by poor matrix size factors
The proposed methods - padding and Partial Gaussian Elimination (PG) - were developed to tackle the
challenges associated with Tensor Train (TT) decomposition, particularly when dealing with matrices
that have poorly factored sizes. The effectiveness of these methods was evaluated across various
matrices, and the results offer valuable insights into their impact on achievable TT-decompositions and
therefore, attainable speedup gains when solving linear systems of equations (LSEs) in the TT-format.

The padding strategy, which involves extending the matrix dimensions to make them more amenable to
factorization, proved highly effective in cases where the original matrix size had limited factorization op-
tions. The results demonstrated that padding can significantly enhance the TT-decomposition process
by increasing the number of possible tile sizes, leading to better decomposition outcomes. For exam-
ple, in the case of the ex3 matrix, the original size n = 1821 had only three possible tile sizes due to its
prime factorization. By applying three levels of padding, the matrix size increased to n’ = 1824, which
has a much richer factorization. This not only provided more options for tile sizes but also resulted in
a substantial speedup in runtime - approximately 65.66 x 10° times faster compared to the unpadded
case. This clearly indicates that padding can dramatically reduce computational time, particularly for
matrices with limited initial factorization options. However, the effectiveness of padding is not univer-
sal. For the ex10hs matrix, which already had a well-factored size, additional padding did not lead to
significant performance improvements. This highlights a key limitation: padding is most beneficial for
matrices with poor initial factorizations, but its impact diminishes when the original matrix size already
offers ample tile size options.

The PG strategy works by a similar principle to padding, however, it alters the nonzero entry structure
more significantly, by partially solving the system. The results indicate that PG is also a practical way to
allow for better factorizations. The analysis revealed that PG’s effectiveness varies depending on the
matrix structure. For banded matrices, PG resulted in a relatively modest increase in nonzero entries
- no more than 1.6 to 1.7 times the original count - even when a large percentage of variables were
eliminated. This contrasts with non-banded matrices, like bcsstk13, where the nonzero entry count
increased significantly, even with AMD variable ordering, making the decomposition process more
challenging. Despite this, PG proved invaluable in enhancing the performance of the matrix2mpo
algorithm. This is because its largest effect comes from enabling better integer factorizations of the
matrix size, which requires only reducing a handful of variables.

Overall, our proposed strategies address this research gap. As we have seen the results in Figure 4.11,
we can bring down the time complexity of TT-solve for badly factorized matrices to the same level as
well-factorized ones.
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5.2.2. Optimizing the tradeoff between maximum mode size and TTM-rank

The balance between the maximum mode size and the TTM-rank plays a critical role in determining the
efficiency of TT-computations. Optimizing this tradeoff is essential for ensuring that the computational
resources are utilized effectively. In the case of solving LSEs in the TT-format, our extensive theoretical
time complexity analysis of TT-solve, provides the framework needed to find the best pairs of these
variables.

Using the largest prime factor as tile size has been shown to be an effective heuristic to minimize the
runtime of the TT-solve approach. However, based on our insights in Figure 4.11, choosing other factors
for the matrix2mpo algorithm can sometimes lead to better results. Additionally, when for instance
iterative solvers are used for the local problems in TT-MALS, the balance between r and I is largely
altered. This motivates the need for evaluating alternative tile size choices, besides the largest prime
factor.

5.2.3. Altering the matrix for better TT-decomposition

In the process of TT-decomposition, the structure of a (sparse) matrix can significantly influence the
attainable ranks. Altering the matrix through techniques such as reordering variables or modifying
the matrix in others ways, can lead to better arrangement of the matrix values, allowing lower-rank
factorizations. In particular, for sparse matrices, altering the positioning of nonzero elements can lead
to better decompositions via the matrix2mpo approach [10].

We have introduced the metric h in Eq. (3.14), to measure the ratio of nonzero elements within the
nonzero blocks of matrix2mpo. For starters, this metric helps with identifying cases, when alternative
matrix size factorizations - enabled by padding or PG - can be beneficial. In our experience, such
matrices have really low h-values, less than 5-10%. Also, as we have seen in Figure 4.10, it suggests
that there is much room for further optimization by reorganizing the matrix to better cluster nonzero
elements.

When contrasting the findings in [10] and our test matrices, the effectiveness of the reverse Cuthill-
McKee (RCM) strategy to concentrate the nonzero entries and thus reducing TTM-ranks is largely
matrix dependent. Nevertheless, the prospect of variable ordering algorithms should not be dismissed.
As we have highlighted, there is potential for enhancement by better positioning and concentration of
nonzero entries.

