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Successful industry-academia collaborations are built
on five key pillars: visibility creates opportunities,
opportunities spark networking, networking fosters
communication, communication builds trust, and trust
empowers true collaboration. Together, these pillars
form a strong foundation that drives innovation and
advances society.
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Summary

The adoption of AI systems across various sectors has increased considerably in recent

years. This is a consequence of the remarkable capability of AI to extract insights from

large-scale datasets, improve personalization, automate tasks and complex processes within

organizations, and support more informed decision-making. Notable examples include the

financial sector, where AI is applied to monitor transactions and accelerate credit decision

processes; healthcare, where AI contributes to drug discovery and assists clinicians in

the early diagnosing; manufacturing, where predictive maintenance using AI systems

help reduce costs and mitigate the risks associated with unexpected failures; and software

engineering, where AI supports anomaly detection, fault prediction, and resource demand

forecasting in large-scale, complex systems.

Despite the widespread adoption and potential of AI systems, most research has been

focused on model development, while investigations into their lifecycle and evolution

in production environments remain at an early stage. This research path is particularly

relevant for AI practitioners, who are responsible for ensuring the reliability, functionality,

and predictive accuracy of deployed systems. To bridge the gap between scientific research

and the practical needs of industry practitioners, this thesis focuses on two key aspects of

the AI lifecycle: techniques for monitoring and maintaining AI systems over time.

We begin this thesis by exploring the accuracy of identifying changes in the data

of multiple monitoring techniques, also known as drift detectors (Chapter 2). For the

remainder of the thesis, we focus on one particular category of AI systems, namely AIOps

systems. Thus, we experiment with the followingAIOps system: failure prediction, anomaly

detection, and capacity forecasting. Beyond assessing the accuracy of drift detectors, we

investigate their potential as indicators for model maintenance, particularly the retraining

of failure prediction models (Chapter 3). We further explore whether drift detection-based

retraining can enhance the sustainability of such models by reducing energy consumption

compared to periodic retraining (Chapter 4). The subsequent chapters extend the analysis to

anomaly detection systems (Chapter 5) and examine the practical implications of applying

drift detection-based retraining to capacity forecasting models (Chapter 6).

In the final part of this thesis, we summarize our findings and their implications in

practice. Our results suggest that drift detection techniques hold significant promise for

monitoring AI systems. However, whether they can be indicators for model maintenance

is dataset dependent and requires empirical validation. An inappropriate choice of detector

may lead to insufficient updates of the AI systems, which can impact the AI system’s

accuracy or unnecessary retraining. We also observed that, for time series–based systems

such as anomaly detection and forecasting, drift detection-based retraining can sometimes

result in lower accuracy compared to periodic retraining. This could be due to current

limitations of drift detection methods in practical scenarios. Therefore, our findings could

serve to highlight the need for further research in the area of drift detection techniques for

time series.
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Samenvatting

De adoptie van AI-systemen in diverse sectoren is de afgelopen jaren aanzienlijk toegeno-

men. Dit is een gevolg van het opmerkelijke vermogen van AI om inzichten te halen uit

grootschalige datasets, personalisatie te verbeteren, taken en complexe processen binnen

organisaties te automatiseren, en beter onderbouwde besluitvorming te ondersteunen.

Opvallende voorbeelden zijn de financiële sector, waar AI wordt toegepast om transacties

te monitoren en kredietbeslissingen te versnellen; de gezondheidszorg, waar AI bijdraagt

aan medicijnontwikkeling en clinici ondersteunt bij vroege diagnostiek; de industrie, waar

voorspellend onderhoud met AI-systemen helpt kosten te verlagen en risico’s van onver-

wachte storingen te beperken; en software-engineering, waar AI helpt bij het detecteren

van anomalieën, het voorspellen van fouten en het inschatten van de benodigde middelen

in grootschalige, complexe systemen.

Ondanks de brede adoptie en het potentieel van AI-systemen, heeft het meeste onder-

zoek zich gericht op modelontwikkeling, terwijl studies naar hun levenscyclus en evolutie

in productieomgevingen zich nog in een vroeg stadium bevinden. Dit onderzoekspad is

vooral relevant voor AI-professionals, die verantwoordelijk zijn voor de betrouwbaarheid,

functionaliteit en voorspellende nauwkeurigheid van geïmplementeerde systemen. Om de

kloof tussen wetenschappelijk onderzoek en de praktische behoeften van professionals

in de industrie te overbruggen, richt dit proefschrift zich op twee kernaspecten van de

AI-levenscyclus: technieken voor het monitoren en onderhouden van AI-systemen in de

loop van de tijd.

We beginnen dit proefschrift met een verkenning van de nauwkeurigheid waarmee

veranderingen in data worden geïdentificeerd door verschillende monitoringtechnieken,

ook wel driftdetectoren genoemd (Hoofdstuk 2). Voor de rest van het proefschrift richten

we ons op één specifieke categorie AI-systemen, namelijk AIOps-systemen. We doen

experimenten met de volgende AIOps-toepassingen: het voorspellen van storingen, het

detecteren van afwijkingen en eht voorspellen van capacitieit. Naast het beoordelen van de

nauwkeurigheid van driftdetectoren onderzoeken we hun potentieel als indicatoren voor

modelonderhoud, in het bijzonder voor het hertrainen van modellen voor storingsvoorspel-

ling (Hoofdstuk 3). Vervolgens onderzoeken we of hertraining op basis van driftdetectie

de duurzaamheid van dergelijke modellen kan verbeteren door het energieverbruik te

verminderen in vergelijking met periodieke hertraining (Hoofdstuk 4). De daaropvolgende

hoofdstukken breiden de analyse uit naar anomaliedetectiesystemen (Hoofdstuk 5) en

onderzoeken de praktische implicaties van het toepassen van driftdetectie-gebaseerde

hertraining op capaciteitsvoorspellingsmodellen (Hoofdstuk 6).

In het laatste deel van dit proefschrift vatten we onze bevindingen en hun praktische

implicaties samen. Onze resultaten suggereren dat driftdetectietechnieken veelbelovend

zijn voor het monitoren van AI-systemen. Of ze echter als indicatoren voor modelonder-

houd kunnen dienen, is afhankelijk van de dataset en vereist empirische validatie. Een

onjuiste keuze van detector kan leiden tot onvoldoende updates van AI-systemen, wat de
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nauwkeurigheid van het systeem kan beïnvloeden of tot onnodige hertraining kan leiden.

We hebben ook geconstateerd dat bij tijdreeks-gebaseerde systemen zoals anomaliedetectie

en voorspellingen, hertraining op basis van driftdetectie soms tot een lagere nauwkerigheid

leidt dan periodieke hertraining. Dit kan te wijten zijn aan de huidige beperkingen van

driftdetectiemethoden in praktische situaties. Onze bevindingen kunnen daarom bijdragen

aan het onderstrepen van de noodzaak voor verder onderzoek naar driftdetectietechnieken

voor tijdreeksen.
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Introduction

1.1 Motivation - Personal Story
This thesis describes my work on monitoring and maintaining ML systems over time, with

a particular focus on AIOps systems. It was carried out within the AI for FinTech Research

lab (AFR), an industry-academia collaboration between Delft University of Technology

and ING Bank. ING Bank is a Dutch multinational bank headquartered in Amsterdam,

offering a wide range of financial services worldwide, such as business banking, wholesale

banking, etc. My interest in the topic of engineering ML systems, with a particular focus

on monitoring and maintaining them once released in production, began in 2019 while

I was pursuing my MSc thesis as part of an internship within Exact Netherlands. Exact

is a Dutch software company that specializes in accounting and business management

solutions for small and medium-sized enterprises. My role was as an intern data scientist

and I was part of a large team of talented data scientists and data engineers whose scope

was designing data-driven solutions to solve multiple challenges within Exact.

During my internship, I assisted in multiple stages of developing machine learning-

based software, from identifying a business problem to gathering data and communicating

with business experts, and from building a prototype to deploying machine learning-

based software in production. Pursuing this internship as part of my Master’s thesis has

significantly improved my knowledge of using Artificial Intelligence (AI) and Machine

Learning (ML) in real business settings. Furthermore, it has also allowed me to observe the

challenges my colleagues were constantly facing as data scientists who develop machine

learning-based software that is used to produce business value.

One of the major issues my colleagues faced was the deterioration of the model’s

prediction accuracy over time. I observed that the deployed ML software often performed

with high accuracy for a few months but then experienced a sudden drop in performance.

Whenever this occurred, my colleagues had to dedicate significant time to investigating

and diagnosing the issue. In most cases, the data the ML model needed to predict had

shifted substantially from the training data, either due to natural causes, such as changes

in the calculation of a financial indicator, or other factors, such as errors in data extraction

from the pipeline. Beyond the time-consuming nature of these investigations, I also noticed
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that these data shifts severely impacted stakeholders’ perception of the ML software’s

reliability. As a result, business stakeholders lost trust in the data science team.

When I joined ING as part of my PhD, I had multiple discussions with different data

scientists in the organization who were facing the same problem. Most data scientists

were questioning whether the changes in the data that could impact the performance of

the ML model over time could be monitored in data science applications. However, the

research on engineering AI systems from the perspective of their lifecycle was also limited

when I began my PhD. For this reason, I decided to address this research gap and help the

community of data scientists by researching how to monitor deployed machine learning

software and how to maintain machine learning models during their lifecycle to prevent

accuracy drops during my PhD.

1.2 Background & Context
We begin this section by a short introduction into machine learning systems (Section

1.2.1), followed by an in depth explanation of the phenomenon of machine learning aging

(Section 1.2.2). Here we examining the underlying causes of machine learning aging, and

presenting how changes in the data impact the performance of machine learning systems.

We continue by presenting techniques that have been developed to mitigate the degradation

in predictive performance over time of the machine learning systems (Section 1.2.3) as well

as techniques used to detect changes in the data that can lead to the degradation (Section

1.2.4). In the following part of this section, we provide a detailed explanation of the AIOps

systems, a specific machine learning application for large software systems which we study

in this thesis (Section 1.2.5). Finally, we discuss about the GreenAI research field, which has

the purpose to encourage designing more sustainable machine learning systems (Section

1.2.6).

1.2.1 Introduction in Machine Learning
Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that aims to learn patterns

from data in order to predict the future or automate processes [1]. The popularity of ML

applications grew with the increasing availability of data, which also influenced the adop-

tion of ML techniques in industry settings. Numerous organizations in diverse sectors have

embraced these techniques. Out of these sectors we can mention finance [2], agriculture [3],

manufacturing [4], healthcare [5] and IT [6–8]. The usage of ML/AI software systems

allowed organizations to detect anomalous transactions [2], early identification of diseases

in crops [3], predict replacement of different machines used in manufacturing [4], early

identification of health problems [5] and identify anomalies and failures in large software

systems [7, 8].

Figure 1.1: Machine learning development workflow according to Amershi et al. [9].
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Amershi et al. [9] highlighted a simplified version of the workflow of developing real-

world ML application, which we depict in Figure 1.1. According to this workflow, the first

step is to define its purpose in terms of model requirements and the type of data needed

for it as well as to collect the required data. Next, the data preprocessing begins, where

data need to be cleaned, normalized if needed, and labeled when developing supervised ML

applications. Relevant features have to be derived from preprocessed data as part of feature
engineering. An ML algorithm is selected based on the problem that the ML application has

to address and is used to learn the data from the computed features. During the learning

process, also known as model training, hyperparameters of the ML algorithms are adjusted

accordingly. At the end of the training process, the result is an ML model, which is a term

that will be used throughout this thesis. This ML model is further evaluated during the

model evaluation phase and thereafter deployed in production where model monitoring is

required.

1.2.2 Machine Learning Aging
After deploying ML models into production, the model will continuously receive new data

for which it needs to make predictions. However, it has been observed that the predictive

quality of AI / ML software systems degrades over time, a phenomenon also referred to as

ML/AI aging [10]. This temporal quality degradation of ML/AI software used in real-world

application is a critical threat to their reliability and trustworthiness [11, 12].

It has been generally assumed that once an ML system achieves a certain performance

after being trained on the available training data, it is prepared for deployment without

considering the evolving character of the data that the model is exposed to [10]. However,

the ML algorithm used while designing the ML system assumes that the data it has been

trained on is similar to the data it will make predictions on. When this assumption does

not hold, the predictive quality of the ML system cannot be guaranteed [13]. Thus, the

temporal quality degradation of ML/AI systems is usually a consequence of changes in the

data over time. These changes in the data over time are also known as concept drift in

literature [14]. Unless explicitly mentioned otherwise, in this thesis the term concept drift

is used to refer to data changes that impact the model’s performance. Concept drift occurs

due to uncontrollable factors in real-world data. Examples of concept drift in real-world

applications are changes in the financial market which negatively influence the prediction

of an ML system designed to predict the credit risk of a person to repay their loan or

changes in user behavior and tastes which impact an ML system designed to recommend

users content they might like [13]. A real-world example where the impact of concept drift

on machine learning was tremendous is Watson for Oncology, in which IBM developed an

"Oncology Expert Advisor" system based on AI. This AI system was bought by multiple

hospitals and, thereafter, multiple studies about its performance in real-world have been

published. Doctors have discovered that the AI system performed poorly in the situation of

older patients
1
. Furthermore, medical researchers also discovered that the AI system had

a low accuracy on patients with metastatic breast cancer. In this example, the concept drift

could have been the data belonging to older patients or patients with metastatic cancer.

This concept drift could be a consequence of training AI systems on incomplete data. This

1
How IBM Watson Overpromised and Underdelivered on AI Health Care: https://spectrum.ieee.org/amp/how-

ibm-watson-overpromised-and-underdelivered-on-ai-health-care-2650278241
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resulted in a high risk of employing such a system in production in the field of medicine

and in $62 milion loss for IBM . An example of a more gradual drift is the experience of

Zillow with an AI system that could predict real estate prices. The accuracy of the AI

system began to drop as housing prices increased. This resulted in massive drops in Zillow

shares (around 10%) and a large number of people loosing their jobs
2
. These examples

show that data needs to be monitored and that AI systems require regular maintenance

through retraining.

1.2.3 Adapting Machine Learning Systems to Changes in Data
Through adaptation, we refer to the maintenance required by ML systems to prevent

the effects caused by changes in the data over time. This maintenance is usually done

through regular model retrainings. When retraining ML systems, we can distinguish

two major dimensions: the dimension of the retraining frequency and the dimension of

the retraining data. The dimension of the retraining frequency includes two retraining

techniques, namely periodic retraining, also referred to as blind adaptation [15] vs. drift

detection-based retraining, also referred to as informed adaptation [15]. The dimension

of the retraining data is composed of two retraining techniques, namely, the full-history

retraining approach and the sliding window retraining approach.

Periodic vs. Drift Detection-based Retraining.
Gama et al. [15] distinguishes between two types of retraining techniques for concept

drift adaptation, namely periodic (blind) vs. drift detection-based (informed) retraining.

These retraining techniques refer to the frequency of retraining ML systems and their

functionalities are depicted in Figure 1.2.

As noticed from Figure 1.2, periodic retraining refers to retraining ML systems periodi-

cally. The period is usually predefined based on the problem domain and is an engineering

requirement of the ML system [16]. On the other hand, the drift detection-based retraining
approach implies continuous monitoring against concept drift using algorithms called

concept drift detectors. The ML system is retrained only if the concept drift detector iden-

tifies changes in the inference data compared to the data the model was trained on. As

an example, Figure 1.2 shows a model that is retrained every month based on periodic

retraining and only in the month of October because the change in the data has been

detected in October based on drift detection-based retraining.

Full-History vs. Sliding Window Adaptation
When it comes to the data that is included in the retraining process, Liu et al. [17, 18] have

distinguished between two adaptation techniques, namely full-history and sliding window

retraining. There retraining techniques refer to the data the ML model is retrained on and

the difference between them is shown in Figure 1.3.

From Figure 1.3, we can observe the differences between the full-history and sliding

window retraining techniques. The full-history retraining approach includes all available

data when updating the model. It does not discard old samples, ensuring that past infor-

mation remains part of the training process. In contrast, the sliding window retraining

2
Zillow to lay off 25% of its workforce and shutter house-flipping service: https://www.cbsnews.com/news/zillow-

layoffs-closing-zillow-offers-selling-homes/
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Figure 1.2: Difference between retraining using periodic vs. drift detection-based retraining.
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Figure 1.3: Difference between retraining using the full-history and sliding window approach
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technique follows a different approach. This method is considered a retraining approach

with forgetting mechanisms since it discards old data and retrains the model solely on new

samples. It is presented as such in the survey by Gama et al. [15]. Figure 1.3 shows an

example in which an ML model is retrained monthly. In the case of full history retraining,

the data from January until July is employed to retrain the model, while in the case of

the sliding window retraining approach, the data of January is discarded and the model is

solely retrained on data from February until July.

1.2.4 Concept Drift Detectors Categories for Machine Learn-
ing Systems

In their extensive survey, Bayram et al. [14] categorize concept drift detectors based on the

specific machine learning problem they are designed for. The authors note that a significant

number of detection methods have been developed for classification tasks, largely due to

the abundance of open-source datasets available to test these detectors. However, they also

highlight that there are significantly fewer concept drift detection techniques for certain

areas, such as regression problems or machine learning applications involving input time

series data. In this thesis, we investigate two types of machine learning problems, one

classification machine learning application, namely failure prediction, and two time series-

based machine learning applications represented by capacity forecasting and anomaly

detection. Therefore, in our experiments, we include concept drift detectors designed for

classification and concept drift detectors designed for time series data.

According to their functionality, concept drift detectors can be divided into error rate-

based and data distribution-based drift detectors [19]. The error rate-based detectors, also

referred to as supervised drift detectors, are drift detection techniques that monitor the

performance of an ML system over time. For instance, in classification tasks, these detectors

would monitor accuracy when the classes are approximately equally distributed or the

ROC AUC score when the classes are highly imbalanced. These detectors are referred to

as supervised [14] or label-dependent since they require the correct labels corresponding

to the new samples to be available immediately to compute the performance metric and

identify drift. On the other hand, the data distribution-based detectors, which are also

referred to as unsupervised [14] or label-independent, identify drift solely from the data.

Thus, they do not require the true labels of the new samples to be available to identify drift.

However, employing supervised drift detection in a real-world setting is impractical since

the immediate availability of true labels is not guaranteed or is expensive to obtain [15].

An example where the immediate availability of true labels is impossible is a machine

learning system that predicts which customers are going bankrupt within one year. In

this situation, the true labels are solely available at the end of the year [15], thus, monthly

monitoring data changes using supervised drift detectors is infeasible. An example where

gathering true labels is extremely expensive is an application that predicts failures of jobs

(processes) in a big complex system [7]. In this situation, gathering true labels to employ

supervised concept drift detectors implies that for each failing job, operational engineers

investigate the exact cause of the failure and decide whether it was a problem in the system

or the reported failure was a human error. For this reason, in real-world ML systems,

unsupervised drift detectors are preferred over supervised ones.
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1.2.5 AIOps
The term AIOps was initially introduced by Gartner and refers to employing AI techniques

to improve the efficiency and ensure the quality of large complex software systems [20].

The term AIOps stands for Artificial Intelligence for IT Operations [21], and, recently,

plenty of companies are adopting AIOps solutions to manage their IT operations. A recent

survey [22] classified AIOps applications into four major categories: incident detection,
failure prediction, root-cause analysis, and automated actions.

The incident detection category refers to the identification of anomalous behaviors

in large-scale complex software systems. Incident detection applications continuously

monitor certain predefined system metrics to identify issues related to the system’s health,

security, or quality. These AIOps applications usually identify anomalies either from time

series data [23], such as the CPU utilization over time, or from text data, such as system

logs [24]. In this thesis, we dedicate one chapter to anomaly detection AIOps applications.

The failure prediction category contains AIOps applications that could predict problems

or incidents in large software systems in advance. These applications monitor different

metrics derived from the systems, such as key performance indicator (KPI) metrics or logs.

Through the means of advanced algorithms, they identify patterns that may be indicative of

potential incidents or failures. This information is then used to notify operational engineers

of any system anomalies or misbehavior, enabling proactive intervention and maintenance.

Failure prediction algorithms have been used in AIOps applications such as node failure

prediction [8, 25], disk failure prediction [6, 26], and job failure prediction [7]. In this thesis,

we employ two AIOps failure prediction applications, such as disk failure prediction and

job failure prediction.

The root cause analysis category refers to AIOps applications that could indicate

possible causes of a specific incident. This category of applications has the potential to

reduce the time operational engineers need to spend identifying the root of the problem.

An example of root cause analysis AIOps applications is identifying anomalies in parallel

in multiple system metrics, such as CPU utilization and network statistics [27].

The automated actions category contains AIOps applications capable of making deci-

sions about the system’s properties with the scope of automating its functionality. This

category contains both applications that identify the best actions to be taken in a workflow

and applications related to resource management according to the demand [22]. In this

thesis, we highlight one AIOps application from this category, namely capacity forecasting

for resource management.

1.2.6 GreenAI
The GreenAI research field focuses on reducing the computational demand of AI systems

with the aim of decreasing their energy consumption and enhancing their sustainability [28].

To facilitate the sustainability of ML models, researchers have proposed a series of green

tactics that ML/AI systems developers could adopt [29].

It was previously observed by Luccioni et al. [30] that the model training step in the

AI/ML model development was the most energy consuming step of the entire process.

This step becomes even more energy intensive when the amount of data used for the

retraining increases [31]. Given that due to machine learning model aging, AI/ML systems

need to be continuously updated due to changes in the data over time [15], we need to
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consider not only the energy consumed during the initial model training, but also the

energy consumed during each retraining of the model’s lifecycle. In this thesis, we provide

an empirical study of how different monitoring and maintenance strategies influence the

energy consumed during the lifecycle of machine learning systems. One direction that we

focus on is investigating whether a concept drift detection-based retraining is able to lower

the energy consumption of an ML system lifecycle, given that it can lower the amount of

times the model requires retraining.

1.3 Research Goal

At the beginning of this research project, we observed that plenty of attention has been

paid to assessing the drift detection capabilities of supervised concept drift detectors,

while unsupervised drift detectors received less focus. In many real-world applications,

unsupervised drift detectors are more suitable to be employed. Thus, we begin this thesis

with a comparative study aiming to understand the difference between the two types of

drift detectors (M-RQ1) in terms of drift detection accuracy. In the remainder of this thesis,

we focused on applications within the AIOps domain. Therefore, the second part of the

thesis evaluates whether unsupervised drift detectors can be used to indicate the need

for retraining failure prediction systems (M-RQ2). Thus, we initially researched whether

unsupervised drift detectors can indicate when the data has changed (M-RQ2.a) and what is

the impact of retraining failure prediction models based on drift detection on their energy

consumption over time and their accuracy is (M-RQ2.b). In the third part of this thesis, we

focus on evaluating unsupervised drift detectors on AIOps applications designed for time

series data (M-RQ3). More specifically, we investigate the impact of retraining anomaly

detection (M-RQ3.a) and capacity forecasting (M-RQ3.b) AIOps applications based on drift

detection.

In this thesis, we aim to answer the following main research questions:

M-RQ1. What is the difference in drift detection performance between label-dependent

supervised drift detectors and label-independent, unsupervised drift detectors?

M-RQ2. What is the impact of retraining failure prediction ML systems based on unsu-

pervised drift detectors?

M-RQ2.a. To what extent can retraining failure prediction ML systems based on

unsupervised drift detectors mitigate their degradation in accuracy over time?

M-RQ2.b. To what extent can retraining failure prediction ML systems based on

unsupervised drift detectors reduce the energy consumed by thisML application

over time?

M-RQ3. What is the impact of retraining AIOps applications designed for time series

based on drift detection designed for time series data?

M-RQ3.a. What is the impact on anomaly detection accuracy of retraining these

ML systems based on drift detection?

M-RQ3.a. What are the practical and performance implications of retraining a

capacity forecasting ML system based on drift detection?
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1.4 Research Methodology
This section contains relevant aspects regarding the research methodology employed to

pursue this thesis.

1.4.1 Evaluation Framework
Our research aims to investigate whether employing a drift detection-based retraining

approachwould benefit theMLmodels over timewhen it comes to their accuracy, consumed

energy, and computational effort. To conduct this research, we require datasets collected

over a predefined period for building ML models, existing ML models to investigate the

effects of concept drift, and implementations of concept drift detectors for evaluation. For

this reason, in this work, we employed multiple datasets for which the timestamp of each

sample or group of samples was specified to make our results more generalizable. The

ML models that are studied are either replicated/reproduced ML models from literature or

proprietary ML models. In terms of concept drift detectors, we used either open-source

implementations or we replicated the implementations from literature.

To achieve our goal, we opted for real-world publicly available datasets to ensure that

our experiments are relevant to real-world scenarios. However, this imposed more difficulty

since industry data is sensitive and not always publicly available. In Chapters 2, 3, 4, and 5,

we employed datasets released by organizations for research purpose. Examples of these

datasets are the Backblaze Disk Stats Dataset released by Backblaze Inc., the Google Cloud
Trace Dataset released by Google, theAlibaba GPU Cluster Trace Dataset released by Alibaba,
the Internet Traffic Yahoo Dataset released by Yahoo lab, etc. Furthermore, in Chapter 2

synthetic data was also considered to evaluate the precision of drift detectors in identifying

the exact moment when drift occurs. Beyond data availability, we also required ML models

to evaluate the impact of retraining based on drift detection. For this, we replicated existing

ML models (Chapters 3, 4 and 5). In terms of drift detection, implemented drift detectors

through replication for Chapters 2, 3, 4, while for Chapter 5 we used an open-source

implementation.

Another contribution of this thesis is evaluating this scenario in a real-world industry

setting. Thanks to our industry partner, ING Bank Netherlands, we conducted a study

on the effect of retraining a real-world AIOps capacity forecasting model based on drift

detection (Chapter 6). To pursue this study, we used ING proprietary data related to CPU

and Memory utilization and a proprietary ML forecasting model created to improve the

capacity management. In terms of drift detectors, we employed the same open-source

implementation as for Chapter 5 adapted to the current setting.

1.4.2 Code and Data Availability.
Almost all chapters in this thesis rely on open-source data. The source of the open-source

data is specified either in the chapter or in its corresponding GitHub repository. To enhance

open science and the reproducibility of our results, we publicly share the code employed in

each of these chapters. The only exception is Chapter 6, for which we employ proprietary

data from our industry partner. For this chapter specifically, the code could not be made

publicly available due to privacy reasons. More details about data and code availability are

also presented in Table 1.1.
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Table 1.1: Mapping of research questions to corresponding chapters, along with details on data availability and

replication packages. Data is classified as either public, indicating that the dataset is open-source or synthetically

generated using an open-source framework, or private, meaning it consists of proprietary company data. For

chapters using public data, the replication packages are openly available, whereas for those relying on private

data, the replication package remains private.

Research Question Chapter Data Replication Package Zenodo
M-RQ1 Chapter 2 public 10.5281/zenodo.15591540

M-RQ2 Chapters 3 and 4 - -

M-RQ2.a Chapter 3 public 10.5281/zenodo.15591505

M-RQ2.b Chapter 4 public 10.5281/zenodo.15591579

M-RQ3 Chapters 5 and 6 - -

M-RQ3.a Chapter 5 public 10.5281/zenodo.15591569

M-RQ3.b Chapters 6 private private

1.5 Research Outline and Findings
In this section, we provide an overview of the chapters of this thesis together with their

connection to the research questions. We present further details about the content of each

chapter. In Figure 1.4, we present a diagram showing the interconnection between the thesis

chapters, as well as a mapping between the thesis chapters and the specific topic covered

in each chapter. This thesis explores the impact of concept drift on ML systems, beginning

with techniques for detecting concept drift and then examining strategies for adapting ML

systems accordingly. We conducted a detailed comparative analysis of various concept

drift detection methods to address concept drift detection, evaluating their effectiveness in

identifying drift (Chapter 2). Regarding adapting ML systems to concept drift, we further

targeted one specific type of ML systems, namely AIOps ML systems. Our choice to focus

on this domain was motivated by the fact that AIOps data are usually less sensitive and can

be more easily open-sourced or accessed. When studying how to retrain AIOps systems

based on concept drift detection, we distinguished between AIOps ML systems designed

for multivariate data and those designed for time series data. For AIOps systems handling

multivariate data, we focused on failure prediction applications.

First, we examine how drift detection-based retraining impacts the accuracy of failure

prediction models (Chapter 3). Then, we extended this analysis to assess the energy

consumption of these models over time when retrained based on detected drift (Chapter 4).

For AIOps systems designed for time series data, we explored the effects of retraining

anomaly detection models based on drift detection on the accuracy of the ML system

(Chapter 5). Following this, we investigated the impact of drift-based retraining on a

capacity forecasting system (Chapter 6). Since this part of the research was conducted in

collaboration with an industry partner, Chapter 6 also examines not only the accuracy

implication but also the the industry implications of retraining AIOps ML systems based

on concept drift detection.
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Concept Drift Impact
on ML Systems

Concept Drift Detectors 
Comparison for ML Systems

Chapter 2

Concept Drift Detection Adapting ML Systems 
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Retraining AIOps ML Systems 
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AIOps ML Systems 
for Multivariate Data

AIOps ML Systems 
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Failure Prediction AIOps Systems:
Impact on Accuracy

Chapter 3

Failure Prediction AIOps Systems:
Impact on Energy Consumption

Chapter 4

Anomaly Detection AIOps Systems:
Impact on Accuracy

Chapter 5

Capacity Forecasting AIOps Systems:
Accuracy & Industry Implications

Chapter 6

Figure 1.4: Topic and Chapter Mapping.

In Table 1.1, we depict a direct mapping between each research question and its cor-

responding thesis chapter. Furthermore, this table also gives more details regarding the

availability of the data used in each chapter, as well as the replication package. As observed

in Table 1.1, this thesis is structured into three main parts: the first part includes Chapter 2,

the second part contains Chapter 3 and Chapter 4, and the final part consists of Chapter 5

and Chapter 6.

We begin this thesis with Chapter 2, where we focus primarily on machine learning

systems for classification purposes that take multivariate data as input. As depicted in

Table 1.1, this chapter aims to answer the first research question (RQ1). Previous work [32–

34], which studied the performance of supervised drift detectors, has shown that they

are accurate in identifying different types of concept drift. However, supervised drift

detectors are expensive to employ in real-world classification problems since they rely

on the immediate availability of data [15], which makes an unsupervised drift detector

a better solution. However, the drift detection accuracy of unsupervised drift detection

techniques has not been extensively researched before. Therefore, in this chapter, we

assess the drift detection accuracy of an unsupervised drift detector in terms of false

alarms, miss-detection rate, and detection latency. This chapter further compares the

drift detection accuracy of supervised and unsupervised drift detectors. In doing so, we

highlight whether there is a significant research gap between the two categories of drift

detectors to identify research gaps that prevent practitioners from employing drift detection
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monitoring in real-world ML systems. The comparison is performed employing ML systems

developed using both synthetic and real-world data. This study shows that unsupervised

drift detection techniques are sensitive to data sparsity and require data scaling, whereas

supervised drift detectors remain unaffected by these data characteristics. Consequently, in

our following two studies on classification problems (Chapter 3 and Chapter 4), we ensure

that the data before using unsupervised drift detectors to identify data changes. Another

key finding that resulted from Chapter 2 was the notable discrepancy in the performance

of all drift detectors when evaluated on synthetic versus real-world data with high-class

imbalance. This observation highlights the need to further investigate ML applications with

highly imbalanced classes. As a result, in Chapter 3 and Chapter 4, we evaluate retraining

strategies based on drift detection within an ML problem characterized by severe class

imbalance.

The next part of the thesis addresses the second research question (RQ2) as shown

in Table 1.1. Here, we also focus on studying the effects of retraining ML systems for

classification problems using concept drift detection. However, this part, composed of

Chapter 3 and Chapter 4, targets a specific ML application from the AIOps research field,

namely failure prediction. Failure prediction systems are examples of AIOps applications

for which the phenomenon of machine learning aging has been pointed out by previous

studies [17, 20, 35, 36]. For this reason, the most commonly known practice to avoid the

effects of concept drift on failure prediction models is to periodically update them through

retraining [17, 18, 35–37].

Chapter 3 analyzes the effects of retraining failure prediction models based on drift

detection compared to periodic retraining. The novelty of this work lies in the fact that

we assess the impact of retraining failure prediction based on drift detection using unsu-

pervised drift detectors, as opposed to supervised methods, which have been previously

explored [18]. Obtaining true labels in the case of failure prediction systems is expensive

because operational engineers must investigate the root cause of each failure and determine

whether it was caused by a real system problem or the result of human error [38]. For

this reason, employing supervised drift detectors to monitor whether the model requires

retraining is impractical. Therefore, this chapter focuses on identifying which unsupervised

drift detection techniques effectively detect when the performance of the failure prediction

model begins to degrade. We extract the commonly used unsupervised drift detection

techniques mentioned by industry practitioners, namely monitoring the skewness of the

features used to build the failure prediction model over time [39] and monitoring the data

distribution over time [9, 39, 40] and analyze all using three failure prediction models

(one disk failure prediction model and one job failure prediction model). Through this

study, we discover that monitoring feature skewness over time is not an effective method

to detect failure prediction model degradation. Instead, monitoring the data distribution

using distribution-based drift detectors can serve as a useful indicator to detect when to

retrain failure prediction models. This approach helps reduce the frequency of retraining

while maintaining the accuracy of failure prediction models. However, our findings reveal

that the most suitable unsupervised drift detection technique depends on the dataset and

must be identified by ML practitioners through experimentation.

