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Abstract

New system identification methods are developing constantly to come up with solutions that can
take into account all of the factors that real-time systems have. These factors affect the analy-
sis of the system’s behavior, particularly noise, non-linearities, system’s complexity, time varying
changes, among others.

This thesis is concerned with system identification methods related to a nuclear norm pareto op-
timization. These algorithms try to join 2 families of system identification methods, the PEM and
SID, this with the purpose of trying to find a balance or trade-off between the complexity of the
system identified and the goodness of the fitting criterion.

The nuclear norm heuristics are used widely as a convex approximation for the RMP. In this work
it will be used for system identification purposes; were a new low rank matrix and fitting crite-
rion formulation is constructed inspired by the PBSIDopt algorithm. This algorithm will rename
and stack data to construct a matrix that thanks to the properties assumed in the system it can be
defined as a upper triangular low rank matrix. The objective is to see if this method brings any ben-
efits compared to the already existent low rank matrix mechanisms that are inspired by structural
analysis or the instrumental variables and/or projections methods.

A step further was taken to provide the framework for this method named N2PBSID algorithm by
providing the steps necessary for the implementation of this optimization problem on MATLAB.

Lastly, several experiments are performed and a number of conclusions are drawn from them.
Making an assessment on the effectiveness of the algorithm, the feasibility of its performance
based on the difficulties encountered and final thoughts and recommendations.
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Chapter 1

Introduction

1-1 Introduction to System Identification

System identification is about data-based modeling; it is the science of building mathematical
models of dynamic systems from observed input-output data. The field uses not only statistical
methods for model creation, but also includes model reduction.

When thinking of modeling, we indeed generally think of first-principle modeling and not data-
based modeling, that is the modeling using the laws of physics (Newton laws, mass conservation,
Kirchhoff’s circuit laws, etc.). However, data-based modeling is often as important because first-
principle modeling has several disadvantages,

• model contains many unknown (physical) parameters ⇒ high uncertainty

• model generally more complex than with system identification

• missing actuator/sensor dynamics and phenomena can be forgotten

• sometimes the model is impossible to determine

• there is no way to determine a disturbance model

Two widely used methods, or families of methods for system identification are the so called Pre-
diction Error Methods (PEMs) [1] and Subspace IDentification (SID) methods [2].

The core of PEMs is to parametrize the predictor or observer to generate an estimate of the out-
put, and then formulate an optimization problem to minimize a weighted cost function defined
in terms of the difference between the measured output and the observer predicted output. This
cost function is for the finite data length case generally a summation of the trace of the covariance
matrix of the prediction error.

Though the PEM framework provides a vast amount of insights in studying and analyzing the es-
timated predictor, its main drawback is the non-convexity for general multivariable state space

Literature Survey J. E. Bautista Gauna



2 Introduction

models in innovation form [2]. The lack of convexity can result in the optimization method getting
stuck in a local minimum, and thereby complicating the analysis of the numerical results, such as
e.g. difficulty to distinguish between a bad model estimate due to a local minimum or due to a bad
model parametrization.

SID methods on the contrary derive approximate models rather than models that are "optimal"
with respect to a chosen cost function. All existing SID methods aim to derive a low rank matrix
from which key subspaces, hence the name subspace identification, are derived. The low rank
approximation is in general done using a Singular Value Decomposition (SVD).

The SID methods that had been developed turned out to be very useful in complementing PEM in
a way that SID provided the needed initial estimates for PEM to start up the non-covex parameter
optimization.

Despite this complementarity between the two families of system identification methods, algo-
rithms that integrate both are numbered. These algorithms aim to merge the subspace determina-
tion step of SID with the goodness of fit optimization step of PEM to identifying state space models
in innovation form. This integration step enables a trade-off between the complexity of the identi-
fied state space models, as expressed e.g. by a rank constraint in the subspace determination step,
with the accuracy of fitting as expressed by a goodness of fit criterion.

