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Abstract

Convolutional neural networks are showing incredible
performance in image classification, segmentation, object
detection and other computer vision applications in recent
vears. But they lack understanding of affine transformations
to input data. In this work, we introduce rotational invariant
convolutional neural networks that learn rotational invari-
ance by design, and not from data. We build rotation invari-
ant filters through parametric learning of linear combina-
tion of a basis set of filters, rather than modelling the filters
ourselves. Our approach combines the learning capability
of CNNs with custom filter selection. We show stability in
performance under rotations in input images. We first val-
idate our findings for classification on MNIST and then for
multi-class semantic segmentation on the DeepGlobe 2018
Satellite Image Understanding Challenge.

1. Introduction

Convolutional neural networks (CNNs) are showing in-
credible performance in image classification, segmentation,
object detection and other computer vision applications in
recent years. An important aspect of human visual recog-
nition system is that we can identify and classify objects
and scenes irrespective of affine transformations and defor-
mations in the viewpoint. Computer vision systems are yet
to achieve that level of invariance to changes in their input.
Rotation of object or scene is a common affine transforma-
tion that we encounter quite frequently. But conventional
CNNs do not have the ability to handle rotations well. We
propose to design CNNs with rotation-invariant kernels im-
plemented as structured receptive fields [1] (i.e. linear com-
bination of a basis filter set), to make the networks invariant
to rotations.

Rotation is an important aspect in images which don’t
have a specific sense of direction; for example, images of
land cover from a satellite or a drone (see figure 1). Simi-
lar examples can be seen in astronomical or cellular micro-

scopic images. In such a case, any arbitrary rotation in the
image plane does not change the context of the viewpoint
and hence, should not affect the classification. CNNs per-
form well in domains where the sense of direction is similar
to the domain it has been trained on. But rotations in the
test domain drastically change prediction outcome. We aim
to make CNNs invariant to rotation so that any rotation in
the input space does not affect its classification ability.

CNNs learn to incorporate translation and rotation in-
variance to some extent through i) pooling/subsampling lay-
ers and ii) data augmentation. Max pooling achieves partial
invariance to small translations and rotations because the
max of a region depends only on the single largest feature
present there. Average pooling also intuitively introduces
some amount of local invariance to the position of the fea-
tures as it averages over all regions. Data augmentation
synthetically generates new training samples through geo-
metric distortion according to a known noise model. This
is a very widely used technique to incorporate spatial in-
variance. But this can exponentially increase the number of
training samples and also increase intra-class variance; so
the capacity of the learning model also needs to be high.
Learning invariance from data can, therefore, be very com-
plex and time-consuming.

We aim to enable CNNs with the ability to be invariant
to rotations by design, and independent of the data. Follow-
ing the assumption that all images, and hence, filters learnt
in CNN are spatially coherent and can be decomposed into
a smooth compact filter basis [1], we pose a constraint on
the basis filters to be invariant to spatial rotations by them-
selves. A linear combination of rotation invariant set of ba-
sis filters is able to incorporate rotational invariance in a
CNN by design. We chose the family of Schmid filters [2]
which have spatial rotational symmetry to be our basis filter
set. We optimise the weight parameters that combine the
basis filters into effective convolutional kernels. The opti-
misation is done through backpropagation and hence, the
network can learn the effective filters while abiding by the
constraint of rotational symmetry.



In this paper, we use fixed filter bases as kernels of
a CNN while maintaining parameter optimisation through
backpropagation to learn effective linear combinations of
the basis filters. We introduce the constraint of rotational
invariance in the basis set so as to attain rotational invari-
ance in the CNN. An overview of the linear combination
has been shown in figure 2.

Our main contributions are:

e Incorporating rotational invariance in CNNs by replac-
ing the convolution kernels with a linear combination
of spatially symmetric fixed basis filters that can be ef-
fectively learned through backpropagation.

e Validating rotational invariance on both classification
and segmentation problems; emphasising the fact that
the achieved solution is generic and can be easily in-
corporated into existing deep-learning architectures.

Rotation in satellite images do
not change context

.'I.:T

a) Satellite image with annotated mask
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b} Satellite image rotated clockwise 90° with mask

Figure 1: Rotation in aerial or satellite images do not change
the context of the view.

2. Related Work
2.1. Rotational Invariance

Transformation invariance has been a popular topic
in computer vision for a long time, and we find differ-
ent approaches in the literature to attain this. A very

learn filter weights
by backpropagation

Ltk

effective rotation invariant filters

circular Schmid basis filters

Figure 2: Overview of how linear combination of Schmid
basis filters produces effective filter kernels which are in-
variant to rotations.

common approach is to find invariant or equivariant lo-
cal feature descriptors [3, 4, 5, 6]. Many papers try to
analyse transformation-invariant or equivariant represen-
tations [7, 8, 9, 10, 11]. Another major approach is to
model the transformations within the network as shown in
[12, 13, 14, 15, 16, 17].

Invariance, equivariance and equivalence to transforma-
tions in image representations are studied through an em-
pirical linear relationship between original and transformed
images by Lenc & Vedaldi [8]. The transformation prop-
erty of representations using group representation theory
has been presented by Cohen & Welling [7]. This has been
extended through Steerable filters [9] by Weiler et al. Scat-
tering networks [10] by Bruna & Mallat explicitly design
invariance through wavelet convolutions and group averag-
ing while some CNNs learn filter banks with local trans-
formations [11]. We do not try to estimate transformation
representations of our filters but constrain them to be rota-
tionally symmetric.

Hinton [12] and Hinton et al. [13] try to impose a canon-
ical frame of reference on the object independent of view-
point variations, called a capsule. The generative capsule
model is able to learn relative relationships between ob-
jects in the view and represents it numerically. Each cap-
sule learns an implicitly defined visual object within a lim-
ited set of transformations and outputs both the detection
result and information about the transformation from the
canonical form of the object. Tieleman [14] enhances this
work to make the generative capsules capable of full affine
transformations. In 2015, Google introduced Spatial Trans-
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former Networks [15] which explicitly allow transforma-
tion of data within the network without any manual inter-
vention. The Spatial Transformer module can be inserted
into existing components of a convolutional architecture be-
cause of its differentiable property. Inverse Compositional
Spatial Transformer Networks [16] improve this approach
by implementing the image transformation through an iter-
ative approach inspired by Lucas-Kanade optical flow al-
gorithm. Microsoft in 2017 introduced Deformable Con-
volutional Networks [17] with deformable convolution and
Rol pooling layers which augment the spatial sampling lo-
cations with learnable offsets. This enhances transforma-
tion modelling capability of CNNS. Unlike them, we do not
indulge in the mathematical modelling of transformations
in our image or feature maps.

Our method adopts the concept of fixed filter bases like
in Scattering Network [10] but maintains the capability of
CNNs to learn combination of bases to form effective filter
kernels. Steerable filters [9] also employ the same concept
of learning filters but unlike them, we do not compute ori-
entation dependent responses to get steerable filters; rather
we demand our filters to be rotation invariant by design.

2.2. Structured Receptive Fields

Structured Receptive Field (SRF) [1] is a type of convo-
lution model introduced by Jacobsen et al. that constructs
convolutional kernels by learning linear combinations of a
fixed set of basis filters. This derives its inspiration from
the scale-space theory [18] which expresses images as func-
tions with a continuous scale parameter. The Gaussian is an
important mathematical function that can change its spatial
extent according to its standard deviation which is a contin-
uous parameter. The Gaussian derivatives do not introduce
any artefacts and can represent any image realistically. SRF
applies Gaussian derivative basis filters as function priors,
but still maintains the flexibility of CNNs to learn linear
combinations of the bases to encode complex feature space.

In our work, we derive heavily from the idea of con-
structing a 2D convolution kernel as a linear combination of
fixed basis filters with weight parameters that can be learnt
through backpropagation. We choose the Schmid basis in-
stead of Gaussian derivatives.

3. Methodology
3.1. Schmid Filter Bank

The Schmid filter bank consists of 13 rotationally invari-
ant filters first introduced by Cornelia Schmid, to get ro-
tation invariant descriptors for texture-like visual structure
recognition [2]. These are Gabor-like filters that combine

frequency and scale together:

V2 4y 224
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where o is the standard deviation of the Gaussian enve-
lope and 7 is the number of cycles of the harmonic func-
tion within the Gaussian envelope. Fy(7, o) is added to ob-
tain a zero DC component, making it robust to illumination
changes.