Chapter 4 investigates the effects of retraining failure prediction models based on

drift detection from the perspective of the energy consumed over time. Thus, unlike
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Chapter 3, which prioritizes the choice of a drift detector that ensures the highest accuracy

over time of the failure prediction model, Chapter 4 shows a sustainability vision by

evaluating trade-offs between accuracy and consumed energy. Specifically, this chapter

quantifies the energy consumed by using various retraining techniques for failure prediction

models, with the goal of providing ML practitioners with insight into designing energy-

efficient ML systems over time. Details on the accuracy of failure prediction models

under different retraining techniques are still included in this chapter to emphasize the

influence of the most sustainable retraining approaches on model performance. Although

various strategies for designing energy-efficient machine learning systems have been

proposed in prior research [29], this work offers a comprehensive evaluation of how

different retraining techniques influence the energy consumption of ML systems over their

lifecycle. This chapter compares two retraining strategies from the perspective of the

retraining frequency [15], retraining periodically vs. retraining based on drift detection.

Additionally, it also investigates two other retraining strategies from the perspective

of the data that is included in the retraining, namely the full-history approach and the

sliding window approach [17, 37]. The full-history approach implies that all the available

data is included in the retraining, while the sliding window approach refers to including

only the most recent data in the retraining. Our findings reveal that sliding window

retraining is more energy-efficient than full-history retraining, while the difference in

accuracy between the two approaches remains minimal. Furthermore, we demonstrate that

retraining strategies do not affect energy consumption during inference. Lastly, we observe

that drift detection-based retraining can reduce energy consumption over time, provided

that the drift detector is not overly sensitive to minor fluctuations in data. Based on

these findings, we recommend that practitioners adopt a sliding window-based retraining

approach in combination with drift detection-based retraining, ensuring that the drift

detector is not too sensitive to minor data changes while designing sustainable ML systems.

The last part of this thesis is dedicated to the third research question (RQ3). Here,

the focus is no longer on ML systems for classification problems where the data are

multivariate, but on ML applications applied to time series data. As aforementioned, the

drift detectors applied to time series data also take into account the time dependency of the

data, unlike the ones designed for classification problems [14]. This part targets two other

AIOps applications, namely anomaly detection, corresponding to Chapter 5, and capacity

forecasting, corresponding to Chapter 6. Although both chapters analyze the same drift

detector on two different AIOps applications, Chapter 5 focuses on investigating the effects

of retraining multiple anomaly detection techniques based on drift detection and assessing

their maintainability over time, while Chapter 6 brings an industry perspective on the

implications of retraining based on drift detection from the architectural perspective of the

ML system and the current limitations of the concept drift detection techniques.

Chapter 5 explores various retraining techniques for anomaly detection in AIOps

models, aiming to establish maintenance guidelines for ML practitioners responsible for

developing such ML applications. Although periodic retraining and concept drift detection-

based retraining have been examined in the context of AIOps classification models [17, 18,

37], this study aims to investigate their impact on the accuracy of AIOps anomaly detection

models. Throughout this study, multiple anomaly detection algorithms are considered

based on their popularity and performance in identifying anomalous samples in AIOps-
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related open-source real-world datasets. Similarly to Chapter 4, we include for analysis two

retraining techniques related to the retraining data (full-history and sliding window) and

two retraining techniques related to the frequency of performing retraining (periodical and

concept drift detection-based retraining). Unlike the findings in Chapter 4, which showed

no significant difference between using a sliding window and a full-history retraining

approach, this study reveals that for anomaly detection, the choice should depend on

the employed anomaly detection algorithm. More specifically, we discover that anomaly

detection algorithms that take as input the time series in the time domain benefit from a

sliding window approach, whereas those that take as input the time series converted into a

different domain, such as the frequency domain, should be retrained using a full-history

approach. Regarding retraining based on drift detection, our findings indicate that periodic

retraining of anomaly detection models achieved slightly higher performance than drift-

based retraining. However, since the performance difference between the two approaches

was relatively small, we recommend that practitioners adopt drift-based retraining when

periodic retraining is computationally expensive or when obtaining true labels is costly.

Chapter 6 presents a real-world case study together with our industry partner, ING

Bank Netherlands, to understand the implications of incorporating drift detection-based

retraining into a practical setting. Therefore, the primary contribution of this chapter

is a comprehensive evaluation of drift detection-based retraining for an AIOps capacity

forecasting model, along with an analysis of its limitations in a real-world context. For this

case study, we targeted another AIOps application, namely capacity forecasting, which,

similarly to Chapter 5, takes as input time series data. Given our findings in Chapter 5, where

retraining based on the Feature Extraction Drift Detector (FEDD) proved beneficial, we

selected the same drift detector for this study. Our evaluation aimed to compare whether

retraining based on drift detection achieves comparable performance with retraining

periodically. The primary motivation for this study was the scalability challenges associated

with periodically retraining the capacity forecasting model. Therefore, together with the

ING team, we explored the trade-offs in forecasting accuracy between retraining only when

the time series is changing versus retraining periodically. If the accuracy implications

were minimal, then the team responsible for the forecasting model could opt for a concept

drift detection-based retraining to reduce computational costs. Similar to Chapter 5, our

results indicated that periodic retraining generally led to higher forecasting performance

across most time series. This finding applies especially to situations where the time series

exhibited frequent sudden changes. However, unlike the previous study, we also identified

scenarios where retraining based on FEDD outperformed periodic retraining, suggesting

that incorporating drift detection into the model maintenance pipeline is a promising

approach. Moreover, this study provided valuable insights, particularly regarding the

limitations of FEDD in practical settings. As a result, we proposed a forecasting system

design that integrates FEDD, which addresses some of these limitations, providing a

framework that ML practitioners working on time series models can leverage. Additionally,

we identified a functional limitation of FEDD in industry applications, which we discuss

in this chapter to promote further research on drift detection techniques for time series

that can overcome this issue, thereby enhancing the applicability of research in practical

industry settings.
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1.6 Thesis Scientific Contributions
In this section we highlight the main scientific contributions of this thesis.

1. Evaluation of differences in drift detection accuracy between unsupervised and

supervised drift detectors for multivariate data across multiple scenarios, showing

that the former require more attention from researchers. (Chapter 2)

2. Publicly available implementations of unsupervised drift detectors for multivariate

data. (Chapter 2)

3. Evaluation of unsupervised drift indicators such as feature skewness and data dis-

tribution monitoring in failure prediction AIOps models in terms of drift detection

accuracy. (Chapter 3)

4. Analysis of the impact of retraining AIOps systems based on concept drift detectors

as follows:

(a) Impact on the accuracy for the AIOps systems over time. (Chapter 3, 4, 5, 6)

(b) Impact on the energy consumption for failure prediction AIOps systems. (Chap-

ter 4)

(c) Impact on retraining cost savings for capacity forecasting systems. (Chapter 6)

This analysis is performed on 2 type of AIOps systems, the ones that take as input

multivariate data (Chapter 3 and 4) and the ones that take as input time series data

(Chapter 5 and 6).

5. Suggestions for machine learning practitioners of which retraining techniques to

use to reduce the energy consumption of their machine learning systems over time.

(Chapter 4)

6. Replication of state-of-the-art anomaly detection solutions and assessment of anomaly

detection retraining techniques. (Chapter 5)

7. Evaluation of the incorporation of a time series drift detector in the retraining pipeline

of a real-world capacity forecasting system. (Chapter 6)

8. Highlight of limitations of state-of-the-art drift detectors for time series in a real-

world setting and possible setups to overcome them. (Chapter 6)

1.7 Thesis Chapters Origins
This dissertation is organized as a collection of research articles. Therefore, some overlap

in related work or methodology may occur in different chapters. This is intentional to

ensure that each chapter is self-contained when read independently and provides sufficient

context for the reader. In this section, we provide an overview of the origins of each chapter.

All chapters were peer-reviewed and, for all chapters, the author of this thesis is the first

author.

Chapter 2 is based on the following scientific publication.

� 1. Lorena Poenaru-Olaru, Luis Cruz, Arie vanDeursen and Jan S. Rellermeyer. Are Concept Drift
Detectors Reliable Alarming Systems? - A Comparative Study. IEEE International Conference on

BigData (BigData), Osaka, Japan, 2022, pp. 3364-3373, https://doi.org/10.1109/BigData55660.202

2.10020292. [41]

Chapter 3 is based on the following scientific publication (publication 3). This chapter

was initially presented as a short paper (publication 2).

https://doi.org/10.1109/BigData55660.2022.10020292
https://doi.org/10.1109/BigData55660.2022.10020292
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2. Lorena Poenaru-Olaru, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen. Maintaining
and Monitoring AIOps Models Against Concept Drift. IEEE/ACM 2nd International Conference

on AI Engineering – Software Engineering for AI (CAIN), Melbourne, Australia, 2023, pp.

98-99, https://doi.org/10.1109/CAIN58948.2023.00024. [42]

� 3. Lorena Poenaru-Olaru, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen. Improving the
Reliability of Failure Prediction Models through Concept Drift Monitoring, IEEE/ACM Interna-

tional Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest),

Ottawa, Canada, 2025, https://doi.org/10.1109/DeepTest66595.2025.00006. [43]

Chapter 4 is based on the following scientific publication (publication 5). This chapter

was initially presented as a short paper (publication 4).

4. Lorena Poenaru-Olaru, June Sallou, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen. Re-
train AI Systems Responsibly! Use Sustainable Concept Drift Adaptation Techniques. IEEE/ACM
7th International Workshop on Green And Sustainable Software (GREENS), Melbourne, Aus-

tralia, 2023, pp. 17-18, https://doi.org/10.1109/GREENS59328.2023.00009. [44]

� 5. Lorena Poenaru-Olaru, June Sallou, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen.

Sustainable Machine Learning Retraining: Optimizing Energy Efficiency Without Compromising
Accuracy. 11th International Conference on ICT for Sustainability (ICT4S), Dublin, Ireland,

2025, pp. 100-111, https://doi.org/10.1109/ICT4S68164.2025.00019. [45]

Chapter 5 is based on the following scientific publication. A summary of this chapter

was included in the IEEE Software Practitioner’s Digest column [46].

� 6. Lorena Poenaru-Olaru, Natalia Karpova, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen.

Is Your Anomaly Detector Ready for Change? Adapting AIOps Solutions to the Real World.
IEEE/ACM3rd IEEE/ACM3rd International Conference onAI Engineering - Software Engineer-

ing for AI (CAIN ’24), Lisbon, Portugal, 2024, pp. 222–233, https://doi.org/10.1145/3644815.36449

61. [47]

Chapter 6 is based on the following scientific publication.

� 7. Lorena Poenaru-Olaru, Wouter van ’t Hof, Adrian Stańdo, Arkadiusz P. Trawiński, Eileen

Kapel, Jan S. Rellermeyer, Luis Cruz and Arie van Deursen. Prepared for the Unknown: Adapting
AIOps Capacity Forecasting Models to Data Changes. IEEE 36th IEEE International Symposium

on Software Reliability Engineering (ISSRE), Sao Paulo, Brazil, 2025. [48]

� Included in this thesis.

https://doi.org/10.1109/CAIN58948.2023.00024
https://doi.org/10.1109/DeepTest66595.2025.00006
https://doi.org/10.1109/GREENS59328.2023.00009
https://doi.org/10.1109/ICT4S68164.2025.00019
https://doi.org/10.1145/3644815.3644961
https://doi.org/10.1145/3644815.3644961
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2
Are Concept Drift Detectors
Reliable Alarming Systems? -

A Comparative Study

As machine learning models increasingly replace traditional business logic in the production
system, their lifecycle management is becoming a significant concern. Once deployed into
production, the machine learning models are constantly evaluated on new streaming data.
Given the continuous data flow, shifting data, also known as concept drift, is ubiquitous in
such settings. Concept drift usually impacts the performance of machine learning models,
thus, identifying the moment when concept drift occurs is required. Concept drift is identified
through concept drift detectors. In this work, we assess the reliability of concept drift detectors
to identify drift in time by exploring how late are they reporting drifts and how many false
alarms are they signaling. We compare the performance of the most popular drift detectors
belonging to two different concept drift detector groups, error rate-based detectors and data
distribution-based detectors. We assess their performance on both synthetic and real-world
data. In the case of synthetic data, we investigate the performance of detectors to identify two
types of concept drift, abrupt and gradual. Our findings aim to help practitioners understand
which drift detector should be employed in different situations and, to achieve this, we share
a list of the most important observations made throughout this study, which can serve as
guidelines for practical usage. Furthermore, based on our empirical results, we analyze the
suitability of each concept drift detection group to be used as an alarming system.

2.1 Introduction
Predictive algorithms, such as classification algorithms using Machine Learning (ML) on

Big Data have seen a significant growth in interest and plenty of real-world applications

This chapter is based on the following peer-reviewed publication:

� Lorena Poenaru-Olaru, Luis Cruz, Arie van Deursen and Jan S. Rellermeyer. 2022. Are Concept Drift Detectors
Reliable Alarming Systems? - A Comparative Study. IEEE International Conference on Big Data (Big Data), Osaka,
Japan, 2022, pp. 3364-3373 [41].
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have been proposed. Examples of those applications are fault detection [49], anomaly

detection [50], weather prediction [51], or credit risk prediction [52], where different ML

models are constantly evaluated on streaming data. Generally, due to the continuous data

flow, data streams are more prone to changes in data distributions over time and, thereby,

to concept drift.

Concept drift is a significant threat to the performance of ML models over time. ML

models are created by training an ML algorithm on a certain amount of available data,

which we are referring to as reference data. The ML algorithms work under the assumption

that the data distribution used to evaluate the model is similar to the data distribution of

the reference data. However, this assumption does not hold when considering data streams

since the evaluation (testing) data is constantly evolving over time due to uncontrollable

factors [13]. Therefore, this raises a substantial issue with regards to preserving the

performance of ML models over time.

Knowing beforehand when concept drift occurs could help data scientists to take

appropriate measures in advance to prevent its effects on the ML model’s performance [19].

Thus, special drift algorithms called concept drift detectors were proposed to identify the

moment when concept drift occurs. They can be used as an alarming system that notifies

users about expected model performance degradation. Consequentially, it is important for

these drift detectors to be precise when reporting the moment of data shift.

Several studies have identified two major concept drift detectors categories, the error
rate-based drift detectors and the data distribution-based drift detectors [14], [19]. The

error rate-based drift detectors identify drift by monitoring the error rate of a trained

model on new evaluation data batches. They are always paired with the classification

algorithm used to train the model. Since they continuously compute the error rate, these

detectors assume that labels are available immediately, which makes them label-dependent
drift detectors. The data distribution-based drift detectors identify drifts by assessing the

similarity between the distribution of the reference data and the evaluation data. There is

currently no general similarity metric used uniformly among all studies. Since their drift

detection mechanism solely relies on density functions of training and testing data, they are

label-independent drift detectors. In real-world settings, the data distribution-based detectors
are favored over the error rate-based detectors since immediately obtaining labels can be

expensive or even impossible [15]. However, recently some techniques were developed

to adapt error rate-based detectors for unsupervised and semi-supervised settings [14].

Previous comparative studies [32], [33], [34] focused on analyzing only the error rate-based

detectors. Thus, our study is the first to compare the aforementioned two categories of

drift detectors. Furthermore, we are the first to assess the precision of detectors in terms of

latency and false-positive rate from the perspective of monitoring Big Data ML applications

in production and to provide guidelines for practitioners. Thereby, we contribute in the

following directions:

1) While previous work [32–34] focuses only on comparing error rate-based drift detectors,

in this chapter we assess both the data distribution-based detectors and the error rate-

based detectors in terms of false alarms, miss-detection rate and drift detection latency

on both synthetic and real-world data.

2) We explore different similarity metrics of data distribution-based detectors and find

that, in some cases, other similarity distances are more suitable than the widely used
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KL Divergence [53], [54].

3) We share the open source implementation of the data distribution-based detectors

employed in this study, which was not previously available. Furthermore, our work is

reproducible and available on GitHub.

4) We evaluate the error rate-based detectors paired with three recent and popular classi-

fiers, such as AdaBoost [55], XGBoost [56] and LightGBM [57], as well as commonly

used classifiers by previous work [32–34], i.e., Naive Bayes and Hoeffding Trees.

5) We provide some major observations of detector-dataset compatibility, which aim to

serve as guidelines for practitioners who want to include drift detectors in their data

stream monitoring process.

2.2 Background and Related Work
2.2.1 Concept Drift General Knowledge
The term concept drift, also known as data shift or data drift, was originally used in data

streams to describe changes in data distributions over time [15]. The most common types

of concept drift are abrupt drift and gradual drift [32–34]. The key difference between the

two types of drift is the duration. In case of abrupt drift, there is a sudden change in the

feature behavior, while in case of gradual change, the features are changing completely

after a transition period, as can also be observed in Fig. Figure 2.1. The transition period

between the moment when gradual drift starts and the moment it ends is referred to as

drift width.

Context A Context A + B Context B

Context A Context B

start end

drift width

time

time

Gradual

Abrupt

Figure 2.1: Gradual vs. abrupt drift duration.

2.2.2 Concept Drift Detectors
Plenty of attention has been paid to developing techniques that are able to detect concept

drift as part of data stream monitoring [19]. This section presents drift detectors belong-

ing to both error rate-based (ERB) drift detectors and data distribution-based (DDB) drift
detectors.

Out of the ERB drift detectors, the most popular drift detector is Drift Detection Method
(DDM) [58], which uses statistical tests to identify significant changes in error rate. An

improved version of DDM is Early Drift Detection Method (EDDM) [59], which, additionally,
verifies the distance between error rates when identifying drifts. Another popular ERB drift

detector is Adaptive Windowing (ADWIN) [60], a window based technique to store recent
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samples. The decrease in mean of the stored samples is monitored to detect drift. The Drift
Detection Method based on the Hoeffding’s inequality carried with A-test (HDDM_A) and
W-test (HDDM_W) [61] methods rely on tracking the moving average and Hoeffding’s

inequality to determine the significance of the change. Other examples of ERB drift

detectors are FW-DDM [62], EWMA chart drift detector [63] and RDDM [64].

Within the (DDB) detectors we distinguish between detectors employing statistical
tests and detectors using similarity metrics. The most popular example of the former

category is the Equal Density Estimation (EDE) detector [65], which identifies drift based

on a non-parametric statistical tests. The null hypothesis of the tests assumes the similarity

of two data distributions and its rejection signals a drift. The most commonly employed

DDB detector relying on similarity metrics is quad-trees which scale with the size (k) and
dimensionality (d) of the data (kdqTrees) [53]. This technique uses bootstrapping to

determine the highest discrepancy between the reference (training) data and subsamples

of the reference data in order to compute a critical region. Thereafter, the similarity

between the distribution of the new data and the reference data, assessed by the critical

region, is used to detect drift. For this technique the similarity metric used is KL Divergence.

However, other studies consider different similarity metrics to measure similarities between

distributions [66]. Therefore, there is no general similarity metric used in DDB drift

detectors and no available study about different metrics suitability in concept drift detection.

Furthermore, recent studies suggest that extracting the distributions of the projected

features obtained through Principal Component Analysis (PCA) instead of raw features

is more suitable for high dimensional datasets [54] and could significantly improve drift

detection. Other DDB drift detectors are SyncStream [67] or RD [66].

2.2.3 Datasets for Concept Drift Detectors Evaluation
When comparing concept drift detectors, most studies [32–34] are relying on synthetic

datasets, usually generated through the MOA Framework [68]. The reason for this is that

the moment when the concept drift occurs could be fixed through data generation.

Evaluating concept drift detectors on real-world data is most of the times impractical

given that the exact moment when a drift occurs is unknown. However, the study of Webb

et al. [69] identifies the moment of drift occurrence for two real-world datasets, Electricity
(ELECT2) [70] and Airlines [68].

The ELECT2 datasets, contains samples from Australian New South Wales Electricity

Market collected every five minutes over a period of approximately two years. The main

prediction problem of ELECT2 is determining whether prices are going up or down based

on demand and supply features. In this dataset there is a sudden drift on the 2
nd

of May

when wholesale electricity sales between the Australian Capital Territory, New South

Wales, South Australia and Victoria was allowed [69]. The effect of this concept drift could

be observed on three attributes of the dataset, which were constant until that date, but

started fluctuating afterwards.

The Airlines dataset, contains samples corresponding to details of multiple flights

collected over a period of four weeks. The main prediction problem is determining whether

flights are going to be delayed or on-time. Within this dataset, there is a significant concept

drift occurring during the weekend flights (starting from Friday until Sunday) compared to

the week days. This drift can be observed especially on the first two weeks of collected
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data [69].

2.3 Evaluation Methodology
The main goal of this chapter is to evaluate the ability to detect drift in time of both

error-rate based (ERB) drift detectors and the data distribution-based (DDB) drift detectors

under different conditions. This can be summarized in the following research questions:

RQ1: How do state-of-the-art drift detectors compare in their ability to detect abrupt and

gradual drift under ideal circumstances?

RQ2: How do state-of-the-art drift detectors perform detecting abrupt and gradual drift

in the presence of noise and imbalanced data?

RQ3: To what extent does the performance of drift detectors on controlled drift position

data generalize to real-world data?

2.3.1 Data
Employed Datasets
In order achieve our goal, we need to know precisely when the drift occurs. Thereby, in our

evaluation we include both synthetic data, where the concept drift can be fixed through

the data generation process, and real-world data for which we know the moment when

the concept drift occurs [69]. Our study exploits three synthetic datasets, namely SEA,
AGRAW1 and AGRAW2, and two real-world datasets for which the moment of concept

drift occurrence is known and marked through the findings of Webb et al. [69], namely

Electricity (ELECT2) and Airlines.
We generated synthetic data through two data generators, namely SEA [71] and

Agrawal [72] available in the MOA framework. It needs to be mentioned that MOA was

solely employed to generate the data, not to perform the evaluation. The former generates

three attributes containing numerical features ranging from 0 to 1 and is frequently used

in the concept drift detection literature [32, 34], [33]. The latter creates three categorical

attributes and six numerical attributes, which correspond to loan-related data. Agrawal

generator was created through the process of database mining, in which significant patterns

were extracted from large scale industrial data sets and used to generate synthetic data

samples. We generated two datasets with the Agrawal generator, AGRAW1 and AGRAW2.
Although both AGRAW1 and AGRAW2 were generated using the same generator, they

are two different datasets, which consider different forms of evaluation when classifying

the samples into the two classes. For all the synthetic datasets, we generated data under

ideal conditions, in which no noise was added and the two classes are balanced and also

non-ideal conditions, with 10% and 20% noise or imbalanced classes, where the imbalance

ratio is 1:2. This is the highest imbalance ratio for which the detectors were able to identify

any drift. The scope of the non-ideal conditions is to assess the robustness of the detectors

against events that could occurs in real-world scenarios. Furthermore, we generate data for

both abrupt and gradual drift. We consider different drift widths, namely [500, 1000, 5000,

10000, 20000] samples. For instance, from the moment the gradual concept drift starts,

there are 500 samples until it ends and the features are changing their behavior completely.

Each dataset is generated using 10 random seeds to avoid bias in our experiments. We

further assess the ability of drift detectors to identify drift on two real-world datasets.
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We purposely include datasets containing solely numerical features, SEA and ELECT2,

as well as datasets containing both numerical and categorical features, AGRAW1, AGRAW2

and Airlines. In general, categorical features pose problems for ML classifiers, since the

ML algorithms usually require numerical values. The most commonly used technique

to overcome this issue is one-hot encoding, which converts categorical data into binary

vectors. Therefore, we employ this technique in our experiments for the datasets containing

a mixture of numerical and categorical features.

After ensuring that all datasets contain solely numerical values, the next step is the data

scaling. Two of the datasets considered, SEA and ELECT2, include data scaled between 0

and 1. In order to ensure experimental consistency, we also scale the values for remaining

datasets, AGRAW1, AGRAW2 and Airlines. Data scaling was performed using the Min-

Max scaler implementation provided in Python scikit-learn version 1.0.2
1
. The reason for

choosing this scaler is that it does not make any assumption regarding the distribution of

the data following a particular pattern.

Data Setup
In our experiments we process each dataset as a data stream in which the first part is the

reference data and the second part is the testing data. The testing data is divided into equal

testing batches. The reason behind this is that the reference data is used to train the ML

model which is going to be periodically tested on the new upcoming data. In all cases we

ensure that the drift occurs during the testing phase, such that we simulate a deployed ML

model which needs to be tested on shifted data. For each new testing batch, a drift detector

is employed to determine whether the data has shifted. A detailed representation of our

setup is shown in Fig. Figure 2.2. In all our experiments, detectors that signal the drift

before the testing batch containing the actual concept drift is a false alarm. In the same

manner, signaling the drift after the testing batch containing the drift increases the latency.

In case of ERB detectors, the reference data is used in order to train the ML classifiers,

which are paired with the concept drift detectors. In case of some DDB detectors, the

reference data is used to compute a threshold, which is employed to assess the similarity

between the new data and the old data. Furthermore, we solely use the reference data to fit

the scaler and then we apply it on each testing batch.

... ...

Reference Data

Drift Start

Testing Batches

Figure 2.2: Data stream setup.

1
MinMaxScaler

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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In the SEA, AGRAW1 and AGRAW2 datasets, the drift start is fixed during the data

synthesizing process such that the first two testing batches do not contain drift, while the

others include drift.

In case of the real-world data, we initially defined the prediction problem. In case of

ELECT2, the prediction problem is weekly predicting whether prices are going up or down.

The reference data is composed of the initial part of the data stream, namely data collected

between the 07
th
of May 1996 and the 15

th
of April 1997. Each testing batch is composed

of one week of data. The drift starts in the testing batch containing the 2
nd

of May 1997.

In terms of the Airline dataset, the prediction problem is daily predicting delayed flights.

Since the first week of data has missing records corresponding to Monday and Tuesday,

we solely consider the second week, for which we have complete data from Monday until

Sunday. The reference data is represented by samples from Monday and Tuesday, while

the other week days are testing batches. The drift starts on the testing batch corresponding

to Friday and lasts until the end of the week.

2.3.2 Implementation Decisions in Drift Detectors
When selecting the detectors used for evaluation, our major selection criteria is the publicly

available implementations. However, one barrier we encountered was the implementation

unavailability of the DDB detectors, for which only mathematical proofs were provided.

Thus, we implemented three popular such detectors.

In terms of ERB drift detectors we employ DDM, EDDM, ADWIN, HDDM_A and

HDDM_W, using the implementations provided in the Python package scikit-multiflow

version 0.5.3
2
. These detectors rely on the error rate and, thus, they need to be paired

with classifiers. For this study, we use the following classifiers Naive Bayes, Hoeffding
Trees, AdaBoost, XGBoost and LightGBM, which were used either in previous drift detection

comparative studies, [34], [32], [33] or in data stream classification [73], [74]. The classifiers

are not retrained after a drift is signaled since the purpose of the experiment is solely to

identify how fast the first drift can be captured, not to evaluate the situations of multiple

drifts. Therefore, the reference data is also not changed after a drift is signaled. For each

detector we employed the best hyperparameters configuration.

When it comes to DDB drift detectors, we employ the statistical test-based detector

EDE and two similarity metric-based detectors, namely kdqTrees and PCA-kdq. We imple-

mented both EDE and kdqTrees according to the original papers [65], [53]. In case of EDE,

we employed two non-parametric statistical tests, namely Kolmogorov-Smirnov and Mann

Whitney. When it comes to kdqTrees, the original implementation included KL Divergence

as similarity metric. However, in our work, we experimented with seven similarity metrics

corresponding to seven different groups of distance metrics suitable for determining the

similarity between density functions according to Che et al. [75]. Thus, the similarity

metrics employed for this study are the following: KL-Divergence (KL),Manhattan Distance
(MH), Chebyshev (CBS), Kulsinski (KLS), Cosine (COS), Squared Euclidean (SE) and Bhat-
tacharyya (BTC). In terms of PCA-kdq, this detector is a modified version of kdqTrees with

the purpose of addressing the high dimensionality. The difference between the two is that

instead of extracting the data distribution from the original data, we extract it from the

projected data, which is computed through PCA. The similarity metrics employed within

2
scikit-multiflow

https://scikit-multiflow.github.io
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PCA-kdq are the same as the ones used for kdqTrees. All implementations are publicly

available in our replication package
3
.

2.3.3 Evaluation Metrics
To evaluate the drift detectors, we employ three evaluation metrics, namely the latency,
the false positive rate and the miss-detection probability. In our study we use these metrics

taking into account our data setup with the purpose of understanding how many testing

batches with drift are ignored, how many testing batches without drift are signaled as drift

and how many datasets with drift are not reported, respectively.

Latency (L): ranges between 0 and 1 and it shows how late the detector manages to

detect the drift. If the detector indicates that there is a drift in the first batch when the

drift starts, the latency is 0. Therefore, the latency is 0 if the detector identifies the drift

at the batch corresponding to the beginning of concept drift in case of gradual drift and

occurrence of concept drift for abrupt drift. The formula for the latency (𝐿) is the following:

𝐿 =

𝑘−𝑗

|𝐵|

;𝑏𝑗 ,𝑏𝑘 ∈ 𝐵, (2.1)

where 𝑏𝑛 is the 𝑛
th
batch in the list of batches (𝐵), 𝑏𝑗 is the batch corresponding to the

beginning of the concept drift, 𝑏𝑘 is the batch detected as drift. This metric takes the value

ND (nothing detected) if no drift is detected.

False Positive Rate (FPR): shows the percentage of non-drifted batches detected as

drifted batches. If no drift is detected in the data-stream, the metric will output ND (nothing

detected). The FPR takes the value 0 if no batch that does not contain drift is signaled as

drift and 1 if all batches that do not contain drift are signaled as drift. The formula for the

false positive rate is the following:

𝐹𝑃𝑅 =

𝑘
𝐹

|𝐵𝑁𝐷|

;𝑏
𝐹

𝑘
∈ 𝐵, (2.2)

where 𝑏
𝐹

𝑘
is the batch erroneously detected as drift and 𝐵𝑁𝐷 is the total number of batches

without drift out of the total list of batches (𝐵).

Miss-Detection Probability (MDP): When evaluating concept drift detectors on syn-

thetic data, it is common to use multiple random seeds of the same dataset to avoid bias.

Thus, this metric is only addressed to synthetic data to understand in how many cases the

detector managed to identify drift after its occurrence among the 10 random seeds of one

dataset, which are referred to as iterations. Since it is a probability, it takes values from 0

to 1, where 0 means that the detector managed to identify drift in all the 10 random seeds

of one dataset and 1 means that the detector did not manage to identify any drift in any of

the 10 random seeds. The formula for the miss-detection rate is the following:

𝑀𝐷𝑃 = 𝑃(𝐿
(1,...,𝑛)

= 𝑁𝐷) (2.3)

where n is the number of random seeds, 𝐿
(1,...,𝑛)

is the array corresponding to the latency

3
Replication Package

https://github.com/LorenaPoenaru/concept_drift_detection
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Table 2.1: Miss detection probability (MDP) of each excluded detector in case of abrupt drift. In case of the ERB

detectors we only show the best MDP of each possible configuration of detector+classifier.

Dataset Detector Group Detector MDP

SEA ERB DDM 1

EDDM 1

HDDM_A 0.8

DDB EDE-MW 1

PCA-kdq 0.8

AGRAW1 ERB DDM 1

EDDM 1

HDDM_A 0.7

DDB EDE-MW 1

EDE-KS 0.8

kdqTrees-KL 1

kdqTrees-MH 0.8

kdqTrees-KLS 1

kdqTrees-CBS 1

kdqTrees-COS 1

kdqTrees-SE 1

kdqTrees-BTC 1

PCA-kdq-MHT 0.8

PCA-kdq-CBS 0.3

PCA-kdq-COS 0.7

PCA-kdq-SE 0.6

AGRAW2 ERB DDM 1

EDDM 1

HDDM_A 0.9

DDB EDE-MW 1

EDE-KS 0.7

PCA-kdq-KL 0.3

PCA-kdq-MH 0.3

PCA-kdq-KLS 0.6

PCA-kdq-CBS 0.3

PCA-kdq-COS 0.3

PCA-kdq-SE 0.3

PCA-kdq-BTC 0.4

Acronyms: KL - KL Divergence Distance, MH - Manhattan Distance, KLS - Kulsinski

Distance, COS - Cosine Distance, SE - Squared Euclidean Distance, CBS - Chebyshev

Distance, BTC - Bhattacharyya Distance, MW - Mann Whitney statistical test, KS -

Kolmogorov Smirnov statistical test
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2.4 Experimental Results
This section presents the performances achieved by error rate-based (ERB) detectors and

data distribution-based (DDB) detectors on both synthetic and real-world data.