Besides variable ordering, we have also turned to the PG strategy to alter the matrix. When disregarding
its positive effects enabled by better integer factorizations of the matrix size, we saw its relatively limited
impact on reducing the time complexity of TT-solve (Figure 4.5). Thus, while PG does reduce the matrix
size, and the count of remaining variables to be solved, the TT-decomposition of the residual submatrix
has not shown large reductions in attainable TTM-ranks. Linked to this, we experimented with utilizing
AMD to reduce fill-in while running PG. Our results reveal that AMD can perform poorly in certain cases,
sometimes even worsening the situation by increasing fill-in, especially in the submatrix that is subject
to the TT-decomposition (see Figure 4.4). This outcome is particularly pronounced in non-banded
matrices, where the structure is less predictable, and the reordering can inadvertently lead to a more
dispersed distribution of nonzero elements, complicating the decomposition. The underperformance of
AMD in reducing fill-in for non-banded matrices highlights the need to explore alternative techniques.
In domains where PG is of interest, particularly those that are non-banded, relying on AMD might not
be the best approach. Instead, it would be beneficial to investigate other reordering strategies in the
future.

Given the limitations of the tried methods to alter the entry patterns in the matrices, there is a clear need
to explore alternative techniques that could more effectively reorganize the matrix for TT-decomposition.
These alternatives might include heuristic approaches that can dynamically adapt to the structure of the
matrix, potentially offering better nonzero concentration without the drawbacks of increased fill-in. For
example, heuristic-based reordering methods could be developed to prioritize the clustering of nonze-
ros within tiles, even if it means sacrificing some other properties like minimal bandwidth. Most likely,
exact algorithms for this purpose are too expensive to compute, however, they can provide insights for
designing these heuristics. Understanding the underlying principles of successful reordering strategies
might lead to the development of more robust methods that can consistently improve TT-decomposition
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across a wider range of matrix types.

5.2.4. Comparing theoretical runtimes of TT-solve, CG and Gauss

We have contrasted the theoretical runtime of vanilla CG, Gaussian elimination and TT-MALS under
some assumptions for sparse matrices. When considering TT-solve, we also included the time needed
to convert the LSE to TT-format and the time necessary to convert the solution back to a vector from
its TT-representation. As shown in Figure 4.11 our improvements make the TT-solve approach in
several cases comparable to CG and Gaussian elimination. Of course, this is only possible under the
assumptions that we have discussed previously. Notably, to make the TT-solve approach faster than
existing solvers, additional enhancements will be necessary for the type of matrices we have worked
with in this study.

5.2.5. Testing TT-solve applicability via runtime estimates

Our work shows a way to efficiently assess sparse LSEs’ suitability for the TT-solve approach. While
theoretical runtime estimates have their limitations, their computation can be done quickly, allowing
such assessments. For example, one can easily evaluate the expected TT-solve runtime of any LSE
using the time complexity derivations from this study. Additionally, checking a few, i.e. O(1) levels
of padding, the corresponding factorizations and tile sizes give a cheap but good estimate on the
expected speedup ratio achievable by our improvements. These quick checks are enabled by running
the modeSize2rank method which has a time complexity of O(z) as shown in Appendix B.1.2.

5.2.6. Usability of TT-solve in practice

While our improvements show the promise of TT-solve for sparse, ill-conditioned, symmetric, positive
definite linear systems, several challenges and limitations remain as we have discussed. Therefore,
until these are addressed, we cannot recommend TT-solve to replace existing solvers.

5.3. Future research directions

In this section, we elaborate on related research ideas that we deem worth investigating based on this
inquiry. Additionally, we encourage future explorations to address the limitations that we have raised
previously.

5.3.1. Iterative solvers for TT-subproblems

The TT-solve method needs to solve smaller subproblems of LSEs which are the bottleneck of the
computation. In this study, we have assumed that these subproblems are solved by GE. This choice
was made because of the better runtime predictability GE as opposed to using iterative solvers whose
convergence highly depends on the problem at hand [27]. It is possible to replace GE by an iterative
solver like GMRES here, which is expected to have a better runtime as seen in Appendix B.1.3.

It would be worth investigating the properties of the linear systems in these subproblems. In turn,
knowing which iterative solver with what configuration is suited for different scenarios could lead to
significant improvements. Adding to this, identifying appropriate preconditioners and assessing the
corresponding runtime enhancements would be valuable.