We use 13 filters in our filter banks with pre-determined
o and 7. For our experiments, we use o values between 0.33
and 1.66. The 7 values lie between 1 and 4. Smaller scales
use smaller 7 values to avoid high-frequency responses.
Figure 3 shows the Schmid filter bank with a spatial resolu-
tion of 49. In our experiments, we use filters with a spatial
resolution of 3 and 5 only.

3.2. Rotation Invariant Convolution Layer

In normal CNNs, the network learns convolutional ker-
nels from pixel values. In structured receptive fields, the 2D
convolution kernel is expressed as a linear combination of
unique Gaussian derivative basis functions. The weight val-
ues of the linear combination are learnt through backpropa-
gation. A convolution kernel F'(z,y) where X, y denote the
spatial dimensions can be expressed as a linear combination
of ¢ unique basis Gaussian derivatives ¢

F(z,y) =o1d1 + ...+ andi, 2

where a4, ..., o; are the parameters being learnt.

The network learns the « values by mini-batch stochastic
gradient descent and the derivatives of the loss function are
calculated in terms of the « through backpropagation.

In our implementation, we replace the Gaussian deriva-
tive filter bank with our Schmid filter bank. Since the ba-
sis filters themselves have spatial rotational symmetry, their
linear combination is bound to have the same property.

We implement a custom 2D convolution layer that takes
in the basis filters as one of the initialisation parameters.
The layer initialises the o as random uniform distribution,
normalised between [-0.01, 0.01 ]. These specific initialisa-
tion values of « are claimed to work the best in converging
the values during training [20]. The convolution kernel is
now constructed as the sum of the basis filters weighted by
the « values as in equation 2. The basis filter values (¢) are
specified to be non-trainable. Only the combination weights
(c) are trainable in the constructed 2D kernel. The basis
weights («) and the basis filter weights (¢) are independent
of each other. Thus, the custom convolution layer can al-
ready calculate the effective filter kernel and apply it to the
images. This layer can be easily incorporated in any deep
learning framework.
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Figure 3: Schmid(S) filter bank; 13 rotationally invariant isotropic ”Gabor-like” filters [19].

Another way to implement the custom filters is to con-
volve the image with the basis filters and then linearly re-
combine them with 1x1 convolutions to get the required
number of filters in the consecutive layer. The final effec-
tive filters obtained through both methods are similar. We
decided to follow the first approach as i) it is more generic to
most architectures as many of them do not use 121 convo-
lutions, and ii) it is easier to stack up multiple custom con-
volution layers this way. Algorithm 1 shows our approach
of parameter learning.

Algorithm 1 Algorithm: Learning convolution kernels

1: Input: input feature maps of each training sample, ba-
sis filters

2: generate weights of linear combination as random uni-
form values in [-0.01, 0.01] as learnable parameters

3: define kernel shape according to input and output chan-
nels

4: compute the effective convolution kernel as weighted
linear combination of basis filters

5: compute the convolution of the input feature map with
the effective convolution kernel

6: obtain the output feature map and apply activation

7. compute the gradient of the loss function wrt the
weights

8: update the weight parameters

9: Output: output feature maps

3.3. Network
3.3.1 Classification Network: Network-In-Network

For the classification problems, we chose the Network-In-
Network (NiN) [21] architecture. It is a powerful classifi-
cation network and can be called as a precursor to the fa-
mous Inception Net [22] architecture. The NiN architec-
ture has spatial convolution layers followed by 121 convo-
lutions which form non-linear combinations of the spatial
layer outputs. The 1z1 convolutions act as cross-channel

parametric pooling layers. The NiN implementation does
not have a fully-connected layer. The final layer is a global
average pooling layer which takes the average over all the
feature maps and hence enforces direct correspondence be-
tween feature maps and categories. Each convolution layer
is followed by a non-linear (ReLu) activation.

In our implementation of the NiN, we replace the spatial
convolution layers with our custom rotation invariant con-
volution layers. These layers combine the basis rotational
filters into the effective convolution filter kernel. The basis
set is non-trainable and no parameters are learnt for the ba-
sis filters. The 121 convolution layers further combine the
kernels together through cross-channel pooling. This means
all parameters are concerned with the combination of basis
filters and not learning the filters themselves.

In this work, we have used all the 13 filters in the Schmid
filter bank in each of the custom rotational layers. The o
and 7 parameters of the filters as described in equation 1
are kept same for each layer. The custom convolution layer
learns the « values from equation 2 to linearly combine the
basis into effective kernels, which are invariant to spatial
rotations. We use 3 layers of custom convolution, each fol-
lowed by 2 121 convolutions and a pooling layer. The last
121 filter before the global average pooling brings down the
number of output filters to the number of classes in the clas-
sification problem. Some effective rotation invariant kernels
from the 2™ custom convolution layer are visualised in fig-
ure 4.

3.3.2 Segmentation Network: U-Net

We choose the popular U-Net architecture [23] for our ex-
periments on the semantic segmentation problem. The U-
Net is a popular segmentation architecture introduced on
biomedical image segmentation but found usage in many
other segmentation problems henceforth. The architecture
derives from the idea of Fully Convolutional Networks for
image segmentation [24] which removed fully-connected
layers and introduced a full convolutional pipeline for seg-
mentation problems. This allows segmentation maps to be



1. Scientific Paper

Oa - 0

: #ﬂ+ﬂﬂ
ﬂﬂﬂ -H -

* i - ﬂﬂﬂ
- R - IEI
ﬂﬂﬂ
S n
ﬂﬂﬂ

Figure 4: Visualisation of rotation invariant convolution
kernels from the 2" custom convolution layer of our NiN
architecture

generated for images of any size and is much faster com-
pared to the patch classification approach used earlier. Al-
most all of the subsequent state-of-the-art approaches on se-
mantic segmentation adopted this paradigm.

One important problem of using CNNs for segmentation
is pooling layers. Pooling increases the field of view but
discards the “where” information. The U-Net introduces an
encoder-decoder architecture where the encoder gradually
reduces the spatial dimension through pooling while the de-
coder gradually recovers the original dimension and object
details through upsampling layers. The upsampling opera-
tors are used to replace the pooling operations and hence,
incorporate the location information in the network. They
also increase the spatial resolution so as the output of the
network has same dimension as the input image. The U-
Net also has skip connections which combine the high res-
olution features from the downsampling path to features in
the upsampling path which helps in better localisation.

The fully convolutional structure makes the U-Net an apt
choice for our consideration. In our version of the U-Net,
we replace all the spatial convolution layers in the encoder
part by our custom convolution layers with rotation invari-
ant kernels. The decoder part is left as it is with convolution
and upsampling layers.

4. Experiments

The experiments have been performed in two different
contexts- i) classification and ii) segmentation. For each

case, the experiments are partitioned into two parts; i) rep-
resentative power of the kernels, in terms of performance
measure (classification accuracy, mean intersection-over-
union) and ii) rotational invariance, represented as differ-
ence in accuracy measure on the introduction of rotation in
test samples. All experiments are done using the Keras [25]
deep learning library with TensorFlow [26] backend.

4.1. Classification

In the classification experiments, we use the popular
MNIST dataset [27] of handwritten digits. The architecture
used is Network-in-Network (NiN) with custom convolu-
tion layers made up of Schmid basis filters. We analyse the
performance of our architecture against the standard NiN,
a NiN with Gaussian filters and a NiN with combination of
both Gaussian and Schmid filters. In all classification ex-
periments, we train on different sample sizes of the MNIST
dataset, from 50,000 through 300. Different sample sizes
are used to analyse the effect on performance of our model
on small datasets.

4.1.1 Models

We use 4 different models in our classification experiments;
all based on the NiN architecture. This section gives the
architectural insight of each of the four models.

e NiN_cnn: This is the standard NiN architecture [21]
with 3 blocks of conventional spatial convolution fil-
ters followed by 1z1 convolutions.

e NiN_gauss: In this model, we replace all the spatial
convolution filters by Gaussian derivative filters upto
the 4th order. This is similar to the NiN-RFNN model
from the SRF paper [1].

e NiN_schmid: Here, we replace all the spatial convolu-
tions by Schmid filters. This model is the focus of our
experiments, and we want to compare it with the other
ones.

o NiN_mixed: In this model, we replace the spatial con-
volution layers by the combination of both Gaussian
and Schmid filters. The filters are not mixed together,
but are applied separately to the input and the output
feature maps are concatenated and passed on to the
121 layers.