The lack of algorithms that integrate both methods motivates a quest for an algorithm which not
only merge both worlds but have the same or better results that conventional existing PEM meth-
ods. The aim of this report is to continue this quest.

1-2 Motivation

The control community is always searching for a better method for system identification analy-
sis, and providing an algorithm than can bring better results that the ones previously obtained is
always a pursuing objective by engineers. So, bringing onto the table an algorithm that can con-
solidate both families, PEM and SID, while obtaining promising results is of interest. That is why
this new approach is analyzed, implemented and tested; to see if a multi-criteria convex relax-
ation using the theory of predictor-based subspace identification (PBSIDopt ) can deliver any new
benefits.

1-3 Goals of this thesis

The objective of this thesis is to provide a new formulation on the low rank matrix of the existing
nuclear norm approach inspired by the PBSI Dopt algorithm. This approach will focus on finding
Markov parameters instead of the column space of the extended observability matrix.

The first step to achieve this is to develop and implement these PBSI Dopt approach using the Al-
ternating Direction Method of Multipliers (ADMM) algorithm. The second step is to carry out a
study on the performance of the subspace identification algorithm with the new low rank formu-
lation and compare it to several existing PEM and SID algorithms.

In this thesis the following questions are answered:
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1-4 Outline 3

• Does this new approach provide satisfactory results for system identification?

• Which benefits does the proposed method provide over regular existing algorithms and what
conditions for these benefits to occur?

1-4 Outline

This work is organized as follows. In Chapter 2 an overview is presented of the principles of sub-
space identification. This will give the reader the framework necessary to follow the next chap-
ters. Chapter 3 presents the new PBSI Dopt approach as a low rank matrix for the nuclear norm
algorithm. Additionally the same PBSI Dopt framework will be used with a reweighted iteration
minimization to try to find new benefits out of this analysis. The next chapter, Chapter 4, shows
the results of the implemented algorithm in several data cases, including a comparison of the sim-
ulations of other methods. Finally, the conclusions of this thesis are described in Chapter 5 with
additional recommendations for future research.
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Chapter 2

Nucelar Norm Subspace Identification

This chapter provides an overview of the principles of system identification were several SID meth-
ods will be presented; this will give the reader the framework necessary to follow the next chapters.

2-1 Problem formulation

System identification methods for Linear Time-Invariant (LTI) systems estimate linear state-space
models with process and measurement noise.

These models for LTI systems are generally given in a so-called innovation form [2],

x(k +1) = Ax(k)+Bu(k)+K e(k)

y(k) =C x(k)+Du(k)+e(k)
(2-1)

with x(k) ∈Rn , y(k) ∈Rp , u(k) ∈Rm and e(k) a zero-mean white noise ergodic sequence.

The problem is to determine approximate system matrices ( ÂT , B̂T , ĈT , D̂T , K̂T ) that define the
n̂-th order observer of "low" complexity:

x̂T (k +1) = ÂT x̂T (k)+ B̂T u(k)+ K̂T
(
y(k)− ĈT x̂T (k)− D̂T u(k)

)
ŷ(k) = ĈT x̂T (k)+ D̂T u(k)

(2-2)

such that the approximated output ŷ(k) is "close" to the measured output y(k) of the validation
pair {u(k), y(k)}N

k=1 as expressed by a small value of the cost function

1

N

N∑
k=1

∥ y(k)− ŷ(k) ∥2
2 (2-3)

The first step, depicted in Figure 2-1, is given by the available data, that is the input-ouput (i/o) data
batches {u(k), y(k)}N

k=1, with N > n. The data is assumed to be retrieved from an identification
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6 Nucelar Norm Subspace Identification

Figure 2-1: First steps of the system identification process by multi-criteria optimization

experiment with a system belonging to the class of LTI systems as represented by Eq. (2-1). The
second layer represents the union between the PEM and the SID methods, this frame is presented
in the next problem formulation:

minimize rank (G) and minimize
1

N

∑
k∈T

∥ y(k)− ŷ(k) ∥2
2 (2-4)

This problem seeks the Pareto optimal solution with respect to two cost functions.