5.3.2. Altering the nonzero entry structure

Exploring alternative ways to reorganize the locations of the nonzero entries presents a promising av-
enue for future research. We have seen the limited but positive effect of RCM on a few of our test
matrices which aims to reduce the bandwidth. Also, in [10], RCM was able to cut the maximal rank,
nearly by half for the AMD-G2-circuit matrix from [69] for various tile sizes. RCM is not the only algorithm
for this task [103, 104, 105, 106], therefore we recommend future research to evaluate alternative vari-
able ordering approaches. Adding to this, conceptually, an ideal reorganization of nonzero entries does
not have to concentrate them around the diagonal. Instead, gathering them in dense blocks around the
matrix would be already helpful. Designing variable ordering algorithms with this aim, remains largely
unexplored to the best of our knowledge.

Another improvement we have started to explore was AMD, designed to minimize fill-in when doing
Gaussian elimination. As in the case of RCM, there are various alternative algorithms [86, 107] that
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future research could focus on in this context. We note that these algorithms are developed for minimiz-
ing overall fill-in when reducing the complete system, i.e. computing the LU or Cholesky decomposition.
Therefore, variable ordering algorithms specifically designed to minimize fill-in within submatrices re-
maining during partial Gaussian elimination could be beneficial.

Often, sparse linear systems arise from discretizing PDEs. During this process, there are several
choices to be made, which in turn influence the final positioning of the nonzero entries. For instance, one
has control over whether to use FDM or FVM for discretization. Another choice is how the spatial grid
is constructed [91]. Therefore, it could be intriguing to see how these choices effect the effectiveness
of TT-decomposition via matrix2mpo.

5.3.3. Applications beyond TT-solve: Extremal Eigenvalue problems and more
As we have seen in Section 2.6, the TT-MALS solution method for linear systems of equations comes
down to the following. Atits core, an alternating least squares type of optimization is applied to a tensor-
train-valued objective function. This means that one can replace this objective function with differently
constructed tensor trains that correspond to different problems. There are various applications dis-
cussed in [60] that could potentially make us of our TT-decomposition optimization, assuming the data
is sparse. Here, we highlight two. Firstly, in large scale, structured tensor data when a large proportion
of the entries are missing or noisy, we can attempt to reconstruct the problematic entries [60, 108, 109].
Another one is when extremal (minimal or maximal) Eigenvalues and the corresponding Eigenvectors
need to be computed for large matrices (n > 10'%). In such cases, a TT-based approach can help [60,
110, 111, 112]. We suspect that the techniques proposed by us to improve the TT-decomposition, could
help with reducing the runtime in these settings as well.



Conclusion

In this thesis, we have delved into the optimization of Tensor Train (TT) decompositions for sparse linear
systems of equations (LSEs), with a focus on improving TT-solve runtime efficiency. Our research
has sought to address key challenges associated with TT-decomposition, including poor matrix size
factorizations and optimizing the tradeoff between the maximal mode size and TTM-rank. Additionally,
we have looked into the possibility of altering the coefficient matrix by variable ordering and partial
Gaussian elimination (PG) to get TTM-decompositions that reduce the TT-solve runtime. The practical
motivation behind this work has been to enhance the speed and scalability of solving sparse, large-
scale LSEs, which is crucial for various applications across science and engineering. Our investigation
has yielded several noteworthy findings and contributions to the field.

6.1. Key findings

The key findings from this thesis can be summarized as follows:

1. The proposed methods, including padding and PG, were effective in addressing TT-decomposition
challenges related to matrices with poorly factored sizes. However, their effectiveness in runtime
reductions diminished for well-factored matrices.

2. The study emphasized the importance of balancing maximum mode size and TTM-rank for effi-
cient TT computations. While using the largest prime factor as a tile size was generally effective,
alternative factors sometimes offered better results.

3. Matrix structure significantly influences TT-decomposition, and altering it through variable reorder-
ing or other modifications can lead to lower rank factorizations. Techniques like RCM were effec-
tive in some cases but highly matrix-dependent. PG had limited success in reducing time com-
plexity when disregarding its effect due to enabling new matrix size factorizations. Reordering
methods like AMD sometimes worsened decomposition.

4. The theoretical runtime analysis showed that the improved TT-solve approach could be compara-
ble to CG and GE under certain assumptions, though further enhancements are needed to gain
advantage over traditional solvers for the studied matrices.

5. The study provided a method for quickly assessing the suitability of TT-solve for sparse LSEs
through runtime estimates. These estimates, combined with minimal padding checks, offer a
practical way to gauge potential speedup gains.

