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In the framework of a mineral system approach,  a 
combination  of  components  is  required  to  develop  a 
mineral  system.  This  includes  the  whole-lithosphere 
architecture, which controls the transport of ore-forming 
fluids, and favorable tectonic and geodynamic processes, 
occurring  at  various  spatial  and  temporal  scales,  that 
influence the genesis and evolution of ore-forming fluids 
(Huston et al., 2016; Groves et al., 2018; Davies et al., 
2020). Knowledge of the deep structural framework can 
advance  the  understanding  of  the  development  of  a 
mineral system and the emplacement of mineral deposits. 
Deep geophysical exploration carried out with this aim is 
increasingly important for targeting new ore deposits in 
unexplored  and underexplored regions  (Dentith  et  al., 
2018; Dentith, 2019).  

We  analyze  data  and  electrical  resistivity  models 
generated from magnetotelluric measurements acquired 
across Mongolia, part of the Central Asian Orogenic Belt, 
as part of a regional array (Käufl et al., 2020; Rigaud et 
al., 2023a, b; Comeau et al., 2024; see Fig. 1) and focus on 
several  metallogenic  zones.  These  zones  contain 
significant resources of copper and gold, as well as rare 
earth elements. We interpret the results, with the help of 
geological and geochemical data, in addition to seismic 
velocity data, and discuss fluid transport pathways and 
links to the surface expressions of mineral deposits.  

The  magnetotelluric  method:  The  magnetotelluric 
method (known as MT) is an electromagnetic geophysical 
technique  used  to  image  the  subsurface  electrical 
resistivity distribution (Tikhonov, 1950; Cagniard, 1953). 
It can make use of passive, natural-source electromagnetic 
signals  that  are  generated  in  the  atmosphere  and 
ionosphere  (Simpson  and  Bahr,  2005;  Unsworth  and 
Rondenay, 2012). These electromagnetic field variations 
are measured over a broad range of periods at the Earth's 
surface. This gives sensitivity to multiple spatial scales: 
long-period data are sensitive to great depths and short-
period data are sensitive to shallow depths. The electric 
and magnetic field variations are related by a complex-

valued  impedance  tensor  from  which  the  apparent 
resistivity and impedance phase can be determined.  

MT data are especially sensitive to the quantity and 
composition  of  interconnected  fluids  (Unsworth  and 
Rondenay, 2012). This makes the technique well-suited to 
image the lithospheric architecture, including fault zones 
and suture zones, and has been shown to be capable of 
characterizing fluids and the traces of mineral alteration 
(Becken et al., 2008; Türkoğlu et al., 2008; Wise and 
Thiel, 2019; Sheng et al., 2023).  

Recent  work  has  drawn  links  between  the  surface 
locations  of  mineral  deposits  and  narrow  conductive 
features extended through the crust that are attributed to 
(fossil) fluid pathways or conduits (Heinson et al., 2006, 
2018; Jiang et al., 2019; Comeau et al., 2021, 2022; Sheng 
et al., 2022, 2024), as well as to large conductive features 
in the deep lithosphere attributed to source regions of ore-
forming fluids (Comeau et al., 2022), therefore giving 
trans-lithospheric images of mineral systems. 

Metallogenic zones and Mongolia: The Central Asian 
Orogenic  Belt  (CAOB)  is  a  long-lived  accretionary 
orogeny (possibly the largest worldwide) that covers parts 
of Central and Eastern Asia and includes Mongolia (Yin, 
2010). Within the CAOB, the Mongol-Okhotsk suture 
zone (and the associated ophiolite belts) is related to the 
closure of the Mongol-Okhotsk paleo-ocean and flanked 
by  volcanic-plutonic  belts  and  metallogenic  zones 
(Tomurtogoo et  al.,  2005).  In  southern  Mongolia,  an 
accretionary  collage  of  many  east‐west  trending 
lithostratigraphic domains or terranes has been mapped 
(Badarch et al., 2002). 