2-2 Pareto optimal convex optimization

The optimization problem presented earlier seeks for the Pareto optimal solution with respect to

the two cost functions rank
(
G

)
and 1

N

∑ ∥ y(k)− ŷ(k) ∥2
2. This optimization is however NP (Non-

deterministic Polynomial-time) hard, making this a not tractable problem, which means that it
cannot be solved in polynomial time.

However, thanks to the discovery of the heuristics behind the rank minimization problem in Eq. (2-
4) [3] the first term of the optimization problem can be rewritten in two different convex ways that
can be seen on the first row in Figure 2-2, were each one seeks to minimize the trace of the matrix
in question.

The first of the approaches is the nuclear norm minimization (depicted as the letter B in the dia-
gram). This approach is used in several research papers, mainly [4], [5], [6], [7], and is expressed
as

minimize ∥G ∥∗ (2-5)

were the nuclear norm of the matrix X is denoted by ∥ X ∥∗ and represent the sum of the singular
values of the matrix. Hence, the first part of this problem formulation adds relevant structural
information available about the unknown matrices in the data equation in SID that relates the
Hankel matrices of input and/or output measurements as convex constraints.

The second approach is named reweigthed nuclear norm by [8] (depicted as the letter A in the
diagram). In this approach the rank minimization problem mentioned above is replaced by the
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2-3 Low Rank Matrix Selection 7

Figure 2-2: Next steps on the diagram: different forms of convex regulatization and low rank
matrix selection

reweighted trace heuristics by a surrogate concave log -det function, which by local iterative lin-
earization (trace heuristics) can help us find a solution to the problem.

Thanks to this trace heuristics linearization we can transform the RMP into a characterization of
the nuclear norm expressed as

minimize ∥W k
1 GW k

2 ∥∗ (2-6)

Finally, thanks to the addition of the regularization parameterλ∈ [0,∞) in the second cost function
it is possible to obtain all Pareto optimal solutions via a convex optimization where both fitting and
accuracy can be treated in the same convex optimization problem expressed as

minimize ∥ Z ∥∗ + λ

N

∑
k∈T

∥ y(k)− ŷ(k) ∥2
2 (2-7)

where Z represents any of the nuclear norm approaches for the convex optimization.

Is important to remark that this regularization parameter λ is the bridge that joins and creates
a trade-off between the cost criterion (PEM) and the complexity of the estimated system (SID).
Choosing this parameter, however, is not trivial. All authors suggest to create an interval of the
parameter λ denoted by Λ = [λmi n ,λmax ] where a grid is made to test different values until the
minimum possible value of both cost functions is discovered.

2-3 Low Rank Matrix Selection

The forth step in this process is when the authors choose a low rank matrix G , this matrix is men-
tioned in Eq. (2-5) and Eq. (2-6), to represent the range of the observability matrix of the real sys-
tem.
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8 Nucelar Norm Subspace Identification

To construct the low rank matrix several authors have taken different approaches, seen clearly in
the second segment of Figure 2-2. The main approaches mentioned are:

• The conventional SID methods, which require projection and/or instrumental variables to
isolate the range of the observability matrix.

• The N2SID structural analysis approach, which uses structural properties of the d at a equati on
which give us the range of the observability matrix without the loss of information that the
conventional SID methods contain thanks to key structural analysis.

The purpose of this thesis is to expose a new low rank matrix G which applies the PBSIDopt theory
to create not only a new formulation of the first element of the pareto optimal convex optimization
(the reweighted or the standard nuclear norm) but also rewrites the second part (the regularized
fitting criterion) with the Hankel matrix of the PBSIDopt state space output equation. This ap-
proach will be described and explained in the next chapter.