2.4.1 Synthetic Data
Ideal Conditions.
With the scope of addressing the first research question, we conduct the first set of our

experiments on synthetically generated data under ideal conditions (no noise or class

imbalance added).

Table 2.2: Average Latency and FPR of each detector over the 10 iterations for abrupt drift. In bold we show the

best performing drift detector for each dataset.

SEA AGRAW1 AGRAW2
Detector 𝐿 𝐹𝑃𝑅 𝐿 𝐹𝑃𝑅 𝐿 𝐹𝑃𝑅

ADWIN * 0.00 0.00 0.00 0.00 0.00 0.00
HDDM_W NB - - 0.00 0.00 0.00 1.00

HT - - 0.04 0.00 0.00 0.00

ER
B

ADB - - 0.04 0.00 0.08 0.00

XGB - - 0.04 0.00 0.02 0.00

LGBM - - 0.04 0.00 0.02 0.00

D
D
B

EDE KS 0.00 0.10 - - - -

kdqTrees KL 0.00 0.20 - - 0.16 0.15
MH 0.00 0.40 - - 0.04 0.30
KLS 0.00 0.40 - - 0.12 0.20
CBS 0.00 0.20 - - 0.12 0.20
COS 0.00 0.20 - - 0.12 0.20
SE 0.00 0.15 - - 0.12 0.20

BTC 0.00 0.10 - - 0.12 0.20
PCA-kdq KL - - 0.20 0.32 - -

MH 0.00 0.25 - - - -

KLS 0.00 0.25 0.04 0.41 - -

CBS 0.00 0.30 - - - -

COS 0.00 0.25 - - - -

SE 0.00 0.25 - - - -

BTC 0.00 0.30 0.07 0.36 - -

Acronyms: NB- Naive Bayes, HT - Hoeffding Trees, ADB - AdaBoost, XGB - XGBoost,

LGBM - LightGBM, KL - KL Divergence Distance, MH - Manhattan Distance, KLS -

Kulsinski Distance, COS - Cosine Distance, SE - Squared Euclidean Distance, CBS -

Chebyshev Distance, BTC - Bhattacharyya Distance, KS - Kolmogorov Smirnov statistical

test

We begin our evaluation by assessing the MDP of each detector on each synthetic

dataset in case of abrupt drift. Given that all evaluated datasets contain concept drift injected

in the process of data generation, we consider that not being able to flag a drift in one

iteration of a dataset is an exclusion criteria for the drift detectors in further experiments.
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Thus, we filter out all detectors with a MDP higher than 0.0 for each dataset. We provide a

detailed explanation into which detectors are removed during this step for each dataset

together with their corresponding MDP in Table 2.1. We observe that a high number of

DDB detectors achieve an MDP close to 1 in case of AGRAW1 and AGRAW2 datasets, where

the categorical data was encoded using one-hot encoding. This shows that the detectors

are unable to find differences between the reference data and the upcoming testing data,

which could be a consequence of computing the data distribution from a sparse dataset.
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Figure 2.3: Latency of the best performing detectors on different gradual drift width. Each row corresponds to

one dataset, SEA, AGRAW1 and AGRAW2. Each column corresponds to the drift detectors type, ERB and DDB.

We continue our experiments by assessing the latency and false positive rate of the

remaining detectors on each dataset with abrupt drift. In Table 2.2 we show the results

of our findings. The main observation that we can draw from Table 2.2 is that the error-

rate based (ERB) detector ADWIN achieves the lowest latency and false positive rate on

all datasets, managing to correctly identify all drifts. Furthermore, its performance is
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independent of the chosen classifier. When it comes to DDB detectors, we can see that

they are in general less precise than the ERB detector ADWIN. Furthermore, there is no

general similarity metric or statistical test that achieved the highest performance for all

datasets. For both datasets AGRAW1 and AGRAW2, there is no best option in terms of

choosing one drift detector, since in all cases there is a compromise between latency and

false positive rate. For instance, while KL Divergence minimizes the false positive rate, the

Kulsinski and Bhattacharyya distance minimize the latency. Moreover, the DDB detectors

can more accurately identify concept drift within the dataset SEA, compared to the datasets

AGRAW1 and AGRAW2 datasets.
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Figure 2.4: False positive rate of the best performing detectors on different gradual drift width. Each row

corresponds to one dataset, SEA, AGRAW1 and AGRAW2. Each column corresponds to the drift detectors type,

ERB and DDB.

We further assess the precision of both ERB and DDB detectors to identify gradual

drift. In this experiment, we solely include the drift best performing drift detectors from
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the abrupt drift experiment. The reason for this decision is that in real-world settings the

type of drift that might occur is unknown and, thereby, we need detectors which work

well on both abrupt and gradual drift. We depict the latency and false positive rate of the

chosen detectors in Figure 2.3 and Figure 2.4, respectively.

One observation that we can make from Fig. Figure 2.3 is that the latency in general not

impacted by drift widths lower than 10000 samples. We can notice that the latency of ERB

detectors increases slightly for a gradual drift width of 20000 samples. Furthermore, the

latency of DDB detectors is overall higher than the latency achieved by the ERB detectors.

From Figure 2.4, we can see that the ERB detectors are severely impacted by higher

drift widths, with the false positive rate increasing up to 1.0 for 10000 and 20000 samples.

However, the false positive rate of DDB detectors remains relatively stable across the

different evaluated drift widths.

Non-Ideal Conditions
To answer the second research question, we conduct experiments on both abrupt and

gradual drift under non-ideal conditions, such as noisy data and class imbalance. In terms

of the gradual drift we fix the drift width to 1000 samples, since we noticed from the previous

experiment that this is the higher evaluated drift width for which the false positive rate

remains 0.0 in case of ERB detectors. However, we observed that the performance of

identifying drift in time of ERB and DDB is not affected by the presence of noise. Thus we

are not reporting results from this experiment in this section, but we are arguing about

the results in the discussions Section. In this experiment we consider the same detectors

evaluated on the gradual drift.

Class-Imbalance: One notable outcome of this experiment is the inability of DDB

detectors to identify any concept drift when the two classes are imbalanced. This is

supported by the increase in miss detection rate, which can be observed in Table 2.3. It

needs to be mentioned that, similarly to the gradual drift experiment, we solely considered

detectors that obtained a miss detection rate equal to 0.0 during the abrupt drift experiment.

We can remark from Table 2.3 that the miss detection rate increases for all detectors, except

for the kdqTrees paired with the Manhattan distance when evaluated on the dataset SEA

with abrupt drift. However, on the dataset SEA with gradual drift, we can still observe a

0.2 increase of the miss detection rate, showing that this detector was not able to detect

any drift in 2 out of 10 random seeds.

Since we are dealing with class imbalance, during the experiments with the ERB

detectors we initially applied SMOTE [76], which is a commonly used technique that

synthetically generates synthetic samples of the minority class. The reason behind this

decision is that the classifiers that are paired with the detectors need balanced data to

properly learn the behavior of the samples belonging to the two classes. SMOTE was solely

applied on the training data in the process of training the classifiers.

In Table 2.4 we show the performances of the two ERB detectors on imbalanced classes.

Despite achieving a latency of 0.0, we can notice that the FPR of the HDDM_W detector

significant increased in this setup, signaling every testing batch as a drift batch. Thus,

this detector tends to signal a high number of false alarms when used in a real-world

setting. When it comes to ADWIN, we can notice that its latency significantly increased

compared to the case when the two classes are balanced presented above, but the FPR

remains constant at 0.
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Table 2.3: Miss detection probability (MDP) of DDB detector on class imbalance experiment.

Dataset Detector MDP Abrupt MDP Gradual

SEA kdqTrees-KL 0.6 0.7

kdqTrees-MH 0.0 0.2

kdqTrees-KLS 0.9 0.9

kdqTrees-CBS 0.3 0.1

kdqTrees-COS 0.3 0.3

kdqTrees-SE 0.3 0.4

kdqTrees-BTC 0.9 0.9

PCA-MH 0.2 0.2

PCA-KLS 0.5 0.5

PCA-CBS 0.2 0.2

PCA-COS 0.2 0.2

PCA-SE 0.2 0.2

PCA-BTC 0.7 0.6

AGRAW1 PCA-KL 0.5 0.5

PCA-KLS 0.5 0.6

PCA-BTC 0.6 0.6

AGRAW2 kdqTrees-KL 0.8 0.7

kdqTrees-MH 0.6 0.7

kdqTrees-KLS 0.7 0.7

kdqTrees-CBS 0.7 0.7

kdqTrees-COS 0.7 0.7

kdqTrees-SE 0.7 0.7

kdqTrees-BTC 0.7 0.7

Acronyms: KL - KL Divergence Distance, MH - Manhattan Distance, KLS - Kulsinski

Distance, COS - Cosine Distance, SE - Squared Euclidean Distance, CBS - Chebyshev

Distance, BTC - Bhattacharyya Distance

2.4.2 Real-World Data
This last set of experiments seek to answer RQ3, by understanding how do the analyzed

drift detectors perform on real-world data. Here we do not know whether the observed

concept drift is abrupt or gradual, but only the position of the drift occurrence.

Electricity (ELECT2)
As aforementioned, we assessed the detectors’ performances to detect the week in which

the 2
nd

of May 1997 is included and we show the results in Table 2.5. Here we notice that

both ERB and DDB detectors succeed in identifying the exact testing batch which contains

the drift. Specifically, the ERB detector called ADWIN managed to exactly identify the

drifted batch, independently of the paired classifier. Furthermore, the same results were

reported for the DDM classifier paired with Naive Bayes, Hoeffding Trees and AdaBoost.

We can further see that using DDM with XGBoost or LightGBM significantly increases its

false positive rate from 0.0 to 1.0, enhancing the risk of false alarms. On the other hand,

comparable performance was obtained by one DDB detector, namely PCA-kdq using the
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Table 2.4: Latency (L) and False Positive Rate (FPR) for Error Rate-Based detectors on balanced vs. imbalanced

data. * shows that the results are applicable to all paired classifiers except for the ones presented. - shows that the

experiment is not applicable.

Detector Paired SEA AGRAW1 AGRAW2
with L FPR L FPR L FPR

A
b
r
u
p
t

ADWIN * 0.8 0.0 0.8 0.0 0.8 0.0

ADB - - - - 0.72 0.0

HT - - - - 0.82 0.0

HDDM_W * - - 0.0 1.0 0.0 1.0

G
r
a
d
u
a
l ADWIN HT 0.72 0.0 0.72 0.0 0.82 0.0

ADWIN * 0.8 0.0 0.8 0.0 0.8 0.0

HDDM_W * - - 0.0 1.0 0.0 1.0

Acronyms: HT - Hoeffding Trees, ADB - AdaBoost

Kulsinski distance, which also managed to obtain both latency and false positive rate of

0.0. Thereby, for this real-world dataset, DDB detectors managed to achieve comparable

good results with ERB detectors.

Table 2.5: Latency (L) and False Positive Rate (FPR) of each detector on ELECT2 dataset. Each detector is paired

with either a classifier (for ERB) or a distance/statistical test (for DDB). In bold we show the best performing drift

detector(s) from each group. * shows that the results are applicable for any combination and *- shows that results

are applicable for any combination except the presented one.

Group Detector Paired with 𝐿 𝐹𝑃𝑅

DDM NB, HT, AB 0.0 0.0
DDM XGB, LGBM 0.0 1.0

EDDM * 0.0 1.0

ERB ADWIN * 0.0 0.0
HDDM_W * 0.0 1.0

HDDM_A * 0.0 1.0

EDE * 0.0 1.0

DDB kdqTrees KLS ND ND

*- 0.0 1.0

PCA-kdq KLS 0.0 0.0
*- 0.0 1.0

Acronyms: NB - Naive Bayes, HT - Hoeffding Trees, AB - AdaBoost, XGB - XGBoost,

LGBM - LightGBM, KLS - Kulsinski Distance

Airlines
As previously mentioned, in case of this dataset the detectors should detect drift on the

evaluation batch corresponding to Friday. In Table 2.6 we depict the results for both ERB
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Table 2.6: Latency (L) and False Positive Rate (FPR) of each Error Rate-Based (ERB) detector on Airlines dataset.

In bold we show the best compromise between the latency and false positive rate. * shows that the results are

applicable for any combination and *- shows that results are applicable for any combination except the presented

one.

Group Detector Paired with 𝐿 𝐹𝑃𝑅

ERB DDM NB, HT ND 0.5

*- 0.0 1.0

EDDM NB ND 0.5

HT, AB, LGBM 0.0 1.0

XGB 0.67 1.0

ADWIN NB 0.0 0.5
*- 0.0 1.0

HDDM_W * 0.0 1.0

HDDM_A * 0.0 1.0

DDB EDE * 0.0 1.0

kdqTree KLS ND ND

kdqTree *- 0.0 1.0

PCA-kdq KLS ND ND

PCA-kdq *- 0.0 1.0

Acronyms: NB - Naive Bayes, HT - Hoeffding Trees, ADB - AdaBoost, XGB - XGBoost,

LGBM - LightGBM, KLS - Kulsinski Distance

detectors and DDB detectors. Here we can observe that the ERB detectors show a poor

performance on the Airlines datasets in terms of latency and false positive rate. Most

of the detectors capture the exact moment of drift occurrence, but with the high cost of

signaling false alarms. The best false positive rate (0.5) and latency (0.0) was reported by

ADWIN paired with the Naive Bayes classifier. The high number of false positives can also

be observed in case of most DDB detectors, except for kdqTrees and PCA-kdq paired with

the Kulsinski distance, where they did not manage to identify any drift. Thus, both ERB

and DDB detectors are affected by false alarms.

2.5 Discussions
This section highlights the most important observation that we made during our study

regarding the two groups of concept drift detectors, namely the error rate-based (ERB)
detectors and the data distribution-based (DDB) detectors. Therefore, we aim to help

practitioners employ the most suitable drift detector according to their data.

ERB detectors proved to be more suitable for datasets including both categorical
and numerical features compared to DDB detectors One major observation that

we can draw from our experiments addressing RQ1 and RQ3 is the fact that DDB detec-

tors achieve higher performance on datasets with solely numerical values, such as SEA

and ELECT2, compared to datasets with both numerical and categorical values, such as
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AGRAW1, AGRAW2 and Airlines. This could be a consequence of the one-hot encoding

technique used to transform categorical variables into numerical. This preprocessing tech-

nique increases the sparsity of the dataset, since it represents each categorical value as a

binary vector. Sparsity usually alters the representation of the data distribution given that

the density function is computed using a high number of 0s and 1s [77]. This impacts the

performance of DDB detectors due to their high dependency on data distributions. How-

ever, the ERB detectors do not suffer from this problem, since they rely on the performance

of the classifiers, which are robust towards sparse data.

DDB detectors can achieve high performance solely when the data is scaled Dur-

ing our experiments we scaled all datasets, such that their values would range in the

interval of [0, 1]. Although scaling is a common practice in ML, it is not necessary when

using tree-based algorithms, since they are already robust to widely distributed data [78].

Therefore, we observed that data scaling did not impact the ERB detectors, which rely on

ML classifiers’ performances. However, we noticed a high impact of unscaled data on the

performance of DDB detectors, which were not able to identify any drift. This could be

the result of the fact that they solely rely on the data distribution to detect drifts. Having

values widely distributed results in a skewed density function, which impacts the ability

of similarity metrics to identify significant discrepancies between two data distributions.

Furthermore, we experimented with different scaling intervals, but the [0, 1] interval was

the most suitable for all the analyzed datasets.

ERB detectors outperform DDB detectors for abrupt and gradual drift with a small
drift width, but suffer from a high number of false alarms in case of gradual drift
with a large drift width When conducting experiments for RQ1, we empirically proved

that in case of abrupt and small width gradual drift, the ERB drift detectors outperform

the DDB drift detectors, achieving a lower latency and a lower false positive rate. The

best performing ERB drift detector overall is ADWIN, which obtained the best latency and

false positive rate independently of the chosen dataset or the paired classifier. However,

when tested on synthetic data which contains gradual drift with large drift width, the

ERB detectors starts signaling multiple false alarms, although the latency is not affected.

The same behavior can be noticed when testing the ERB drift detectors on the Airlines

dataset, where all detectors suffer from a significantly high false positive rate, which can

indicate that this real-world dataset contains a gradual drift. In real-world data the drift

type, abrupt or gradual, cannot be controlled. Thus, in a real-world scenarios we should

use a detector that is able to identify all types of drifts. Consequently, it is doubtful whether

ERB detectors could be employed in practice.

Given the high discrepancy between synthetic and real-world data, there is cur-
rently no clear evidence regarding the fact that class imbalance influences the
impact of either DDB or ERB detectors We investigated the effect of class imbalance

on concept drift detectors. In case of synthetic data, we noticed that all evaluated detectors

suffer from sever performance degradation, even for a small class imbalance ratio of 1:2.

However, on the real-world data the detectors behavior was completely different. On the

ELECT2 dataset, both ERB and DDB detectors managed to accurately identify concept
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drift even if the imbalance ratio of the drifted batch was approximately 1:6. However, on

the Airlines dataset, both ERB and DDB detectors encountered difficulties when detecting

the concept drift in time, although the imbalance ratio of the drifted testing batch was

smaller than the one on the synthetic data, namely 1:1.66. This casts doubt on whether the

synthetic data manages to mimic the behavior of real-world data when it comes to class

imbalanced datasets with concept drift and shows how the performance of detectors on

controlled drift position does not generalize to real-world data (RQ3). Therefore, there is

no clear evidence of how the class imbalance influences the performance of drift detectors.

When using DDB detectors in practice, multiple similarity distance should be
evaluated and in some cases a compromise between latency and false positive
rate is required Another observation that we want to highlight is regarding the DDB

detectors. In literature, the most commonly used similarity metric in this detector category

is KL Divergence. However, in our experiments for RQ1 and RQ3 we noticed that this

similarity metric did not always achieve the lowest latency or false positive rate. When

it comes to the synthetic data, the KL Divergence is mostly minimizing the false positive

rate, while the Kulsinski Distance or the Bhattacharyya distance minimized the latency.

Thereby, when employed in practice, for some datasets a compromise should be made

regarding whether the latency should be prioritized over the false positive rate or vice-versa.

Furthermore, on the ELECT2 real-world dataset, the PCA-kdq detector paired with the

Kulsinski distance achieved the lowest latency and false positive rate. Furthermore, we

have not identified any optimal configuration of drift detector + similarity metric that

achieved the best performance on all datasets.

The presence of noise does not impact the latency or false positive rate of either
ERB or DDB detectors on synthetic data When answering RQ2, we noticed that the

latency and false positive rate of both ERB and DDB detectors are relatively stable against

noise. The explanation behind this aspect is that both the reference data and the evaluation

data are affected by the same type and percentage of noise. Thus, the differences between

the reference data and evaluation data are too small to impact the performance of evaluated

drift detectors. Unfortunately, the MOA framework does not have an option to select which

parts should be affected by noise or to include different noise percentages in different parts

of the data stream. Therefore, we could not investigate the effect of having clean reference

data and noisy evaluation data.

2.6 Conclusions and Future Work
In this chapter we have provided an in depth comparison between two categories of

drift detectors, the error rate-based drift detectors and the data distribution-based drift

detectors under different conditions, synthetic data with ideal conditions, synthetic data

with non-ideal conditions and real-world data. For the latter, we have explored multiple

similarity metrics and we have observed that some similarity metrics achieved better

latency and false positive rate compared to the state-of-the-art KL Divergence on some

datasets. Furthermore, we implemented the most popular data distribution based drift

detectors and publicly shared them on GitHub and we evaluated the error rate-based drift
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detectors on three recent and popular classifiers. Additionally, we provided a list of major

observations, which aim to serve as guidelines for practitioners that want to include drift

detectors to monitor streaming data.

Our observations indicate that the analyzed concept drift detectors are not fully reliable

when used as alarming systems. We show empirical evidence of the fact that the error-based

drift detectors are signaling false alarms for a high drift width. This questions their ability

to detect drifts in environments where the features are slowly changing over time. An

example of such situation is the inflation, which does not have immediate impact on the

financial features, but it affects them over a longer period of time. When it comes to data

distribution-based drift detectors, their performance overall was lower than the error-based

drift detectors, although they were not affected by higher drift widths. We observed that

in cases of datasets with categorical features, the data distribution-based detectors suffered

from high false positive rate. Furthermore, they are also affected by a high miss-detection

rate, which can be a consequence of computing the data distribution from a sparse dataset

resulted after applying one-hot encoding. This reduces the reliability of drift detectors

when used as alarming systems.

Future Work: In order to advance the field of concept drift detection, we believe that

research should focus on developing more data distribution-based detectors. One major

limitation of these detectors was the high false positive rate. This might be an indicator that

they are too sensitive to small changes in data. However, these small changes might not

affect the performance of the ML models. Thus, a promising research direction is exploring

which similarity metrics are the least impacted by small changes in data. Moreover, changes

in some features might affect the ML models’ performances than others. Thereby, another

way to improve these drift detectors is to identify the most significant features and monitor

drift by computing the data distribution corresponding to only those features. Furthermore,

we can explore other ways of encoding categorical data that can reduce the data sparsity,

since we noticed that their performance was much lower on datasets where one-hot

encoding was employed. When it comes to error rate-based detectors, future research

should focus on adapting them to identify gradual drift with a large drift width without

signaling false alarms and, thereby, preserving the false positive rate. This study was limited

to publicly available implementations of drift detectors. Thereby, we strongly encourage

researchers who implement new drift detectors to publicly share their code. Furthermore,

in the situation of class imbalance we noticed a strong inconsistency between synthetic

and real-world data when it comes to the performance of error rate-based detectors and

data distribution-based detectors. Thus, the concept drift research path would benefit from

understanding whether the synthetic data is suitable to simulate the behavior of real-world

data in case of highly imbalanced classes.
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3
Improving the Reliability of
Failure Prediction Models

through Concept Drift
Monitoring

Failure prediction models can be significantly beneficial for managing large-scale complex
software systems, but their trustworthiness is severely affected by changes in the data over
time, also known as concept drift. Thus, monitoring these models against concept drift and
retraining them when the data changes becomes crucial in designing reliable failure prediction
models. In this work, we evaluate the effects of monitoring failure prediction models over
time using label-independent (unsupervised) drift detectors. We show that retraining based
on unsupervised drift detectors instead of periodically reduces the cost of acquiring true
labels without compromising accuracy. Furthermore, we propose a novel feature reduction for
unsupervised drift detectors and an evaluation pipeline that practitioners can employ to select
the most suitable unsupervised drift detector for their application.

3.1 Introduction
Failures in large-scale software systems generate service interruptions [20] and are chal-

lenging to manage due to their complexity [20]. Consequently, plenty of attention has been

directed toward automated techniques that use Artificial Intelligence (AI) and machine

learning (ML) to detect failures (AIOps) [20], which are also referred to as failure predic-

tion models. It has been observed that failure prediction models are efficient solutions

This chapter is based on the following peer-reviewed publication:

� Lorena Poenaru-Olaru, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen. 2022. Improving the Reliability
of Failure Prediction Models through Concept Drift Monitoring. Proceedings of the 6th IEEE/ACM International
Workshop on Deep Learning for Testing and Testing for Deep Learning, Ottawa, Canada, 2025 [43].
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for handling system issues which can detect around 70% of a system’s failure within 10

minutes [38].

Although beneficial, failure prediction models suffer from temporal quality degradation

in accuracy caused by changes in data over time, also known as concept drift [17, 20, 37].

Thus, concept impacts the reliability of failure prediction models [21]. In this chapter, con-

cept drift refers specifically to data changes that degrade the accuracy of failure prediction

models.

To overcome the effects of concept drift, previous work proposes to periodically retrain

(update) failure prediction models [17, 21, 37]. However, this comes with both computa-

tional effort [18] and hidden deployment costs such as compliance verification [79] and

integration with a larger software system [9]. Lyu et al.[18] propose retraining only when

a label-dependent drift detector identifies a significant accuracy drop. However, this ap-

proach assumes immediate access to true labels, which is often impractical, as labels may

require manual annotation by engineers once the root cause of failure is understood[38].

Continuously monitoring failure prediction models by verifying whether concept drift

occurs is a promising solution [17, 37] since practitioners can understand when the model’s

outcome is reliable and can be used for decision making purposes [21]. However, using a

label-independent drift detector could eliminate the necessity of gathering true labels. Two

label-independent techniques to monitor data against concept drift in ML systems were

proposed by researchers from industry [9, 39, 40], namely monitoring the skewness of the

features and monitoring changes in data distribution over time. Similarly to [18], these

techniques can be used to identify when the model requires updating [9, 80]. However,

their effectiveness in preserving the accuracy of the failure prediction model has, to the

best of our knowledge, not yet been assessed.

The contributions of this study are threefold. (1) We assess existing label-independent

concept drift detection techniques on three popular open-source failure prediction datasets.

(2)We propose a novel feature-reduction technique based on themodel’s feature importance

ranking that can be incorporated with an existing unsupervised data distribution-based

drift detector. (3) We present a replicable evaluation pipeline for identifying suitable

unsupervised drift detectors for specific failure prediction models
1
. In this work, we

answer the following research questions:

RQ1: Can monitoring the skewness in features individually indicate concept drift?

(a) Can changes in specific features indicate concept drift?

(b) Is the proportion of changing features an indicator of concept drift?

RQ2: Can monitoring changes in data distribution over time indicate concept drift?

(a) To what extent can data distribution-based drift detectors identify concept

drift?

(b) What is the effect on the failure prediction models’ accuracy and costs (retrain-

ing and label costs) of retraining based on a data distribution drift detector vs.

periodically?

1
Replication Package

https://github.com/LorenaPoenaru/aiops_failure_prediction
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3.2 Related Work
Concept Drift Definition and Evaluation: Concept drift generally refers to changes in

the data that occur over time [14] and can be monitored using concept drift detectors [19].

Multiple drift detectors were proposed for classification problems [14]. Supervised drift

detectors monitor model accuracy changes, while unsupervised drift detectors monitor

data characteristics, such as the data distribution [19]. Although supervised detectors

indicate degradation in the model’s performance, they need immediate labels, which is

sometimes impractical in real-world applications. Unsupervised detectors, which don’t

need labels, are, thus, more suitable.

Concept drift detectors are evaluated in two manners: assessing the drift detection
accuracy and assessing the performance of an ML model over time. Drift detection accuracy

measures the ability to distinguish between drifts and non-drifts, but requires knowledge of

the exact drift occurrence [19, 41], which is often unknown in real-world scenarios. Previous

work proposed a technique that uses a two-proportion Z-test on the error rate to label testing

batches into drift and non-drift, which allows the evaluation. Assessing the performance

of an ML model over time is usually preferred in the real world since knowledge regarding

the moment of drift occurrence is not required [14]. This assessment technique compares

the performance (e.g. accuracy, ROC-AUC, etc.) of periodically retrained ML models to

those retrained based on drift detection to understand whether the drift detector can be

used as a retraining indicator [19].

AIOps Models Degradation due to Concept Drift: AIOps models enhance software

delivery and quality[20] but suffer from performance degradation over time due to concept

drift [17, 18, 20, 25, 37]. For example, defect prediction models trained on past data do not

generalize well to future data [17, 81]. This is a consequence of changes in the operational

data (concept drift) caused by uncontrollable factors such as user workloads or hardware/-

software upgrades. Monitoring and periodically updating these models is necessary to

mitigate concept drift[17, 25, 37]. The effects of retraining failure prediction models based

on supervised detectors have been previously researched [18] while retraining failure

prediction models based on unsupervised drift detectors received less attention.

Unsupervised Concept Drift Detection: Industry practitioners use unsupervised data

monitoring techniques to identify data changes/concept drift [9, 39, 40]. Best practices

include monitoring the skewness of features over time [39] and monitoring data
distribution over time [9, 39, 40]. The skewness of features can be monitored by assessing

changes from training to testing data for each individual feature or the percentage of skewed

features [39]. Industry practitioners also recommend monitoring the data distribution over

time by comparing the estimated data distribution from the training and testing features [39,

40, 82, 83]. However, the effectiveness of these techniques has not been assessed previously

in failure prediction models. Research on unsupervised drift detection [14, 19, 41] identifies

two types of change detection techniques: statistical tests and distance-based drift detectors.

Statistical tests identify drift by checking whether there is a significant difference between

the data distribution from the train set and the test set. Distance-based detectors measure

the distance between these distributions and detect drift if the distance exceeds a predefined

threshold [41].
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3.3 Data and Failure Prediction Models
We employ three publicly available AIOps datasets, the Backblaze Disk Stats Dataset, the

Google Cluster Traces Dataset, and the Alibaba GPU Cluster Trace Dataset. These datasets

were previously used to build failure prediction models [17, 18, 37].

The Backblaze Disk Stats Dataset [84] contains information about various types

of hard disk drives from different manufacturers [85]. It was used to design disk failure

prediction models [17, 26, 85]. Similar to previous work [17, 37] we are using around 7M

data samples corresponding to 12 months of data collected during 2015.

The Google Cluster Traces Dataset [86] contains information about traces extracted

from real-world large cluster systems. It was used [17, 87] to design job failure prediction

models. The dataset contains 625K samples and was collected for 29 days (May 2011).

The third dataset, the Alibaba GPU Cluster Trace Dataset [88], was recently pub-

licly released (2021) by the Alibaba Group and contains workload traces collected from a

production cluster containing over 6,000 GPUs. It was used to build a job failure prediction

model [18]. The data was collected for two months, July to August 2020 [89], and contains

approx. 701K samples.

Model and Features. Random Forests is a commonly used tree-based classifier in failure

predictionmodels [17, 18, 26, 37, 85, 87]. In our experiments, we employ the Random Forests

classifier to build failure prediction models for all three analyzed datasets. Furthermore,

we include Random Forests in our experiments since they are well-researched in terms of

feature importance ranking extraction [90, 91], which is a crucial part of our proposed drift

detection method. We build a monthly disk failure prediction model using the Backblaze

dataset, a weekly model using the Alibaba dataset, and a daily model using the Google

dataset.

For all three datasets, we employ the same features as previous work [17, 18, 26, 37, 85,

87]. The exact features are described in our replication package.

Model Building Pipeline. All the failure predictionmodels studied in this chapter are built

by replicating previous works’ approaches [17, 18, 26, 37, 85, 87]. The first step in creating

the failure prediction models is data preprocessing through scaling using StandardScaler
2
.

Scaling is performed since features have varying degrees of magnitude, which affects the

classification training. To mimic a realistic scenario, we fit the scaler every time on the

period of data corresponding to the training data and only then apply it to the testing data.

We further apply undersampling with a ratio of 1:10 to reduce the severe class imbalance

in the Google and Backblaze datasets. We do not apply it to the Alibaba dataset, since the

classes are relatively balanced (1:3 imbalance ratio). The last steps of building the failure

prediction model are training and hyperparameter tuning, for which we use Randomized

Search [18]. To avoid bias we repeat all experiments using 10 different random seeds.

Detecting Drift/Changes in Data. To detect data changes, we select the Kolmogorov-

Smirnov statistical test given its popularity in unsupervised drift detection [14, 19, 41, 92].

This statistical test verifies the similarity between two data distributions. We did not

consider distance-based drift detectors since they require users to predefine drift thresholds

for each dataset.

2
Standard Scaler

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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3.4 Experimental Design
This section describes the experimental design used to answer the two research questions.

RQ1 and RQ2.a. require a drift detection accuracy assessment, which can only be performed

after extracting the ground truth regarding the batches that are labeled as drift and non-drift.

RQ2.b. requires a model performance preservation assessment.

3.4.1 Extracting Drift/Non-Drift Batches
To extract the ground truth regarding when concept drift occurs, we follow the same

technique as previous work [17]. In Figure 3.1, we depict the pipeline used to identify

concept drift between datasets extracted from two different periods, P1 and P2. We train an

ML model using the data from the first period (P1) and test it on the data from the second

period (P2). The training error rate is computed by performing a 10-fold cross-validation

on Data P1 and the testing error rate is obtained by testing the model on Data P2. On the

two error rates, we apply a two-proportion Z-test to assess whether there is concept drift

between the datasets from two different periods:

𝑍 =

𝜖𝑡𝑒𝑠𝑡 −𝜖𝑡𝑟𝑎𝑖𝑛
√

𝜖(1−𝜖)(
1

𝑛𝑡𝑟𝑎𝑖𝑛
+

1

𝑛𝑡𝑒𝑠𝑡
)

(3.1)

where 𝜖𝑡𝑟𝑎𝑖𝑛 is the prediction error rate on the training set, 𝜖𝑡𝑒𝑠𝑡 is the prediction error rate

on the testing set, 𝜖 is the overall prediction error rate, 𝑛𝑡𝑟𝑎𝑖𝑛 is the length of the training

set and 𝑛𝑡𝑒𝑠𝑡 is the length of the testing set.