6. Despite the promising improvements, the thesis acknowledges that TT-solve has limitations and
cannot yet replace existing solvers for solving sparse, ill-conditioned, symmetric, positive definite
linear systems.
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6.2. Limitations

This study presents several limitations that may affect the generalizability of our findings. First, the
runtime assessment methodology primarily relies on theoretical analysis, using operation counts and
big-O notation. While this approach offers insights into scalability, it overlooks practical factors such as
hardware optimizations and constant factors, potentially skewing results for smaller matrices.

Our test dataset is limited to a small number of symmetric, positive definite matrices from computational
fluid dynamics, restricting the generalizability of our conclusions. On the other hand, our matrices lack
special structures like Toeplitz or Hankel, which are known to exhibit low numerical ranks.

Assumptions made in the TT-solve runtime analysis, such as low TT-rank and rapid convergence of
TT-MALS, may not hold in all cases. We focused primarily on matrix decomposition improvements,
neglecting the potential impact on TT-ranks of the right-hand side or solution vectors.

Finally, our comparative analysis of TT-solve, CG and GE runtimes is based on theoretical estimates,
which may not fully capture the complexities of real-world applications, especially regarding precondi-
tioners and different matrix structures.

6.3. Future work

Future research should address these limitations by expanding the matrix dataset to include larger,
more varied matrices and by incorporating statistical methods to better isolate the effects of individual
factors. Investigating the impact of our strategies on TT-ranks of right-hand side and solution vectors
could provide a more comprehensive understanding of their efficacy. Further exploration into using
iterative solvers for TT-subproblems, such as GMRES, could lead to significant runtime improvements.
Additionally, alternative methods for reorganizing nonzero matrix entries, beyond the RCM and AMD
algorithms used here, may further optimize TT-decomposition and reduce runtimes. Finally, examining
how discretization choices in PDEs influence the effectiveness of TT-decomposition could open new
avenues for optimizing TT-solve for specific applications.

6.4. Final thoughts

In summary, this thesis has made significant strides in optimizing TT-decompositions for solving sparse
linear systems of equations. The proposed methods such as padding, PG, RCM and tile size optimiza-
tion have demonstrated substantial potential for improving TT-solve efficiency. These advancements
are crucial for addressing the practical challenges of solving large-scale LSEs, which have broad ap-
plications across various scientific and engineering domains.

The insights gained from this research not only enhance the theoretical understanding of TT-
decomposition but also provide practical solutions that can be applied to real-world problems. As we
continue to refine these techniques and explore new avenues of research, we can further improve the
efficiency and scalability of LSE solvers, ultimately contributing to more effective and timely solutions
in complex computational fields.



Hydrodynamic simulations

This appendix chapter explores the field of hydrodynamic simulations, as it has served as the original
motivation for this thesis.

Hydrodynamic simulations play a crucial role in understanding and predicting the behavior of water
flow in various natural and engineered systems. These simulations involve the application of mathe-
matical models to simulate the movement of water, taking into account factors such as fluid dynamics,
topography, and boundary conditions. In this section, we will delve into the fundamental concepts un-
derlying hydrodynamic simulations. Furthermore, we will discuss one of the widely applied methods
used to solve these equations over time and space. In particular, we will touch upon the finite difference
and finite volume methods, which ultimately lead to the formulation of large sparse linear systems of
equations.

Shallow Water Equations (SWE) and PDE Solving The shallow water equations are a set of hy-
perbolic partial differential equations that describe the flow of shallow water over varying topography.
These equations are derived from the conservation principles of mass and momentum and are widely
used in hydrodynamic modeling due to their ability to accurately capture the behavior of water flows
in many practical scenarios [113, 114]. In such settings, analytical solutions are lacking for the SWE,
therefore they are solved numerically [114]. This requires discretizing them over both time and space.

Discretization over space and time Discretization is the process of approximating the continuous
equations using a discrete set of values. In the context of hydrodynamic simulations, this can be done
in various ways [114]. The general idea is to divide the spatial domain into a grid and discretize the
equations over both time steps and grid cells [91, 114].