4.1.2 Spatial extent of custom filters

The variance of the Gaussian function describes its spatial
extent. We have tried to fix the o parameters of our filters
such that the spatial convolution kernel can capture most of
the Gaussian envelope. That holds true for both Gaussian
derivative and Schmid filter bases.



Parameter Value

00 2 4 4 6 6 6 8 8 8 10 10 10 10
o1 058 083 083 168 168 168 25 25 25 418 418 418 4.18
o9 046 066 066 134 134 134 2 2 2 334 334 334 334
o3 0.35 0.5 0.5 1.01 101 101 15 15 15 251 251 251 251
04 023 033 033 067 067 0.67 1 1 1 1.67 167 167 1.67
o5 0.12 0.17 0.17 034 034 034 05 05 05 084 084 084 084
T 1 1 2 1 2 3 1 2 3 1 2 3 4

Table 1: Set of parameters used in our NiN_schmid model to check the performance of the filters with different set of os. oy
is the original set from the paper [2]. 7 is kept constant. The sets cover quite an extensive range of values for o for small

kernel sizes.

For the Gaussian derivative basis, we have used o =
0.33,0.67 for all the basis filters for convolution layers of
size 3z3 and 5z5 respectively. For the Schmid basis, the
original o values from the paper [2] are too high for kernel
sizes in our architectures. We tried different sigma values to
check which best suits our approach. For the Schmid filter
basis, we use the same set of sigma values for every layer.
The different o and 7 parameters that have been tried are
shown in table 1.

We use the different set of parameters shown in 1 in our
NiN_schmid model to check the performance of the filters
with different set of os. The experiments are done on the
MNIST dataset with a sample size of 1000 under exactly
same training conditions. The performance comparison is
shown in table 2.

Performance comparison for different os

o ao o1 [op] 03 04 05
Accuracy 56.73 7121 7599 74.61 7826 73.21
Table 2: Accuracy results on MNIST dataset for

NiN_schmid model for different o values. Here o; refers
to the list of o values in table 1, All the experiments have
been run for a sample size of 1000 under same training con-
ditions. The results are mean of top-3 performances. o4 set
performs the best and is chosen for our experiments.

The o4 set which performs the best as seen in table 2, is
used for our Schmid basis filters throughout the rest of the
experiments.

4.1.3 Experiment 1: Accuracy in Classification

The aim of this experiment is to analyse the representa-
tive power of our model across the other models mentioned
above. The dataset has been segmented into train, valida-
tion and test sets. The training is done for 1200 epochs
with an adam optimiser [28] with standard learning param-
eters. Changing the learning rate did not bring any signif-
icant changes in the training process. A validation step is

performed after every training epoch and the model weights
from the best validation performance are saved to tackle
overfitting during training. The input images are normalised
and the dataset mean is subtracted. No pre-training has been
done as it was deemed superfluous for the MNIST dataset.
Results are obtained on the test set and the mean top-5 clas-
sification accuracy values are compared in table 3.

Performance comparison on MNIST dataset

Sample size  NiN_cnn  NiN_gauss  NiN_schmid = NiN_mixed
50000 99.65 99.25 97.65 99.44
20000 99.50 99.14 96.28 99.13
10000 99.28 99.12 94.82 99.05
5000 98.59 98.63 92.04 98.72
2000 97.50 97.49 85.27 97.92
1000 96.59 96.54 78.26 96.36
500 94.44 94.31 70.01 94.18
300 92.81 91.84 62.52 92.23

Table 3: Accuracy results on MNIST dataset for different
sample sizes. The experiment compares 4 models under
different sample sizes. NiN_schmid does not perform as
well in terms of representational power.

As seen from the table 3, the CNN, Gaussian and mixed
models perform fairly similar; but our Schmid model lags
significantly in terms of performance. To analyse this differ-
ence, we tried to visualise the kernel weights of the trained
NiN_schmid model and compare it to those of the NiN_cnn
model. The visualisation, as shown in figure 5, shows that
the kernels learnt by our NiN_schmid are significantly sim-
pler than the kernels of NiN_cnn. That explains the perfor-
mance of our model. We also verify through this visuali-
sation that our trained Schmid kernels are in-fact invariant
to spatial rotations. We quantify this invariance in our next
experiment.
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Kernel weights from the 2nd
convolution layer of NiN_cnn

Kernel weights from the 2nd
convolution layer of NiN_schmid

Figure 5: Visualisation of kernel weights from the 2™ con-
volution layer of NiN_cnn and NiN_schmid. Even though
NiN_schmid are rotation invariant, they are much simpler
as compared to NiN_cnn filters.

4.1.4 Experiment 2: Rotational Invariance in Classifi-
cation

The aim of this experiment is to analyse the rotational in-
variance of the models under consideration. For this exper-
iment, we rotate the test set in right angle rotations i.e. 90,
180 and 270 degrees. The training process and hyperparam-
eter values are exactly the same as the previous experiment.
The trained models are evaluated on the rotated versions of
the test sets and their accuracy is noted. We are interested
in the difference of the accuracy values between the non ro-
tated and rotated versions. The top-5 accuracy measures for
90, 180 and 270 degrees are averaged together to get the
result for rotation. The accuracy results on the rotated test
sets are shown in table 4.

Av. accuracy measure on right-angle rotations on MNIST

Sample size NiN_cnn NiN_gauss NiN_schmid NiN_mixed

10000 24.38 24.83 94.82 24.44
5000 26.94 26.32 92.04 23.27
2000 26.18 21.42 85.27 23.46
1000 25.15 25.81 78.26 24.89
500 23.88 20.18 70.01 22.39
300 22.56 16.48 62.52 20.47

Table 4: Top-5 average accuracy results on MNIST dataset
rotated at 90, 180 and 270 degrees. The top-5 accuracy val-
ues from each rotated set are averaged; and then those 3
are averaged to get the values in the table. The experiment
compares 4 models under different sample sizes with rota-
tions. Only Schmid filters do not change performance on
rotations.

The figure 6 shows the percentage drop in accuracy for
each model on introduction of right-angle rotations in the

=] o o o
=] =] =] =]
< < =] =]

10000 5000 2000 1000 500 300

samplesize

Ecnn Mgauss Mschmid ™ mixed

Figure 6: Visualisation of percentage drop in accuracy when
rotations at right angle multiples are introduced in the test
set. The values have been calculated as % drop in accu-
racy wrt accuracy without rotation. Schmid rotational filters
show no change in accuracy on rotation.

test set. As we can see, the NiN_schmid model shows no
drop in performance while all the other models show a per-
formance dip of about 75% each.

We visualise the feature maps generated by a random
test sample and its rotated version from the same model.
The feature maps, as shown in figure 7 are exactly rotated
versions of each other. Pixel value difference is calculated
between the rotated versions and found to be zero. Thus, ex-
periment 2 firmly validates our hypothesis that the Schmid
rotational kernels are invariant to spatial rotations.

ENE R -
LN

150 270

a a0 180 270
@ o0 180 270

2 prediction

cony layer 1

Figure 7: Visualisation of one feature map from each layer
of NiN_schmid model. When input is rotated, the feature
maps generated are rotated versions of each other.



4.2. Segmentation

In the second part of experiments, we focus on semantic
segmentation of aerial images for land cover classification.
We use the dataset from DeepGlobe Land Cover Classifica-
tion Challenge [29] which contains 803 satellite images in
RGB format. The challenge is a multi-class segmentation
task to detect 7 different classes such as urban, agriculture,
rangeland, forest, water, barren, and unknown. This is the
first public dataset of its kind providing high-resolution sub-
meter satellite images on rural areas [30]. The annotations
are in the form of RGB mask images with 7 classes follow-
ing the Anderson classification [31].

As satellite images of land cover do not have a sense
of orientation, this dataset augurs well for our experiments
on rotation invariance. As for the classification, we look
for representative power first, and then invariance. We use
the standard U-Net architecture [23] for our baseline model.
We compare it with our implementation which replaces all
spatial convolution layers in the U-Net encoder with our ro-
tation invariant convolution layer; the decoder remains un-
changed. We divide the dataset into 600 training, 100 vali-
dation and 100 test images.