Data P1

Data P2

Trained ML
Model

10-fold Cross Validation

ML Classifier

Testing

Error Rate Train

Error Rate Test

Z-test

Concept Drift

Non-Concept Drift

Figure 3.1: Obtaining the ground truth. Pipeline to assess the presence of concept drift between two batches (Data

P1 and Data P2).

The null hypothesis of the Z-test is that there is no significant difference between the

ML model’s performance on datasets extracted from the two different periods, thus it is

a non-drift batch. The null hypothesis is rejected when the p-value of the Z-test is lower

than 0.05, suggesting that there is a drift batch.

3.4.2 Monitoring the Skewness of Features Individually
In this work, we monitor the skewness of features by evaluating whether either monitoring
changes in features individually or the percentage of features that change over time can
indicate that a batch is labeled as drift or non-drift.

Monitoring changes in features individually. We apply the Kolmogorov-Smirnov

statistical test on two consecutive periods of the same individual feature to assess how
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each feature is changing over time. We determine whether every two consecutive periods

corresponds to a drift batch or a non-drift batch. We further count the number of times the

feature changes in a drift batch and non-drift batch respectively. With this experiment,

we aim to understand whether changes in specific features are more associated with drift

or non-drift batches. If changes in one feature are more linked to drift batches than non-

drift batches, monitoring that feature could indicate unsupervised model performance

degradation for failure prediction models.

Monitoring the percentage of features that change over timeWith this evaluation

strategy, we aim to understand whether the number of features that change from one period

to another can be an indicator that the model’s performance is degrading. Therefore, we

apply the Kolmogorov-Smirnov statistical test on two consecutive periods of each individual

feature. We count how many features have changed between these two periods and we

determine whether the associated batch is labeled as drift or non-drift. This evaluation

strategy assumes that, if more features are changing between two periods, there is a higher

chance of having a drift.

Thus, we aim to understand whether AIOps practitioners can use the number of

features that change as an unsupervised model degradation indicator. We further support

our observation by analyzing the correlation coefficients between the number of features

that change and the batch label (drift/non-drift), which should be close to 1 or -1 to suggest

that the number of features that change is a good indicator of drift.

3.4.3 Monitoring Changes Data Distribution
Assessing the Drift Detection Accuracy of Drift Detectors
The state-of-the-art techniques identify drift by monitoring how the distribution of the

data in the training set is changing compared to the distribution of the data in the testing

set [41]. In terms of the number of features included to derive the data distribution, we

analyze two data distribution drift detection techniques. The first technique we refer to as

KS_ALL identifies drift by estimating the data distribution from all the features used to train

the failure prediction model [41]. Concept drift detection research suggests that feature

reduction through Principal Component Analysis (PCA) should be initially applied to the

features before estimating the distribution for a more accurate drift detection [54], [41].

Therefore, the second evaluated technique referred to as KS_PCA initially reduces the

dimensionality of the features using PCA and then estimates the data distribution.

We propose a model-driven unsupervised drift detector that takes into account the most

relevant features of the model while making predictions. Our technique includes a feature

reduction that computes the data distribution of solely the features that are relevant to

the model. With every model training, we compute the feature importance (FI) ranking,

sort the features based on their ranking in importance, and select the features whose

importance value is higher than the mean importance values. Therefore, we estimate the

data distribution of solely the most important features and apply the KS statistical test to

identify drift. Similar to previous techniques, drift is detected when the null hypothesis of

the KS statistical test is rejected. We are referring to this technique as KS_FI.
To extract the feature importance ranking we employ techniques previously used for

classifier predictions explainability [90, 93, 94]. The most common metric to compute the

feature importance (FI) ranking is the mean decrease in impurity (MDI) [93, 95, 96] also
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Figure 3.2: Retraining periodically vs. retraining based on drift detection strategies.

known as Gini importance. For each feature, this technique calculates the total decrease in

impurity (loss) computed for each random split [93].

Evaluation Metrics. We employ three metrics in our evaluation strategy, the True Positive
Rate (TPR), the True Negative Rate (TNR), and the Balanced Accuracy. The TPR shows

the percentage of correctly identified drifts, the TNR shows how many non-drifts are

correctly identified and the balanced accuracy shows the overall correctly classified drifts

and non-drifts. The best value of each metric is 1.0.

Assessing the Effects of Retraining based on Drift Detection
We aim to understand the effect of retraining based on drift detection vs. retraining

periodically, which is the current state of practice for failure prediction models [17, 37]. In

Figure 3.2 we illustrate the difference between the two retraining techniques. In the case of

periodic retraining, every time new data becomes available the model is retrained. The new

data is included in the retraining data and the old data is discarded, a retraining strategy

called the sliding-window approach, also used in previous work [37]. The drift detection-

based retraining strategy comes with the assumption that if no drift is detected, the new

available data is similar to the one that the model is already trained on, thus retraining

the model on the new data does not necessarily bring new information. Therefore, in

this evaluation strategy, retraining is performed solely when drift is indicated by a drift

detector. As depicted in Figure 3.2, only batch B, where the drift was identified, is included

in the training set while batch A is not included since there is no drift identified. This

evaluation strategy helps in reducing not only the number of times the model requires

retraining, but also the costs of obtaining labels for retraining. Thus, from our example,

the true labels from AIOps practitioners are not required for batch A. In terms of drift

detection, we employ the same data distribution drift detection techniques as previously,

namely KS_All, KS_FI, and KS_PCA. Furthermore, for this experiment, we use a model

that is never retrained, which we refer to as static model as a baseline.
EvaluationMetricsWe evaluate the effects of retraining based on drift detection compared

to periodical retraining using three metrics. The first metric, ROC_AUC is related to the

performance of the failure prediction model’s performance. This metric shows how well

these models distinguish between failures and non-failures. The other two metrics, the

effectiveness per unit of retraining cost (ERC) and the effectiveness per unit of labeling

cost (ELC) are derived from cost-effectiveness analysis [97]. The ROC_AUC takes values

between [0, 1], where 1 corresponds to perfect prediction.

The ERC metric was proposed and used by previous work [18] to determine the ben-

efits of different model retraining strategies for failure prediction models. This metric is
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calculated using Equation 3.2, where the portion of retrainings refers to the percentage of

time periods that require updates, while the performance improvement is the percentage

of ROC AUC improvement over the static model. A higher ERC corresponds to a more

cost-effective strategy.

𝐸𝑅𝐶 =

𝑃𝑒𝑟𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝑃𝑜𝑟𝑡𝑖𝑜𝑛_𝑜𝑓 _𝑅𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠

(3.2)

Although the ERC metric can be used to determine the cost-effectiveness with respect

to the retraining frequency, it does not take into account the costs of labels. Therefore, we

propose another cost-effectiveness metric, namely the ELC, which is defined by Equation 3.3.

Similarly to ERC, the performance improvement shows the improvement of ROC AUC

percentage over the static model, while the portion of labels represents the number of

required labels to perform drift detection-based retraining divided by the total number of

labels that are used to perform periodic retraining. Therefore, this metric determines how

much the performance improves with respect to the label annotation costs. A higher ELC

corresponds to a more cost-effective strategy.

𝐸𝐿𝐶 =

𝑃𝑒𝑟𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝑃𝑜𝑟𝑡𝑖𝑜𝑛_𝑜𝑓 _𝐿𝑎𝑏𝑒𝑙𝑠

(3.3)

3.5 Experiments
3.5.1 Monitoring the Skewness of Features Individually
Monitoring changes in features individually. This experiment aims to answer RQ1.a.
In Figure 3.3 we depict the feature change rate for each individual feature used for each

failure prediction model. This rate is calculated by dividing the number of times a feature

changed in a drift/non-drift batch by the total number of drift/non-drift batches. A feature

change rate of 100 shows that this feature has changed in all the drift/non-drift batches,

while a feature change rate of 0 shows that this feature has never changed.

The idea behind this experiment is to discover whether specific features change only

in drift batches since changes in those features can indicate drift. From Figure 3.3 we can

observe that in the Google and Alibaba datasets, some features only change in drift batches,

but this trend does not apply to the Backblaze dataset. However, the "Smart 193 Raw Diff"

feature from Backblaze is changing more in drift batches compared to non-drift batches.

This shows that changes in "Smart 193 Raw Diff" can indicate drift, but it should not be used

as the only drift indicator it might raise false positives when detecting drift. Furthermore,

we can see that the majority of features do not change over time in the Backblaze dataset.

For the Google data, our experiments suggest that most of the features are changing in

a similar proportion for both drift and non-drift batches. The only exception is the feature

"Diff Machine" which has only changed within drift batches with a feature change rate of

0.06.

In the case of the Alibaba dataset, 6 out of 12 features only change in drift batches,

namely "Avg GPU Work Mem", "Avg Mem", "CPU Usg", "GPU Work Util", "Max GPU Work

Mem" and "Max Mem". These features refer mostly to the used resources when predicting

job failures, such as GPU, CPU, or memory. However, due to the limited data availability

in Alibaba, we only have one batch representing non-drift.
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Figure 3.3: (Left column) Feature Change Rate (in percentage) in Drift/Non-Drift Batches. (Right column) Ground

Truth. Batches that contain drift and non-drift for all 3 datasets.

Monitoring the percentage of features that change over time. This experiment aims

to answer RQ1.b. We depict our results regarding the effect of monitoring the percentage

of features that change over time in Figure 3.3.

Our findings indicate no clear distinction between drift batches and non-drift batches

when evaluating the percentage of features that change from one period to another across

all three datasets. Figure 3.3 shows that in some cases (e.g. drift batches M3_4 of Backblaze,

P8_9 of Google, and W2_3 of Alibaba) drift batches have a lower percentage of features

that change compared to non-drift batches (e.g. non-drift batches M11_12 of Backblaze,

P28_29 of Google and W1_2 of Alibaba). This observation is supported by low correlation

coefficients obtained when correlating the percentage of features that change with the

drift/non-drift batch label.

3.5.2 Monitoring Data Distribution
Assessing the Drift Detection Accuracy of Drift Detectors. With this experiment,

we answer RQ2.a. We assess how well each drift detection technique is able to identify

the testing batches corresponding to drift or non-drift. In this manner, we assess the drift

detection accuracy for each detector.

We show our results in Table 3.1, where we can notice that data distribution techniques

accurately detect the non-drifts in the Backblaze disk dataset, while in the job data (Google

and Alibaba) they accurately identify drifts. None of the techniques detects the only non-

drift batch (W1_2) in the Alibaba dataset. The KS_PCA achieves the highest score (0.90)

when detecting non-drifts in both Google and Backblaze datasets. The fact that KS_PCA

outperforms KS_ALL in identifying non-drifts suggests that reducing the dimensionality

of the features when detecting drift prevents an excessive false positive rate.

Assessing the Effects of Retraining based on Drift Detection. In this experiment,

we assess the effects of including a drift detector in the maintenance pipeline of failure
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Table 3.1: Drift detection accuracy metrics for the three drift detectors (KS_ALL, KS_PCA and KS_FI). With bold
we depict the highest value for each metric for each dataset.

Metric KS_All KS_FI KS_PCA
Balanced Accuracy 0.65 0.01 0.73

Backblaze True Negative Rate 0.09 0.05 0.05

True Positive Rate 0.80 0.78 0.90
Balanced Accuracy 0.63 0.52 0.52

Google True Negative Rate 0.94 0.82 0.65

True Positive Rate 0.10 0.00 0.30
Balanced Accuracy 0.57 0.28 0.28

Alibaba True Negative Rate 0.66 0.33 0.33

True Positive Rate 0.00 0.00 0.00

prediction models on their performances with the purpose of answering RQ2.b. We simulate

a maintenance scenario in which the failure prediction model is retrained only when drift

is indicated by one of the three evaluated drift detectors, saving both retraining times costs

and retraining true labels costs. The results are summarized in Table 3.2, where we present

five retraining techniques, Static, Periodic and the three drift detection retraining techniques,
KS_All, KS_FI and KS_PCA. The static retraining technique refers to the situation in which

the model is never retrained. The periodic retraining technique refers to the situation in

which the model is retrained periodically. We use Static and Periodic as our lower and

upper baselines in terms of ROC_AUC. The other three drift detection retraining techniques

refer to the situations in which the model is retrained every time the unsupervised drift

detector, KS_All, KS_FI, and KS_PCA respectively, indicate the need to retrain.

From Table 3.2 we can notice that retraining based on a drift detector with feature

reduction (either PCA or our proposed technique based on feature importance) preserves

the performance of the model over time. These retraining strategies achieve similar

performance with periodic retraining in the cases of Backblaze and Google (96% and 83%

respectively) and similar performance in the case of Alibaba (61% compared to 62% achieved

by periodic retraining).

KS_FI obtains the highest ERC score for Backblaze (0.042 and 0.090) Alibaba, making it

the best technique for optimal performance with minimal retraining. Furthermore, it also

achieves the highest ELC score for Backblaze (0.042), showing that using this retraining

strategy is the best compromise between the performance and the required number of

labels. KS_PCA yields similar scores for Backblaze but with higher retraining and labeling

costs.

The KS_PCA retraining technique is the most efficient from the model performance

perspective for Backblaze and Alibaba, achieving high ELC scores (0.042 and 0.102, respec-

tively). For Alibaba, it requires the fewest retraining times (25%) and labels (20%), with only

a 2% ROC_AUC loss compared to Periodic. KS_ALL is the best retraining technique for the

Google dataset, with the highest ERC (0.070) and ELC (0.069) scores. However, KS_ALL

is too sensitive when detecting drift for Backblaze, achieving similar performance with

Periodic, and ineffective for Alibaba, achieving similar performance with Static.
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Table 3.2: Effectiveness retraining based on drift detection vs. static (lower baseline) and periodic retraining

(upper baseline), measured in terms of the performance of the model (ROC_AUC), percentage of retrainings

required (Retrainings), Effectiveness per unit of Retraining Costs (ERC), percentage of labels required (Labels), and

Effectiveness per unit of Label Costs (ELC). Best results (highest ROC_AUC, ERC, and ELC and lowest Retrainings

and Labels) out of the 3 drift detection techniques in bold.

Strategy ROC_AUC Retr.(%) ERC Labels(%) ELC

B
ac
kb

la
ze

Static 0.92 - - - -

KS_All 0.96 100 0.040 100 0.040

KS_FI 0.95 78 0.042 72 0.042
KS_PCA 0.96 95 0.042 95 0.042
Periodic 0.96 100 0.040 100 0.040

G
oo

gl
e

Static 0.77 - - - -

KS_All 0.83 86 0.070 87 0.069
KS_FI 0.81 89 0.036 84 0.047

KS_PCA 0.83 95 0.057 89 0.062

Periodic 0.83 100 0.060 100 0.060

A
li
ba

ba

Static 0.58 - - - -

KS_All 0.58 0 0.000 0 0.000

KS_FI 0.61 35 0.090 35 0.086

KS_PCA 0.60 25 0.080 20 0.102
Periodic 0.62 100 0.040 100 0.040

3.6 Discussion
In this section, we answer each research question and discuss the findings resulting from

our experiments.

Monitoring the Features Individually. Some features are linked with concept

drift, but they should not be used alone as a drift indicator. However, monitoring the

percentage of features that change is not a good indicator of concept drift for disk or

job failure prediction models.

We demonstrate that changes in specific features (RQ1.a) can be linked with drift. Still,

it cannot be used alone as a drift indicator, although considered best practice in monitoring

machine learning systems [39]. Our results show that some features used to create job

failure prediction models change only in drift-labeled batches. Examples are one feature,

namely “Diff Machine” in Google dataset, and six features, namely “Avg GPU Work Mem”,

“Avg Mem”, “CPU Usg”, “GPU Work Util”, “Max GPU Work Mem” and “Max Mem” in

the Alibaba dataset. The features that change in the Alibaba dataset are related to the

used resources (memory, CPU, and GPU), and for this dataset, they solely change during

drift batches. However, the features related to the used resources (disk, memory, CPU)

in the Google dataset change in both drift and non-drift batches. This shows that the

features related to used resources are not generally an indicator of concept drift and AIOps

practitioners should identify which features indicate model degradation for their AIOps

models. Regarding disk failure prediction, there was no feature changing in solely drift
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batches. The only feature that exhibited changes in more drift batches than non-drift

batches is the “Smart 193 Raw Diff” (Load Cycle Count) feature. However, our results

indicate that using this feature as a concept drift indicator leads to many false alarms.

Monitoring the proportion of features that changed was not linked with concept drift

for either of the evaluated AIOps datasets. This shows that although considered best

practice in concept drift monitoring [39], it cannot indicate drift in failure prediction

datasets (RQ1.b). Therefore, we recommend practitioners investigate other unsupervised

drift detection techniques.

Monitoring the Data Distribution over Time. Some data distribution-based drift

detectors can accurately identify drifts, but which detector to employ is dataset-

dependent. Retraining based on unsupervised data distribution drift detectors is

beneficial, obtaining similar performance with periodic retraining and lowering the

retraining and label costs.

In our last experiment, we simulate the scenario in which a failure prediction model is

deployed into production and evaluated periodically on the upcoming batches. We compare

the situation in which the model is never retrained (Static), the situation in which the model

is retrained based on one of the three unsupervised drift detectors, and the situation in

which the model is retrained periodically. Our results demonstrate that retraining based on

unsupervised drift detectors is promising since it achieves similar performance to periodic

retraining and lowers both the number of retraining times and the number of required true

labels. Our findings suggest that employing unsupervised drift detectors as data monitoring

tools is a promising strategy to lower the retraining labels’ costs while preserving accuracy

(RQ2.b).

Another important conclusion drawn from our results is that no unsupervised drift

detector achieves the best results on all three analyzed datasets (RQ2.a). This shows that

choosing the most suitable drift detector depends on the AIOps application and dataset.

Therefore, AIOps practitioners have to experiment with their datasets to identify the most

suitable unsupervised drift detection technique.

In our experiments, we evaluate both the accuracy of drift detection (RQ2.a.) and the

effects of retraining based on drift detection (RQ2.b) to understand whether we can link drift

detection accuracy to its effects when used as a model retraining indicator. This approach

allows practitioners to identify the suitable drift detector for their datasets by evaluating

drift detection accuracy on their training data. However, our results suggest that the

behavior of the unsupervised drift detection techniques is different in the two evaluation

scenarios. For instance, the KS_All drift detector identified 66% of the drifts on the Alibaba

dataset in the former evaluation scenario (Table 3.1), while in the latter scenario (Table 3.2)

it was not able to detect any drift. Thus, the accuracy of drift detection on smaller batches

does not reflect how the detector is behaving in a production environment. Therefore,

we suggest that practitioners allocate a testing period for selecting the most appropriate

drift detector. In this testing period, practitioners can employ our proposed pipeline and

carefully analyze the impact and required costs of retraining based on each drift detector

while compared to never retraining the model (lower baseline) and periodically retraining

a model (upper baseline).
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3.7 Threats to Validity
An external threat to validity is generalizability, as we used only three publicly available

datasets (Backblaze, Google, Alibaba) and focused on solely existing failure prediction

models without exploring techniques to improve the model (e.g. adding a new feature).

However, the dataset samples are representative of real-world machines since they are

published by well-known organizations for research purposes. For internal validity,
we split data into periods and train-test sets consistently with previous work [17, 18, 37].

Regarding construct validity, we used Randomized Search for hyperparameter tuning,

fixed iteration time to 100, applied undersampling to achieve a 10:1 ratio of non-failure to

failure samples, and used 10 random seeds to minimize bias. For feature selection in KS_FI,

we chose features with importance above the mean.

3.8 Conclusions and Future Work
The main goal of this article is to understand to what extent unsupervised data monitoring

tools can be employed in real-world failure prediction models to identify concept drift.

Furthermore, we aim to quantify the benefits of employing an unsupervised drift detector

in the maintenance pipeline of a failure prediction model in terms of the number of

retrainings and label costs with respect to the model performance trade-offs. To do so we

extracted the best practices in unsupervised techniques for monitoring machine learning

systems suggested by industry practitioners, such as monitoring the skewness of features
over time [39] (monitoring the percentage of features that change andmonitoring the skewness
of features over time) and monitoring the data distribution over time [9, 39, 40]. We applied

them to three failure prediction models and verified how well they indicated concept drift

(model degradation). The employed datasets are representative of real-world data since

they were either provided by real-world organizations (Google and Alibaba) or contain

data collected from various hardware devices (Backblaze) [26].

We empirically show that monitoring the percentage of the features that change is not

correlated with the presence of drift. Our experiments suggest that some features can be

linked to the presence of drift, but they cannot be used alone as drift indicators. However,

out of the best practices in unsupervised monitoring machine learning systems, moni-

toring the data distribution is the most promising technique. Therefore, unlike previous

work proposing periodic model retraining [17, 37] or retraining based on supervised drift

detectors [18], we demonstrate that unsupervised data distribution-based drift detectors

effectively indicate when to retrain failure prediction models, reducing retraining and

labeling costs. Furthermore, in this chapter, we proposed integrating a feature impor-

tance technique extracted from the model into data distribution-based drift detectors. This

technique extends beyond Random Forests and can be applied to any classifier where

key features can be extracted, making it widely applicable. The feature importance based

detector (KS_FI) was the most cost-effective retraining for Backblaze and Alibaba datasets.

Furthermore, we address the model monitoring research gap [98] by proposing a pipeline

that helps AIOps practitioners evaluate unsupervised drift detectors and select the most

suitable one to monitor an AIOps model. Our experiments establish a foundation for

evaluating drift detectors in the MLOps monitoring pipeline of failure prediction models.

Future Work: Given the promising results of unsupervised drift detectors, as future
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work, we aim to expand our drift selection pipeline into a framework that AIOps prac-

titioners can employ to identify the most suitable unsupervised drift detectors for their

datasets or applications. However, we do not recommend a specific drift detector since

some applications prioritize capturing more drifts, while others aim to reduce false alarms.

We seek to expand our analysis to other AIOps applications such as node failure prediction

or incident prediction.
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4
Sustainable Machine
Learning Retraining:

Optimizing Energy Efficiency
Without Compromising

Accuracy

The reliability of machine learning (ML) software systems is heavily influenced by changes
in data over time. For that reason, ML systems require regular maintenance, typically based
on model retraining. However, retraining requires significant computational demand, which
makes it energy-intensive and raises concerns about its environmental impact. To understand
which retraining techniques should be considered when designing sustainable ML applications,
in this work, we study the energy consumption of common retraining techniques. Since the
accuracy of ML systems is also essential, we compare retraining techniques in terms of both
energy efficiency and accuracy. We showcase that retraining with only the most recent data,
compared to all available data, reduces energy consumption by up to 25%, being a sustainable
alternative to the status quo. Furthermore, our findings show that retraining a model only
when there is evidence that updates are necessary, rather than on a fixed schedule, can reduce
energy consumption by up to 40%, provided a reliable data change detector is in place. Our
findings pave the way for better recommendations for ML practitioners, guiding them toward
more energy-efficient retraining techniques when designing sustainable ML software systems.

This chapter is based on the following peer-reviewed publication:

� Lorena Poenaru-Olaru, June Sallou, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen. 2025. Sustainable
Machine Learning Retraining: Optimizing Energy Efficiency Without Compromising Accuracy. Proceedings of the
11th International Conference on ICT for Sustainability (ICT4S), Dublin, Ireland, 2025 [45].
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4.1 Introduction
The increasing adoption of Machine Learning (ML) and Artificial Intelligence (AI) within

organizations has resulted in the development of more ML/AI software systems [29].

Although ML/AI brings plenty of business value, it is known that the accuracy of ML

applications decreases over time [39]. Thus, ML developers must monitor and maintain

their ML systems in production. One reason for this phenomenon is the fact that ML

applications are highly dependent on the data on which they have been trained. Real-

world data usually changes over time [14] – a phenomenon often referred to as concept

drift [15] – which can significantly impact the normal operation of ML systems [40].

Therefore, appropriate maintenance techniques are required for the design of ML software

systems. One common approach to maintaining these systems is to periodically update

these applications by retraining the underlying ML models with the latest version of the

data [17], [37].

On another note, the process of training machine learning models has raised substantial

concerns about the carbon footprint of ML applications [99, 100]. For this reason, regularly

retraining ML applications to preserve their accuracy, implies considerable energy con-

sumption [44]. On the other hand, not retraining ML applications at all can severely impact

their performance over time [14], affecting their reliability in practice. Therefore, there is a

need for sustainable ML retraining methods that reduce the environmental impact of ML

applications [29, 44].

Previous research [101] has explored the energy consumed during training and infer-

ence of continuous learning, which are ML applications where a machine learning (ML)

model learns incrementally without requiring full retraining. Continual learning ML appli-

cations present significant challenges when incorporating domain experts’ feedback into

the ML model [15]. Consequently, a continual learning approach is not suitable for certain

applications. A better solution is periodically retraining ML models after accumulating

sufficient new samples. However, to the best of our knowledge, the effects of retraining an

ML model using various retraining techniques on both accuracy and energy consumption

have not been thoroughly examined. Therefore, this study aims to examine the effects of

various retraining techniques on accuracy and energy consumption in real-world ML appli-

cations, to provide best practices for designing sustainable ML systems. We analyze these

retraining techniques through the lens of two perspectives, namely the data perspective
and the frequency perspective [44]. The data perspective addresses the impact of the data

included in the retraining process, while the frequency perspective focuses on the impact

of the frequency at which a model is retrained. Moreover, since some ML applications

also require substantial energy for inference [30], we also explore whether the retraining

strategy affects the energy consumption of the inference tasks.

In this empirical study, we use failure prediction applications as the case study ML

application. Failure prediction applications are part of the AIOps research domain and are

ML applications that aim to identify failures in large and complex software systems in order

to improve their efficiency and reliability [20]. We specifically select failure prediction

applications since periodic retraining is commonly applied to keep models up to date

and these applications require large datasets, making them considerably energy intensive

in practical settings [8, 17, 18, 36, 37]. We argue that an efficient model monitoring and

retraining strategy can lead to significant improvements in maintaining these models.
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Hence, we employ three failure prediction models previously presented in the literature,

which are built using three open-source real-world datasets.

Previous research has compared retraining failure prediction models using all available

data versus only the most recent data, with both approaches maintaining performance

over time [37]. However, retraining on all data is likely to consume more energy [31, 44].

Our study empirically evaluates the energy consumption and compares the accuracy and

energy efficiency of these two retraining techniques.

Related work also suggests that periodic retraining is less sustainable compared to

drift-based approaches [29, 44]. However, drift detectors consume energy [102] and can be

overly sensitive [41], triggering unnecessary retraining and increasing energy consumption.

Hence, in this work, we quantify the impact of drift detection-based retraining on the

energy efficiency of AI-driven failure prediction systems.

The main contribution of this study is a quantitative empirical study of the impact of

different retraining techniques on the trade-off between accuracy and energy consumed

by ML systems during both training and inference. Our research shows that drift-based

retraining approaches reduce the energy consumption of failure prediction models over

time. However, the gains in energy efficiency are highly dependent on the choice of a drift

detector. All experiments and analyses are openly available in a replication package
1
.

4.2 Background
In this section, we introduce the background knowledge on which the remainder of the

paper builds, i.e., AIOps and failure prediction, concept drift, and retraining approaches.

4.2.1 AIOps
Large-scale software systems generate vast amounts of operational data, making manual

analysis and inspection impractical [20]. The term AIOps, introduced by Gartner [103],

refers to applying ML techniques to automate this process [17]. AIOps applications are ML

applications used to monitor large systems and enhance software delivery, compliance,

quality, and security in organizations [20]. A recent survey identifies four key AIOps

categories: root-cause analysis, incident detection, failure prediction, and automated

actions [104]. This work focuses on failure prediction, specifically analyzing two ML

applications: disk failure prediction and job failure prediction, which learn patterns from

past failures to anticipate hardware failure (disk) or software failure (job). It has been

previously shown [17, 18, 26, 37, 85] that these applications are severely affected by concept

drift and that they employ large amounts of data to train.

4.2.2 Concept Drift
The term concept drift refers to changes in the data over time [19]. It is a ubiquitous

phenomenon in real-world data, as data changes are generated by uncontrollable external

factors [41]. Concept drift can severely impact the accuracy/performance of ML models

over time since the ML algorithms used to build these models work under the assumption

that the distribution of the data data learned during the training process should be similar

to the distribution of the data on which the model is evaluated [14]. However, in the real

1
Replication Package

https://github.com/LorenaPoenaru/green_AI_maintenance
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world, this assumption often does not hold, since data are continuously changing, which

can lead to noticeable drops in the model’s accuracy over time.

Continuous model update/retrain is a commonly known technique to mitigate the

effects of concept drift on ML models over time [15, 58, 105].

From the retraining frequency perspective researchers [15] have distinguished

between two retraining techniques, namely periodic retraining and informed retraining.
Periodic retraining implies that models are retrained based on a predefined period, while

informed retraining means that a model is retrained based on a data monitoring tool called

a concept drift detector. In the latter situation, the concept drift detector evaluates whether

the training data becomes significantly different than the data the model is evaluated

on [41].

From the retraining data perspective, there are two techniques previously presented

in the literature, namely the sliding window and the full-history retraining approach [18,

37, 47]. The sliding window approach implies that the model is retrained only on the

newest data, discarding old samples, while with a full-history retraining approach, the

model is retrained on all the available data until a certain point in time. Therefore, the

latter retraining technique constantly enriches the training dataset with new samples once

they become available.

4.3 Related Work
4.3.1 Concept Drift in AIOps Applications
Previous work has shown that multiple ML applications within AIOps, including failure

prediction model, have been affected by concept drift [8, 17, 20, 36, 47, 106]. In failure

prediction applications, concept drift can be caused by different external factors, such as

feature updates, user workloads, or software/hardware updates [8]. These factors can affect

the behavior of the data over time, which usually impacts the accuracy of failure prediction

models. This aspect makes concept drift a serious threat to the trustworthiness of failure

prediction models, especially when their output is used in decision-making processes [20].

When it comes to AIOps applications, previous works recommend AIOps practi-

tioners to periodically retrain failure prediction models [8, 17, 37]. From the retraining

data perspective, both the sliding window [8, 17, 18, 25, 37, 47, 107] and full-history ap-

proaches [18, 37, 47] retraining approaches were employed to update AIOps models over

time. From the retraining frequency perspective, the most commonly used retraining

technique is the periodic retraining [8, 17, 18, 25, 37]. However, Lyu et al. [18] also ex-

perimented with informed retraining. The authors employed a supervised concept drift

detector to monitor the error of the failure prediction model over time and retrained every

time they observed a significant error increase. To compute the error, the ground truth,

also known as true labels, is required. True labels refer to which sample is a "failure"

and which sample is a "non-failure". However, in some AIOps applications, continuously

monitoring the error over time might not be possible since obtaining true labels is expen-

sive in time and resources. For these applications, to obtain the true labels operational

engineers have to continuously perform root cause analysis to understand the main cause

of the failure[20, 47, 106]. This consumes a significant amount of the time of operational

engineers which makes acquiring the true labels significantly expensive. In this situation,
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employing an unsupervised drift detector that does not require computing the error using

true labels would be preferred [41, 47]. Therefore, unlike previous work [18], in this chapter,

we analyze the effects of retraining based on an unsupervised drift detector. Furthermore,

while previous work only took into account the accuracy when determining the effects of

retraining based on drift detection, we also consider the consumed energy to ensure the

sustainability of the failure prediction models over time.

4.3.2 Sustainability of ML Systems
The adoption of ML applications in the industry has seen considerable growth over the

past years [99, 100]. Although numerous domains benefit from the use of machine learning,

these models consume significant amounts of energy, raising concerns among researchers

about the environmental impact of such applications [29, 30, 99, 100]. This led to the rise

of the GreenAI research field, which encourages the development of ML applications that

consume less energy while preserving their accuracy [28].

One key practice in building GreenAI systems is reporting the energy consumption

of ML applications, which could raise awareness of their carbon footprint and help find

more sustainable configurations [28]. Wu et al. [100] examined the carbon footprint

of Facebook’s ML applications and discovered that both training and inference have a

significant contribution to the overall carbon footprint of the ML application. Plenty of

research has been focused on understanding the environmental impact of training ML

systems, such as the study of Xu et al. [108] targeting multiple computer vision applications.

On the other hand, the work of Luccioni et al. [30] analyzed inference energy in tasks

like image classification and language modeling. They concluded that although tasks

involving images are more energy-intensive, model training remains significantly more

carbon-intensive compared to inference.

While significant attention has been given to the energy consumption of training and

inference in MLmodels, the energy used during the model’s active production phase (model

lifecycle) has received less focus. Trinci et al. [101] investigated the training and inference

energy efficiency of continual learning algorithms for computer vision applications, but

these algorithms are not directly applicable in the AIOps context due to the high costs of

continuously gathering true labels[20] to perform continual learning. AIOps applications

require ongoing model monitoring and updates, but these should occur in batches at

predefined intervals rather than continuously. Although previous work [44] explored

sustainable retraining techniques, there is a lack of empirical analysis demonstrating their

effectiveness in maintaining model accuracy and reducing energy consumption over time.