1D/2D grid modeling approach Hydrodynamic simulations often adopt a grid-based approach to
represent the spatial domain [91]. In one dimension (1D), the domain is discretized along a single axis.
This is often used for modelling the topology of the (underground) sewer system and open channels with
clear flow paths [115, 116, 117]. On the other hand, discretizing space over two dimensions (2D), allows
for better modelling of the flow over flat surfaces, also it makes the model setup in practice much easier.
The downside here is the increased computational load because of the higher dimensionality [116, 117,
118]. In current practice, the two approaches are combined to model different parts of drainage systems
to get the best of both worlds [91]. See [116] for a detailed overview of this in the context of urban pluvial
flood modelling.

Finite Difference and Finite Volume approach Besides choosing the dimensionality of the spatial
discretization, different approaches exist to determine how the flow is computed from one grid point to
the other. In the case of the shallow water equations, the finite difference and finite volume methods
are the most commonly used [119].
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Finite Difference Method (FDM): In this approach, derivatives in the partial differential equations are
approximated using finite differences. The equations are discretized on a grid, and finite difference
approximations are applied to compute the spatial and temporal derivatives. This results in a system
of algebraic equations that can be solved iteratively to obtain the solution at each time step [120].

Finite Volume Method (FVM): The finite volume method focuses on the conservation of mass and
momentum within control volumes or cells of the grid. The equations are integrated over each cell,
leading to a set of discrete equations that represent the conservation laws. These equations are then
solved iteratively to obtain the solution over the entire domain [121].

Large sparse linear systems of equations The discretization of the shallow water equations using
finite difference or finite volume methods leads to the formation of large sparse linear systems of equa-
tions. These systems arise due to the discretization of the spatial domain and can be solved using
iterative methods such as the Gauss-Seidel method, the conjugate gradient method, or other sparse
matrix solvers [91].



Time complexity derivations

B.1. TT-algorithms

In this section we give the details of the time complexity derivation of relevant TT-algorithms.

Let us start by introducing some notation. Suppose b € R™. Then this vector can be reshaped into a
tensor B € R11x/2x-xIa which has order d with I, I, - - - I; = m. Additionally, let A € R™*™ be a matrix.
Then, we can reshape it as a 2dth-order tensor, A € Rt xJixIzxJox..daxJa \where m = I,1---1; and
n = JiJs -+ Jg. Generally, unless stated otherwise, we only look at the case where n = m.

Now, consider the TT-decomposition of A as a TT matrix (TTM) with d TT-cores. Then, its kth core
is a 4-dimensional tensor, A(k) € R7=>ixjkxri+1 - The TT-cores in the TT-decomposition of b are
given as B ¢ Reexivxsii1 for ke {1,2,...,d}. Analogously, the TT-cores of a tensorized vector
X € R xI2xxIa jn the TT-format are given as X*) € Rix*ixxts+1 for k € {1,2,...,d}. Let I = maxy, iy,
J = maxy jr, ¥ = maxgrg, S = maxy s and t = maxy ty, where k € K = {1,2,...,d} for iy, and jj.
And k € K U {d + 1} for sy, t, and r;. Note that under the assumption n = m, we also have that
n= HZ=1 ik = HZ=1 jk- When it is clear from context, which TT(M) we refer to, we just use r to denote
the maximal TT-rank. Additionally, mostly, we do not distinguish between the maximal rank of X and
B, thus we just denote s = max(s, t).

B.1.1. Rounding algorithms

TT-round

The time complexity of the TT-round is O(dIr?) for TT [4]. In case of an TTM, however, this is higher.
The QR and SVD passes through the TT-cores in this case operate on I?r x r matrices, instead of
Ir x r matrices. Therefore the time complexity becomes O(dI?r3). This is in line with the TT-round
implementation in [65].

B.1.2. TT-decomposition

TT-SVD

Examining Algorithm 1 in [4], we can determine the runtime of TT-SVD both for the TT and TTM cases.
We assume that the ranks have to be determined on the go, that is, only the error tolerance ¢ is known
in advance.

Let us first consider the TT case, for simplicity we have I = I = --- = I; = I > 2. The most expensive
part of the algorithm is clearly the successive SVD computations on the input tensor X ¢ R/1x*/a
that is reshaped. When constructing the first TT-core, the SVD algorithm is appliedtoa Iy x IsI5--- I,
sized matrix (r = 1 for the first TT-core). Therefore the time complexity of this stepis O(Io13 - - - I5- 1312+
I}r3) = O(nlir3) = O(I%1r3). When computing the kth TT-core, SVD operates on a matrix of size
71 x Ij41 - - - I4. Therefore, the time complexity for the kth step is O(Ijy1 -+ Ig-r2+ I313) = O(19Fr3).
The last computation is when k& = d — 1. At this step we operate on a matrix of size r1;_; x I, yielding
a time complexity of O(rl;_1I3 + I3) = O(rI*). While in general, it does not have to hold, in this
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manuscript, we assume that » < I for our theoretical time complexity assessments. Therefore, at each
TT-core, the SVD computation will have a 3 term, except the last one. To make the remaining analysis
easier, let us bound the last SVD computation by O(r313) yielding a small overestimation. Adding this
upfork=1,...,d—1,weget O(r*(I + ...+ 197%F 1 ...+ I3)). Now if we let S represent this sum,
we have:

S=13+4...141 (B.1)
IS =14 4 ... 192 (multiply by I) (B.2)
IS+ P =1 +T1* ... 1%+ (add I?) (B.3)
IS+ 1% =84 1%+2 (use definition of .S) (B.4)
IS —S§=1%2_p3 (reorder terms) (B.5)
S(I-1)=1""2-713 (B.6)
Id+2 _ 1'3
§= (B.7)
Id+2 _ I3
S = —7 (ignore —1 in big-0) (B.8)
S =it _ 12 (B.9)

Therefore, we have that the SVD computations in TT-SVD cost O(r3(I4+1 — [2)) = O34+ =
O(r3In), assuming each mode has more or less the same size and that » < I.

Additional costs include multiplying the diagonal matrix of singular values with the matrix V7' after each
SVD computation. V has a size of I*t1... 191 x r after truncation for the kth iteration of the loop.
The multiplication only needs to happen with the top r singular values, therefore this operation costs
O(I%=Fr) per iteration. Taking the sum for k = 1,...,d — 1, we have O(r(I + I%? + --- + I¢~1)) which
can be shown to be approximately equal to O(rn), using the same logic that we used for the SVD
computations time.

The initial Frobenius norm to determine the truncation parameter, can be computed by vectorizing the
input tensor (of size n x 1 = I x 1), taking the inner product with itself (» multiplications, n— 1 additions),
followed by computing the square root (1 flop) of the resulting scalar. Therefore this computation takes
O(I%) = O(n) time. Overall, for the TT case, TT-SVD takes O(r3In + rn +n) = O(r3In) time.

When forming a TTM using TT-SVD, the input tensor has a size of I¢ x I? = n x n. We can treat
this as a TT where each mode has size 2 instead of I, thus the TT-SVD time complexity becomes
O(r3I*n? + rn? + n?) = O(r31°n?) for TTMs.

modeSize2rank

We term the first part of the matrix2mpo method (Algorithm 4.1) in [10] as modeSize2rank. This is
because it determines the TTM-rank of the decomposition which can be constructed from a given
sparse matrix and a chosen tile size. Let us examine its runtime in this section.

Let A € R™*™ with z nonzero entries and let k be the chosen tile size s.t. n mod k& = 0. Additionally,
we denote the number of tiles needed to cover n in one dimension as b. Thus, we have n = k - b, i.e.
assuming k equals the maximal mode size I, we have b = 7.

The algorithm has a for loop over each column block which takes O(b). Inside each loop, firstly, all rows
with a nonzero entry are identified. Considering the current implementation with dense representation,
this can take O(nk) time when we need to check each entry in the block-column. The number of rows
in the column is »n and the width of the column is k. This is followed by O(1) manipulations on the
indices of these nonzero row indices, which can be bounded by O(n). Therefore, the overall runtime

of this method is O(bnk) = O(“L) = O(n?) using the current implementation.

We can optimize this further for sparse inputs. Let us assume that the sparse matrix is in Coordinate
(COO) format for ease of interpretation. That is, each nonzero entry is described by a triplet: its row
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index, its column index and its value. Let us denote this by (x,y,v) We can determine the nonzero
submatrices by a single pass through the nonzero entries in O(z) time as follows. We need to assign
the block coordinates («',y’) to each triplet. We can compute these by diving the row and column
indices, (z,y) by the tile size b, followed by rounding down (zero-indexing assumed). To compute the
TTM-rank, we need to determine the number of unique blocks where nonzero entries are located. One
way to achieve this is to have one more pass over the nonzero entries and count the unique block
coordinate pairs. We can conclude that the modeSizeZ2rank algorithm can be implemented to run in
O(z) time for sparse matrices.

matrix2mpo

After the modeSizeZ2rank part, the second segment is about initializing the TT. This can take at most
the time needed to pass through every entry in the TT. We note that sparse representations are not
used for the TT-representation, as most TT-operations would break the sparsity anyways. Therefore
the size of the TTM corresponds to the runtime of this part, which is O(dI%r?).