4.2.1 Models
We use 4 different models in our segmentation experiment.
e unet_norot: standard U-Net

e unet_rot: standard U-Net trained on random right-
angle rotations(90, 180, 270) in training set

e unet_schmid_norot: U-Net with rotation invariant
convolution layers in encoder

o unet_schmid_rot: U-Net with rotation invariant con-
volution layers in encoder trained on random right-
angle rotations in training set

4.2.2 Experiment 3: Accuracy in Segmentation

The aim of the experiment is to analyse the representative
power of our implementation in segmentation problems.
Training is done for 350 epochs with adam optimiser with a
learning rate of 0.005. Validation step is prformed after ev-
ery epoch and best validation weights are saved to regulate
overfitting. We use pixelwise Intersection over Union (IoU)
as the accuracy metric which is calculated, for m images
and each j € N classes, as

_ > TPy ,
S TPy + 370 FPy+ 30 FNyy'’

[OUJ‘ (3)

where T'P;; is the total number of correctly predicted pixels
in image ¢ that belong to class j; F'P;; is the total number

of pixels in image 7 wrongly classified in class j; and F'N;;
is the total number of pixels in image ¢ that are wrongly
predicted as any class except j. The final score is calculated
as average over the NV classes, expressed as

N
1
mloU = Z; IoU;. 4)
p

The "unknown’ class is exempted from the metric calcula-
tion.

The results obtained are shown in table 5 under the
mlIoU,orotr column. All values are average of top-3 mloU
results. As in the classification problem, the models with
rotational filters lack in representative power as compared
to standard convolutional models.

Performance comparison on DeepGlobe dataset

model mloUyorot mIoUys % drop
unet_norot 65.58 63.25 3.55
unet_rot 69.06 68.72 0.49
unet_schmid_norot 40.42 40.40 0.05
unet_schmid_rot 43.99 43.99 0.016

Table 5: Results on DeepGlobe dataset for land cover clas-
sification. The mIoU,,,,,; are results obtained on test set
with no rotated samples; while mIoU,..; are results of test
set with randomly rotated samples at 90, 180 and 270 de-
grees. Our models show invariance to introduction of rota-
tion in the test set.

4.2.3 Experiment 4: Rotational Invariance in Segmen-
tation

In this experiment, we try to validate rotational invariance
of our segmentation model and compare it with traditional
U-Net models. This is an extension to experiment 3, where
we evaluate the models on the same test set; but with ran-
dom rotations at right-angles (90, 180 and 270). We ex-
pect i) performance to drop for the U-Net models with
conventional filters (unet_norot and unet_rot); and ii) U-
Net models with rotational filters (unet_schmid_norot and
unet_schmid_rot) to be consistent in their performance and
also consistent between themselves.

The results obtained are shown in table 5 under the
mlIoU,, column. It can be seen that performance of the
standard U-Net falls when rotated samples are introduced
in the test set; even for the unet_rot model which has been
trained on rotated samples. Models with rotational filters
achieve invariance to rotated samples in the test set; irre-
spective of whether they have been trained on rotated sam-
ples. So our first expectation is fulfilled; while the second
is partially fulfilled as the unet_schmid_rot performs better
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than unet_schmid_norot across multiple runs. To analyse
this, we compare feature maps for a sample test image and
it’s rotated version, shown in figure 8.

dg feature map 5 dg feature map 5 rot 270
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Figure 8: Visualisation of some feature maps from the 5%
convolution layer in decoder of unet_schmid_norot model
generated by a sample test image and its 270 degree rotated
version. On visual inspection, the feature maps look like
rotated versions of each other.

Comparison shows a constant intensity difference and
pixel differences mainly around the edges, as shown in fig-
ure 9. This difference in the forward pass probably causes
the gradient updates to be different and hence introduces
the difference in performance of our two models. The
intensity difference is found to originate from the batch-
normalisation layers. The pixel differences at the edges can
possibly be removed by a more effective padding technique.
This could not be tended to due to time constraints, and is
suggested in future work recommendation.

layer 1 layer 4
difference difference

Figure 9: Pixel difference of feature maps from the 1* and
4™ convolution layers in decoder of unet_schmid_norot gen-
erated by a sample test image and its 270 degree rotated
version. We see pixel differences at borders and constant
intensity difference throughout.

5. Conclusion and Future Work

Rotation invariance in convolution neural networks can
be achieved by learning effective rotation-invariant kernels
through linear combination of Schmid basis filters. The ro-
tation invariant layers are learnt through backpropagation
and can be easily integrated into any existing deep learn-
ing architecture. We validate our initial hypotheses through
experiments on MNIST classification and DeepGlobe land
cover segmentation. We have illustrated that the invariance
obtained is by design and not learnt from the training data.
This is effective for datasets that do not possess a sense of
orientation.

The performance in segmentation can be made more
consistent by effective padding techniques and possibly
adapting better pre-processing approaches that eliminate the
need of BatchNormalisation. Our rotational kernels, also,
fail to achieve performance at par with conventional CNN
kernels. This can be an area of future research. Another
important area of research could be learning the spatial ex-
tent of the basis filters according to the dataset. The origi-
nal o parameters of the Schmid filters are too high for the
small kernels that are generally used in deep learning mod-
els nowadays. So, it could be interesting if the network is
able to learn the o value itself.
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Introduction

Over the past decade, deep learning has become one of the most popular fields in machine
learning, owing to rising computational power, increased storage capacity and extensive
methods of data collection. Deep learning techniques have been utilised in a plethora of
artificial intelligence applications, notably computer vision.

Deep convolutional networks have been at the heart of most computer vision applications,
being widely used as state-of-the-art for image classification, detection, segmentation and so
on. Convolutional neural networks (CNNs) have established themselves as the champion of
image processing tasks as they can effectively capture locally connected features in an image.
An important aspect of CNNs is that they can capture translational invariance in their local
encoded features to some extent through convolution and pooling operations. This invariance
property adds generalisation to its results and helps CNNs to perform well while limiting the
parameter count as compared to fully connected networks.

One important invariance property that CNNs fail to capture is rotational invariance. Ro-
tation is an extremely common phenomena in case of images. Hence, rotational invariance
will be essential in computer vision applications where an arbitrary rotation in the image
plane does not objectively affect the inherent information contained in the objects or scene
involved. Such examples are commonly found in aerial/satellite and microscopic images.

This work aims to tap into the potential of convolutional networks to attain rotational
invariance with the help of rotationally invariant kernels. These kernels are learnt, through
backpropagation, from a fixed number of custom filters which are invariant to rotation. The
chapter presents motivation of this work, the research questions involved and an overall
outlook of the report.

2.1. Motivation

Transformation invariance has been a topic of interest in the computer vision community for a
long time. One of the affine transformation that we encounter frequently is rotation. Rotation
is a common phenomenon in aerial or satellite images, telescopic images of celestial bodies
and many biomedical image applications. So, understanding rotation is a very important
aspect for the CNN, if applied to such datasets.

In general, CNNs learn to incorporate translation and rotation invariance to some extent
through i) pooling/subsampling layers and ii) data augmentation. Max pooling achieves par-
tial invariance to small translations because the max of a region depends only on the single
largest feature. Average pooling also intuitively introduces some amount of local invariance
to the position of the features. Data augmentation means synthetic generation of new train-
ing samples through geometric distortion according to a known noise model [11]. This is a
very widely used technique to incorporate spatial invariance. But the main problem in this
approach is that it exponentially increases the number of training samples; so the capacity
of the learning model also needs to be high. Learning invariance from data can, hence, be
very complex and time consuming.

13



14 2. Introduction

If we look at the literature, there are several methods that have been applied to tackle the
problem of rotations. A very common approach is to find invariant or equivariant local feature
descriptors [25, 27-29]. Many papers try to analyse transformation-invariant or equivariant
representations [4, 8, 22, 34, 36]. Another major approach is to model the transformations
within the network as shown in [9, 13, 14, 17, 23, 35].

Invariance, equivariance and equivalence to transformations in image representations are
studied through empirical linear relationship between original and transformed images by
Lenc & Vedaldi [22]. The transformation property of representations using group represen-
tation theory has been presented by Cohen & Welling [8]. This has been extended through
Steerable filters [36] by Weiler et al.. Scattering networks [4] by Bruna & Mallat explicitly
design invariance through wavelet convolutions and group averaging while some CNNs learn
filter banks with local transformations [34]. Hinton [14] and Hinton et al. [13] try to impose a
canonical frame of reference on the object independent of viewpoint variations. Tieleman [35]
enhances this work to make the generative capsules capable of full affine transformations.
Spatial Transformer Networks [17] explicitly allow transformation of data within the network
without any manual intervention. Inverse Compositional Spatial Transformer Networks [23]
improve this approach by implementing the image transformation using an iterative approach
inspired by Lucas-Kanade optical flow algorithm. Deformable Convolutional Networks [9] have
deformable convolution and Rol pooling layers which augment the spatial sampling locations
with learnable offsets. This enhances transformation modelling capability of CNNS.