Omar et al. [102] have studied the energy consumption of multiple drift detectors with

respect to their drift detection accuracy. However, the drift detectors analyzed operate in a

supervised manner, relying on error rate computation after inference, which requires true

labels. This approach is impractical for some AIOps applications, where acquiring true

labels depends on human annotation[20]. Therefore, unsupervised drift detectors are more

suitable, as they identify drift by analyzing differences between training and inference data

without needing true labels. Our study differs from previous work [102] by employing

unsupervised drift detectors and focusing on their ability to indicate the need to retrain a

failure prediction model, rather than assessing the drift detection accuracy.
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4.4 ResearchQuestions
The goal of our study is to assess the impact of different retraining techniques on the

energy consumption of failure prediction models. With this aim, we address the following

research questions (RQ):

RQ1. What is the impact of each retraining technique on the training energy consumption?

(a) What is the impact on energy consumption of employing the sliding window

vs. the full-history approach (retraining data perspective)?

(b) What is the impact on energy consumption of employing the periodic vs. the

informed retraining (retraining frequency perspective)?

(c) What is the best retraining technique overall?

RQ2. What is the impact of each retraining technique on the inference energy consump-

tion?

4.5 Methodology and Experiments
In this section, we outline the methodology used to address the research questions and

conduct our experiments. Specifically, we discuss the used datasets, the process for build-

ing the failure prediction models, the experimental design, and the energy consumption

measurement.

4.5.1 Datasets
We employ the only three publicly available open-source AIOps datasets to build failure

predictionmodels according to previouswork [17, 18]: the Backblaze Disk Stats Dataset [84],

the Google Cluster Traces Dataset [86], and the Alibaba GPU Cluster Trace Dataset [88].

The Backblaze Disk Stats Dataset has been previously used to build disk failure

prediction models [17, 18, 26, 37, 85]. It contains information about operational hard drives

available in the data center collected daily since 2013. The dataset includes both drive

information (manufacturer, serial number, or capacity), as well as information related to

early error detection extracted through a monitoring system implemented by the manu-

facturer, called SMART attributes (Self-Monitoring, Analysis, and Reporting Technology).

Given that data collected before 2015 does not include SMART attributes and to align with

previous work [17], we employ 12 months of data collected in 2015.

The Alibaba GPU Cluster Trace Dataset is relatively new, released in 2021 by the

Alibaba Group, and, to the best of our knowledge, there has been only one work that

employed it to build job failure prediction models [18]. It is composed of information

regarding job execution extracted from a large-scale data center. The data is collected for a

period of 2 months, from July to August 2020 [89], from approximately 6500 GPUs across

around 1800 machines.

The Google Cluster Traces Dataset has been previously used to build job failure

prediction models [17, 18, 37, 87]. The dataset includes information about jobs executed

on a large-scale cluster at Google collected for 29 days in May 2011.

4.5.2 Machine Learning Models
When building the failure prediction models, i.e., disk failure prediction for the Backblaze

dataset and job failure prediction for the Alibaba and Google datasets, we replicate the
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pipelines presented in previous work [17, 18, 26, 37, 85, 87]. Thus, we use the same features

and follow the same model design strategy presented in previous studies. More details

about features are specified in our replication package.

Labels and Features
The Backblaze dataset contains an attribute indicating whether a drive failed the day after

data collection, which serves as the label for our failure prediction model. It consists of

approximately 7 million samples, with 0.05% labeled as failures and 99.95% as non-failures.

For the prediction model, we selected 19 temporal SMART features from previous research

[17, 18, 26, 37, 85]. Of these, 11 are non-cumulative (raw) values from the last day, while 8

are cumulative (raw diff) changes over one week compared to the previous day’s values.

To create the final Alibaba dataset, we remove unfinished jobs and those ending in less

than five minutes, except those labeled with the status "fail." The final dataset consists of

701,000 samples, with 34.5% labeled as failures and 65.5% as non-failures. To train the job

failure prediction model, we use 12 features, comprising 6 configuration (conf) features

and 6 temporal (temp) features calculated over a 5-minute window since job submission.

The Google dataset lacks a direct attribute for failed or non-failed jobs. Each job

(sample) can have multiple events (fail, finish, kill, submit, update, evict, schedule) and

states (pending, dead, running, unsubmitted). Following previous research [17, 18, 37], a

job is labeled as "fail" only if its final state is "fail." We remove jobs with incomplete records

and those that finished within five minutes of submission, as they do not provide sufficient

metrics for predicting failure. The final dataset includes approximately 625,000 samples,

with 1.5% labeled as failures and 98.5% as non-failures. For the job failure prediction model,

we use 15 features: 9 configuration (conf) features and 6 temporal (temp) features calculated

over a 5-minute period since job submission.

Model Building Pipeline
We built three model failure prediction models, one disk failure prediction, and two job

failure prediction models, corresponding to the three datasets employed in this study,

Backblaze, Google, and Alibaba, respectively. To closely resemble the failure prediction

models presented in previous work [17, 18, 26, 37, 85, 87] we build a monthly failure

prediction model for the Backblaze dataset, a daily failure prediction model for the Google

dataset and a weekly failure prediction model for the Alibaba dataset. We split each

dataset in half. The first part is used to train each model, while the second part is further

divided into smaller subsets, each corresponding to a specific period (day, week, or month,

depending on the dataset). These subsets mimic the real-world scenario in which new data

is generated periodically and are used for inference. Fig. 4.1 shows a detailed overview of

our model-building pipeline.

The model-building pipeline is similar for all our three failure prediction models unless

specified otherwise. The first step of the pipeline is preprocessing the data through scaling.

Similar to previous work [17, 18, 37], we employ a standard scaler which we fit on the

training data and apply on the inference data such that all values of the features range in a

predefined interval.

The Backblaze and Google datasets suffer from high-class imbalance, meaning that the

number of failure samples is tremendously lower compared to the number of non-failure

samples. For the Alibaba dataset, the class imbalance is not as severe. Therefore, similar
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Figure 4.1: Energy measurements in model pipeline. The symbol ‘*’ indicates that the specific step was done only

when applicable.

to previous work [17, 18, 37], we perform downsampling for the Backblaze and Google

datasets obtaining a class balance ratio of 1:10. This indicates that for each failure sample,

there are 10 non-failure-samples.

The last steps of the model-building pipeline are model training and inference. For this

step, we employ a Random Forest classifier as it is one of the most popular classifiers used in

failure prediction achieving the highest performance in distinguishing between failure and

non-failure samples [17, 18, 26, 37, 85]. While training the model, hyperparameter tuning is

performed through Randomized Search, similar to previous work [18]. The trained model

is further used for inference.

Failure Prediction Evaluation Metric
Similar to previous work [17, 18, 37], we employ ROC AUC to evaluate the accuracy of the

failure prediction model. In this chapter, we will use the terms ROC AUC and accuracy
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interchangeably. ROC AUC is a metric that measures the model’s ability to assign higher

predicted probabilities to the positive class compared to the negative class. The highest

ROC AUC score is 1.0 and shows that all samples are correctly classified. We choose this

metric due to the high-class imbalance in all datasets.

4.5.3 Retraining Approaches
In our experiments, we investigate the energy consumption of different retraining tech-

niques. From the retraining data perspective, we analyze the effects of two retraining

techniques, namely the full-history approach and the sliding window approach [37]. In

full-history retraining, the model is retrained using all data accumulated up to the given

retraining time. In sliding window retraining, at each retraining step, new data is incorpo-

rated while the oldest data, corresponding to one period, is discarded. Unlike full-history

retraining, this method maintains a relatively constant training dataset size.

From the retraining frequency perspective, we analyze the effects of two retraining

techniques, namely the informed vs. periodic retraining [15]. In the periodic retraining

approach, the model is retrained at predefined intervals, regardless of whether the data

distribution has changed. To remain consistent with prior work [17, 18, 37], we perform

retraining at different intervals depending on the dataset: monthly for Backblaze, weekly

for Alibaba, and daily for Google. In contrast, the informed retraining approach triggers

model updates only when a significant shift in the data distribution is detected. To identify

such shifts, we employ the Kolmogorov-Smirnov (KS) statistical test [14, 19, 41, 92], a

widely used unsupervised drift detection technique.

To further analyze the impact of different drift detection strategies on energy con-

sumption, we explore multiple variations of drift detection. This process consists of two

primary steps: first, estimating the distributions of both the training and inference data,

and second, applying the KS test to compare these distributions. We examine three distinct

approaches to drift detection. The first approach, KS-ALL, estimates distributions using all

available model features. The second, KS-PCA, reduces the feature dimensionality such

that 95% of the variance in the data is preserved using Principal Component Analysis

(PCA) before estimating distributions. The third approach, KS-FI, selects only the most

relevant features, filtering out those with a feature importance ranking below the mean, as

determined by Gini importance. Both KS-PCA and KS-FI introduce a feature selection step

before distribution estimation. While KS-PCA applies PCA for dimensionality reduction,

KS-FI retains only the most informative features based on their importance ranking.

4.5.4 Experimental Design & Setting
In our experimentation, we study 8 retraining configurations based on two retraining

perspectives: data and frequency.

We repeat our experiments to mitigate bias in our results caused by the randomness of

the ML model. We allocate a one-week budget for each dataset, running each configuration

multiple times. For the Backblaze and Alibaba datasets, we repeat the experiments 30 times

using 30 different random seeds. The Google dataset is one of the most computationally

intensive, therefore only 5 random seeds are computed. However, no significant variation

in the results was observed by experimenting with different random seeds. Furthermore,

when collecting energy consumption data, we shuffle the configurations to reduce the
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risk of background activities or factors such as temperature impacting only a category of

experiments, following recommendations for energy studies [109]. All our conclusions are

verified using the Wilcoxon statistical test with a confidence level of 95%.

The experiments are run on a machine with an AMD Ryzen 9 7900X processor (12

physical cores, 24 threads), 64 GB RAM (2x32GB DDR5 @ 5.600MT/s), and an MSI Geforce

RTX 4090 (24GB GDDR6X memory) graphic card. The operating system is Ubuntu 22.04.3,

with Linux kernel version 6.2.0.

4.5.5 Energy Consumption
We measure energy at the level of the model pipeline and the model lifecycle. The model

pipeline level refers to the components of the failure prediction model that are measured.

The model lifecycle refers to how the total energy consumed by a certain process is

consumed throughout the lifecycle of the machine learning model. In this subsection, we

further describe which tool we employ to measure energy consumption.

Energy Measurement Tool
Energy measurement tools help quantify the sustainability of different experimental set-

tings. To measure the consumed energy, we employ the CodeCarbon [110] Python package.

The energy consumed by the CPU and RAM is measured through RAPL and the energy

consumed by the GPU is measured through NVIDIA Management Library [108]. CodeCar-

bon measures the duration of each experiment (in seconds) and the consumed energy (in

kWh). Furthermore, this energy measurement tool has been previously used to measure

the energy consumed by drift detectors and the energy consumed during training and

inference [101, 102].

Measuring Energy Consumption of the Model
In our experiments, we measure the energy consumption of multiple steps in the failure

prediction model lifecycle as shown in Figure 4.1. In this work, we are solely interested in

understanding the impact of different model retraining techniques on the energy consumed

during the model lifecycle. Thus, we are not measuring the energy of all the steps required

in building the models, such as data scaling or downsampling to balance the two classes. In

our experiments, we measure three types of energy, namely training energy, drift detection
energy and inference energy. Furthermore, in our results, we depict the cumulative values

of the energy of these models. For example, the training energy is composed of the initial

training of the model and energy consumed to perform retraining either periodically (if

the configuration is Periodic) or when the drift detection indicates (if the configuration

is drift detection based). For the Static configuration, we perform training only once and

never retrain further.

The training energy is the total energy consumed by training/retraining. This energy

measurement is composed of the energy measured during the hyperparameter tuning

phase, in which the best hyperparameters are chosen to fit the training data, and the

energy measured during the phase in which the best model is fitted on the training data as

described in Fig. 4.1.

Drift detection energy refers to the total energy consumed in detecting data drift.

Depending on the detector—KS-ALL, KS-PCA, or KS-FI—this energy is measured in two
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or three components. KS-ALL includes energy used for estimating the data distribution

and applying a statistical test to determine significant changes. KS-PCA adds a third

measurement for the energy spent on dimensionality reduction using PCA. Similarly, KS-FI

requires three measurements, but instead of PCA, it measures the energy used to extract

and filter important features.

The inference energy represents the energy consumed by applying the trained model

to perform inference and extract the predictions.

4.6 Results
In this section, we present our results and answer the research questions.

4.6.1 Impact on Training Energy
To answer RQ1, we depict our results in Fig. 4.2, presenting at the top the results of ROC

AUC and at the bottom the total training energy combined with the total drift detection

energy for each retraining technique for each dataset, when applicable. In the case of the

Static model, the total training energy contains only the initial model training. When it

comes to the Periodic model, there is no total drift detection energy, thus we solely depict

the energy consumed during the periodical model retraining process. The drift detection

energy is solely considered for the KS-ALL, KS-FI, and KS-PCA models.

RQ1a: Full-History vs. Sliding Window Retraining

In this experiment, we evaluate the sliding window and full-history approaches in terms of

model accuracy (ROC AUC) and energy consumption (joules). To enhance the generaliz-

ability of our conclusions, we assess these retraining strategies in two scenarios: periodic

retraining (Periodic) and drift-based retraining using the KS-ALL, KS-FI, and KS-PCA

methods. Additionally, we include a baseline scenario with a static model (Static), trained

only once, to assess the overall benefits of retraining.

In Fig. 4.2 we show that in almost all situations the full-history approach is more

energy-intensive when compared to the sliding window approach. The only exception can

be observed in the situation of KS-ALL for the Alibaba dataset, where there is no significant

difference (p-value of 0.67) in terms of the amount of energy consumed using a sliding

window or a full-history retraining approach. This exception can be explained by the fact

that the ROC AUC for KS-ALL_FH is similar to the ROC AUC for KS-ALL_SW and to

the ROC AUC of the Static model. This shows that in this particular situation for both

full-history and sliding window approaches the drift detector did not identify any drift,

and, therefore, no retraining has been performed besides the initial model training. In all

other situations, the energy consumed by retraining using a sliding window approach was

statistically lower than the energy consumed by retraining using a full-history approach

(p-values below 0.05). For instance, when it comes to the Periodic model, we can notice

an almost 25% decrease in energy consumed while retraining using the sliding window

approach vs. the full-history approach.
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Figure 4.2: ROC AUC and energy consumption of each retraining technique. Note: for the informed retraining

(KS-ALL, KS-PCA, and KS-FI all configurations) the energy consumed is calculated during both the retraining

and the drift detection.

RQ1a Answer

A sliding window approach consumes significantly less energy than a full-history

approach.

RQ1b: Periodic vs. Informed Retraining
From Fig. 4.2 we can notice that in most cases the train energy consumption is reduced

when using an informed retraining (retraining based on drift detection) technique for all

datasets.

When it comes to the Alibaba dataset, the energy consumed by training based on

the KS-ALL drift detector is significantly similar to the energy consumed in the Static

configuration. This shows that the KS-ALL drift detector does not identify any change

in the data, and thus, any need for retraining, consuming almost the same amount of

energy as the Static model. However, there is a significant difference in the ROC AUC

between KS-ALL and the other configurations (at least 4%), showing that retraining is

required. Thus, this drift detector is not able to properly identify the drift in this dataset,

and should not be used as an indicator of when to retrain. We can also notice that some

informed retraining techniques consume more energy than periodic retraining techniques.

For instance, retraining a model for the Google dataset using a KS-FI or a KS-PCA drift

detector is more energy-intensive than periodically retraining the model. The reason for

this is the fact that these drift detectors are too sensitive to changes in data and signal the

need to retrain often. Since these detectors also consume energy and the number of times

the model required retraining is not significantly reduced, these configurations consume

more energy compared to periodic retraining. On the other hand, for the Google dataset,

we can observe that some drift detectors, KS-FI and KS-PCA, are considerably sensitive
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and constantly indicate the need for retraining. For this reason, they consume more energy

compared to periodic retraining and this finding shows that informed retraining is not

always more sustainable than periodic retraining.

Table 4.1: Percentage of energy consumed by each drift detector from the energy consumed for training + drift

detection.

Drift Detector Retraining Backblaze Alibaba Google
KS-ALL SW 3.17 3.90 0.41

FH 2.65 3.91 0.37

KS-PCA SW 1.77 1.54 0.26

FH 1.50 1.53 0.21

KS-FI SW 1.63 0.47 0.13

FH 1.16 0.47 0.11

In Table 4.1, we present the percentage of the energy consumed solely by the drift

detector out of the energy consumed by both training and drift detection. This table shows

that the energy consumed by the drift detector is relatively low (less than 4%). This shows

that incorporating an unsupervised drift detector does not bring too much overhead to the

total energy consumption. We can further see from Table 4.1 that the KS-ALL drift detector

consumes more energy than KS-PCA and KS-FI for all datasets. This can be explained by

the fact that this drift detection technique derives the data distribution from the entire

feature space, while the KS-PCA and KS-FI perform feature reduction before deriving the

data distribution. Thus, unsupervised drift detectors incorporating feature reduction are

generally sustainable.

RQ1b Answer

Informed retraining usually consumes less energy than periodic retraining when

the drift detector is properly chosen.

Best Overall Retraining Approach
When choosing the best overall retraining approach, we have to consider which retraining

technique achieves the highest ROC AUC while lowering energy consumption compared

to periodic retraining. Furthermore, we consider the Static model as a lower bound in

terms of ROC AUC.

To answer this research question (RQ1c), we examine the energy consumed for each

retraining technique with respect to its corresponding ROC AUC improvement depicted

in Figure 4.2. When it comes to the Backblaze datasets, there is no statistical difference

in ROC AUC among configurations that include a drift detector (KS-ALL, KS-PCA, and

KS-FI) and the periodic configuration. However, the KS-FI using a sliding window approach

consumes the least energy. The KS-FI_SW is the best overall for the Alibaba dataset,

achieving the highest ROC AUC with the lowest energy use. Regarding the Google dataset,

the retraining technique that consumes the least amount of energy while achieving the

highest performance is the KS-ALL drift detector. These experiments demonstrate that no
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Figure 4.3: Energy consumed during inference for each retraining technique.

single retraining technique is universally optimal. Therefore, further experimentation is

necessary to identify the most sustainable approach for each case.

Table 4.2: Energy estimation for using a drift detection-based retraining approach vs. a periodic approach over

the period of one . In the Drift Detection column, we depict the most sustainable drift detection-based retraining

technique for each dataset, namely KS-FI for Backblaze and Alibaba and KS-ALL for Google. Note: Only the

sliding window retraining technique is presented since it is the most sustainable. In this table, K implies that the

value needs to be multiplied by 1.000 and M implies that the value needs to be multiplied by 1.000.000

Drift Detector Retraining Periodic Drift Detection
Backblaze 6 months 6.3K 5.9K

1 year estimate 12.6K 11.8K

Alibaba 1 month 191.3K 106.9K

1 year estimate 2.3M 1.3M

Google 2 weeks 427.0K 393.7K

1 year estimate 11.1M 10.2M

Each of our datasets was evaluated during periods of different lengths, namely 6 months

for Backblaze, 1 month for Alibaba, and 2 weeks for Google. These lengths are strongly

dependent on the size of each dataset and on how failure prediction models were designed

in previous work [17, 18, 37]. Therefore the retraining frequency for each failure prediction

model is different, monthly retraining for Backblaze, weekly retraining for Alibaba and

daily retraining for Google. To better understand the impact of retraining periodically vs.

retraining based on drift detection over a longer period, we estimated the energy consumed

on training + drift detection over one year for each dataset. In this experiment, we assume

no change in the energy consumed during the given period and the rest of the year. For

instance, if the energy consumed by periodic retraining during the available 6 months for

Backblaze is 6.3K, we assume that in the following 6 months, the model will consume the

same amount of energy.

In Table 4.2 we show the energy consumed by the most sustainable retraining technique

for each dataset (KS-FI for Backblaze and Alibaba and KS-ALL for Google) vs. periodic

retraining and an estimate of energy consumed over one year. Our results show that

retraining using a suitable drift detector can significantly reduce energy consumption over

one year. More specifically it can reduce the energy consumed by failure prediction models

for Google and Alibaba by around 1000 kilojoules (around 40% less energy for Alibaba

and 10% for Google) and the energy consumed by failure prediction models for Backblaze
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by almost 1 kilojoule (around 7%). Therefore, employing a drift detector that is not too

sensitive and can identify when a model requires retraining is substantially beneficial in

the long term compared to periodic retraining.

RQ1c Answer

There is no one-size-fits-all solution for model retraining and different options

should be considered before opting for a particular technique. Although there is

evidence of the benefits of using an informed retraining technique, the main chal-

lenge lies in choosing an appropriate drift detector and in the frequency of concept

drift occurrences. Furthermore, the optimal informed retraining technique should

be paired with a sliding window retraining approach to minimize the consumed

energy.

4.6.2 Impact on Inference Energy
Our study aims to understand whether different model retraining techniques can impact

the energy consumed during inference. Therefore, in Fig. 4.3 we depict the distribution

of the energy consumed during inference for each model across all random seeds. From

Fig. 4.3 we can notice that the variation in inference energy consumption for each retraining

technique is relatively small. Therefore, although each retraining technique is different in

terms of the frequency of retraining a model and the data, the energy on inference is not

impacted.

We verified whether there is a significant difference between the energy consumed

during the inference for all analyzed scenarios (p-values higher than 0.05). For the Google

dataset, there was no significant difference in energy consumed during inference between

all the analyzed retraining techniques. For the Alibaba dataset, both periodic retraining

techniques (Periodic_SW and Periodic_FH) are significantly different from the rest in terms

of energy consumed during inference. However, the difference in consumed energy is only

around 10 joules. When it comes to Backblaze, there was no significant difference in the

energy consumed during inference between the Static and KS-ALL or between KS-PCA,

KS-FI, and Periodic models. However, although for instance the Static and Periodic models

consume significantly different amounts of energy according to theWilcoxon statistical test

(p-value 0.04), this difference was only around 1.5 joules. Thereby, the difference in energy

consumed during inference between the retraining techniques is either not significant or

extremely low.

RQ2 Answer

In general, the employed retraining technique does not affect the energy consump-

tion of inference tasks.

4.7 Discussion and Implications
In this section, we will highlight the general findings derived from this study and we will

discuss our results. Our findings aim to help ML practitioners build more sustainable
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ML software systems and understand how to experimentally assess different retraining

techniques in terms of sustainability. The remainder of this section will present each of

our findings followed by a discussion and its implications.

Finding 1

Retraining using only the newest data is typically more sustainable than retraining

on all available data and has a negligible influence on the model’s performance.

In our work, we validate the claim of the authors [44] that employing a sliding window

approach when retraining ML models is more sustainable with experimental evidence.

When comparing the sliding window and the full-history approach we noticed that for all

datasets the difference in model performance, ROC AUC, is minimal, while the difference in

energy consumption is considerable. For the Backblaze dataset, the ROC AUC obtained by

both retraining approaches is the same, while for the Alibaba dataset, the sliding window

approach achieved an ROC AUC of 1% higher than the full-history approach, showing

that the model accuracy benefits from deleting older samples. The only dataset where the

full-history approach has a higher ROC AUC than the sliding window approach is the

Google dataset. However, from all three datasets, the Google dataset is the shortest in terms

of sample collection (29 days instead of 2 months for Alibaba and one year for Backblaze).

Therefore, the reason why a full-history approach can be more beneficial from the accuracy

perspective is that the model might require more training samples before deploying the

model in production. Furthermore, the difference in energy consumed by retraining the

Google dataset with a full-history approach vs. a sliding window approach is significantly

high, ranging from 130 kilojoules to 222 kilojoules depending on the configuration, while the

ROC AUC gain is only a maximum of 1.5%. Due to the minimal accuracy improvement and

the high energy consumption associated with using a full-history approach, we recommend

that ML practitioners adopt a sliding window retraining technique when developing Green

ML applications.

Finding 2

Retraining a model based on a drift detector can benefit both the model’s perfor-

mance and the energy consumed only if the drift detector is properly chosen.

While answering RQ1b and RQ1c, we noticed that integrating a drift detector as an

indicator of when to retrain can be beneficial only if we know that the detector is not

too sensitive or the detector can identify drifts. We had an example of employing a drift

detector that was not able to identify any drift for the Alibaba dataset, namely the KS-ALL.

In this situation, using this drift detector leads to obtaining the same ROC AUC as not

retraining the model at all (Static), while slightly increasing the overall energy consumption

of the model in production, since the energy consumed by the drift detector needs to be

considered. We also had an example of what happens if the drift detector is too sensitive

and constantly signals drifts in the experiment with the Google dataset (drift detectors

KS-PCA and KS-FI). Here we observed that if a drift detector is too sensitive, the amount

of energy consumed by a configuration that retrains based on drift detection becomes
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higher than the amount of energy consumed during periodic retraining, while sometimes

(in the case of KS-FI) lowering the ROC AUC by 1%. However, for all three datasets, there

was at least one configuration involving drift detection that both reduced the consumed

training energy and preserved the ROC AUC. For this reason, we argue that a drift detector

can benefit both the consumed energy and the model’s performance only if it is properly

chosen.

Finding 3

Although inference is not affected, the energy consumption of training a model is

severely impacted by the retraining strategy.

Throughout our experiments, we noticed that the difference in consumed energy during

inference among different retraining strategies is either not significant or extremely small.

This shows that inference energy consumption is in our experimental setup not influenced

by the employed retraining technique. However, we solely experimented with the Random

Forest classifiers since this is the state of the art of failure prediction, which is the case

study of this chapter. Therefore, our conclusions apply to this classification algorithm, but

future work should investigate whether the same conclusions hold when employing other

classification algorithms or when investigating other study cases, such as deep learning

applications, which are more energy-intensive when it comes to inference.

Finding 4

The retraining frequency has a significant impact on the energy consumption.

While answering RQ1c, we performed a one-year estimation to compare the long-

term benefits of employing drift-based retraining with periodic retraining. Throughout

this experiment, we also noticed that the most energy-intensive model is the failure

prediction model for the Google dataset (approx. 10 megajoules consumed during one

year), followed by Alibaba (approx. 1 megajoules) and Backblaze (approx. 6 kilojoules).

The main difference between these models in the energy consumed over one year is

the retraining frequency, since Backblaze and Google models are retrained every month

and the Alibaba dataset is retrained every week. Therefore, the retraining frequency

has a significant impact on the model’s energy consumption. However, the retraining

frequency is context dependent because it must consider the business context and how

the ML application is used in real world. Hence, given the tremendous impact of the

retraining frequency on the energy consumed, we recommend ML practitioners to design

ML applications that require retraining less often if the business context allows.

4.8 Threats to Validity
External validity. Our study focuses solely on Failure Prediction models, where concept

drift is a known issue [17, 18, 37]. To support replication, we provide a replication package

with all the code necessary to execute experiments. All employed datasets are publicly

available (Backblaze, Google, Alibaba). We use Random Forests, the state-of-the-art for



4

68 4 Sustainable Machine Learning Retraining

this task, but results may vary with other algorithms. Due to time constraints, we limited

our scope, though future work should explore other domains and models.

Internal validity. Our experiments replicate state-of-the-art literature on failure predic-

tion models [17, 18, 37] and we acknowledge that different configurations can challenge

the results we collect. Nevertheless, our replication package paves the work for future

research to expand the scope of our subjects.

Construct validity We measured energy only for training, inference, and drift detection,

as other pipeline parts should not affected by retraining methods. Due to a one-week

experiment budget, we ran fewer repetitions for the Google dataset, but results remain

valid since 30 seeds (on Alibaba and Backblaze) showed little variation compared to 5 (used

for Google).

4.9 Conclusions and Future Work
In this study, we investigated the effects on training and inference energy consumption of

multiple retraining techniques (sliding window vs. a full-history and periodic vs. informed).

We conduct our experiments on a real-world ML application, namely failure prediction.

We provide empirical evidence that retraining a model only on the newest data (sliding

window) is more sustainable than retraining a model on all available data (full-history) [29,

44]. Furthermore, employing a full-history approach does not always come with a benefit

in terms of the models’ performance compared to sliding windows. We further showed

that retraining based on unsupervised drift detectors is better than retraining periodically

w.r.t. energy consumption only when the drift detection technique is not too sensitive and

is capable of identifying drift. To understand the long-term benefits of employing a drift

detection-based retraining technique, we showed that using an appropriate drift detector

is estimated to decrease energy consumption by up to 40% during one year compared to

period retraining. Furthermore, we demonstrated that in most situations the retraining

approach does not influence the energy consumed during inference.

The general conclusions derived from this study should serve as a guideline for ML

practitioners to build Green ML applications. If the business context allows, practitioners

should design ML applications that require less frequent retraining. For example, an ML

application retrained monthly is more sustainable than retrained weekly. Practitioners

should discard old data when retraining the model and should adopt a drift detection-

based retraining approach to optimize energy efficiency. Unsupervised drift detectors that

perform feature reduction (KS-FI and KS-PCA) are usually more sustainable than the ones

that do not (KS-ALL). We recommend practitioners carefully choose the drift detector that

is the most suitable for their datasets and analyze their consequences on the ML model’s

consumed energy and accuracy in the long term.

Future Work: Based on our findings, drift detection-based retraining can solely be

beneficial in terms of both energy consumption and the model’s accuracy if the drift

detector is properly chosen. Therefore in the future, we plan to develop a framework that

enables ML practitioners to check whether a drift detector is too sensitive to data changes or

incapable of detecting drifts. In this chapter, we solely focused on the energy consumption
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of AIOps applications since these applications are widely used in industry [21], they use

plenty of data, and they are sensitive to concept drift [17]. We plan to expand this study

to other energy-intensive applications where model update is also critical, such as large

language models or other deep learning applications.
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5
Is Your Anomaly Detector

Ready for Change? Adapting
AIOps Solutions to the Real

World

Anomaly detection techniques are essential in automating the monitoring of IT systems
and operations. These techniques imply that machine learning algorithms are trained on
operational data corresponding to a specific period of time and that they are continuously
evaluated on newly emerging data. Operational data is constantly changing over time, which
affects the performance of deployed anomaly detection models. Therefore, continuous model
maintenance is required to preserve the performance of anomaly detectors over time. In this
work, we analyze two different anomaly detection model maintenance techniques in terms of
the model update frequency, namely blind model retraining and informed model retraining.
We further investigate the effects of updating the model by retraining it on all the available
data (full-history approach) and only the newest data (sliding window approach). Moreover,
we investigate whether a data change monitoring tool is capable of determining when the
anomaly detection model needs to be updated through retraining.

5.1 Introduction
The field of AIOps refers to applying artificial intelligence (AI) techniques on large-scale

operational data to solve challenges derived from operational workflows. AIOps aims to

This chapter is based on the following peer-reviewed publication:

� Lorena Poenaru-Olaru, Natalia Karpova, Luis Cruz, Jan S. Rellermeyer and Arie van Deursen. 2024. Is Your
Anomaly Detector Ready for Change? Adapting AIOps Solutions to the Real World. IEEE/ACM 3rd International
Conference on AI Engineering - Software Engineering for AI (CAIN ’24), Melbourne, Australia, 2023, pp. 98-99 [47].
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increase the productivity of IT Ops, DevOps, and software reliability engineering teams

by predicting the behavior of large-scale software systems and improving the software

architectural decision-making processes [20]. The term AIOps solutions is used to describe

machine learning (ML) systems that learn from operational data. In the past years, AIOps

solutions have witnessed a fast adoption within different industries. The most popular

AIOps solutions are failure prediction and anomaly detection [111].

Given that any AIOps solution is an ML system, the quality of its predictions is strongly

dependent on the data it was trained on and the data it is evaluated on after being deployed

into production. If the training data is significantly different than the evaluation data, there

is a high chance that the performance of the ML system will be affected [41]. Previous work

on failure prediction AIOps solutions has observed the evolving character of operational

data, which implies that this data is continuously changing over time [17], [112], [35], [36].

The continuous data changes, also known as concept drift, influence the performance

of AIOps solutions during their lifecycle. They become less accurate over time, which

tremendously affects their reliability among practitioners. Although the concept drift

cannot be prevented since it is caused by external hidden factors, AIOps practitioners need

to constantly ensure that their AIOps solutions are up to date.

One solution that ML practitioners adopt to handle the evolving character of data is

retraining/updating ML models over time [113]. Periodical model retraining has also been

studied for failure detection AIOps solutions [37], [17] and has proved that continuous

model updates achieve better performance over time compared to non-updated models.

However, the effects of continuously updated models have only been studied for failure

prediction models [17], [37].

In [42] the authors proposed a solution to handle concept drift in failure prediction

AIOps solutions, which implies that the model is updated only when the concept drift

is detected, instead of periodically. Therefore, their solution contains a monitoring part

responsible for identifying concept drift in the evaluation data using a concept drift detector.