Using the dense representation, the third part contains a nested for loop which iterates over each tile that
has a nonzero entry, this takes O(r) as the number of nonzero blocks corresponds to the resulting TTM-
rank. At each nonzero block, the algorithm needs to determine the corresponding nonzero entries in the
Kronecker product matrices. The lin2ten subroutine and going through each TT-core when assigning
the indices, both require O(d) time. Therefore, overall this third segment needs O(rd) time. Lastly
each TT-core is reshaped, which requires O(d) time.

When the first part is done by the sparse approach, the third procedure described above needs some
adjustments. For the first TT-core, we just need to assign the nonzero entries into the correct locations
which can be done in O(z) time. For each remaining TT-core, to determine the nonzero entries, we
need to convert the nonzero block indices into tensor indices via the lin2ten subroutine. This procedure
takes O(rd) similarly to the dense case.

We conclude that the overall runtime of matrix2mpo can be bounded by O(n? + dI*r?) for the dense
implementation, while it takes O(z + dI?r?) for the sparse one.

B.1.3. TT-solve

TT-ALS

Preparing each micro-iteration per sweep takes O(s*r212d). Additionally, some in between contractions
take O(rs*1%d). Solving the micro LSE arising at each TT-core needs O(s*r212d) when using iterative
solvers and O(s%I3d) for direct solvers like Gaussian elimination. The QR factorizations need O(s*I1d)
time per sweep [6].

TT-MALS

Similarly to ALS, preparing each micro-iteration per sweep takes O(s3r212d). On the other hand, the in
between contractions take O(s*r13d) for this approach. Solving the micro LSE arising at each TT-core
needs O(s3r2I3d) when using iterative solvers and O(s®1%d) for direct solvers like Gaussian elimination.
For MALS, instead of QR, we need SVD factorizations, that need O(s313d) time per sweep [6].

Let us denote the number of half sweeps needed to converge as c. Then, the overall runtime estimate
can be approximated as O(c - d - (s*r2I? + s*r13 + 516 4+ s*13)) = O(c- d - (s*r?1% + s3I 4 s°19))
when using a direct solver for local problems.

As a side note, we give the runtime estimate when an iterative solver like GMRES is used in the local
problems. Here the O(s%1°d) term is replaced by (s*r2I%d) according to [6]. Thus we have O(c - d -
(s3r2 1% + 313 + 3213 + $31%)) = O(cds®r?1%). In what comes next, we assume the use of the direct
solver approach for local problems.

To get a more interpretable runtime estimate, let us assume that ¢ = s = r = I = O(log(n)). Addition-
ally, let us use that d ~ log(n). Then, we have O(log(n)4).

Suppose, we have our TTM-decomposition, therefore we know the values I and r. Then, we only
need to make assumptions about ¢ and s to get a good estimate. First, let us consider the case when
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c = s = O(1). Then, the overall runtime can be approximated as (’)(log(n) S(r21?+rI3 +IG)>. Another

B

case is when we have ¢ = s = O(log(n)). Then, we have O(log(n)® - (r?I? 4+ rI3 + log(n)3I°)).

B.1.4. TT to Vector conversion

In order to reconstruct X € RI1x12x-xIa from XM x1 X2 x1... x1 X(@ where X¥) ¢ Rsx1kxs we
have perform d — 1 contractions between the TT-cores. This can be done in O(I%s* + I3s* + --- +
I471s% + 1952) = O(dI91s* + I452) = O(dns*) time [67].

B.2. GMRES(K)

Let us investigate the flop count of the the GMRES(k) method, where k is the number of iterations
before the algorithm is restarted. According to the original paper [24], its time complexity for a matrix of
size n x n is composed of the following parts. Running GMRES for k steps requires k(k + 2)n + kz =
k?n + 2kn + kz multiplications. Out of this, kz comes from k matrix-vector multiplications. In practice
k is chosen so that & < n to keep the runtime feasible. If this assumption holds, then the above gives
a good runtime approximation [24]. Assuming, we need O(1) restarts, we have the following overall
time complexity in terms of flops. For the dense case, z = n? thus we have a runtime of O(k?n + kn?).
However, in the sparse case, when z € O(n) (where z is the number of nonzero entries), this reduces
to O(k*n + kn) = O(k?n) time.



Definitions, Theorems and Proofs

Let x,y € R™ and A € R"*", then, we have the following definitions and results.