All of these approaches either try to model rotation invariant features to describe images or
transform either the feature maps or convolution filters to achieve invariance. This motivates
us to look for a more novel solution where the invariance is embedded in the convolution filter
design itself. We propose to select a set of spatially symmetric filters and let the network learn
linear combinations of them; so that the effective filters remain symmetric in construction.

2.2. Research Objective

The sole objective of this research work is to incorporate rotation invariant filters to convolu-
tional neural networks. The aim is a generic solution to the problem of rotation that should
not depend on the data and can be easily incorporated into existing architectures.

* Can we achieve rotational invariance in neural networks if we use rotationally symmetric
filter?

This can be broken down into further sub-questions as:

1. Can we construct rotation invariant filters by learning linear combinations of fixed ro-
tation filters?

2. Do our rotational filters make the network response stable against rotations in its input
images?

2.3. Outline

The main focus of this report is the scientific paper in chapter 1. The thesis report follows
up with a chapter on the basic theoretical knowledge of neural networks needed to under-
stand the work done in this research. Then, we discuss the Structured Receptive Fields [10]
which has heavy influence on the methods we have used. This is succeeded by a chapter on
the rotational filters used in our work and construction of our effective kernels. The report
concludes with a brief take on the additional experiments that have been performed but not
included in the paper.



Background on Neural Networks

This chapter provides the background theoretical information on neural networks needed for
clear insight and a better understanding of this work. This work researches on the ability
of convolutional neural networks (CNNs) to learn rotational invariance and how that can
improve image classification and semantic segmentation problems. This chapter starts with
a basic overview of what neural networks are, and how they work. This is followed by a more
detailed explanation on the working of CNNs in classification and segmentation. We will also
introduce popular CNN architectures that are used in this work.

3.1. Neural Networks

A neural network or artificial neural network (ANN) is a connected acyclical graph of nodes
called neurons. An artificial neuron is obtained by re-formulating a simplified function of
biological neuron into a mathematical model [5]. Its schematic structure is shown in figure
3.1. The corresponding biological references are shown to highlight the parallels.

i) wo

*>@ synapse
axon from a neuron
woTo

cell body

f (Z w;x; + b)
Z w;x; + b :

output axon

activation
function

WaT2

Figure 3.1: A mathematical model of an artificial neuron which is inspired by the neurological structure of the brain. The neuron
has got 3 inputs, 3 learnable weights and a bias, and applies an activation to obtain the final output [18].

Each neuron in a network has n incoming inputs X = [x;x;..x,]T with weights W =
[wiw,..w,] and biases B = [b;b,..b,]. A neuron then computes

n
u=W.X+B=Zwi.xi+bi, (3.1)
i=0

and forwards it through some nonlinearity known as an activation function, to generate the
output.
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16 3. Background on Neural Networks

Geometrically, the operation in Equation 3.1 can be interpreted as a linear transformation
of the input vector X and then shifting the origin by the bias term. The computation W.X+b is,
hence, an affine transformation. A non-linear activation f is applied to the affine transform

o = f(uw). (3.2)
In figure 3.1 the neuron has got 3 inputs, 3 learnable weights and a bias, and applies an
activation to obtain the final output.

A neural network is composed of interconnected neurons that exchange information be-
tween themselves. The connections have numerical weights that are tuned through back-
propagation during training so that a trained network responds appropriately when presented
with an image or pattern to recognize [18]. General neural networks are fully-connected i.e.
neurons between two adjacent layers are connected to each other. Each layer has many
neurons that respond to different combinations of inputs from the previous layers. Neurons
within a layer do not share any connections.

input layer
hidden layer 1 hidden layer 2

Figure 3.2: A regular 3-layer neural network with three inputs, two hidden layers of 4 neuron each and an output layer [18].

3.1.1. Activation

The activation function determines whether a neuron would fire or not and adds non-linearity
to the output which helps to capture complex arbitrary functional mappings between inputs
and output. Some common activations are Sigmoid, Hyperbolic tangent (Tanh) and Linear
Rectified Units (ReLu) [30, 37].

The sigmoid function does not have a zero-centred output and has a vanishing gradient
problem as the gradients saturate and die. Tanh solves the first problem but suffers from the
latter. ReLu solves the gradient problem and widely accelerates the convergence of stochastic
gradient descent [20].

Figure 3.3: Sigmoid, Tanh and ReLu activation functions respectively from left to right

The ReLu function is defined as A(x) = max(0, x) which thresholds the output at zero. But
this can cause some neurons to never fire at all, known as the dead neuron problem. That
can be handled by using Leaky ReLu or Randomized Leaky ReLu. Instead of thresholding at
zero, Leaky ReLu has a small negative slope.



3.2. Convolutional Neural Networks 17

[N S ————

Wi = ey

1
ReLLU Leaky ReLU/PReLU Randomized Leaky ReLU

Figure 3.4: First figure on the left shows ReLu activation function which clips the negative part of the signal to zero. This can give
rise to no activation from neurons, known as dead neurons. The dead neuron problem can be handled by Leaky/Randomized
Leaky RelLu by leaking a small negative slope.

3.1.2. Optimizers and Loss Functions

The learning process of a neural network tries to minimize a loss function i.e. the differ-
ence between ground truth and network prediction. The network is initialized with random
parameter values and the optimization process updates the parameters through gradient de-
scent to significantly reduce the loss. The gradient of the loss function is calculated through
backpropagation.

A loss function and an optimizer are chosen specifically to the problem at hand. A loss
function should be differentiable so that it can be optimized through backpropagation. Some
commonly used loss functions are mean square error, cross-entropy, hinge etc. Commonly
used optimizers are Stochastic Gradient Descent (SGD), RMSprop, Adagrad, Adam etc.

3.2. Convolutional Neural Networks

A Convolutional Neural Network(CNN) is a special type of neural network which consists of
one or more convolutional layers, followed by pooling and fully connected layers. The design
of a CNN is motivated by the visual cortex in the brain and they are the default choice for
handling image data in machine learning [5, 18]. A typical CNN architecture is shown in
figure 3.5. The convolution and pooling layers are explained below.

32x32 28x28x108
5x5 Filter 22
convolutions  subsampling convolutions

14x14x108 | 10x10x200 2-Stage FC
mw 5x5x200 full connection

BN
T - = 100,

B

convolutions subsampling
7x7x108
5% Filter 22 33 peurons
- OUTPUT
INPUT 15T STAGE 2ND STAGE CLASSIFIER

Figure 3.5: Typical block diagram of a CNN architecture. This architecture has 2 convolution layers followed by 2 pooling layers.
The final layer is fully connected which provides classification output.

3.2.1. Convolution Layer

The convolution layer is the most important part of a CNN. Each convolution layer has a set
of learnable filters which are spatially small but cover the depth of the input volume. The
filters slide over the entire image and calculate dot products between the input values and
the filter weights. This produces a 2-dimensional activation map which is the response of
the filter to the given input. Through the training process, the network updates the filter
weights and hence learns filters which can activate at certain visual features. A CNN usually
has many such convolutional layers stacked together. Generally, the initial layers tend to
learn edges, colours and orientations and progressively they learn blobs and more complex
patterns.
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Unlike fully-connected layers, convolutional layers connect neurons to only a local re-
gion of the input volume. The extent of spatial connectivity is known as the receptive field
hyperparameter of the neuron, which is equal to the filter size. Some other important hyper-
parameters are the depth of the output filters, stride with which we slide the filters over the
image, and the amount of zero-padding around the image border.
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Figure 3.6: Visualization of a convolutional layer. The input volume is of size W1=5,H1=5,D1=3, and the convolution layer
parameters are K=2,F=3,5S=2,P=1. The output activations (green) are obtained by element wise multiplication of input (blue)
with filter weights (red) and offset by bias. [18]

3.2.2. Pooling Layer

The convolution layers are generally followed by pooling layers. Pooling helps to reduce the
spatial dimensions of the representation, and hence limit parameter size and control overfit-
ting.