2-4 Solving approaches

In this section we show several methods that can be used to solve the optimization problem pre-
sented in the last section and explain the steps that these algorithms require for its computation.

There are 3 general methods depicted in Figure 2-3 that are the ones used to solve this kind of
convex optimization problem, these are the Semi-Definite Programming (SDP), a more recent
one named Alternating Direction Method of Multipliers (ADMM) and an Iterative Minimization
method. Each one will be explained briefly.

Figure 2-3: Final step of the system identification process

2-5 Semi-Definite Programming (SDP)

A linear programming problem is one in which we wish to maximize or minimize a linear objective
function of real variables over a polytope. In semidefinite programming, we wish to maximize or
minimize a linear objective function of real-valued vectors (and are allowed to take the dot product
of vectors). In other words, nonnegativity constraints on real variables in linear programming (LP)
are replaced by semidefiniteness constraints on matrix variables in SDP [9].

The main advantage of this approach is the formulation. Almost any problem can be formulated
as an SDP problem and can be easily modified. For example, if you want to add a constraint, the
user just needs to input a new constraint into the problem and run the algorithm. The problem
or disadvantage relies in the fact that this is not the most efficient algorithm, thus, it takes a larger
computational time than the algorithm that will be presented below.

J. E. Bautista Gauna Literature Survey



2-6 ADMM algorithm 9

2-6 ADMM algorithm

The ADMM is a relatively new method of optimization which is of growing interest for several
reasons, mainly because many large-scale and distributed convex optimization problems can be
rewritten or approximated as an ADMM implementation. What this method achieves, is to create
an unconstrained problem by applying the Lagrangian method to the constrained problem with
an additional penalty term (the augmentation).

The advantage of this algorithm is the fact that it takes any convex optimization problem and
breaks it into smaller pieces for an easier and faster solution. So, compared to SDP it takes less
computation time, but it has the difficulty that if the optimization problem is changed (the addi-
tion of constraints for example) the reformulation in the algorithm needs to be changed.

2-7 Iterative minimization

The nuclear norm minimization has a connection to the terms /vector sparsity/ and /`1-norm/.
A variation of this heuristic terms helps to reduce the rank minimization problem further. This
is achieved by using a weighted objective based on using a nonconvex surrogate function for the
rank and solving the resulting problem locally via a sequence of convex problems.

This algorithm is easily implemented, but it has only been mentioned when dealing with rank
minimization problems, since the heuristic behind it leads to the log-det surrogate function, which
is the one that can be solve locally with linearization. It remains uncertain if this algorithm can be
used in other convex optimization problems. Then again, the addition of changes (constraints)
remains as well uncertain, since it was not found in literature other forms of iterative linearization
other than the standard rank minimizaton problem. Despite that, if constraints can be added the
reformulation of the problem is needed, thus, making it not suitable for modifications.

On the other hand, as presented in Section 2-2, the reweighted nuclear norm solved with this al-
gorithm seems to converge into lower order models than the standard nuclear norm.

2-8 Conclusions

Here it concludes the overview of the system identification process. The approach taken to com-
plete the diagram in Figure 2-4 was mainly based on the new research in [8], [5] and [4] for the
reweighted and standard nuclear norm approach to form a pareto optimal convex optimization.

The process and different approaches of system identification by an PEM and SID combination to
estimate the matrices that best describe the systems dynamics with a trade-off of the complexity
of the system is completely depicted in Figure 2-4.

As explained above, each option in the process, like the rank minimization heuristic options (stan-
dard and reweighted nuclear norm), the low rank matrix selection (instrumental variables and/or
projections and structural analysis) and the solving algorithms (ADMM, SDP, iterative weighted
minimization) not only present advantages or disadvantages according to the problem that is pre-
sented (mainly the formulation of the problem and the amount of data available), but also achieves
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10 Nucelar Norm Subspace Identification

different results in the form of fitting, rank minimization or singular value gap spacing. and com-
putational time.