Definition C.1 (Symmetric matrix). A is symmetric if and only if it is equal to its transpose. Formally,
A= AT,

Definition C.2 (Orthogonal vectors). = and y are orthogonal if = - y = 0. We say that a set of vectors
{z1, 29, ...,z,,} are (mutually) orthogonal if every pair of vectors is orthogonal, i.e. z; - x; = 0,Vi # j.

Definition C.3 (Orthonormal vectors). We say that a set of vectors {z1, zs, ..., x,, } are (mutually) or-
thonormal if every pair of vectors is orthogonal and each vector is a unit vector, i.e. |z|| = 1, alternatively

T = 77~
Izl

Definition C.4 (Orthogonal matrix). A square matrix A is orthogonal if A=t = AT, Equivalently, A is
orthogonal if AAT = AT A = I, where I is the identity matrix.

Definition C.5 (Positive definite matrix). A is said to be positive definite if and only if 27 Az > 0,Vx €
R™\{0}. Alternatively, it can be defined in terms of its eigenvalues; A is positive definite if and only if
all of its eigenvalues are positive.

Definition C.6 (Positive semi-definite matrix). A is said to be positive semi-definite if and only if 27 Az >
0,vz € R™. Alternatively, A is positive semi-definite if and only if all of its eigenvalues are non-negative.

Definition C.7 (Diagonally dominant matrix). A is diagonally dominantif{a;;| > >, . [a;], Vi € {1,2,...,n},
where a;; denotes the entry in row ¢ and column j of matrix A. Note that this is sometimes referred to as
weak diagonal dominance. When strict inequality is used, then we talk about strict diagonal dominance.

In this manuscript, when we say diagonal dominance, we mean weak diagonal dominance.

Definition C.8 (Banded matrix). A banded matrix is a sparse, not necessarily square matrix, where
non-zero entries are limited to the main diagonal and potentially extend to zero or more diagonals on
either side. For this definition, let A € R™*". Then, we say that A has lower bandwidth p if a;; = 0
whenever i > j + p and upper bandwidth q if a;; = 0 whenever j > i + ¢ [122]. The bandwidth of the
matrix is the maximum of p and ¢, i.e. it is the number w s.t. a;; = 0if | — j| > w [123].

Theorem C.1. A (real) symmetric, weakly diagonally dominant matrix with non-negative diagonal en-
tries is (symmetric) positive semi-definite (SPSD).

Theorem C.2. A (real) symmetric, strongly diagonally dominant matrix with positive diagonal entries
is (symmetric) positive definite (SPD).

Definition C.9 (Condition number). Let A be a square matrix, then its condition number x(A) is defined
as: k(A) = || A2 |[A7]]2 = Imaz Where oumq, and o,,, are the maximal and minimal singular values,

respectively. If A is singular, then k(A) = co. When A is symmetric, we have that x(4) = M

where A, and \,.;,, are the largest and smallest eigenvalues of A, respectively [124, 125].
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Definition C.10 (Sparsity of a matrix). Let A be a n x m matrix with z nonzero entries. Then its sparsity
is given by: 1 — number of nonzero entries in A _ 1—
g y: total number of entries in A n-m

Lemma C.3 (Gershgorin circle theorem). The eigenvalues of A € C"*" lie in the union of the n discs
in the complex plane D, = {z €C:lz—aul <325, |aij|},z' e{1,..,n}.

Lemma C.4. A Hermitian matrix has real eigenvalues.
Proof. As described in[126], this can be proven as follows. Let A be a complex matrix such that A* = A.

Let A be one of A’s eigenvalues and u # 0 a corresponding eigenvector. We know, by the definition of
conjugate transpose, that Au = \u = u*A* = A\*u*. Hence

Nu'u =uw Ay = v Au = \u'u
and therefore \* = \. Therefore ) is real.

Since real symmetric matrices are Hermitian, their eigenvalues are real. O

Proof of Theorem C.1. As described in [127], this can be proven as follows. Let A be a Hermitian
diagonally dominant matrix with real non-negative diagonal entries. By Lemma C.4, its eigenvalues
are real. Furthermore, by Gershgorin’s circle theorem, for each eigenvalue A\ an index i exists such
that: \ € [a; — Zi# lai;|, ai; + Zi# la;;]]. Then, by assumption we have that a;; > 0,Vi and by
definition C.7 of diagonal dominance, we have that a;; > >, . [a;;|, therefore A > 0. O

Proof of Theorem C.2. This proof is analogous to the proof of Theorem C.1 with strict inequalities. [
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