224x224x64 y )
1125112564 Single depth slice
pool « 1 1 2 4
max pool with 2x2 filters 7
5060 7| 8 and stride 2 6|8
[ 3 | 2 [ 3|4
' —
1 | 2 RS
= melmg- ! "
12 _
224 y

Figure 3.7: Left image shows how pooling operation reduces the spatial dimensions except the depth. Right image shows a
representation of how MaxPool works [18].

The most common pooling operation is MaxPooling which takes the maximum value from
a n*n grid of the image, hence, reducing the spatial dimension n folds. This is presented in
figure 3.7. Another popular pooling operation is AveragePooling which takes the average of
the values in the grid space.
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3.3. Deep Learning
Deep Learning is the subsection of machine learning that learns patterns from the data
through a combination of neural network layers, stacked on top of each other, that learn
successively complex feature representations. The deep in deep learning refers to the number
of neural network layers used in the model, also known as the depth of the model. Any model
that uses more than one or two network layers is generally referred to as deep. Modern deep
learning models can contain tens or even hundreds of successive layers [7].

In this section, we briefly describe the role of deep learning in image classification and
segmentation problems. The corresponding network architectures used in this work are also
introduced.

3.3.1. Image Classification
Image classification is a common problem in computer vision where the task is to assign a
particular label to an image, from a fixed category of labels. It is, generally, a supervised
learning problem. In the recent past, deep learning has achieved tremendous progress in
image classification problems, even surpassing human performance. Deep convolutional
neural networks have been the popular choice in image classification since AlexNet [21] was
introduced in 2012.

In our work, we have used the Network-In-Network (NIN) architecture [24] for image clas-
sification experiments. The following section gives a brief description of the same.

Network-in-Network

Conventional neural networks use linear filters followed by non-linear activation functions
for feature extraction. The Network-In-Network architecture proposes a new take on how the
convolution layers are designed. The NIN architecture introduces two new concepts in terms
of network architecture which are explained below in details:

* MLPConv Layer: The NIN paper claims that the convolution filters as generalised linear
models provide low levels of abstraction. They work on the assumption that the latent
samples i.e. the variations of the features are linearly separable. But this is not always
the case. Hence, the introduction of non-linear function approximator can work as
better feature extractors.

The paper introduces the concept of replacing the linear convolution filter with a multi-
layer perceptron (mlp). This new layer is called the m1pconv layer which maps the local
receptive field to an output feature vector. This approach has two important benefits:

— multilayer perceptron is compatible with backpropagation; so it can be easily in-
troduced to existing architecture

— multilayer perceptron can act as a deep model itself leading to a rich separation
between latent features

(a) Linear convolution layer (b) Mlpconv layer

Figure 3.8: Comparison of linear convolution layer and mipconv layer. The linear convolution layer includes a linear filter while
the mipconv layer includes a micro network [24].
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* Global Average Pooling: Conventional CNN architectures have one or more fully-connected

layers followed by a softmax activation to get the class probabilities. So they treat the
convolution layers as feature extractors, followed by traditional neural network clas-
sifier. The issue with this approach is that it is hard to decode how the final fully-
connected layers map to class probability. Also, these layers contain a large number of
parameters to learn and hence are prone to overfitting.

The paper proposes a new strategy called global average pooling to replace fully-
connected layers. The final m1pconv layer generates as many feature maps as the num-
ber of classification categories. The global average pooling layer takes an average
of each feature map and feeds that directly to the softmax activation layer. The advan-
tages are:

— it is a structural regularizer that enforces correspondence between feature maps
and categories, so feature maps can be interpreted as category confidence.

— it reduces parameter count as there are no weights to learn unlike fully-connected
layers.

— it sums up spatial information and hence, it is more robust to spatial translations
of the input.

Figure 3.9: The overall structure of Network In Network with three mipconv layers and one global average pooling layer [24].

1x1 Convolution: In terms of implementation, the m1pconv layers are mathematically equiv-
alent to convolutions with 1x1 spatial receptive field. 1x1 convolution acts like coordinate-
dependent transformation in the filter space. They pool features across various channels of
a given layer. This is followed by a non-linear activation, usually ReLU.

3.3.2. Semantic Segmentation

Semantic segmentation is an understanding of image scene at pixel level i.e. every pixel is
labelled with the class of its enclosing object or region. The aim of segmentation is to simplify
or highlight the image for better analysis and understanding. It is typically used to locate
objects and boundaries in images. In recent times, segmentation is an important problem in
computer vision and it’s applications involve autonomous driving, human-computer interac-
tion, virtual reality, land-cover classification and so on.

With the advent and improvement in deep learning techniques, deep architectures are
commonly used to tackle segmentation problems, generally using convolutional neural net-
works. In 2014, Fully Convolutional Networks (FCN) [26] by Long et al.from Berkeley, pop-
ularised CNN architectures for dense predictions without any fully connected layers. This
allowed segmentation maps to be generated for images of any size and was also much faster
compared to the patch classification approach used earlier. Almost all the subsequent state
of the art approaches on semantic segmentation adopted this paradigm [6].

Apart from fully connected layers, one of the main problems with using CNNs for segmen-
tation is pooling layers. Pooling layers increase the field of view and are able to aggregate the
context while discarding the ‘where’ information. However, semantic segmentation requires
the exact alignment of class maps and thus, needs the ‘where’ information to be preserved [6].
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This gave rise to the encoder-decoder architecture where the encoder gradually reduces
the spatial dimensions with pooling while the decoder gradually recovers the original dimen-
sion and object details. In our work, we have used a popular encoder-decoder architecture
called the U-Net [32] which is briefly described below.

U-Net

U-Net is a popular end-to-end encoder-decoder architecture for semantic segmentation. This
was introduced for bio-medical image segmentation and has outperformed prior best methods
on segmentation. This architecture is built upon the concept of Fully Convolutional Network
(FCN) and modified to get better segmentation results.

input
. o output
|mat?£ 1 et el bl segmentation
map
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.
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D.D..D L e e # max pool 2x2
L AT ] 4 up-conv 2x2
- S S— = cOnv 1x1

Figure 3.10: U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel
feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box.
White boxes represent copied feature maps. The arrows denote the different operations [32].

The main differences of the U-Net from FCN is that (1) it is symmetric and (2) there are
skip connections between the downsampling and upsampling path which are concatenated
together. The U-Net architecture has 3 parts

* Contracting/Downsampling: The downsampling path is composed of 4 blocks, each
having

— 2 (3x3) Convolution + activation with batch normalization
— A (2x2) Max Pooling

* Bottleneck: The bottleneck has 2 (3x3) convolutional layers with batch normalization
and dropout

* Expanding/Upsampling: The upsampling path is composed of 4 blocks, each having

— Deconvolution with stride=2
— Concatenation of corresponding skip connections from the downsampling path

— 2 (3x3) Convolution + activation with batch normalization
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Upsampling:

The upsampling operator is used to replace the pooling operations and hence, incorporate
the location information in the network. They also increase the spatial resolution of the
output so as the output of the network has the same dimension as the input images. In
the upsampling layer, a large number of feature channels are used so that the network can
propagate information to the higher resolution layers.

Skip Connections:
In order to improve localisation, high-resolution feature maps from the encoder path are
concatenated with the upsampled output. The corresponding feature maps need to be of
the same spatial dimensions, which is handled by the upsampling layers. The following
convolution layer after the concatenation can learn to assemble more precise output based
on the information from the skip connection layers.

The U-Net combines location information from encoder path and contextual information
from the decoder path to obtain good segmentation maps. The lack of fully-connected layers
means images can be input to the network independent of size.



Structured Receptive Fields

This chapter gives a brief description of a type of convolutional architecture known as the
Structured Receptive Field [16]. The filters in a structured receptive field can be constructed
from a fixed set of basis filters through parametric learning of their linear combinations. The
chapter describes their theoretical conception and implementation in a convolutional neural
network.

The chapter starts with an explanation of the scale-space theory in section 4.1 that mo-
tivates the inception of structured receptive fields. The following section 4.2 discusses the
mathematical construction of structured receptive filters using Gaussian derivative basis fil-
ters. We show how convolution filters can be expressed as parameterised functions where
the parameters define the filter weights. The next section 4.3 describes the method of im-
plementing the filters in a structured convolution layer. The last section 4.4 reasons the
choice of architecture for the structured receptive fields and explains why our method of
implementation is more generic towards the choice of architecture.