However, this framework was just proposed, but it was never assessed on any AIOps

solution.

When it comes to periodic model retraining, this technique has been studied for classifi-

cation problems such as failure predictions AIOps solutions. Lyu et al. [37] suggested that it

also needs to be studied on other AIOps solutions, such as anomaly detection on time series

data. By doing so, AIOps practitioners could have a better understanding of whether they

can mitigate the effects of concept drift by constantly updating anomaly detectors. Regard-

ing concept drift monitoring-based model retraining, this technique was not previously

applied to any AIOps solution. Furthermore, previous work suggests that organizations

do not have monitoring infrastructure to detect drift in production [113], [114] and they

only perform periodic model retraining based on human decisions. Examining the impact

of drift detection monitoring tools is the first step toward automating the maintenance

of machine learning in production. Therefore, it could help in understanding whether

concept drift detectors could be quality and reliability indicators for deployed ML models.

To mitigate the effects of concept drift on anomaly detection AIOps solutions, in

this chapter, we study different model adaptation techniques. Our contributions can be

summarized as follows:

1. We examine the effect of periodically updatingmodels on the performance of anomaly
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detection AIOps solutions.

2. We assess and report the limitations of the state-of-the-art anomaly detection models

when being evaluated on different data sizes.

3. We investigate the effects of retraining anomaly detection AIOps models based on

the output of a concept drift detector.

4. A publicly available replication package is provided including the implementation of

a concept drift detector for time series.

5.2 Background and Related Work

5.2.1 Background AIOps Solutions & Anomaly Detection

AIOps solutions aim to identify issues in large software systems and then help with

mitigating them or providing recommendations to engineers. When it comes to detecting

possible issues in the system, a variety of different AIOps solutions were proposed for

failure prediction tasks, namely predicting job failure [7], node failure [8], disk failure

[6], incident [115] or outage [116]. Besides failures, plenty of attention has been paid

to identifying abnormal system behavior, such as performance anomalies [117], [118],

anomalies in system logs [119], [120], or internet traffic anomalies [121].

Although plenty of anomaly detection techniques were proposed in the literature,

regarding AIOps solutions for anomaly detection, previous work has focused chiefly on

unsupervised and semi-supervised models. This is a technique that practitioners use to

handle the label availability challenge and high cost of obtaining true labels [121]. The

best-performing and most popular techniques to detect anomalies in univariate AIOps

data [122], [121], [123] belong to the signal reconstruction models group [124].

Anomalies are detected using methods that encode the time series into a latent space,

such as Fast Fourier Transform (FFT) [125], Spectral Residuals (SR) [121] or Prediction
Confidence Interval (PCI) [126]. These techniques usually have low computational costs, but

they lose information during the encoding process [124]. To preserve more information, a

type of artificial neural network called Auto-Encoder (AE) is employed to transform the

time series data into a latent space. Thereby, plenty of anomaly detection techniques based

on Auto-Encoders were derived, namely Long Short-Term Memory Autoencoder (LSTM-
AE) [127] or DONUT [128]. Furthermore, Microsoft presents a more complex anomaly

detector, Spectral Residuals Convolutional Neural Networks (SR-CNN) [121] that learns from
multiple time series, generates synthetic anomalous samples, and trains a Convolutional

Neural Network (CNN) to distinguish between anomalous and non-anomalous samples.

The anomaly detection models were previously evaluated using a delay metric. The

reason for this is that in real-world applications, anomalies can occur either as single points

or as segments of anomalies (group of continuous anomalies) [129]. According to [121],

[130], [122], in AIOps solutions detecting any anomaly point in a segment of anomalies

with a relatively small delay is considered as successful as detecting all anomaly points

belonging to the same segment. Therefore, a delay-based evaluation strategy was presented

in previous anomaly detection studies [121], [130], [122].
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5.2.2 Concept Drift in Operational Data and Model Adapta-
tion Techniqes

Previous work observed the evolving character of operational data, which is responsible

for changes over time and, therefore, for concept drift [17], [20], [35], [36]. The presence

of concept drift results in the degradation in performance of the failure prediction models.

Therefore, AIOps solutions need to be constantly maintained over time by continuous

retraining [17], [37].

Gama et al. [15] propose two machine learning retraining techniques from the perspec-

tive of the retraining frequency, namely blind retraining and informed retraining. Blind
retraining is the equivalent of periodic retraining, where the model is retrained after a pre-

defined period. This technique was previously used by previous work on failure prediction

models [35], [36], [17], [37], [131] and proved to be beneficial for preserving the model’s

performance over time. Informed retraining implies the existence of a data monitoring tool

called a concept drift detector which indicates when the model is outdated due to changes in

data. However, there is currently no study on the effects of blind and informed retraining

on anomaly detection models.

Lyu et al. [37] propose two retraining techniques from the perspective of retraining

data, namely the full-history approach and the sliding window approach. The full-history
approach constantly enriches the training dataset with the newest data and retrains the

model, while the sliding window approach retrains the model only on the most recent data,

discarding old samples. These methods have been studied in failure prediction models, but

there is currently no work on the effects of the full-history approach and sliding window

on anomaly detection models.

5.2.3 Concept Drift Detection
Concept drift is monitored using some algorithms that can capture the moment when

data shift occurs called concept drift detectors [41]. Although there are plenty of drift

detectors available for multivariate data used in classification purposes when it comes to

time series, the number of available drift detection techniques is significantly lower [14].

According to Bayram et al. [14], the reason for this is the lack of available open-source

relevant time series datasets to study drift detection. Despite the potential of concept

drift detectors to monitor data against concept drift, they have not been yet applied to the

AIOps domain. Furthermore, there is no study on concept drift monitoring techniques for

anomaly detection on operational data.

Out of the existing concept drift detectors for time series we can mention Feature
Extraction Drift Detection (FEDD) [132] and Entropy-Based Time Domain Feature Extraction
(ETFE) [133]. Both these detectors identify drift by extracting features from a given time

series window and observing their similarity with the features extracted from the reference

window. FEDD is extracting six linear (autocorrelation, partial autocorrelation, variance,

skewness coefficient, kurtosis coefficient, and turning point rate) and two non-linear

features (bicorrelation and mutual information) and computing the dissimilarity between

features extracted in the current window and the reference window. The drift is detected

through a change detector which analyses the exponentially weighted moving average

(EWMA) of the computed dissimilarities. ETFE is extracting solely entropy-related features

(approximate, fuzzy, sample, permutation, increment, and weighted permutation entropy)
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from the decomposed time series. Concept drift is detected from the features extracted

from the reference and the current time series using the GLR statistical test.

5.3 Motivational Example
In Figure Figure 5.1, we depict an example of two different time series related to internet

traffic from the Yahoo dataset, a popular benchmark for AIOps data related to internet

traffic [123], [121], [122]. In the upper plot, the behavior of operational data is significantly

changing after a certain timestamp, while in the lower plot, it remains relatively constant.

Thus, different time series have different behaviors over time.
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Figure 5.1: The time series to the left of the vertical line represents the training data, while the one to the right

represents the evaluation/testing data.

We assume that we train two anomaly detection models on the data corresponding to

the left of the vertical line and we keep the rest for testing. In the upper time series, we

notice that the testing data is significantly different than the training data, which means

that the model requires updating over time. Otherwise, the model would signal plenty

of false alarms, which need to be verified by the operation and service engineers. Thus,

the advantage of saving data monitoring time using anomaly detection AIOps solutions

is diminished by the amount of time engineers need to spend searching for the causes of

erroneously identified anomalies. Furthermore, the engineers would doubt the reliability

of the model and they will be more reluctant to employ it. However, we notice that the

data of the lower time series is not changing over time, thus the model should be able to

capture anomalies.

If we would maintain our models using blind retraining, the model corresponding to the

lower time series would be retrained although their performance might not be drastically

improved since there were no changes in the data. Thus, we might encounter unnecessary

retraining costs, which could be avoided by employing informed retraining where we

initially verify whether data has changed and then update the model. When it comes to

the model corresponding to the upper time series, both blind retraining and informed

retraining might be beneficial.



5

76 5 Adapting Anomaly Detection AIOps Solutions the Real World

Using a full-history approach in the case of the upper time series might result in poor

anomaly detection performance for the upper time series since the past data no longer

resembles current data. However, in the case of the lower time series, both techniques

sliding window and full-history approaches might lead to similar results.

Given that time series are different, theymight require differentmaintenance techniques.

Therefore, in our study, we address the effects of updating different models over time on

their performance and the implications of each maintenance technique in terms of how

accurately they detect anomalies and how many false alarms they raise.

5.4 ResearchQuestions
We begin by assessing the performance of state-of-the-art anomaly detection models on

operational data. Moreover, we aim to understand whether the size of the testing set affects

the performance of these models. We further aim to investigate the lifecycle of these models

in the situation in which the models are maintained over time compared to when they are

never updated. We analyze these aspects by evaluating the model retraining effects from

the perspective of the retraining data and retraining frequency.

1. What is the performance of state-of-the-art anomaly detection models on operational

data?

(a) How robust are the state-of-the-art models to the testing set size?

2. What is the impact of the two model retraining techniques from the perspective of

the retraining data (full-history vs. sliding window approach)?

3. What is the impact of the two model retraining techniques from the perspective of

the retraining frequency (blind vs. informed retraining)?

5.5 Evaluation Methodology
In this section, we present the evaluation methodology that we employ to answer our

research questions. We begin by describing the employed datasets and anomaly detection

models. We continue by presenting different retraining (maintenance) techniques and the

concept drift detector monitoring tool that signals changes in the data over time. Lastly,

we explain the used evaluation metrics together with the delay tolerance.

5.5.1 Datasets
Although there are various benchmarks for anomaly detection, very few benchmarks

for AIOps anomaly detection exist since research on AIOps is mostly performed using

proprietary production data that is not publicly released [22]. Therefore, we selected

two popular operational datasets containing univariate time series with different data

collection granularity and lengths as presented in Table 5.1, that were previously used to

build anomaly detection AIOps solutions, namely Yahoo S5
1
and the Numenta Anomaly

Benchmark (NAB)
2
. Although the publicly available benchmarks received criticism in the

way they are labeled [134], labeling anomalies in real-world AIOps datasets is complex,

labor-intensive, and prone to error due to manual labeling and the subjectivity of the

annotator [22]. For instance, some annotators correlate anomalies with the moment an

1
Yahoo Data Source

2
NAB Data Source

https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://github.com/numenta/NAB/tree/master/data


5.5 Evaluation Methodology

5

77

incident occurs [22], without taking into account that the points before and after the

incident are identical as also pointed out by [134]. Furthermore, currently, the AIOps

time series data are collected from various sources, which is the reason why anomalies

exhibit different behaviors and they are not consistent across time-series [22]. Therefore,

the anomaly detection AIOps datasets benchmarks reflect real-world characteristics of

operational data, but as mentioned in [22], [134], the labeling process requires more

transparency by understanding the human decision-making process while labeling and the

cause of the anomaly.

Table 5.1: Overview of the datasets characteristics.

Dataset NAB Yahoo A1

Number of Time Series in Dataset 17 67

Granularity 5 min 1 hour

Approx. Min Data Collection Time 5 days 31 days

Approx. Max Data Collection Time 17 days 61 days

Yahoo is a dataset released by Yahoo Lab which contains both synthetic and real data

collected from internet traffic generated by Yahoo services. In our experiments, we solely

considered real-world data (the Yahoo A1 benchmark), which we are further referring to

as Yahoo. This dataset is composed of 67 time series collected with a granularity of 1 hour

for 31 days (the shortest time series) and 61 days (the longest time series). The anomalous

and non-anomalous points are labeled by domain experts.

NAB is a publicly available dataset previously used as a benchmark to assess the

performance of anomaly detection models [135]. The NAB corpus contains multiple types

of time series, such as metro traffic, tweets, etc. For our experiments, we solely select

datasets referring to operational data, namely the realAWSCloudwatch time series that

contain real-world server metrics (e.g. CPU utilization, Network Bytes In, Disk Read Bytes)

collected by the AmazonCloudwatch service. For simplicity, we are further referring to

these time series as NAB. This dataset is composed of 17 time series collected with a

granularity of 5 minutes for 5 days (the shortest time series) and 17 days (the longest time

series). To obtain the labels, we employ the ground truth labeling approach (labeling only

the ground truth as an anomaly) instead of labeling the entire region to avoid raising too

many false alarms to engineers [136].

Data-Splitting And Preprocessing In our study, we considered the same data-splitting

scenario from previous works [121], [122], namely for each time series from each dataset

the first half is used for training and the second half is used for testing. For our experiments,

we assume that the anomaly labels are known for the training set.

5.5.2 Models
State-of-the-Art Anomaly Detection
We replicate five popular unsupervised anomaly detection models based on signal recon-

struction, namely FFT [125], SR [121], PCI [126], LSTM-AE [127], and SR-CNN [121]. We
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selected our models based on both their popularity and their dissimilarity in techniques to

detect anomalies. Furthermore, these models were previously used for anomaly detection in

AIOps [121], [122], [123]. Therefore, we employ three models that work by solely applying

different mathematical operations of the given time series to detect anomalies (FFT, PCI,

and SR) and two models that require learning the behavior of the time series (LSTM-AE,

and SR-CNN).

The FFT method firstly transforms the time series from the time domain into the

frequency domain using the Fourier transform and then transforms the time series back

into the time domain to estimate a fitted curve of the data. Anomalies are detected by

finding differences between data points and the fitted curves. In our study, we use the

implementation of FFT from the original paper [125], which is publicly available
3
. Given

the unavailability of a threshold that differentiates anomalies from non-anomalies, we

empirically computed the threshold using the training data. Therefore, we remove all

existing anomalies from the training data and we extract the maximum anomaly score on

the training data. Sample with a higher anomaly score than the threshold are classified as

anomalies.

The SR method is composed of three steps: the Fast Fourier Transform, which trans-

forms the time series from the time domain into the frequency domain to calculate the log

amplitude spectrum, the spectral residuals calculation and the Inverse Fourier Transform

transforms the signal from the frequency domain back into the time domain. After these

three steps, the saliency map is computed and used to detect anomalies through a thresh-

old. In our study, we use the publicly available implementation of SR
4
from the original

paper [121]. Optimal hyperparameters are determined by performing a grid search starting

from the parameters suggested in [121] until similar results are obtained on Yahoo. The

NAB dataset is not assessed in the original paper and, thus, we perform a grid search to

identify the optimal parameters.

The PCI method relies on the k-nearest neighbors of one data point to identify if that

specific data point is an anomaly. The k-nearest neighbors are the closest continuous data

points to the targeted data point in the time series. After calculating the nearest neighbors,

the prediction confidence interval is calculated. The current data point is classified as an

anomaly if its value is outside of the prediction confidence interval. We use the publicly

available implementation of PCI
5
from the original paper [126]. Optimal parameters are

computed for each dataset through grid search.

The LSTM-AE method uses an autoencoder architecture to learn the representation

of a time series in the time domain. An anomaly is detected when the error between the

reconstructed and true time series is higher than a predefined threshold. Due to the lack of

publicly available implementations of LSTM-AE, we implement it based on the architecture

presented in [137]. We remove anomalous samples from the training set [122] and perform

interpolation between the closest non-anomalous samples is performed to preserve the

continuity of the time series. Our implementation is publicly available in our replication

package
6
.

3
FFT Open Source Implementation

4
SR Open Source Implementation

5
PCI Open Source Implementation

6
Replication Package

https://github.com/HPI-Information-Systems/TimeEval-algorithms/tree/main/fft
https://github.com/y-bar/ml-based-anomaly-detection
https://github.com/HPI-Information-Systems/TimeEval-algorithms/tree/main/pci
https://github.com/LorenaPoenaru/anomaly_detection
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The SR-CNNmethod is composed of two main parts: the synthetic data generation and

the CNN. It uses the saliency map calculated through spectral residuals as features for the

CNN. The synthetic data generator injects fake anomalous points into the saliency map to

reduce the high imbalance between anomalous and non-anomalous points. The augmented

data is used to train the CNN and distinguish between anomalies and non-anomalies. We

used the publicly available implementation
7
of SR-CNN from the original paper [121]. We

perform a grid search to determine the optimal parameters of SR-CNN on both datasets.

Testing Window Size Assessment
Previous work reported results by splitting the original time series into half and using the

entire first half for training and the entire second half for testing. We are further referring

to this experimental setup as the SoTA setup. However, since we aim to understand the

effect of retraining techniques on the available datasets, we also need to ensure that the

model’s predictions are not impacted by a smaller testing window. Thus, we split the

testing sets into smaller subsets, and we evaluate the same model on each of the subsets.

We further combine the predictions on the subsets and compare them to the prediction

obtained from the SoTA setup. We are further referring to this setup as the Window Size

Setup. The testing subsets correspond to around 168 samples (one week) for Yahoo and 225

samples (one day) for NAB and they also represent the retraining periods. We use natural

time intervals, one week and one day for Yahoo and NAB, respectively, since they are

commonly used in model retraining for AIOps solutions [17], [35], [36], [107]. Moreover,

these exact periods were chosen based on the amount of available data points in each time

series (see Table 5.1). The same subsets are used in the model retraining experiments.

5.5.3 Retraining Techniqes
Retraining Data
From a training data perspective, we compare three scenarios, namely the scenario when

the model is never updated, which we are referring to as the static approach and two

scenarios in which the model is updated over time, namely the full history approach and

sliding window approach.
The testing data is split into equal testing batches corresponding to the predefined

period. The experimental setup for the 3 scenarios can be observed in Figure Figure 5.2.

According to each scenario, the model update is done as follows:

Static Approach (S): The model is trained only once on the training data and tested

on the testing batches.

Full History Approach (FH): The model is retrained periodically by constantly

enriching the training set. Thus, when testing the model on the testing set corresponding

to batch t, the model is trained on all the available data until batch t-1.
Sliding Window Approach (SW): The model is retrained periodically by constantly

replacing old data with new data. Thus, when testing the model on the testing set corre-

sponding to batch t, the model is retrained on only the newest data. In this approach, the

training set size remains constant over time.

7
SR-CNN Open Source Implementation

https://github.com/microsoft/anomalydetector


5

80 5 Adapting Anomaly Detection AIOps Solutions the Real World

Training Set Testing Set

Static
Approach

Full History
Approach

Sliding Window
Approach

t Timet - 1

Figure 5.2: Training and testing data in case of the static approach, full-history approach, and sliding window

approach.

Retraining Freqency
From a retraining frequency perspective, we compare blind retraining with informed re-
training updated models. The blind retraining technique implies that the model is retrained

on a periodic basis by constantly including testing batches in the training data. Informed

retraining implies that the model is retrained on all the data including the batch when

the change occurs, only when a change detector identifies changes in data. A visual

representation of the two is given in Figure Figure 5.3.

Anomaly
Detection Model

Anomaly
Detection Model

Change
Detected

Testing Batches

Model Retrain

Model Retrain

Model Retrain

Model Retrain

Blind Adaptation
Model Update

Informed Adaptation
Model Update

Figure 5.3: Blind vs. Informed Retraining.

5.5.4 Concept Drift Detectors
For this study, we only consider FEDD as a concept drift detector since it was evaluated

on both synthetic and real-world data [138]. For our experiments, we extract the im-
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plementation of FEDD from the replication package
8
provided by the authors of [138].

Furthermore, we translate the code into English and include the FEDD implementation in

our replication package together with an example of how to run it on any time series such

that practitioners can use it for their data.

5.5.5 Model Evaluation
Evaluation Metrics
Weuse F1-score, Precision, and Recall to evaluate the performance of anomaly detectors. We

do not consider the computation time as one of our evaluation metrics since the evaluated

time series are relatively short and, thus, meaningful conclusions cannot be drawn. The

Precision metric shows the ability of the anomaly detector not to label a non-anomaly as

an anomaly and, therefore, not to raise too many false alarms. The Recall metric shows the

ability of the anomaly detector to find all the anomalies and, therefore, to correctly identify

all the anomalies. The F1-Score shows the compromise between Precision and Recall and,

therefore, how many anomalies are correctly identified with respect to how many false

alarms are triggered. The metrics are defined by the following equations:

𝐹1 =

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(5.1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 +𝐹𝑃

(5.2)

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 +𝐹𝑁

(5.3)

where TP and FN represent the number of True Positives and False Negatives, respectively.

Delay Metric
As aforementioned, AIOps anomaly detection models were evaluated considering a pre-

defined prediction tolerance called delay. The detection delay is the maximum tolerable

number of anomalous points in the anomaly segment that the detector can omit. If the

detectors find any anomaly in the segment within this delay, the detection is considered

correct. Otherwise, the detector fails to capture the anomaly. We depict in Figure Figure 5.4

an example of metric computation including the delay.

Statistical Test
We report the metrics averaged over all time series belonging to one dataset as done

in previous work [121], [130], [122]. To understand whether the differences between

the averaged metrics are statistically significant we employ the Wilcoxon signed-rank

statistical test and assess whether the difference between the metrics obtained for each time

series in one scenario and the metrics obtained for each time series in another scenario

is statistically significant. The Wilcoxon signed rank is a non-parametric statistical test,

thus it does not make any assumption about the data distributions. Its null hypothesis is

that the two populations analyzed come from the same distribution and, thus, there is no

8
FEDD Open Source Implementation

https://github.com/GustavoHFMO/IDPSO-ELM-S/blob/master/detectores/FEDD.py
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Figure 5.4: In this example we show the labels for 10 data points corresponding to one time series, where 1

indicates an anomaly and 0 indicates a non-anomalous point. The first row shows the ground truth, the second row

shows the original predictions of one anomaly detection model and the third row shows the adjusted predictions

considering a delay of 1. In the ground truth, there are 2 anomalous segments, each containing 3 anomalies.

Since the model managed to predict the second anomaly in the sequence of anomalies and we tolerate a delay of

1 sample, the adjusted anomaly treats the entire first anomaly segment as a correct prediction. However, the

second sequence of anomalies is treated as an incorrect prediction since even with a delay of one the anomaly on

position 8 is not reported in time, while with a delay of 2, it would be reported in time.[121]

statistically significant difference between the two scenarios. We use a confidence interval

of 90% to assess whether the null hypothesis is accepted or rejected. To avoid bias in our

experiments, we employ 5 random seeds in the case of LSTM-AE and SR-CNN, which

suffer from randomness. We apply the statistical test on each random seed to assess the

significance.

5.6 Experimental Results
5.6.1 Anomaly Detection Models on Operational Data
State-of-the-Art Setup
The first set of experiments aims to assess the performance of state-of-the-art anomaly

detection models on operational data. We initially train the model on the first half of

each time series and test it on the second half (SoTA setup), similar to the state-of-the-

art [121], [130], [122].

We depict our findings in Table 5.2 where we can observe that the performance of

anomaly detection models is overall relatively low, which could be a reason for the labeling

problems identified in [134]. FFT and PCI models obtained the lowest F1-score for both

datasets. When it comes to PCI, we can observe that it tends to classify most data points as

anomalies given its high recall and low precision on both datasets. The same tendency can

be observed when it comes to FFT on the Yahoo dataset and the SR on the NAB dataset.

Given the low performance of FFT and PCI on both operational datasets, these two models

are no longer considered in the following experiments. Moreover, the SR model is no longer

considered in the following experiments on the NAB dataset for the same reason. The

best-performing models on both datasets are LSTM-AE and SR-CNN.

In Table 5.2 we show the results of each model when performing a strict evaluation,

where no delay is tolerated (delay=0). Thus, the model is penalized when it does not

manage to detect the anomaly at the exact moment when it occurs. As aforementioned,
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Table 5.2: Results of anomaly detectors in SoTA setting. With bold we highlight the best scores. The obtained

results are obtained by averaging the metric over all time series from each dataset and over the 5 random seeds.

Model F1-Score Precision Recall

Ya
ho

o
FFT 0.07 0.04 0.39

SR 0.25 0.28 0.36
PCI 0.09 0.06 0.39

LSTM-AE 0.37 0.38 0.49
SR-CNN 0.57 0.54 0.61

N
A
B

FFT 0.04 0.02 0.12

SR 0.05 0.15 0.33

PCI 0.03 0.02 0.32

LSTM-AE 0.31 0.37 0.44
SR-CNN 0.82 0.70 0.99

AIOps models were evaluated in previous studies [123], [121], [122] with a maximum delay

of 7 points. Therefore, in Figure Figure 5.5 we show the results for the same models with a

delay of up to 7 points.
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Figure 5.5: Delay metric applied to F1-score, precision and recall on Yahoo and NAB.

From Figure 5.5 we can notice that although on the Yahoo dataset, a higher delay can

significantly influence the performance of anomaly detection models, on the NAB dataset it

has almost no impact. In the case of Yahoo, the explanation behind this result is that 73.13%

of the time series belonging to the Yahoo dataset contain sequences of anomalies (group

anomalies). When it comes to NAB, only 29.41% of the time series contain sequences of

anomalies. Therefore, the dataset containing samples related to internet traffic (Yahoo)

contains significantly more group anomalies compared to the dataset containing samples

related to CPU utilization (NAB), which shows the different behavior of different operational

datasets.

Another important observation is that in the case of Yahoo, the SR model performs

better after a delay of 2 points compared to LSTM-AE. However, if we assess the two

anomaly detection models according to how well they detect the exact moment anomalies

occur, the difference in the F1-score is almost 10%. In our work, we aim to understand

how well these methods perform when detecting the exact anomalous point is crucial.
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Therefore, for the rest of our experiments, we are solely considering a delay of 0 points

when evaluating different anomaly detection models.

Window Size Setup
To fully answer our first research question, we need to understand whether models are

robust towards the testing data size. We, therefore, employ theWindow Size Setup described

in Section 5.2.2 in the case of SR-CNN and LSTM-AE and compare it to the performance of

the model when using the SoTA setting. However, as part of the functionality of SR, this

model requires to be evaluated on a continuous time series. Therefore, this model could

only be assessed for robustness on the sub-testing set immediately following the training

set. From this experiment, we noticed that SR is not influenced by the size of the testing

lengths and, thus, is robust to changes in the testing length. For SR-CNN and LSTM-AE we

show results in Table 5.3.

Table 5.3: Assessment of anomaly detectors’ robustness towards testing window size (Window Size Setup). The

obtained results are obtained by averaging the metric over all time series included in one dataset and over the 5

random seeds.

Model F1-Score Precision Recall
Yahoo LSTM-AE 0.37 0.38 0.49

SR-CNN 0.14 0.14 0.14

NAB LSTM-AE 0.31 0.37 0.44

SR-CNN 0.05 0.05 0.05

Throughout our experiments, we noticed that the performance of LSTM-AE in both

scenarios is the same. Therefore, the testing window size does not influence this anomaly

detector. As it can be observed from Table 5.3, SR-CNN is drastically affected by being

evaluated on smaller window sizes on both datasets. Its performance drops from an F1-

score of 0.82 to 0.05 on the NAB dataset and from an F1-score of 0.57 to 0.14 for the Yahoo

dataset.Thus, we consider that only SR and LSTM-AE are robust toward different testing

sizes.

5.6.2 Full-History vs. Sliding Window
In this set of experiments, we aim to answer our second research question and understand

the differences in performance between the model that was never updated (S) compared to

the models that were updated using a full-history (FH) vs. a sliding window (SW) approach.

In Table 5.4 we show the results of this experiment. The results displayed for SR-CNN

are the results obtained through the testing window size setup experiment since this

experiment implies a division of the entire testing data into smaller subsets and retraining

the model accordingly.

From Table 5.4 we can notice that the performance of LSTM-AE is significantly im-

proving when the model is updated over time. The highest performance is achieved when

the model is updated using the sliding window (SW) technique. When it comes to the

SR model, its performance degrades when being updated with the SW technique, but it

does not statistically change when being updated with the FH technique. The SR-CNN

performance benefits from being updated using the FH technique since it manages to find
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Table 5.4: Results of anomaly detectors for blind model retraining. With bold we highlight the situation in which

the difference in performance between the S model and the updated model (FH, SW) is significant. The displayed

results are obtained by averaging the metric over all time series included in one dataset and over the 5 random

seeds. (S-Static, FH-Full-History, SW-Sliding Window)

F1-Score Precision Recall
Model S FH SW S FH SW S FH SW

Ya
ho

o SR 0.25 0.21 0.19 0.28 0.19 0.17 0.36 0.23 0.23
LSTM-AE 0.37 0.42 0.46 0.38 0.42 0.46 0.49 0.53 0.59
SR-CNN 0.14 0.10 0.14 0.14 0.09 0.17 0.14 0.26 0.22

N
A
B LSTM-AE 0.31 0.34 0.37 0.37 0.37 0.45 0.44 0.46 0.48

SR-CNN 0.05 0.07 0.03 0.05 0.15 0.07 0.05 0.13 0.04

more anomalies (higher recall) and also to label more non-anomalies correctly (higher

precision). In terms of SR, its performance degrades when old data is discarded.

5.6.3 Drift Detection based Retraining
Drift Detection Results
We apply the concept drift detector FEDD on a period basis (weekly for Yahoo and daily

for NAB) for each time series from each dataset. Figure Figure 5.6 shows the percentage of

time series affected by concept drift according to FEDD during each period. Due to the

lengths of time series corresponding to each dataset, the evaluation time series within

the Yahoo dataset could be split into a maximum of five periods (five weeks), while those

within the NAB dataset could be split into a maximum of nine periods (nine days).
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Figure 5.6: Percentage of time series affected by concept drift during each period according to FEDD.

From Figure Figure 5.6 we can see that both for Yahoo and NAB, more than 50% of the

time series are affected by concept drift in the first period (P1). Furthermore, in the case of

NAB, during the second period (P2), there are more than 60% of the time series affected by

concept drift according to FEDD.
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Blind vs. Informed Retraining
With this experiment, we aim to understand whether an anomaly detection model’s per-

formance can be preserved when retraining based on a drift detector’s output (informed

retraining) and how it compares to periodically retraining the model (blind retraining).

Since the most significant benefits of periodic model retraining were observed in the case

of LSTM-AE, this experiment is solely performed on this anomaly detection model. In

addition, this experiment is performed with both data retraining techniques, full history

(FH) and sliding window (SW).

Table 5.5 shows that overall the performance of informed model retraining is higher

than the performance of a model that was never updated (static model). However, blind

(periodic) model retraining generally achieves better results than informedmodel retraining.

Similar to the periodic model retraining experiment, the highest results were achieved

using the sliding window approach.

Table 5.5: Results of LSTM-AE when comparing blind with informed model retraining. The displayed results are

obtained by averaging the metric over all time series included in one dataset and over the 5 random seeds. Bold
means that informed retraining achieves significantly better results compared with the static model. Italic means

that informed retraining achieves significantly similar results with blind retraining. (S-Static, FH-B/I-Full History

Blind/Informed, SW-B/I-Sliding Window Blind/Informed.)

S FH-B FH-I SW-B SW-I

Ya
ho

o F1 0.37 0.42 0.40 0.46 0.41
Precision 0.38 0.42 0.40 0.46 0.45
Recall 0.49 0.53 0.50 0.59 0.55

N
A
B F1 0.31 0.34 0.34 0.37 0.36

Precision 0.37 0.37 0.39 0.45 0.45
Recall 0.44 0.46 0.45 0.48 0.46

From Table 5.5 it can be noticed that the informed model retraining achieved similar

precision to the blind model retraining for both datasets when the model was retrained

using the sliding window approach. However, in all situations informed retraining results

in lower recall compared with blind model retraining. When it comes to the full-history

approach retraining technique, all performance metrics calculated for the blind model

retraining are always higher than the performance metrics calculated for the informed

model retraining on the Yahoo dataset. However, for the NAB dataset, the F1 score for

informed model retraining is similar to the blind model retraining, while the precision is

slightly higher.

5.7 Discussions and Answers to Research Questions

Research Question 1: What is the performance of state-of-the-art anomaly de-

tection models on operational data and how does the testing window size influence

it?

Answer 1: The more complex models (LSTM-AE and SR-CNN) perform signifi-

cantly better on both operational datasets compared to the simpler models (FFT, PCI,
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SR). However, the evaluation window size significantly impacts SR-CNN but does not

affect LSTM-AE or SR.

State-of-the-Art Anomaly Detection: Throughout our experiments, we noticed that

PCI and FFT tended to label every point in the time series as an anomaly. This shows the

complexity of operational data also described in [22], which was only captured by LSTM-

AE and SR-CNN. Moreover, we noticed a significant difference of almost 10% between

LSTM-AE and SR anomaly detectors when the delay metric is considered. We believe that

the delay could be misleading for practitioners who want to use the anomaly detection

models and, thus we recommend researchers to initially report the results with a delay of 0

and afterward perform an additional experiment with a variable delay.

One interesting finding of our experiment is that SR-CNN is highly influenced by the

size of the data it is evaluated on. When performing the experiments to assess this aspect,

we noticed a significant decrease in performance when comparing the SR-CNN tested

on the original setup described in the paper [121] to a setting in which the testing set

is smaller. However, in both settings, we respected the original SR-CNN architecture in

which the training and testing datasets are separated before performing the time series

spectral transformation. This could be due to the functionality of SR-CNN since this model

relies on decomposing time series into another domain and extracting features that are

further used to train a CNN. Therefore, when shortening the time series, these features

might not be significant enough for CNN to properly distinguish between anomalies and

non-anomalies.