Knowing the basics of system identification and how the PEM and SID families can be used to-
gether to form this new convex pareto optimization, it is now possible to introduce the new ap-
proach on the matrix selection based on the PBSIDopt method. In Chapter 3 a new branch of Fig-
ure 2-4 will be discussed. This change represents new challenges in the programming and imple-
mentation of the algorithm and new opportunities in having advantages over other conventional
system identification algorithms.
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Chapter 3

Nuclar Norm PBSIDopt form

As explained before, in this chapter a new formulation of the pareto convex optimization will be
introduced on the system identification process with the standard and reweighted nuclear norm
approach. These new branches in the process will be shown and explained below.

3-1 PBSIDopt formulation proposal

What it will be proposed in this thesis is a new way to approach step 3 and 4 of the diagram showed
before by including new branches, this will be achieved by establishing a new way to formulate the
low rank matrix of the nuclear norm relaxation and a new way to formulate the output estimate
present in the second term, which is a cost function.

This new way of reformulate these 2 parameters is inspired by the PBSIDopt algorithm for SID
([10]). First, an overview of the algorithm will be given and then it will be explained how this for-
mulation is applied in a pareto convex optimization case.

3-1-1 PBSIDopt method

In predictor-based subspace identification (PBSIDopt ), a predictor for the state sequence is con-
structed, this is done by depicting our state space model in the so-called innovation form in Eq. (2-
1) by

xk+1 = Axk +Buk +K ek

yk =C xk +Duk +ek
(3-1)

where the ZMWN ek can be eliminated from the first equation by substitution, yielding a system
description in the one-step-ahead predictor form

Literature Survey J. E. Bautista Gauna



14 Nuclar Norm PBSIDopt form

xk+1 = Axk +Buk +K (yk −C xk −Duk ) = Ãxk + B̃uk +K yk

yk =C xk +Duk +ek
(3-2)

where Ã = A−KC and B̃ = B −KC .

The state and output equation derived from this notation at any further time p will be given by

xk+p = Ãp xk +
[

Ãp−1B̃ Ãp−2B̃ . . . B̃
]


uk

uk+1

uk+2
...

uk+p−1

+ [
Ãp−1K̃ Ãp−2K̃ . . . K̃

]


yk

yk+1

yk+2
...

yk+p−1



yk+p =C Ãp xk+C
[

Ãp−1B̃ Ãp B̃ . . . B̃
]


uk

uk+1

uk+2
...

uk+p−1

+C
[

Ãp−1K̃ Ãp K̃ . . . K̃
]


yk

yk+1

yk+2
...

yk+p−1

+Duk+p+ek+p

By the assumption that Ã is stable and has all its eigenvalues inside the open unit circle, the term
Ãp can be made arbitrarily small by choosing p sufficiently large. For that reason the first term on
the right-hand side of both state and output equations can be neglected.

Now two stacked variables will be introduced, this will help us to reformulate the state and output
equations in a more compact manner.

zk =
[

uk

yk

]
=

[
zT

k−p zT
k−p+1 . . . zT

k−1

]T
(3-3)

B̂ = [
B̃ K

]
(3-4)

Describing our state space model as

xk+p = [
Ãp−1B̂ Ãp−2B̂ . . . B̂

]


zk

zk+1
...

zk+p−1



yk+p =C
[

Ãp−1B̂ Ãp−2B̂ . . . B̂
]


zk

zk+1
...

zk+p−1

+Duk+p +ek+p
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3-1 PBSIDopt formulation proposal 15

Assuming that there is no-sample delay in the loop and that K = [
Ãp−1B̂ Ãp−2B̂ . . . B̂

]
and

zk+p =
[

zT
k zT

k+1

... zT
k+p−1

]
, the equations that would describe our state space system at any

further time p are

xk+p =K zk+p

yk+p =CK zk+p +ek+p
(3-5)

From here it can be noticed that the d at a equati on is described as

Yk,p,N =CK Zk,p,N +Ek,p,N (3-6)

where the output vector is described as Yk,p,N = [
yp+1 yp+2 · · · yN

]
and the Hankel matrix

Zk,p,N is structured as

Zk,p,N =


zk zk+1 zk+2 · · · zN−p

zk+1 zk+2 zk+3 · · · zN−p+1

zk+2 zk+3 zk+4 · · · zN−p+2
...