4.1. Scale Space Theory

In scale-space theory, the features present in an image is expressed as a parameterised
function with a continuous scale parameter. Images are convolved with filters of increasing
size, while linearly decreasing the spatial resolution at every step. This uniquely encodes
information from the image. The Gaussian is an important mathematical function that can
change its spatial extent according to its standard deviation, which is a continuous param-
eter. Gaussian and Gaussian derivatives do not introduce any artefacts and can be used to
represent any image realistically. In other words, any image can be decomposed into a linear
combination of Gaussian and Gaussian derivative functions. So, the Gaussian derivative
filters are appropriate to be used as a basis to describe image features.

In CNNs, the convolutional filters capture the image features while the pooling layers
reduce the spatial extent at each level but increase the receptive field of the filter kernel.
Thus, the local structure in the image is encoded into increasingly smaller feature vectors;
while the receptive field of the filters enlarges to better comprehend the global structure.
This is similar in concept to the scale-space and hence, gives rise to the idea of decomposing
images into a linear combination of fixed basis filters in CNNs.

Structured receptive field, thus tries to incorporate fixed filter bases as function priors
like Scattering Network [4], but still maintains the learning capacity of CNNs to learn the
linear combination of the bases to formulate effective convolution filters. This leads to the
structured receptive field neural network, called as RFNN in the paper.

23
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4.2. Structured Receptive Fields

Structured receptive fields consider images as a function in scale-space. So, the convolu-
tional kernels can also be expressed as parameterised functions. Any filter can be approxi-
mated by the Taylor expansion around a upto order M as

m

M
F m
F(x) = Z (a? (x — a)™. (4.1)
m=0

Exact derivatives of this function can be obtained through convolution with Gaussian deriva-
tives like

G(;o0)*F(x) =

N

G(;0)"xF
Y G D@, “2)
m=0

where * denotes convolution, G(;0) is a Gaussian kernel with scale ¢ and G(;0)™ is the
mth order Gaussian derivative with respect to its spatial variable. This shows that a pixel
representation of an image in a CNN can be equivalently described as a convolution with a
basis of weighted Gaussian derivatives. This forms the mathematical basis of the structured
receptive fields.

The Gaussian derivatives at different order can be obtained by multiplying orthogonal

Hermite polynomials H,, with the Gaussian envelope as

1 x

G(;o)"=(-1)"—H,,(—) - G(x;0). 4.3
The Hermite polynomials used here are "physicists” Hermites which are expressed in recur-
rence equations as

Hi(x) = 2xH;_1 (x) = 2(i = DH;_»(x),
Hy(x) = 2x, (4.4)
Ho(x) =1.

The representation in equation 4.2 allows to approximate any image’s local geometry at
location x with scale o up to any order of precision M. So, at infinite precision, an RFNN
translates into a general CNN. For human visual perception, an order of 4 can capture all
important information [19]. This mitigates the effect of the loss in universality that occurs
due to learning just a subset of all possible filters that a CNN can learn. The structured
receptive fields can, thus, capture most of the filters of interest.

4.3. Structured Convolution Layer

In structured receptive fields, the 2D convolution kernel is expressed as a weighted linear
combination of unique Gaussian derivative basis functions. The weights of the linear com-
bination are learnt through backpropagation. A convolution kernel function F(x,y), where x,
y denote the spatial dimensions, can be expressed as a linear combination of i unique basis
Gaussian derivatives ¢

F(x'y) = ald)l +-o-+ an¢i' (45)

where a4, .., @; are the parameters being learnt.

The network learns the a values by mini-batch stochastic gradient descent and the deriva-
tives of the loss function are calculated in terms of the a through backpropagation. The «
weights and the basis filters are independent of each other and hence, the basis filters are
never learnt in this process.
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Figure 4.1: Basic building block of Receptive Field Neural Networks. A linear combination of a limited basis filter set ¢, yields
an arbitrary number of effective filters. In this example, ¢,,, consists of Gaussian derivatives upto the 2" order. The weights a;j
are learned by the network. Image source [16].

In the SRF paper, the filter banks are learnt as a combination of the fixed basis filters
with a 1x1 convolution layer with the depth equal to the basis order. The image is convolved
with the basis filter kernels and the resultant feature maps are recombined by propagating
them via a 1x1 convolution layer which outputs feature maps with the required shape for
the next convolution layer. In this way, the effective kernel is never actually computed. The
feature maps generated after convolution with basis filters and recombining them through
cross-channel pooling are equivalent to the feature maps after convolution with actual effec-
tive filters. This way, structured receptive field approach cuts down hugely on the number
of parameters learnt by the network. This leads to their impressive classification perfor-
mance on very small datasets. But this method puts on the constraint of always having 1x1
convolution layers in the architecture.

In our implementation, we write our custom convolution layers which formulate the 2D
convolution kernel as the linear combination of the basis with randomly initialised weights
(@). We force the a values to be the only trainable parameters and the basis filters are kept
constant. The custom convolutional layer intakes the basis filters and computes the con-
volutional kernel as in equation 4.5 according to the input and output channel dimensions.
In this way, the effective filters are actually calculated in our custom convolution layer with
random « initialisation. During training, only the a parameters are updated by backprop-
agation and we get the desired learnt kernel. Though this increases the parameter count
of the network, it makes it generic to use in any deep learning architecture where we can
just replace the standard convolution layer with our custom one which takes the basis filter
set as an extra parameter. Our method also makes it very easy to implement in some deep
learning frameworks like Keras; where otherwise you have to take care of the kernel shape
at each layer.

4.4. Network

The SRF paper uses the Network in Network (NiN) architecture [24] because it suits their
implementation of the structured convolution layers. The NiN architecture has spatial con-
volution layers followed by 1x1 convolutions which form non-linear combinations of the spa-
tial layer outputs. Also, the NiN implementation does not have a fully-connected layer which
means all parameters are concerned with the combination of basis filters.

The RFNN version of NiN replaces the spatial convolution layers with the structured con-
volution layers. Each convolution layer is followed by a non-linear activation. No parameters
are learnt in the basis set. The 1x1 convolution layers form linear combinations of the basis
set according to the equation 4.5. There is no non-linearity between ¢,, and q;; layer in the
RFNN. The number of filters in the basis convolution layer depends on the order and scale
of the basis set chosen.

Our implementation of the SRF is slightly different in the sense that the custom convolu-
tional layer already forms the linear combination of the basis set according to equation 4.5.
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Figure 4.2: Comparison of the implementation of Structured Receptive Fields. Figure 4.2.a on the left shows our method of
implementation where we directly compute the effective filters and then do the convolution with the input feature maps. on the
right, 4.2.b shows the approach from the paper where they input feature maps are convolved with basis filters and then linearly
combined together to get the output feature maps. This implementation needs less parameter learning and hence is faster. Our
implementation is easier to integrate into any deep-learning framework. Image source [12].

The number of output layers needed can be specified exactly like in a normal convolution
layer. So, the 1x1 convolution layers form further linear combinations of the structured con-
volutional kernels. We can add non-linearity even to the custom layer as it already computes
the effective filter. This implementation is, thus, generic and can easily replace any normal
convolution layer in a deep learning architecture.



Rotational Invariant Filters

This chapter introduces the rotational filters that have been used in this work. Our require-
ment for the research is a set of filters

¢ which have spatial rotational symmetry
¢ their spatial extent can be controlled by a single continuous parameter

The first condition is necessary to make our effective kernels invariant to rotation. The second
condition allows us to use these filters as structured receptive fields [16].

We choose the Schmid filter basis which satisfies both the conditions. Section 5.1 intro-
duces the Schmid filter bank and describes their mathematical formulation. The following
section 5.2 describes how the filters have been incorporated as structured rotational fields
to construct effective rotation invariant filters. We visualise the constructed filters to check
their rotational symmetry.

5.1. Schmid filter bank

The Schmid filter bank consists of 13 rotationally invariant filters introduced by Schmid to
get rotation invariant descriptors for texture-like visual structure recognition [33]. These are
Gabor-like filters that combine frequency and scale together:

VX% 4+ y2mr _xtey?
AMEENE A
o

F(x,y,t,0) = Fy(7,0) + cos (5.1)
where ¢ is the standard deviation of the Gaussian envelope and t is the number of cycles of
the harmonic function within the Gaussian envelope. F;(t,0) is added to obtain a zero DC
component, making it robust to illumination changes.