The  Erdenet  copper-molybdenum mine,  one  of  the 
largest mines in the world, is located at the northern end of 
the study area (Singer et al.,  2008; Porter, 2016, and 
references therein). Nearby are the well-known Zaamar, 
Boroo, and Eroo gold belts, part of the North Hentei gold 
belt (Dejidmaa, 1996; Singer et al., 2008). This region is 
bounded  by  large  faults  that  extend  for  hundreds  of 
kilometres, with the Yeroogol fault to the south and the 
Bayangol fault to the north (Badarch et al., 2002; Jargalan, 
2016).  
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Far to the south, south of the Middle Gobi Belt, several 
large porphyry copper-gold-(molybdenum) deposits exist. 
Including the world-class Oyu Tolgoi, one of the largest 
such deposits in the world (with significant reserves of high-
grade mineralization), Kharmagtai, and Tsagaan Survaga 
(amongst others; Singer et al., 2008; Porter, 2016). Nearby is 
the Olon Ovoot gold deposit in the Ulziit gold belt (Jargalan, 
2016), as well as the rare earth element mineralization 
associated with alkaline carbonatite complexes at Mushgai 
Khudag and Khotgor (Dostal and Gerel, 2023). They are 
associated with important tectonic boundaries and major 
approximately east-west trending lineaments. 

To  the  west,  the  Bayankhongor  Metal  Belt,  which 
contains  significant  occurrences  of  gold  and  copper 
mineralization,  lies  along an ophiolite  belt  and major 
tectonic boundary (Buchan et al., 2001; Badarch et al., 
2002; Mineral Resources Authority of Mongolia, 2014; 
Gerel et al., 2021).  

Results:  Across  the  area  examined,  the  electrical 
resistivity models reveal multiple narrow, vertical, low-
resistivity features that are spatially associated remarkably 
well with both a) the proposed boundaries of tectonic 
domains and b) the surface locations of mineral zones. 

In the north, below the projected location of the Eroo, 
Boroo, and Zaamar gold zones, part of the North Hentei 
gold belt, as well as below the projected location of the 
Erdenet  copper-molybdenum  mine,  and  below  the 
extensive  Yeroogol  and Bayangol  faults,  narrow low-
resistivity (1–100 Ωm) anomalies are observed in the 
upper and middle crust, in contrast to the highly-resistive 
background (~10,000 Ωm). A detailed follow-up study 
with dense measurements could elucidate more of the fine 
structure  and ensure  these features  are  well  resolved. 
Although some of the features  are  quite  subtle,  it  is 
notable that they can be identified directly in the data.  

Similarly,  in  the  south,  low-resistivity  (1–100  Ωm) 
anomalies  extend below the projected location of  the 
Kharmagtai copper-gold mine, below the Ulziit gold belt, 
and below the edges of the Gurvansayhan terrane.  

To the west, directly beneath the Bayankhongor Metal 

Belt  and  the  surface  expressions  of  known  mineral 
deposits, including in the Baydrag block, the electrical 
resistivity model reveals narrow, vertical, finger-like low-
resistivity (1–100 Ωm) features within the high-resistivity 
upper and middle crust. In the lower crust and lithospheric 
mantle, a broad low-resistivity zone is imaged. In addition 
to the above, in Bayan-Ölgii, North-Western Mongolia, 
recent progress has been made acquiring local-scale arrays 
of  measurements  across  mineralized  zones.  Here, 
preliminary results show narrow, vertical, low-resistivity 
(<50 Ωm) features within the upper crust beneath known 
molybdenum-tungsten and copper deposits. 

The fact that these anomalies are spatially related to the 
surface locations of large mineral zones and with the 
proposed  locations  of  tectonic  boundaries  gives 
information for their interpretation. One explanation for 
these small, vertical low-resistivity features is that they 
may represent  the  signatures  of  fossil  fluid  pathways 
(possibly from hydrothermal alteration) and record the 
location of the ascent of ore-forming fluids beneath the 
metallogenic zones, likely constrained by structure along a 
tectonic boundary or weaknesses. Furthermore, the results 
help to confirm ideas about the evolution and development 
of the CAOB.  

The results highlight that mineral systems are driven by 
lithospheric-scale processes and that understanding the 
whole-lithosphere  architecture,  which  is  influenced  by 
tectonic  events,  is  important.  Therefore,  modern 
exploration  concepts  advocate  for  a  scale-integrated 
approach (with imaging at multiple spatial scales: e.g., 
lithospheric-scale, regional-scale, and deposit-scale), for 
which the MT method is well suited. 
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Fig. 1. Map of Mongolia showing the locations of magnetotelluric measurements acquired 

from summer 2016 to spring 2024. 
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