...
...

. . .
...

zk+p−1 zk+p zk+p+1 · · · zN


If we define a matrix Γ̃(f ) = [

C T (C Ã)T . . . (C Ãf −1)T
]T

the observability-times-controllability
matrix has the following structure (assuming f = p)

Γ̃(f )K =


C Ãp−1B̂ C Ãp−2B̂ . . . C B̂

C Ãp B̂ C Ãp−1B̂ . . . C ÃB̂
...

...
. . .

...
C Ãp+ f −2B̂ C Ãp+ f −3B̂ . . . C Ã f −1B̂

 (3-7)

Based on an earlier assumption, the next approximation can be introduced

Γ̃(f )K ≈


C Ãp−1B̂ C Ãp−2B̂ . . . C B̂

0 C Ãp−1B̂ . . . C ÃB̂
...

...
. . .

...
0 0 . . . C Ã f −1B̂

 (3-8)

3-1-2 PBSIDopt nuclear norm inspired formulation

In conventional subspace identification, the main aim of the methods is to derive a low rank matrix
from which key subspaces are derived. In this new approach the classic extended observability
matrix times state matrix Os X0,N low rank matrix is substituted by the PBSIDopt inspired matrix
Γ̃(f )K Zk,p,N , where Γ̃(f ) takes the place of the observability matrix Os and the state matrix X0,N

derives from Eq. (3-5).

Since we know that the past window value p (which is assumed to be equal to f ) is greater than the
order of the system, we can be certain that Γ̃(f )K Zk,p,N is a low rank matrix.
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16 Nuclar Norm PBSIDopt form

minimize ∥ Γ(f )K Zk,p,N ∥∗ + λ

N
∥ Yp,N−p −CK Zk,p,N−p ∥2

2 (3-9)

This new approach is introduced in the system identification diagram by new branches, which can
be seen highlighted in Figure 3-1.

This constitutes the alternative method that will be tested. The first difference can be seen in the
3rd level of the process were the regularized fitting criterion uses the Hankel matrix of the PBSIDopt

state space output equation. On level 4th the new PBSIDopt inspired low rank upper triangular
matrix appears, and on the last level it is important to notice that the solving approaches that will
be mainly used in this thesis is the ADMM and the iterative minimization. This results will be
discussed on the next chapter.

3-2 Implementation

Here it will be presented the calculations and formulas that need to be taken into account to exe-
cute the selected solving algorithms.

3-2-1 ADMM

If we want to take the ADMM approach to solve this problem, we need to recall some theory behind
the method.

If we want to solve the PBSIDopt pareto convex optimization, we need to state the problem in a
generic nuclear norm optimization problem with a quadratic regularization term:

minimize ∥A (x)+ A0 ∥∗ +1

2
(x −a)T H(x −a) (3-10)

When this is done then, the ADMM algorithm focuses on solving the optimization problem by
breaking it into smaller pieces, each one easier to handle. For this, we will see our problem in the
form

min f (x) s.t. Ax = b (3-11)

If we define our problem as a dual problem and use a aug mented Lag r ang i an function L , we
can have the next reformulation

L (x; y,c) = f (x)+〈y, (Ax −b)〉+ c

2
‖Ax −b‖2 (3-12)

where the primal variable to optimize is x, the dual variable is y (in this standard basic example is
not related with the output of the system) and c is the penalty variable. It is also relevant to mention
that 〈 ,〉 is the inner product between the vectors. Viewed differently, the unconstrained objective
is the Lagrangian of the constrained problem, with an additional penalty term (the augmentation).
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3-2 Implementation 17