Figure 5.1: Schmid(S) filter bank; 13 rotationally invariant isotropic "Gabor-like” filters [3] with a spatial resolution of 49.
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As seen in figure 5.1, the filters have spatial symmetry, thus conforming to our first con-
dition. Also, since the filter is constructed as a Gaussian envelope multiplied by a cosine, the
spatial extent is governed by the variance i.e. the ¢ parameter of the filters; hence abiding by
the second condition. The 13 filters in the Schmid filter bank have pre-determined parameter
values with the o,t pair taking values (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3),
(10,1), (10,2), (10,3) and (10,4). Smaller scales use smaller 7 values to avoid high-frequency
responses. The Python code to generate the filters has been adopted from the Matlab code
presented in [3].

The o parameter values of the original filters are found to be too high for our application
with kernel sizes of the order 3x3 and 5x5. We have tried different ¢ values and came up with
the best set suitable for our experiments which are [0.23, 0.33, 0.33, 0.67, 0.67, 0.67, 1, 1,
1, 1.67, 1.67, 1.67, 1.67].

5.2. Constructing rotational invariant filters

Our idea is to incorporate the Schmid filter basis into the structured receptive fields. We
compute the effective 2D convolution kernels from the Schmid filters, rather than the Gaus-
sian derivatives. In the structured receptive fields, the construction of an effective 2D kernel
F(x,y), where x, y denote the spatial dimensions, is governed by the equation

Fo,y)=a1¢91+ -+ andy; (5.2)

where ¢; denotes i unique Schmid basis filters here and a denotes the weights of linear
combination.

The method of implementation of the rotational kernels is exactly the same as the Struc-
tured Convolution Layer explained in 4.3. The figure 5.2 visualises the original basis and
some of the recombined filters obtained from them.

Rotation invariant filter visualisation
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Figure 5.2: a) Schmid(S) filter bank, b) effective rotational kernels obtained from learning the linear combination of the basis
filters. We can see that all the filters have rotational symmetry.



Performance Evaluation Method

We use the standard classification accuracy measure for our classification experiments and
the mean intersection over union measure for our segmentation experiments. This chapter
explains briefly the mathematical formulation of the metrics and their implementation in our
problems.

6.1. Classification

Classification accuracy is a straight-forward metric that calculates the ratio of correctly pre-
dicted instances among all instances present.

In pattern recognition, classification accuracy is measured by the parameters true posi-
tives, true negatives, false positives, and false negatives [31]. They are explained briefly in
the figure 6.1.

True condition

Total » » » .
) Condition positive Condition negative
population
Predicted . .
N True positive, False positive,
condition
Power Type | error

Predicted positive

condition Ppredicted
False negative,

condition True negative
) Type Il error
negative
True positive rate (TPR), Recall, False positive rate (FPR), Fall-out,
Sensitivity, probability of detection probability of false alarm

— _ Z True positive _ _ Z False positive
ondition positive ondition negative
Specificity (SPC), Selectivity, True
negative rate (TNR)

_ _2 False negative ]
ondition positive — __Z True negative
ondition negative

False negative rate (FNR), Miss rate

Figure 6.1: Different accuracy and error measures under classification context.

6.1.1. Accuracy
Classification accuracy is measured as the true-positive rate, also known as recall or sensi-
tivity and generally calculated as

= e 6.1
recall = o= (6.1)

where TP and FN are true positive and false negative measures respectively.
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6.2. Segmentation

Our segmentation problem calculates accuracy through the mean intersection over union
(mIoU) metric; which is a very common metric in use for semantic segmentation.

6.2.1. Intersection over Union

Intersection over Union, also known as the Jaccard index or the Jaccard similarity coefficient,
is a evaluation metric used to compare the similarity or difference between two sample sets,
introduced by botanist Paul Jaccard [15]. given two bounding boxes as sample sets, this
index is defined as the size of the intersection divided by the size of the union of the sample
sets:

lAnB| |ANB|

A B) = = .
J(4,5) |[AuB| |A|+|B|—|ANB|

(6.2)

If A and B are both empty, we define J(4,B) = 1. So, 0 <J(4,B) < 1.

Area of Overlap

loU =
Area of Union

Figure 6.2: loU measure expressed as ratio of intersection over union of prediction and ground-truth.

In segmentation problems, the two sample sets are the annotated image (the ground truth)
and the predicted image as the network output. The numerator computes the area of overlap
between the ground-truth and the prediction; while the denominator is the area encompassed
by both the prediction image and the ground-truth image. This is shown in figure 6.2

In terms of classification accuracy measures, the intersection over union, for m images
and each j € N classes, can be expressed as

m
Zi:l TPL j .
m m m )
Ei:1 TPij + z:i:1 FPij + Zizl FNi}'

IoU; = (6.3)

where TF;; is the total number of correctly predicted pixels in image i that belong to class j;
FP,; is the total number of pixels in image i wrongly classified in class j; and FN;; is the total
number of pixels in image i that are wrongly predicted as any class except j. The final score
is calculated as average over the N classes, expressed as

N
1
mloU = + Z loU;. (6.4)
=



Additional Experiments

This chapter describes the additional experiments and experimental details that are not in-
cluded in the paper.

7.1. MNIST Rotated

We have tried to check classification accuracy on the rotated MNIST dataset [2]. The digits
are rotated by an angle generated uniformly between O and 27 radians. This experiment is
exactly similar to experiment 1 described in the scientific paper section 4.1.3. The models
follow the Network-in-Network architecture and are trained for 1200 epochs with an Adam
optimizer with default parameters. The results are shown below in figure 7.1.

Accuracy on mnist_rot

1.0
0.9
0.8
z 07
T
S 06
3]
2 05
0.4
0.3 I
0.2
20000 10000 5000 2000 1000 500 300
mmixed  0.9008 0.8814 = 0.8723 0.7431 0.6157 0.5067 0.4356
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schmid ~ 0.5739 0.5734 0.4073 0.4042 0.3682 0.3370 0.3063
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Emixed BWecnn Mgauss M schmid

Figure 7.1: Acuuracy results on MNIST rotated dataset. cnn model is a normal NiN architecture; gauss and schmid have spatial
convolution filters replaced by Gaussian derivative and Schmid filters respectively; mixed has both Gaussian and Schmid filters
concatenated. Our schmid model performs worse than the other models that learn better representation from variations in the
input data.

The results do not show significant performance for our Schmid filters as in experiment

1 described in the paper. Our intuition is that the CNN and Gaussian models have better
representative power and hence, learn better features from the data itself.

31



32 7. Additional Experiments

7.2. Class distribution in segmentation problem

We used the DeepGlobe Land Cover classification dataset [1] for our segmentation experi-
ments. Understanding the pixel distribution of different classes in the dataset was essential
for our experiments on rotational invariance. Since, convolutional neural networks learn
positional information from the input images, the learned models can have certain bias to
specific classes in specific locations of the predicted output images. So, it was important
for us to check the frequency of positional distribution of different classes over the entire
dataset. If the distribution is not uniform enough, it is imperative to say that conventional
CNNs would learn that bias during training.
The pixel proportions of different classes is given in table 7.1

Class proportions in DeepGlobe Land Cover dataset

class pixel count proprotion
Urban 642.4M 9.35
Agriculture 3898.0M 56.76
Rangeland 701.1M 10.21
Forest 944 .4M 13.75
Water 256.9M 3.74
Barren 421.8M 6.14
Unknown 3.0M 0.04

Table 7.1: Class proportions in DeepGlobe Land Cover dataset [10]. There is a significant difference in proportion of existence;
so we try to find the uniformity of distribution also.

We visualised frequency distribution maps for each of the classes in our segmentation
problem; except the 'unknown’ class. Each map is normalised and hence provides a good
idea about the class distributions.

Mormalised class frequency distribution in the fraining set at different locations

ag chlture forest range-land

Figure 7.2: Frequency distribution at every spatial location over the entire training set for specific classes. We can see that
distribution is not uniform. This means the dataset has some bias towards certain class pixels at certain spatial locations.

The visualisations show that there is certain bias of different classes towards specific
locations in the dataset. That means the dataset does not have exactly uniform distribution
of different classes; hence, the convolutional neural network would have some bias in training
and therefore, the trained model would not be rotation invariant.
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