Implications for Practitioners: In the light of our findings we strongly recommend

practitioners that when performing anomaly detectionmodel selection they should consider

a delay of 0. Thereafter, they can adjust the delay according to the requirements of their

application. Given our findings regarding the performance drop of SR-CNN when a smaller

testing size is employed, we further suggest that duringmodel selection, AIOps practitioners

should consider its robustness to different time series lengths and how often the inference

is going to be performed. For instance, when identifying anomalies in a time series with

a big granularity (e.g. 1 hour) that needs to be evaluated daily, employing an anomaly

detector that is sensitive to short testing sets could lead to erroneous results. Moreover,

sometimes incidents could occur and data collection could be interrupted, which can also

shorten the available testing data.

Research Question 2: What is the impact of the two model retraining techniques

from the perspective of the retraining data (full-history vs. sliding window approach)?

Answer 2: The sliding-window approach is beneficial to models that learn from

the time domain (LSTM-AE) but can impact the performance of models decompose the

time series into another domain (SR and SR-CNN). Retraining using the full-history

approach achieved higher performance than retraining in most of the cases.

We empirically prove that the LSTM-AE anomaly detector benefits from being peri-

odically updated in both datasets, being able to identify more anomalies and distinguish
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better between anomalous and non-anomalous points. The performance of this model

is higher when employing the sliding window approach than the full-history approach.

This could show that old samples are no longer relevant to the current behavior of the

data and retraining the LSTM-AE only on the most recent data eliminates non-relevant

data points. When it comes to SR, which is not affected by the window size as shown in

previous experiments, we noticed that a sliding window approach significantly impacts

its performance. This can be a consequence of lowering the size of the time series and

discarding important spectral information.

Implications for Practitioners: Based on our findings, periodically retraining anomaly

detection models can significantly improve their performance over time. Thereby, AIOps

practitioners should consider periodic model maintenance after deployment as part of

the anomaly detection model lifecycle. Furthermore, we noticed that models that identify

anomalies from the original time series (LSTM-AE) benefit from a sliding-window retrain-

ing approach, while the ones that detect anomalies by transforming the time series in other

domains (SR) benefit from a full-history approach. Therefore, the retraining technique

should be chosen according to the employed anomaly detector.

Research Question 3: What is the impact of the two model retraining techniques

from the perspective of the retraining frequency (blind vs. informed retraining)?

Answer 3: Blind (periodic) retraining usually achieves higher performance than in-

formed retraining. However, when a sliding window retraining technique is employed,

the precision is statistically similar.

This experiment shows that retraining a model based on the output of a drift detector

(FEDD) achieves a higher performance than a model that was never updated. This shows

that the informed retraining setting is a promising research path and the FEDD drift

detector could be employed as an anomaly detection model degradation monitoring tool.

However, a model that is retrained periodically achieves slightly higher performance than

a model retrained based on the output of a drift detector. This could be caused by the fact

that not all drifts are captured by FEDD, which leaves room for improvement of concept

drift detectors for time series.

We noticed from our experiments that for both datasets the precision obtained through

blind retraining is comparable to the one obtained through informed retraining when a

sliding window approach is employed. This shows that retraining based on a drift detector

helps reduce the number of false alarms triggered by an anomaly detector as much as

periodic retraining does. However, with a periodic model retraining more anomalies are

captured compared to the blind model retraining given the higher recall.

Implications for Practitioners: Since we show the potential of having a model

retrained based on the output of a drift detector, we argue that these monitoring tools can

be employed in real-world anomaly detection model maintenance pipelines. Furthermore,

to understand the suitability of the employed drift detector and the effects of retraining

based on its output, we suggest that practitioners allocate a period to evaluate the model

quality over time. Within this period AIOps practitioners should constantly investigate

the effects of different retraining techniques (blind vs. informed and sliding-window vs.

full-history) and understand which maintenance technique is the most suitable for anomaly
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detection AIOps solutions with respect to its corresponding costs (labeling/labor costs, etc).

Within this period multiple drift detectors can be evaluated .

5.8 Threats To Validity
5.8.1 External Validity
An external threat to validity derived from our study is the generalizability of our results

towards different AIOps solutions. In our study, we targeted detecting anomalies in solely

two AIOps domains, namely, internet traffic and CPU utilization due to public availability.

Moreover, in this study, we relied on the provided anomalous labels corresponding to

each dataset. The anomaly detection models depend on the datasets they are applied to.

Although our datasets contain solely real-world data, the data used to e.g. predict incidents

using AIOps solutions might be different than the one we employed. Therefore, the anomaly

detection AIOps solutions lifecycle should be explored for other AIOps domains.

In our study, we included a variety of popular anomaly detection models, which are

different from each other in terms of the technique they use to detect anomalies. Since we

noticed that maintenance techniques are model-dependent when employing other models

they need to be verified accordingly.

5.8.2 Internal Validity
When computing the static model, we used the first half of each time series from each

dataset as training and the second half of each time series as testing as previous work [121],

[122].

We partitioned our testing data into periods of different sizes (weekly and daily) similar

to prior work [17], [37]. We did not consider periods smaller than one day since not enough

data is captured in a time shorter than one day. Periods bigger than one week were not

considered given the size of the time series.

5.8.3 Construct Validity
We replicated anomaly detection models used in previous studies [126], [121], [125]. We

employed hyperparameters used by previous studies. In the case when the hyperparameters

were not provided, we used hyperparameters that led to similar results to what was reported

in previous studies. In the case of LSTM-AE, we used the maximum reconstruction error

on the training set as our anomaly threshold, which is derived from each time series. We

employed multiple performance metrics to evaluate and interpret the model’s outcome.

5.9 Conclusions and Future Work
In this chapter, we investigate different maintenance techniques for popular anomaly detec-

tion models on two AIOps domains, internet traffic and CPU utilization. From a retraining

frequency perspective, we analyzed blind retraining, retraining the model periodically, and

informed retraining, retraining the model when a drift detector indicates it. With this study,

we assess the potential of using drift detectors as a quality monitoring tool for anomaly

detection models. From a retraining data perspective, we experimented with full-history
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approach, constantly enriching the training set, and sliding window approach, discarding
old samples from the training set.

We began our study by replicating the most popular anomaly detection model and

testing their performances on the two AIOps datasets. We observed that some models could

not detect anomalies in this type of data, while others were sensitive to the length of the

testing data size. Our study shows that generally, an updated anomaly detector achieves

higher performance than an anomaly detector that was never updated. We observed that

the sliding-window approach benefits models that identify anomalies from the original

time series while the full-history approach benefits models that transform time series into

another domain to detect anomalies. Furthermore, we empirically demonstrated that the

performance of an anomaly detector retrained based on the output of a drift detector leads

to better performance when compared to an anomaly detector that was never updated.

This shows that drift detection-based model update is a promising research path and can be

the beginning of automated model maintenance pipelines. In light of our findings, we offer

recommendations to AIOps practitioners regarding anomaly detection model selection and

assessment, as well as identifying the most appropriate model maintenance techniques.

Our work was limited by the availability of open-source AIOps datasets for time series

anomaly detection. We, therefore strongly encourage AIOps practitioners to release more

datasets that researchers can use as benchmarks when developing new models. Moreover,

we also believe that future research should focus on understanding and reporting the

labeling process of experts. This can offer anomaly detection researchers more transparency

and confidence in the data quality.

Future Work: In our study, we solely targeted anomaly detection for CPU utilization

and internet traffic data. A promising research path is analyzing the potential of a concept

drift detection-based framework in other AIOps applications, such as job and disk failure

prediction [17]. Furthermore, we noticed that the performance of retraining an anomaly

detector based on FEDD is lower than periodically updating the anomaly detector. This

could show that FEDD does not capture all drifts that lead to performance degradation.

Therefore, in the future we consider investigating more drift detectors suitable for time

series beyond FEDD and designing more accurate drift detectors for time series.
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6
Prepared for the Unknown:

Adapting AIOps Capacity
Forecasting Models to Data

Changes

Capacity management is critical for software organizations to allocate resources effectively and
meet operational demands. An important step in capacity management is predicting future
resource needs often relies on data-driven analytics and machine learning (ML) forecasting
models, which require frequent retraining to stay relevant as data evolves. Continuously
retraining the forecasting models can be expensive and difficult to scale, posing a challenge for
engineering teams tasked with balancing accuracy and efficiency. Retraining only when the
data changes appears to be a more computationally efficient alternative, but its impact on
accuracy requires further investigation. In this work, we investigate the effects of retraining
capacity forecasting models for time series based on detected changes in the data compared
to periodic retraining. Our results show that drift-based retraining achieves comparable
forecasting accuracy to periodic retraining in most cases, making it a cost-effective strategy.
However, in cases where data is changing rapidly, periodic retraining is still preferred to
maximize the forecasting accuracy. These findings offer actionable insights for software
teams to enhance forecasting systems, reducing retraining overhead while maintaining robust
performance.

This chapter is based on the following peer-reviewed publication:

� Lorena Poenaru-Olaru, Wouter van ’t Hof, Adrian Stańdo, Arkadiusz P. Trawiński, Eileen Kapel, Jan S. Rellermeyer,
Luis Cruz and Arie van Deursen. Prepared for the Unknown: Adapting AIOps Capacity Forecasting Models to Data
Changes. IEEE 36th IEEE International Symposium on Software Reliability Engineering (ISSRE), Sao Paulo, Brazil,
2025. [48]
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6.1 Introduction
The term capacity management refers to ensuring that an IT service has sufficient infrastruc-

ture and resources to meet the current or future demand. Although capacity management

is crucial to ensure efficient and effective service delivery, this process used to be carried

on manually by continuously collecting and analyzing data [139]. Manual techniques to

predict the capacity requirements become difficult to scale as the capacity management

data sources increase, and it is significantly time-consuming for the engineers in charge.

To automate the capacity management for machine utilization, like CPU and memory,

companies have started employing forecasting AIOps models, which predict the resource

demand in a timely fashion. This is particularly relevant for our industry partner, ING

(International Netherlands Group) Bank, where operational engineers must monitor nu-

merous time series to ensure sufficient resources are allocated for its large-scale online

operations, supported by thousands of machines with varying resource demands. As our

case study, we use a capacity forecasting model developed within ING by data scientists.

This forecasting model is trained on historical time series operational data related to CPU

and memory utilization and predicts the number of necessary resources for the upcoming

two weeks. By leveraging this model, ING significantly reduces the manual effort required

to analyze historical data and predict future demand, while also minimizing the risks of

insufficient or excessive resource allocation.

Real-world operational data usually has an evolving character, meaning that it con-

stantly changes over time as it is influenced by shifts in customer behavior or infrastruc-

ture. [17, 37, 47]. For instance, a common maintenance task, such as software or hardware

updates, is known to induce fundamental changes in operational data [8]. Although changes

in data, commonly referred to as concept drift [15], are known to impact the performance

and reliability of AIOps forecasting models over time [139, 140], their specific impact on

forecasting accuracy has yet to be systematically quantified. Therefore, one of the contri-

butions of the work is an empirical study of forecasting models’ performance degradation

due to data changes over a predefined period of time in a real-world industry setting. Our

approach can be systematically used for other time series forecasting applications within

various other industries.

One solution to overcome the issue of continuous data changes is periodic retraining [17,

18, 37, 47, 140]. Industry researchers [140] have highlighted concerns about the scalability

of periodic retraining due to the computational costs of managing hundreds of time series.

Therefore, our study further contributes by analyzing the benefits of continuous retraining.

Although previous work has showcased the potential of using data change (drift) detec-

tion techniques with AIOps anomaly detection models [47], to the best of our knowledge,

this is the first study that investigates the benefits of retraining the capacity forecasting

model within a large real-world software organization. Therefore, the third contribution of

our work is investigating the benefits of retraining the capacity forecasting model used

within the chosen case company only when data have changed, vs. retraining periodically.

We are further presenting the implications of employing a drift detector in a practical

setting, as well as retraining costs reduction, and model performance changes.
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6.2 Motivational Use Case
In order to improve capacity management, ING is using a forecasting model which aims to

predict the necessary resources for a predefined period of time. This model is currently

applied to an experimental size of 16 time series (CPU and memory utilization time series)

extracted from eight machines as a proof of concept, which will be used for this study. It is

expected that in the future this solution will be scaled up to a significantly higher number

when it is made generally available as a service in the case company.

To ensure that the forecasting model is continuously updated and aligned with potential

changes in the data model, retraining is required. The model is retrained according to a

retraining scheduler, and each time series has its own forecasting model. The retraining

scheduler is currently programmed to retrain the forecasting model on a periodic basis

every month. Although retraining more frequently, such as weekly or biweekly, could

be beneficial, the responsible data scientist encountered scalability issues in terms of the

computation required to retrain the model for all time series. For instance, even if the

duration of retraining, including hyperparameter optimization and training the model with

new data, is relatively short per time series instance when being scaled to a high number

of time series, it becomes substantial. Therefore, although retraining more frequently, such

as weekly or bi-weekly, could be beneficial, the models would require too much time to be

updated, given the amount of data that we continuously collect. Besides this, regarding

model scalability, applying our forecasting model to even more time series will further

considerably increase the retraining. Furthermore, the process of redeploying a model

after retraining in big organizations also implies plenty of validation. For this reason, we

considered that monthly retraining is the best choice for our particular use case.

Another benefit of reducing the time spent on continuous retraining is the potential

improvement in forecasting model performance. Currently, the hyperparameter tuning

phase during retraining is limited to a small set of hyperparameters due to time constraints.

By reducing the number of models that need retraining, the server can allocate more

time to explore additional configurations. With fewer retrainings required overall, the

server can free up resources that would otherwise be spent on retraining all the models for

different time series. This has the potential to enhance the model’s accuracy and robustness.

Therefore, transitioning from periodic retraining to retraining only when necessary due to

data changes can not only reduce the time needed for updates but also potentially improve

model performance by allowing more hyperparameter configurations to be explored.

6.3 ResearchQuestions
Although retraining onlywhen data changes is a promising approach, we have to investigate

the implications of doing so in terms of model performance and reduction in retraining

time. For this reason, we begin this study with an understanding of whether we observe a

severe model degradation over time when the model is never updated. This would allow

us to understand the evolution of the model’s performance over time. We further compare

two scenarios: retraining monthly, which is our current practice, and retraining only when

data changes are signaled by a drift detector. In this study, we aim to answer the following

research questions:

RQ1: What is the evolution of the performance of the forecasting model over time?
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RQ2: What is the difference between retraining based on drift detection and periodic

retraining in terms of forecasting model accuracy and retraining frequency?

6.4 Related Work
This section begins with an overview of the AIOps domain and the challenges faced by

AIOps models due to changes in data over time, particularly in applications dealing with

time series data. We then introduce drift detection techniques tailored for time series,

providing a detailed explanation of the drift detector selected for this study.

6.4.1 AIOps
AIOps refers to employingArtificial Intelligence (AI) andMachine Learning (ML) techniques

to solve complex DevOps challenges [104]. The adoption of AIOps has the potential to

decrease operational costs through automation, enhance engineering productivity, and

ensure high-quality services by predicting possible failures or system anomalies [20]. A

recent survey by SalesforceAI classifies AIOps applications into four categories: failure

prediction, incident detection, root-cause analysis, and automated actions. Examples of

failure prediction AIOps applications are predicting hard disk drives (HDDs) in large data

centers [17, 18, 26, 37, 85] for hardware management purposes, node failure prediction in

large-scale cloud service systems [107], and job failure prediction [17, 18, 37, 87]. In their

work, Kapel et al. [141] present incident detection techniques that were successfully applied

in industry, namely [142] and [143]. Root-cause analysis applications aim to reduce the

time required to identify the cause of an incident by identifying abnormal patterns in Key

Performance Indicators (KPIs) [27, 144]. The automated actions category aims to automate

tasks performed manually by operational engineers, such as automated remediation, auto-

scaling, and resource management [104]. Our studied use case, capacity forecasting, is part

of the automated actions - resource management category.

6.4.2 Adapting AIOps Models to Data Changes
Given that changes in the operational data impact the performance of AIOps solutions,

plenty of attention has been paid to adapting different AIOps models to changes in the

data over time. Lyu et al. [17, 37] have shown that failure prediction AIOps models require

periodic updates to preserve the accuracy over time. Moreover, in [17] the authors claim

that a higher updating frequency usually leads to better performance. Anomaly detection

AIOps models have also been investigated in terms of adaptation to concept drift based

on retraining [47, 145]. Furthermore, besides periodic retraining, retraining AIOps models

based on concept drift detection has been proposed [42, 47, 145]. However, to the best

of our knowledge, no study analyzes the suitability of retraining based on drift detection

when it comes to capacity forecasting models.

6.4.3 Drift Detection for Time Series
In their exhaustive survey about concept drift detectors, Bayram et al. [14] highlighted

that, while plenty of drift detectors were developed for classification problems, few drift

detectors exist for time series. The reason for this discrepancy is the lack of availability

of relevant time series datasets. In this subsection, we provide a general overview of the
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existing concept drift detection techniques for time series, and we explain the functionality

of the drift detector we employ in this study.

General Overview Drift Detection for Time Series
The comprehensive study of Bayram et al. [14] reveals that while there has been consider-

able research on drift detectors for classification problems, there has been significantly less

focus on those suitable for time series data. One reason for this is the lack of availability of

open-source data on which the drift detection performance could be evaluated.

The most popular drift detector for time series is Feature Extraction Drift Detection

(FEDD) [132]. This drift detector was previously applied to real-world stock market data

provided by Yahoo Finance [146]. Another proposed drift detector for time series data is

Entropy-Based Time Domain Feature Extraction (ETFE) [147], which was only evaluated

on synthetic data. Both drift detectors require a feature extraction phase in which features

are computed from each time series. However, ETFE is more computationally intensive

since the features it requires are based on time series decomposition, while FEDD does

not perform additional transformations of the time series. Due to scalability issues while

continuously computing the features required for drift detection for each time series in

real-time, ETFE is deemed unsuitable since reducing computation is a key requirement for

the forecasting application. Given that efficiency is a major requirement and FEDD is less

computationally intensive, we decided to employ FEDD in our experiments. Furthermore,

due to internal output extraction policies, we exclude drift detectors that continuously

measure the performance of the forecasting model over time to identify significant drops,

such as DDM [58], EDDM [59], or ADWIN [60] and solely focus on detectors that identify

drift from the time series data.

FEDD
FEDD is a drift detection technique designed for time series data that identifies drift based

on features extracted from the time series itself. Thus, FEDD identifies drift solely from the

changes that can be observed in the time series, without considering how these changes

impact the performance of a forecasting model that uses the data.

The chosen drift detector consists of two main components: the feature extraction

module and the drift detection module. The feature extraction module calculates time

series features that will be used to detect changes. FEDD takes into account six linear

features (variance, autocorrelation, skewness coefficient, partial autocorrelation, turning

point rate, and kurtosis coefficient) and two non-linear features (mutual information and

bicorrelation). The drift detection component computes the similarity between two feature

vectors corresponding to two predefined time series windows using the cosine distance.

Thereafter, the exponentially weighted moving average (EWMA) is employed to understand

whether the similarity is significant and the drift needs to be signaled.

In terms of practical functionality, an initial reference time series window needs to be

defined, and the initial feature vector needs to be extracted from this window. FEDD works

in an online manner, namely, the reference window is constantly shifted by one sample

to define the current time series window and to extract the current feature vector. The

similarity between the two feature vectors, initial and current, is computed and stored in

an array from which EWMA identifies whether there was a significant change in similarity.

Once a drift is identified, the reference window needs to be redefined. To avoid a high
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number of false alarms, the reference window is shifted by a predefined number of samples.

In a practical setting, this shift implies that the drift detectors go to a cool-down period in

which they will be inactive until enough samples are collected to reinitialize the reference

window. Once the new reference window is defined, the drift detector restarts and is able

to monitor data changes in the time series again.

6.5 Methodology
In this section, we present our experimental setup in terms of the datasets used, a detailed

explanation of the forecasting models employed in this study, the evaluation metric used to

assess the performance of the forecasting model, and the performance of retraining based

on drift detection.

6.5.1 Datasets
We use proprietary datasets consisting of 16 time series, with half related to memory

utilization and the other half to CPU utilization. These datasets were collected from

real-world ING servers over a period of approximately nine months (from February until

November 2023). The data was originally collected at a minute-level granularity, but to

ensure confidentiality, we aggregate it to one hour by taking the mean of the samples.

Although we only experimented with 16 time series, these time series are representative of

data extracted from real-world financial infrastructure.

6.5.2 Forecasting Model Description
We employ the forecasting model that ING is currently using it to predict resource capac-

ity in terms of CPU and memory utilization. In this subsection, we briefly present the

forecasting model’s functionality and the features used to train it.

Forecasting Functionality
The forecasting model is designed to predict CPU and memory utilization for a two-week

horizon. It is applied weekly to forecast the upcoming two weeks. As a result, the forecast

for the first week is expected to be the most accurate, while the prediction for the second

week is more estimative but still essential for effective resource management. To simplify

the evaluation, we consider that bothweeks should be predicted accurately when computing

the evaluation metric of the forecasting model. The forecasting model is initially trained

on approximately one-third of each available time series, leaving the rest for testing and

experimentation of the effect of retraining.

In order to predict the next sequence, different features are extracted from the time

series. A detailed overview of the time series features is presented in the following section.

To ensure that the forecasting model can predict the future using information from the

present, these features are also calculated taking into account a forecasting horizon. For

instance, the sample in the time series collected at the current moment (the true label)

corresponds to the features computed two weeks ago.

For each time series, a LightGBM regressor is trained using the first eight weeks of data

and validated in the following two weeks. The best parameters for the LightGBM model

are determined using the validation set. The remaining weeks are employed to evaluate

the effects of retraining the model based on drift detection vs. periodically.
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Features
The forecasting model employs different categories of features for time series prediction,

namely time, lag, rolling window, and Prophet features.

The time features of each time series sample refer to attributes related to the specific

timestamp of the sample. These can include binary features, such as whether the sample

was collected during the weekend or at the start/end of the month, as well as non-binary

features like the month, quarter, or day of the month when the sample was recorded. These

features are derived solely from the date of collection, without considering the actual value

of the time series. The lag features are features computed by taking into account values

of the time series in the past. These features work under the assumption that the current

value of the time series is influenced by its past values, and the past values are meaningful

in predicting future values. These features are computed based on a predefined forecasting

horizon.

The rolling window features are also computed by taking into account past values of

the time series. These features require a predefined time window, referring to the window

required to calculate the features.

The Prophet features are commonly used features in machine learning applications

for forecasting at scale [148]. These features are useful when time series present strong

seasonal patterns or trends. Prophet features are generated by decomposing each time

series into three main components, namely seasonality, holidays, and trend. In our situation,

Prophet features were added to the model since the resources are used differently according

to the specific time of the week, month, or year.

6.5.3 Retraining based on Drift Detection
In this subsection, we present how we integrated the drift detector with our forecasting

model setup. We highlight some challenges that we encountered in employing FEDD in a

real-world machine learning application and propose a machine learning system design

that includes drift detection-based retraining.

Integration Challenges
While designing the architecture for the forecasting model to be retrained based on drift

detection, we encountered two primary challenges: handling missing data and determining

the optimal retraining timing.

Missing Data. In real-world scenarios, gaps in time series are inevitable due to

system failures or updates that interrupt data collection. This does not affect our existing

forecasting model, as we use a forecasting algorithm that is resilient to missing data.

However, during our experiments, we observed that missing data presents challenges when

detecting data drift using FEDD, which had not been an issue in previous evaluations

on open-source continuous data. The problem arises because FEDD relies on time series

features to detect drift, and these features can only be computed if the time series is

continuous. To address this in our drift detection process, we treat the missing values as

absent and reconstruct a continuous time series using the available data until a specified

point.

Retraining Moment. An approach recommended in literature to overcome the impact

of data changes in financial time series is presented by Cavalcante et al. [149]. The authors
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propose to perform online retraining, namely learning with every new upcoming sample,

once the drift is detected, until the prediction error drops. However, this approach is not

feasible for our use case since we use a batch-learning approach, namely, we retrain the

model once a specific size of samples (e.g., one week of new samples) is collected. For

this use case, switching to online learning is not feasible. The reason for this is that our

model learns from the features derived from the time series instead of the time series itself.

Some time series features are calculated based on a predefined window of samples that are

taken into account. An online learning approach would imply that the features have to be

continuously computed and updated with every new sample, which is computationally

intensive given the number of time series to which this forecasting model will be applied.

Furthermore, it has been shown that online learning is impacted by the irregularity of data

caused by missing values [150]. The fact that our time series contains a significant amount

of missing samples is another reason why we did not include an online learning approach

in our solution to handle drift.

Proposed Solution
To overcome the two encountered challenges, missing data and retraining moment, in this

subsection, we describe our proposed solution in terms of drift detection integration.

In Fig. 6.1, we depict an example of a real-world time series from our datasets to explain

how we propose to retrain the forecasting model based on drift detection. We start with an

existing train and validation set that is used to train and tune the forecasting model. The

model is further employed to predict the following two weeks as aforementioned. At the

end of each week, we verify whether there was any drift signaled by the drift detector. If

no drift is detected (e.g., the situation for Test 1), then the model is not updated. If drift is

detected at the end of that week (e.g., the situation for Test 2), the model is retrained with

all the available data at the end of the week where drift was identified and redeployed into

production. Thus, the new model is used to obtain predictions for the following weeks.

In Fig. 6.2, we depict the workflow of the drift detector. From its original implementation,

FEDD identifies drift in a real-time manner, namely that with every new sample of a time

series, FEDD evaluates where drift has occurred. To integrate such functionality in a

real-world case, taking into account the aforementioned limitations of this drift detection

technique, at each point in time when the data should be collected, we determine whether

the time series sample is missing or not. If there is a missing sample, then drift detection

is not possible, and we have to wait until the next timestamp to collect data. In case of

missing data, we do not perform interpolation in the time series. We solely ensure the

continuity of the time series by concatenating the following non-missing sample to the

current time series and therefore perform drift detection. If the sample is not missing,

then we have to determine whether a drift was detected. In our setting, due to seasonality

reasons, the reference window is set to eight weeks, and the current window is set to

two weeks, the equivalent of a testing window. The next steps are extracting features

out of the reference window and current window, respectively, storing the similarities

in an array, and employing EWMA to identify whether there was a drift or not in the

current testing window. Once a drift is detected, the reference window needs to be changed,

and its corresponding feature vector has to be recalculated. The reference window has a

fixed length, and it is changed every time a drift is identified by shifting the time window
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Figure 6.1: Retraining the forecasting model based on drift detection.
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Figure 6.2: Drift Detection Block components and functionality.
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considered for the reference data. By doing so, we can avoid the drift detector signaling

false alarms since it still contains samples from before the change in data is detected.

One major advantage of our proposed drift detection block is the fact that not all time

series require to be stored in order to detect drift, making FEDD an ideal solution when

encountering scalability issues. As illustrated in Fig. 6.2, we only need to store the current

evaluated time series window, the feature vector corresponding to the reference data, and

the similarities array that gets continuously updated over time. Therefore, our proposed

pipeline takes into account the minimization of storage space when performing drift

detection and can be further employed in other time series forecasting applications where

scalability is important. Furthermore, our solution is not specific to our case study, but it

can be applied to any application working with time series data, such as other forecasting

applications or even time series anomaly detection. Due to privacy issues, sharing the data

and code is not possible. However, to encourage reproducibility, we created an open-source

repository where practitioners can find a similar setting of employing FEDD on a sample

time series dataset
1
.

6.5.4 Evaluation Metrics
In this subsection, we present the evaluation metrics we employ in our study. The first

part focuses on the evaluation metric used to assess the performance of the forecasting

model. The second part presents how we assess the benefits of using drift detection-based

retraining compared with our current monthly retraining technique.

Forecasting Model Evaluation Metric
To evaluate the performance of our forecasting models, we employ the mean absolute

scaled error (MASE) [151]. This metric measures the error made by a forecasting model

compared to a naive forecasting approach. The formula used to compute MASE is the

following:

MASE =

1

𝑛

𝑛

∑

𝑡=1

|
|
|
|
|

𝑌𝑡 −𝑌𝑡

1

𝑛−1
∑

𝑛

𝑖=2
|𝑌𝑖−𝑌𝑖−1|

|
|
|
|
|

(6.1)

where 𝑛 is the number of data points in the time series, 𝑌𝑡 is the actual value at time 𝑡,

𝑌𝑡 is the predicted value at time 𝑡 and 𝑌𝑡−1 is the previous value of the time series

Since it is an error metric, a lower MASE is desired when creating a forecasting model.

This metric is chosen to evaluate our capacity forecasting model since it is robust to

outliers that can occur in capacity forecasting due to periodic fluctuations in the systems’

workloads [152].

EvaluationMetrics forAssessingDriftDetection vs. MonthlyRetraining
In this section, we are presenting how we measure and assess the difference between

retraining based on drift detection and our currently implemented scenario, monthly

retraining. We compare the two retraining techniques from two perspectives: the model’s
performance and the cost reduction.

1
Replication Package

https://github.com/LorenaPoenaru/data_monitoring
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In terms of model performance, the first assessment metric that we calculate is the

MASE improvement percentage of retraining based on drift detection (FEDD) over monthly

retraining. The MASE improvement percentage can be either negative, meaning that the

model retrained based on FEDD achieved a lower performance than the model that was

retrained monthly, or positive, showing that the model retrained based on drift detection

achieved a higher performance than the one retrained monthly. We calculate the MASE im-

provement percentage using the formula 6.2 depicted below. Since MASE is an error-based

metric, lower MASE values correspond to a better model. A negative MASE improvement

suggests that the periodically retrained model obtained better predictions than the one

retrained based on FEDD. In this situation, MASE_FEDD and MASE_Periodic are calculated

by averaging the MASE over all time series batches used to test the forecasting model.

𝑀𝐴𝑆𝐸_𝐼𝑚𝑝𝑟. =

𝑀𝐴𝑆𝐸_𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 −𝑀𝐴𝑆𝐸_𝐹𝐸𝐷𝐷

𝑀𝐴𝑆𝐸_𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐

∗ 100 (6.2)

In terms of cost reduction, we analyze the retraining savings while retraining based

on drift detection vs. monthly retraining. We define retraining savings (RS) in terms

of to which we reduce the number of times the model is retrained by employing a drift

detection retraining approach vs. a periodic retraining approach. RS are calculated using

the formula 6.3 shown below:

𝑅𝑆 =

#𝑅𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠_𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 −#𝑅𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠_𝐹𝐸𝐷𝐷

#𝑅𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠_𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐

∗ 100 (6.3)

6.6 Experimental Results
In this section, we present the results obtained during the experimentation. Each subsection

corresponds to the results of the experiments designed to answer each research question.

Statistical significance of performance differences between settings was assessed using the

Wilcoxon signed-rank test.

6.6.1 Forecasting Performance over Time Analysis
With this experiment, we analyze the evolution of the forecasting model’s performance

over time for all 16 analyzed time series, eight corresponding to CPU utilization and eight

corresponding to memory utilization. We aim to answer RQ1 by understanding whether we

can observe drops in the performance of the forecasting model over time, as also analyzed

in previous AIOps applications for failure prediction [17, 18, 37].

In Fig. 6.3 and Fig. 6.4, we present the performance (MASE) of the forecasting model

over time for CPU and memory utilization, respectively. This MASE is depicted in the two

figures by the continuous, blue line called "static". As an overview of this experiment, we

cannot observe a gradual performance degradation over time for all analyzed time series.

In most situations, the model’s performance is relatively constant with small fluctuations.

These fluctuations can indicate that retraining is needed, but the changes do not severely

impact the model’s performance since, in most situations, the MASE variance is smaller

than 1. When it comes to CPU utilization forecasting depicted in Fig. 6.3, the time series

corresponding to Machine 3 suffers a severe increase in MASE in the first weeks. However,

the MASE is drastically decreasing, indicating that the remaining time series becomes
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Figure 6.3: CPU Utilization

similar to the time series the model has been trained on. This suggests that the time series

experiences a drastic change after a certain point and afterward changes back to its initial

state. Thus, in this situation, especially, the model should be able to adapt to this temporary

drift, which can be achieved by retraining the model. We can further notice in Fig. 6.3 that

in the case of Machine 5, the MASE is increasing between weeks 20-25, indicating that

there is a change in the data around this period.