The objective function is separable in x and y . The dual update requires solving a proximity func-
tion in x and y at the same time; the ADMM technique allows this problem to be solved approxi-
mately by first solving for x with y fixed, and then solving for y with x fixed, using a singular value
thresholding algorithm ([11]). Rather than iterate until convergence, the algorithm proceeds di-
rectly to updating the dual variable and then repeating the process. This is not equivalent to the
exact minimization, but surprisingly, it can still be shown that this method converges to the right
answer (under some assumptions) [7]. Hence, our original problem in Eq. (3-10) reformulates into

L (x; X , Z ) = ‖X ‖∗+ 1

2
(x −a)T H(x −a)+ tr(Z T (A (x)+ A0 −X ))+ ρ

2
‖A (x)+ A0 −X ‖2

F (3-13)

The linear mapping matrix A (x) that first appear in Eq. (3-10) should be our observability-times-
controllability matrix Γ̃(f )K , that will be formed by the optimization variable x (which contains
the Markov parameters in a vector form).

If the matrix Γ̃(f )K and the vector CK are multiplied by the stacked data matrix Zk,p,N−p we ob-
tain the low rank observability-times-controllability matrix and the output vector Yp,N−p respec-
tively.

It is easy to notice that in the quadratic cost function we need to modify our terms to have only the
optimization variables. Leaving in our x term only the Markov parameters, leaving out the stack
data matrix.

To do this, we need to follow the next modifications:

Our first step will be to change our variables to vertical vectors. Since our terms inside the quadratic
function are vertical vectors, we need to transpose our Yk,p,N vector, which means now that Zk,p,N

will be of dimensions N −p ×p(l + r ) and K will have dimensions p(l + r )×1, thus

Yk,p,N = Zk,p,N K C (3-14)

Secondly, we will introduce an extra term that will make our problem significantly smaller if the
amount of data is big. This term is Z T

k,p,N−p , that multiplied by all of our terms will create the next
equation

(Z T
k,p,N Yk,p,N −Z T

k,p,N Zk,p,N K C ) (3-15)

To simplify this term, we will use from now on the expression Z T Zk,p,N for Z T
k,p,N Zk,p,N , thus

(Z T
k,p,N Yk,p,N −Z T Zk,p,N K C ) (3-16)

This means that our vectors, instead of being a length of N −p will be size p(l + r )

Next, we need to compare both equations and make sure that x =CK
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18 Nuclar Norm PBSIDopt form

(Z T
k,p,N Yk,p,N −Z T Zk,p,N K C )T H(Z T

k,p,N Yk,p,N −Z T Zk,p,N K C )

=
(a −x)T H(a −x)

=
(Y T

k,p,N Zk,p,N −C T K T Z T Zk,p,N ) H (Z T
k,p,N Yk,p,N −Z T Zk,p,N K C ) H = I

=
(Y T

k,p,N Zk,p,N (Z T Zk,p,N )−1 −C T K T ) H ((Z T Zk,p,N )−1Z T
k,p,N Yk,p,N −K C ) H = (Z T Zk,p,N )2

Which means that a = (Z T Zk,p,N )−1Z T
k,p,N Yk,p,N

3-2-2 Calculation of the system matrices

In this section 2 options will be explained that can be used to calculate the system matrices once
the algorithm finds a suitable low rank matrix.

The convex optimization problem from Eq. (3-9) for each λ yields a CK vector (which is the vari-
able x), this vector will be used to create the matrix Γ̃(f )K . This matrix will be multiplied by the
stacked data matrix Zk,p,N to create the low rank matrix.