In Fig. 6.4, we can notice that the performance of the forecasting model is gradually

dropping since the MASE, which corresponds to the forecasting error, is increasing for

Machines 2, 4, 6, 7, and 8. This might suggest that, for these cases, the model might benefit

from being updated over time. When it comes to machines 1 and 3, it can be noticed that

the drops in performance are not gradual, but rather sudden which can be observed by the

fluctuations in the forecasting model’s error in some specific time intervals, such as testing

week 7 for Machine 3 and testing weeks 15 or 20 for Machine 1. These can be explained by

fluctuations in the time series, which change suddenly and suddenly in different periods in

a similar manner as in Machine 3 in the case of CPU utilization. Moreover, similar to the

situation of CPU utilization, we can observe in Fig. 6.4 that Machine 5 also experiences a

sudden decrease in performance (increase in MASE) between weeks 20-25.
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Figure 6.4: Memory Utilization

6.6.2 Periodic vs Drift Detection-based Retraining
In this set of experiments, we answer RQ2 and understand what is the difference between

our current way of retraining the forecasting model (monthly retraining) and retraining

based on drift detection using FEDD. For this experiment, the model that is retrained

on a monthly basis is our baseline, since we analyze the benefits of employing concept

drift detection-based retraining over periodic retraining. To understand whether FEDD-

based retraining is beneficial, we measure the improvement in forecast accuracy and the

percentage of retraining saved while retraining based on FEDD compared to periodic

retraining. We depict our results in Table 6.1.

From Table 6.1 we can notice that in all situations, retraining based on drift detection

implies 50% savings in the number of required retrainings. This suggests that the forecasting

model was retrained only half of the time using the chosen drift detector (FEDD) compared

to monthly. When it comes to performance improvement, we can observe that the MASE

obtained by drift detection-based retraining was, for half of the time series, lower than the

one obtained by retraining periodically. The most dramatic decrease in performance was

observed for the time series generated by Machine 3 for both CPU and memory utilization.

In these cases, the MASE decreases by 5.7% and 19.2%, respectively, when the required

retrainings decrease by 50% and 67%, respectively. This shows that lowering the number
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Table 6.1: MASE Improvements (Impr.) and retraining savings in percentage between retraining periodically (1

week, 2 weeks, 1 month) and retraining using FEDD. The "+" symbol shows that the model retrained based on

FEDD performed better than the periodic one and the "-" shows that it performed worse.

Time Series MASE Impr. (%) Retraining Savings (%)

C
P
U
U
ti
li
za
ti
on

Machine 1 +6.67 67

Machine 2 -2.06 67

Machine 3 -5.70 50

Machine 4 +0.00 50

Machine 5 -2.17 57

Machine 6 +1.14 50

Machine 7 -1.09 67

Machine 8 +2.22 50

M
em

or
y
U
ti
li
za
ti
on

Machine 1 +1.52 50

Machine 2 -0.95 50

Machine 3 -19.20 67

Machine 4 +5.36 50

Machine 5 -3.73 57

Machine 6 -2.97 50

Machine 7 +4.42 67

Machine 8 +3.54 50

of retrainings comes with the high cost of lowering the MASE of the forecasting model.

In the situation of time series generated by Machines 1, 4, and 8, the MASE generated by

retraining based on drift detection resulted in an increase in the forecasting performance

for both CPU and memory utilization. This shows that retraining based on drift detection is

beneficial for both reducing the number of times the forecasting model requires retraining

and obtaining better forecasting accuracy.

Table 6.1 shows the MASE improvement when considering the average MASE on all

testing batches for each retraining technique. In Fig. 6.3 and Fig. 6.4, we depict the MASE

on each testing batch to better understand the MASE difference on each testing batch. The

MASE corresponding to monthly retraining is depicted using a dashed line, while the MASE

corresponding to retraining the forecasting model based on drift detection is depicted using

a dotted line in the two figures. In both CPU and memory utilization, we do not observe

significant differences in MASE between retraining monthly vs. retraining based on drift

detection, except for the time series generated by Machine 3. For this particular machine,

the forecasting model retrained based on drift detection performs similarly to the situation

in which it was never retrained, but its MASE starts decreasing after testing batch 10 for

CPU utilization (Fig. 6.3) and 15 for memory utilization 6.4. However, for this situation, the

MASE obtained by retraining periodically is, in most situations, substantially lower than

the one obtained by retraining based on drift detection, suggesting that for this particular

time series, retraining more often is beneficial. This can also suggest that the FEDD drift

detector did not manage to capture all the situations in which retraining was required.
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6.7 Discussion
Through this case study, we noticed that employing a drift detection-based retraining

approach is beneficial in the context of capacity forecasting for our industry partner. Our

conclusions are derived from the fact that we demonstrated how a drift detection-based

retraining reduces the time required to update the forecasting models, while minimally

impacting their forecasting performance. Furthermore, employing a drift detection-based

retraining approach improves the scalability of the forecasting model to multiple time

series. In this section, we are further discussing the implications of retraining the capacity

forecasting model using drift detection. We evaluate these implications by examining the

model’s accuracy over time, highlighting scenarios where drift detection-based retraining

underperformed compared to monthly retraining, and explaining the potential reasons

for this. Additionally, we explore the design considerations for machine learning systems

when implementing drift detection-based retraining, emphasizing key factors that machine

learning engineers must take into account.

6.7.1 Accuracy Implications of Retraining based on Drift De-
tection

From our experiments, we observed that in most of the situations, the performance of

the forecasting model is not highly impacted when retraining based on drift detection

using FEDD compared to our current retraining practice, monthly retraining. In some

situations, we observed even an improvement in forecasting accuracy when retraining

based on drift detection. This shows that retraining when FEDD identifies changes in the

time series data is a promising solution to reduce the number of times the forecasting model

requires retraining, while not significantly impacting the model’s accuracy. However, this

conclusion does not hold when it comes to the time series generated by Machine 3 as

observed in both Fig. 6.3 and Fig. 6.4. In this specific case, we observe that the model that

is periodically retrained performs significantly better than the model retrained based on

drift detection. Thus, we performed an in-depth analysis of this case, and we present our

findings in this section. We are using Fig. 6.5 to explain our findings.

One interesting finding from our analysis is that while all selected time series generated

by all machines experience changes in the data, the time series generated by Machine 3

are different in terms of how frequently they experience data changes and how long the

changes last. Thus, a major characteristic of the time series generated by Machine 3 is the

short and sudden changes in the data, as can also be seen in Fig. 6.5b.

We investigated whether the type of data change, a sudden change in the time series

or a more gradual change in the time series, is a limitation of the FEDD drift detector.

However, from Fig. 6.5a we can notice that FEDD managed to identify both a sudden data

change (first identified drift) and a more gradual data change (second identified drift), in

this example corresponding to Machine 1. We observed similar behavior in other time

series but only decided to show Machine 1 since the difference between the data changes

can be visibly noticed. Thus, the type of data change is not a limitation of FEDD, but the

fact that the changes in the time series are short and might be related to the way FEDD

was designed.

Once it detects a drift, FEDD enters a period of inactivity until it gathers enough data

to start detecting again. During this period, according to the detector’s functionality [132],
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Figure 6.5: Time Series Corresponding to CPU utilization for Machine 1 (a) and Machine 3 (b) including the

moments when the drift was detected by FEDD and the moments when the forecasting model was retrained.

FEDD shifts its reference data with a predefined window size to avoid continuously trig-

gering false alarms. This period of inactivity can be the main reason why FEDD did not

find any drift between data points 2000 and 3000 from Fig 6.5b, although the data changed

significantly. Also, the first model retraining around data point 2000 did not capture enough

changed data to allow the forecasting model to learn the new time series pattern, which

can explain the low performance. This argument is further supported by the fact that the

forecasting model retrained periodically achieved significantly better performance than

the one trained based on drift detection. Therefore, our findings suggest that FEDD is a

suitable solution as long as the changes in the time series are not frequent. For these types

of time series, periodic retraining is the most suitable solution to preserve the forecast

performance. Therefore, we consider building a hybrid retraining approach, in which time

series with short sudden changes (e.g. the ones generated by Machine 3) are retrained

periodically, while the others are retrained based on drift detection. This hybrid approach

will allow one to reduce the retraining time, while ensuring that the forecast performance
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is not impacted.

6.7.2 Forecasting System Design Implications
When it comes to designing a drift detection-based retraining pipeline for a time series

forecasting model, we consider FEDD a suitable solution when scalability is a major

requirement. The reason for this is that FEDD does not require storing the entire time

series, and continuously accessing it to detect drift, which could come with significant

storage expenses and latency when accessing the data.

A major concern that practitioners need to consider is handling missing data, as FEDD

is not designed to handle missing samples. Although in our solution we opted to remove

them, this might have implications for the way FEDD detects drift. For instance, a higher

number of missing data points could result in a distorted time series, which FEDD could

see as a drift and erroneously signal the need to retrain the model. Although in our

experiments, we did not encounter this situation, we recommend practitioners be aware of

this limitation of FEDDwhen applying it to real-world data. To avoid false alarms generated

by missing samples, we suggest integrating FEDD with a missing values monitoring block

to better investigate whether the drift was signaled due to a high number of missing data

points. Furthermore, we recommend that researchers incorporate missing data handling

techniques in time series drift detection and assess their implications in drift detection

accuracy.

In terms of the moment when the forecasting model is updated, we did not consider

retraining the model immediately after a drift was detected, since it is unsuitable in practical

scenarios. The reason for this is the availability of a responsible data scientist to ensure

that, after retraining, the model can be securely and safely deployed. For instance, if a drift

is detected outside of working hours, the data scientist is not available to perform model

quality checks after it has been retrained and redeployed.

6.8 Threats to Validity
In this case study, we focus mainly on the forecasting of capacity for CPU and memory

resources using data from ING. However, this use case offers a unique and realistic setting, a

large-scale financial infrastructure where time forecasting models are continuously exposed

to evolving patterns in the data. Therefore, the results highlight the effectiveness of the

process presented. Incorporating concept drift detection-based retraining in forecasting

pipelines offers valuable insight for practitioners navigating similar contrasts in high-stakes

environments.

6.9 Conclusions and Future Work
This work investigates the impact of retraining a time series forecasting model for capacity

management based on drift detection. To identify drift and, therefore, the need to retrain the

forecasting model, we employ the FEDD drift detector. In our experiments, we investigate

the effect of retraining based on FEDD compared to retraining monthly in terms of the

performance of the forecasting model and how many times the model requires retraining.

The goal of this study is to understand whether FEDD can be used to reduce the number of

times the forecasting model requires retraining, since with time, if the model is applied to
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more time series, we might encounter scalability issues that will no longer allow monthly

model updates.

Our experiments suggest that for both CPU and memory utilization-related time series,

retraining based on drift detection does not imply a significant drop in the forecasting

model’s performance. The only situation in which we observed that the periodically

retrained model predicts significantly better than the one retrained based on FEDD is for

the time series that experience short and sudden changes. For these time series, particularly,

we further suggest employing a periodic retraining approach. Furthermore, in this chapter,

we discuss the implications of employing FEDD in a practical scenario and the challenges

that we encountered in terms of integration with the forecasting model. For instance,

we highlighted the fact that FEDD cannot handle missing values and should be carefully

considered and evaluated in situations in which the number of missing samples in a time

series is significantly high.

Future Work: Future work should focus on improving FEDD to work with distorted

time series due to missing values. Furthermore, one major limitation of FEDD that we

discovered is handling short, sudden changes in the time series due to the period of restart

that FEDD requires after detecting a drift. For this reason, we consider that developing a

drift detector with a shorter restart period, which does not signal a high number of false

alarms, is required.
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7
Conclusion

This thesis contributes to the field of engineering machine learning (ML) systems, with a

particular emphasis on techniques for monitoring and maintaining these systems through-

out their lifecycle. All chapters address one specific type of monitoring for ML systems,

namely concept drift detection-based data monitoring, which is examined across multiple

types of ML systems, including classification, anomaly detection, and forecasting. Beyond

monitoring, this thesis also investigates the maintenance of ML systems through drift

detection-based retraining and compares it with the current state-of-the-art practice in

terms of maintaining ML systems, periodic model retraining. The effectiveness of this

approach is evaluated from two key perspectives: model accuracy and energy efficiency.

Additionally, the study highlights the practical challenges and limitations associated with

implementing drift-based retraining in real-world environments.

In the remainder of this chapter, we revisit each research question, summarize the steps

taken to address them, and present the corresponding findings. Finally, we discuss the

broader research implications of this work and outline future promising research directions.

7.1 Revisiting ResearchQuestions
In this subchapter, we revisit our main research questions and sub-questions. In order

to answer the research questions, we briefly explain the research process and explain

our decisions during this process. We further highlight other findings derived from each

chapter and provide a general answer to each research question.

M-RQ1. What is the difference in drift detection performance between label-
dependent supervised drift detectors and label-independent, unsupervised drift
detectors?

M-RQ1 is addressed in Chapter 2 of this thesis. In order to understand the differences

in performance between supervised and unsupervised drift detectors, we employed both

synthetic and real-world data, for which the moment when concept drift occurs is known

beforehand. To ensure robustness in our findings, we experimented with both balanced

and highly imbalanced classes for the synthetic data. Highly imbalanced classes imply that
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there are significantly more samples corresponding to one particular class in the dataset

compared to the number of samples from the second class. We evaluated the drift detectors’

performance in terms of latency, showing how late a drift is detected after it occurs, the

false positive rate, and the percentage of non-drifts signaled as drifts. We further filtered

out drift detectors based on their inconsistencies when changing the random seed using

the miss-detection probability metric.

Our research revealed that supervised drift detectors are more effective than unsuper-

vised ones in identifying drift in datasets containing encoded categorical features. The

reason for this is that encoding increases data sparsity, which affects data distribution

estimation, a crucial step in unsupervised drift detection. In contrast, supervised drift

detectors do not depend on data distribution estimation, so their performance remains

unaffected in these circumstances. Supervised drift detectors also outperform unsupervised

drift detectors when identifying abrupt or gradual drift with a relatively small drift width.

However, supervised drift detectors are prone to a significant number of false alarms when

identifying gradual drift with a larger drift width. Furthermore, neither supervised nor

unsupervised drift detectors were affected by the presence of noise in the data.

In addition to addressing M-RQ1, this study presents key findings that enhance the

understanding of how to apply unsupervised drift detectors in real-world scenarios. We

found that data must be scaled to prevent widely distributed attribute values when using

unsupervised drift detectors. Additionally, careful experimentation is necessary to deter-

mine the most suitable similarity metric for these detectors. Lastly, our research did not

yield clear conclusions on the impact of class imbalance on drift detection performance.

This uncertainty arose from a significant discrepancy between our findings on synthetic

data and real-world data. Consequently, Chapters 2 and 3 focus specifically on an ML

application that faces a severe class imbalance issue.

Answer M-RQ1. Supervised drift detectors are more robust when applied to sparse

data and when identifying abrupt or gradual drifts with small drift width. In contrast,

the performance of unsupervised drift detectors is severely impacted by data sparsity,

but they outperform supervised drift detectors in identifying drifts with larger drift

widths. While unsupervised detectors require data scaling before distribution compu-

tation, supervised detectors do not. Both types of drift detectors are not impacted by

noise when detecting drift.

M-RQ2. What is the impact of retraining failure prediction ML systems based
on unsupervised drift detectors?

M-RQ2 is addressed in the following two chapters. To answer this research question,

we focus on one specific AIOps application, namely failure prediction, which can be seen

as an ML classification application with high class imbalance. Thus,M-RQ2.a. is addressed
in Chapter 3 andM-RQ2.b. is addressed in Chapter 4.

M-RQ2.a. To what extent can retraining failure prediction ML systems based
on unsupervised drift detectors mitigate their degradation in accuracy over time?
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The purpose of this study is twofold: understanding which unsupervised drift detectors

are able to capture concept drift and understanding the effect of retraining failure prediction

systems based on drift detection. We explore two types of unsupervised drift detectors,

namely, drift detectors based on monitoring the skewness of the features over time and drift

detectors based on data distribution. We experiment with two failure prediction problems,

namely job and disk failure prediction.

Our study reveals that drift detectors relying on monitoring feature skewness over

time should not be used as drift indicators in failure prediction. Additionally, monitoring

the percentage of changed features is not an accurate method for detecting drift in data.

However, our findings demonstrate that unsupervised drift detectors based on data distri-

bution can effectively identify drift, and retraining failure prediction models based on their

output achieves performance comparable to periodic retraining. Unlike the previous main

research question (M-RQ1), which is inconclusive for classification problems with highly

imbalanced classes, this study confirms that unsupervised drift detectors accurately detect

drift in AIOps failure prediction applications. However, selecting the most suitable drift

detection technique for one application requires experimentation.

M-RQ2.b. To what extent can retraining failure predictionML systems based on
unsupervised drift detectors reduce the energy consumed by this ML application
over time?

This study aims to understand whether practitioners should consider including drift

detection-based retraining when designing sustainable failure prediction systems. Besides

this aspect, in this work, we explore multiple retraining techniques for failure prediction

models and analyze their impact on the energy consumed during training and inference.

This chapter highlights that retraining based on drift detection can reduce the energy

consumption of failure prediction applications over time, but only if the drift detector is

properly selected. If the detector is overly sensitive to data changes, the energy consumed

by retraining based on drift detection becomes comparable to periodic retraining. However,

when the detector fails to identify drift, the accuracy of failure prediction models can

significantly degrade. Therefore, designing a sustainable failure prediction system requires

carefully balancing energy consumption over time with predictive accuracy when selecting

the most suitable drift detector.

Other findings derived from this study show that the retraining strategy only affects

the energy consumed during training, while not impacting the energy consumed during

inference. Furthermore, retraining on only the most recent data is usually preferred over

retraining using all available data when designing sustainable ML systems.

Answer M-RQ2. Retraining failure prediction models based on drift detection can be

beneficial if the detector is well-suited to the dataset. A suitable detector is one that

balances sensitivity: it is not too sensitive to trigger false alarms, but still able to capture

the relevant changes in the data that could impact the model’s accuracy. Compared to

periodic retraining, drift detection-based retraining reduces the frequency of updating

the model as well as the energy consumed during retraining without significantly
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affecting predictive accuracy.

M-RQ3. What is the impact of retraining AIOps applications designed for time
series based on drift detection designed for time series data?

M-RQ3 is addressed in Chapters 5 and 6. To answer this research question, we focused

on two specific AIOps applications designed for time series data, namely anomaly detection

and capacity forecasting. Thus, M-RQ3.a. is addressed in Chapter 5 and M-RQ3.b. is
addressed in Chapter 6.

M-RQ3.a. What is the impact on anomaly detection accuracy of retraining
these ML systems based on drift detection?

In Chapter 5, we focus on one specific AIOps application, namely anomaly detection.

Therefore, we begin by implementing the most popular anomaly detection techniques

for AIOps data and evaluating their performance on two operational datasets related

to real-world server metrics and internet traffic metrics. We experiment with multiple

retraining techniques, namely retraining on the most recent data vs. retraining on all the

available data, as well as retraining periodically vs. retraining based on drift detection.

To perform drift detection-based retraining, we employ the most commonly used drift

detection technique for time series data, namely FEDD.

Our results suggest that retraining one good-performing anomaly detector, LSTM-AE,

based on drift detection, achieves similar results to periodic retraining for the dataset

containing samples related to real-world server metrics. However, when it comes to the

dataset containing metrics related to internet traffic, retraining periodically is preferred in

terms of accuracy.

We further discovered that not all anomaly detection models with high accuracy that

we evaluated are designed for a drift detection-based retraining setting. For instance, the

most popular anomaly detection model for AIOps data, SR-CNN, identifies anomalies by

learning from the behavior of multiple time series. For this reason, a change detected in

only one of the time series would imply retraining the anomaly detection model.

When considering that this anomaly detector is applied at scale, which means that it is

used for hundreds of time series, it is highly likely that periodically a data change occurs

in at least one time series. In this situation, retraining based on drift detection would likely

be equivalent to retraining periodically in terms of retraining frequency. Therefore, practi-

tioners should consider whether the employed anomaly detection technique is compatible

with a drift detection-based retraining setup when designing an anomaly detection system.

Another finding from this study is that anomaly detection techniques that take the time

series in the time domain as input should be retrained using a sliding window approach, in

which old data is discarded. On the other hand, techniques that decompose the time series

into different domains, such as frequency, achieve higher anomaly detection accuracy

when employing a full-history retraining technique, where retraining is performed using

all the available data.
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M-RQ3.b. What are the practical and performance implications of retraining a
capacity forecasting ML system based on drift detection?

To examine the practical implications of retraining based on drift detection, we con-

ducted a study in collaboration with the AIOps team at our industry partner, ING Nether-

lands. In this study, we focused on one specific application developed by the AIOps team,

namely capacity forecasting, and we conducted experiments in order to understand the

accuracy implications of retraining based on drift detection, as well as highlight the chal-

lenges of designing a drift detection-based retraining setup. We employed MASE as the

metric that shows the accuracy of the forecasting model and analyzed the difference be-

tween retraining periodically on a monthly basis, which is the current retraining practice,

compared to retraining based on drift detection. To identify drift, we employed the same

concept drift detector for time series data as in Chapter 5, namely FEDD. For this work, we

employed proprietary time series data related to CPU and memory utilization.

When it comes to performance, we noticed that in approximately half of the cases, the

forecasting model performed better when retrained based on drift detection compared to

periodically, showing that FEDD is a promising retraining solution to reduce the number

of times the capacity forecasting model should be updated. On the other hand, we noticed

that periodical retraining benefits situations in which the changes in the time series data

are sudden and short. This is due to the design of the chosen drift detector, since after

identifying a drift, FEDD requires a period of inactivity to gather new data and restart.

Thus, during this period, data can experience more changes that are not captured, and the

forecasting model is not updated. In addition to periods of inactivity, we observed another

challenge when using FEDD for drift detection: handling missing data. Since FEDD was

neither designed nor evaluated for time series with missing values, this poses a limitation-

particularly given that missing data is common in real-world scenarios. For example, the

occurrence of incidents in the software system or the inactivity of the equipment collecting

data can lead to incomplete time series. Therefore, our study proposes a solution for

implementing a drift detection-based retraining setup for forecasting models in real-world

applications, taking into consideration the limitation of missing data.

Answer M-RQ3. Periodic retraining generally achieves higher accuracy than drift

detection-based retraining (using the FEDD drift detector) in time series AIOps ap-

plications. This might suggests that FEDD fails to capture all drifts, possibly due

to its inactivity period after detecting a drift, leading to slightly lower predictive

performance.

7.2 Research Implications and Future Work
This subsection aims to highlight the main research implications derived from this thesis,

as well as promising future research directions that could facilitate the understanding of

concept drift detection-based retraining in industrial settings.

More open source real-world datasets with highlighted drifts to evaluate the
accuracy of drift detectors. One limitation we faced while conducting this research is

the inaccessibility of datasets in which the moment of drift occurrence is known or labeled
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by experts. Without highlighting the moment when concept drift occurs, an extensive

study of concept drift detection performance, such as studying the delay in drift detection

or precisely identifying the number of false alarms generated, could not be performed. In

Chapter 2 we were able to evaluate to evaluate the accuracy of drift detection since we

employed synthetic data, where we could set the moment of drift occurrence during data

generation, and two real-world datasets, namely the ELECT2 dataset [70] and the Airlines

dataset [68], where the moments when drift occurs were highlighted by previous work [69].

However, we observed that the conclusions drawn from experiments with synthetic data are

in some situations different from the ones drawn from experimenting with real-world data,

which could be caused by the fact that synthetic data do not always imitate the behavior

of real-world data. This highlights the importance of evaluating drift detectors using

real-world data to draw conclusions that can be applicable to other real-world scenarios.

An attempt to overcome this limitation is presented in Chapter 3, where we linked the

moment when concept drift occurs with the moment when there is a significant drop

in the model’s performance. Although this can be a promising solution to evaluate drift

detectors when the exact moment of drift is unknown, the research community needs more

datasets with documented drift occurrences to evaluate the performance of drift detectors

and highlight their strengths and limitations. This needs to be a collaborative effort for

both academia and industry, since the moments when drift occurs can solely be indicated

by domain experts who know and understand the behavior of data.

Future work: In this direction, future research should prioritize the development of a

standardized benchmark of real-world datasets that will be used to evaluate drift detectors.

This benchmark could also be used to understand whether there are general patterns in

the data behavior that are related to concept drift and to what extent these patterns can be

used further be leveraged to facilitate easier drift labeling. Furthermore, analysis on bias

when labeling drift on these datasets should be performed.

Defining concept drift in different domains that employ machine learning
techniques. In addition to increasing the availability of datasets where the moment when

drift occurs is known, more explanations in terms of what kind of data changes need to be

identified would also improve the explainability of machine learning systems. For instance,

Webb et al. [69] defined a drift in the ELECT2 dataset as the moment when new rules for

the electricity market took place. Furthermore, defining what concept drift is by domain

experts would be significantly relevant also for time series data, which was targeted in

Chapters 5 and 6, since it would help differentiate between significant changes in the time

series trend and a continuous sequence of anomalies.

Future work: Future research should focus on the definition and standardization of

concept drift for multiple datasets and in different domains. Subsequently, it would be

valuable to investigate to what extent are drift detectors mistakenly interpreting sequences

of anomalies as concept drift.

Unsupervised drift detectors have high potential, but their implementation
is not always publicly available. Our research demonstrated that unsupervised drift

detectors could be beneficial to include in the retraining pipelines of ML systems, especially

in the case of AIOps systems. Therefore, we advise practitioners to experimentwithmultiple

drift detectors and select the one that is the most suitable for their application. However,

although plenty of unsupervised drift detectors were proposed in the literature [19], another



7.2 Research Implications and Future Work

7

115

important limitation of our study is the availability of open-source code for these detectors.

In our work, we opted to replicate the functionalities described for these drift detectors or

to rely on publicly available open-source implementations of drift detectors. However, we

strongly encourage researchers developing concept drift detectors to publicly share their

code to enhance accessibility for practitioners and other researchers.

Future work: The development of a standardized platform or toolkit where all practi-

tioners could share their drift detection implementation would be highly beneficial for the

research community. Researchers could further explore ways to standardize the platform,

including unified input/output formats and comprehensive tutorials for integrating drift

detectors into experimental and production-level machine learning setups. Ultimately, this

kind of shared infrastructure could significantly accelerate the adoption of drift detection

methods in industry.

In line with the No Free Lunch Theorem, there is no best concept drift detector
for all applications and datasets. The no-free-lunch theorem in machine learning refers

to the fact that there is no specific learning algorithm that is the best to use in every

situation [153]. The performance of each algorithm depends on the dataset to which it is

applied and the machine learning problem that is being tackled. Our findings suggest that

this theorem also applies to drift detection. Therefore, we demonstrate that the best drift

detection technique depends on the dataset to which it is applied, and, thereby, practitioners

should consider experimenting with multiple drift detectors to understand the most suitable

one for their problem. For this reason, future work can explore the effects of multiple drift

detectors in different real-world domains.

FutureWork: Although Chapter 6 of this thesis examined the impact of drift detection-

based retraining in a real-world application, namely capacity forecasting, we believe that

more research on concept drift detection in practical scenarios is needed. This would

enhance our understanding of how employing concept drift detectors to monitor data

changes affects the performance of ML systems over time. Moreover, expanding this

research to different research domains would allow researchers to discover patterns in

terms of how well drift is detected with respect to the data on which the detector is applied.

Long-term analysis of energy consumption of ML systems in production. In
Chapter 4, we analyzed the impact on energy consumption of retraining 3 failure predic-

tion models based on drift detection. These models are built using real-world operational

data and were evaluated under varying retraining frequencies, namely daily, weekly and

monthly. The retraining frequency was based on the data availability. Our analysis focused

specifically on the energy consumed during three core ML lifecycle stages: training, infer-

ence, and drift detection. Therefore, it did not account for the ML stages required before

model training, such as data collection and preprocessing, which can also increase the

overall energy footprint of an ML system. Although in this thesis the energy consumed

while retraining AIOps applications designed for time series data was not assessed, we

expect these types of systems to be even more intense in the energy consumed, especially

if they operate real-time. The reason for this assumption is that these systems continu-

ously collect large volumes of data which needs to be constantly verified against drift.

Furthermore, the currently evaluated drift detector for time series, FEDD, performs real-

time drift checks, whereas the detectors used in failure prediction only assess drift after

accumulating a certain amount of data. Consequently, we anticipate that AIOps systems
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for time series will consume significantly more energy during drift detection compared

to failure prediction scenarios, given the substantially higher frequency of drift checks.

As for energy consumption during retraining, it largely depends on the volume of data

processed and the anomaly detection or forecasting algorithm employed.

Future Work: Future work should focus on building on our research by including an

empirical evaluation of the energy consumed by multiple stages of an ML system, such as

data acquisition and preprocessing. In this way, we could have a better understanding of

the total energy consumed by an ML system. Furthermore, we believe that an interesting

research direction will be expanding the research performed for AIOps systems designed

for multivariate data to AIOps systems designed for time series data. This could provide

insights into how energy consumption during drift detection varies across different ma-

chine learning applications. Another promising direction would be to adjust the AIOps

solutions explored in this thesis, namely failure prediction, anomaly detection, and capacity

forecasting, according to the green AI design patterns depicted in [29] and investigating

the energy consumption reduction. In this way, the most impactful green tactics would

be explored and highlighted as best practices when designing green machine learning

systems.

Boosting the trustworthiness of machine learning systems through concept
drift detection in practical settings. Based on our experiments, concept drift detection is

a valuable tool for monitoring data changes over time as well as helping in designing more

energy-efficient ML solutions. When appropriately selected, drift detectors can effectively

identify meaningful data shifts while minimizing false alarms. However, whether it has

the capability to improve the long-term reliability of machine learning systems within

organizations requires more exploration and experimentation.

Future Work: Therefore, future work should try to determine data scientists’ percep-

tion of integrating concept drift detectors in their machine learning workflows. This thesis

was inspired by my own experience as a data scientist, where I observed how unexpected

changes in data can undermine the trustworthiness of ML systems. Building on this, a

valuable next step would be to investigate whether concept drift detection can serve as

an initial step in designing more reliable and robust ML systems. Furthermore, another

valuable research path would be to determining whether concept drift detection enhances

the trust and confidence of other stakeholders in the ML system, fostering better alignment

between stakeholders and the data science. If concept drift detection proves to be beneficial

in a practical setting, then continuous monitoring of ML systems should be established as

a best practice in organizational ML design.
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Glossary

AdaBoost Adaptive Boosting Classification/Regression Algorithm.

ADWIN Adaptive Windowing Drift Detector.

AI Artificial Intelligence.

AIOps Artificial Intelligence for Information Technology Operations.

CPU Central Processing Unit.

DDB Data Distribution-Based.

DDM Drift Detection Method Drift Detector.

EDDM Early Drift Detection Method Drift Detector.

EDE Equal Density Estimation Drift Detector.

ELC Effectiveness per Unit of Labeling Cost.

ERB Error Rate-Based.

ERC Effectiveness per Unit of Retraining Cost.

ETFE Entropy-Based Time Domain Feature Extraction Drift Detector.

EWMA Exponentially Weighted Moving Average.

FEDD Feature Extraction Drift Detector.

FFT Fast Fourier Transform.

FH Full History.

FI Feature Importance.

FPR False Positive Rate.

GPU Graphics Processing Unit.

HDDM_A Hoeffding’s Inequality Carried with A-test Drift Detector.

HDDM_W Hoeffding’s Inequality Carried with W-test Drift Detector.
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kdqTrees Quad-Trees which Scale with the Size (k) and Dimensionality (d) of the Data

Drift Detector.

KL Divergence Kullback–Leibler Divergence.

KPI Key Performance Indicator.

KS Kolmogorov–Smirnov Statistical Test.

KS-ALL Kolmogorov–Smirnov Statistical Test Applied on All Avaliable Features.

KS-FI Kolmogorov–Smirnov Statistical Test Applied on Features with High Feature Im-

portance Ranking.

KS-PCA Kolmogorov–Smirnov Statistical Test Applied on Features Resulted from Princi-

pal Component Analysis.

L Latency.

LightGBM Light Gradient Boosting Machine Classification/Regression Algorithm.

LSTM-AE Long Short-Term Memory Autoencoder.

MASE Mean Absolute Scaled Error.

MDI Mean Decrease in Impurity.

MDP Miss-Detection Probability.

ML Machine Learning.

PCA Principal Component Analysis.

PCA-kdq Quad-Trees which Scale with the Size (k) and Dimensionality (d) of the Data

with Dimensionality Reduced Through Principal Component Analysis Drift Detector.

PCI Prediction Confidence Interval.

ROC AUC Receiver Operating Characteristic – Area Under the Curve.

RS Retraining Savings.

SMART Self-Monitoring, Analysis, and Reporting Technology.

SR Spectral Residuals.

SR-CNN Spectral Residuals Convolutional Neural Networks.

SW Sliding Window.

TNR True Negative Rate.

TPR True Positive Rate.

XGBoost Extreme Gradient Boosting Classification/Regression Algorithm.
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Successful industry-academia collaborations are built
on five key pillars: visibility creates opportunities,
opportunities spark networking, networking fosters
communication, communication builds trust, and trust
empowers true collaboration. Together, these pillars
form a strong foundation that drives innovation and
advances society.