Once the low rank matrix is computed (this needs to be done for each λ), the order of the system
should be obtained. The order can be acquired two ways. The first can be from the rank of the
low rank matrix X obtained from the ADMM algorithm. This matrix rank was defined based on a
operation called ’singular value soft-thresholding’ (see [11]). The second option is to compute the
singular values of Γ̃(f )K Zk,p,N and select manually or automatically (see [4]) the order based on
the gap between the dominant and the weak singular values.

Ones the order is selected, an SVD of the low rank matrix will be done and only the dominant
singular values and left/right-singular vectors will be selected to do one of two options: a least
square solution or use the MATLAB system identification toolbox dx2abcd function to obtain the
system matrices.

3-2-3 Other calculations

For the first part of the ADMM optimization its necessary to minimize over x the aug mented
Lag r ang i an of the generic problem stated in Eq. (3-13). This will lead to the next equation

(H +ρM)x̂ = H a −Aad j (Z +ρA0 −ρX ) (3-17)

where Aad j is the adjoint of the linear mapping matrix A (x). Both terms in the terms of the
PBSIDopt approach are detailed in Appendix A

Also, he M matrix is a positive semidefinite matrix defined by the identity

M z =Aad j (A (z)) ∀ z (3-18)
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3-3 Reweighted PBSID Nuclear Norm 19

which its obtained by summing the diagonals of the original matrix Zk,p,N Z T
k,p,N ∈ Rp(l+r )×p(l+r ) =[

ξi j
]

as showed below. If L = [
L1 L2 L3 L4 · · · ]= [

0 (l × r ) 2(l × r ) 3(l × r ) · · · ]
then,

M = [
mi j

]
mi j = m j i , i < j

cei l ((p(l×r )−i+1)/(l×r ))∑
w=i

ξ(i+Lw )( j+Lw ), i ≥ j

(3-19)

3-3 Reweighted PBSID Nuclear Norm

The reweighted N2PBSID implementation is straightforward performed as indicated in [8].

To start the implementation of the reweighted nuclear norm with our PBSIDopt approach we need
to use the Eq. (2-6) in combination with Eq. (3-9), which is seen as

minimize ∥W k
1 Γ

(f )K Zk,p,N W k
2 ∥∗ + λ

N
∥ Yp,N−p −CK Zk,p,N−p ∥2

2 (3-20)

Once we visualize this problem, the first step to start the algorithm is to initialize the weights W k
1

and W k
2 as identity matrices of adequate dimensions.

Afterwards, we need an initial low r ank matr i x that can be obatined by the regular N2PBSID
algorithm or any other algorithm that can solve the dual problem in Eq. (3-20) like the gradient
projection algorithm. Once this matrix is obtained an SVD of its solution multiplied by the weights
needs to be performed. An example of this can be visualized as

UΣV T =W k
1 Γ

(f )K Zk,p,N W k
2 (3-21)

this SVD will be used to calculate the new components that are later used in the new weights, this
new components are matrices calculated as

Y k+1 = (W k
1 )−1UΣU T ((W k

1 )T )−1

Z k+1 = (W k
2 )−1V ΣV T ((W k

2 )T )−1

Now the weights will be updated as

W k+1
1 = (Y k+1 +δI )−1/2

W k+1
2 = (Z k+1 +δI )−1/2

were δ is a small regularization constant, in this case it was chosen to be 0.5.

If the termination criterion is reach the iterations stop, else set k = k+1 and solve the dual equation
in Eq. (3-20) with the new weights and follow the steps until a satisfactory result in found.
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20 Nuclar Norm PBSIDopt form

Once we know how to apply this new algorithm theoretically and practically, on Chapter 4 a se-
ries of tests will be applied to this algorithm to verify if the method performs as a suitable system
identification method, and if this does, it will be verified if it brings any benefits compared to the
existing ones.
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Figure 3-1: Diagram with the new branches inspired in the PBSIDopt algorithm
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Chapter 4

Results and discussion

In this chapter the results given by this new PBSIDopt inspired approach in the ADMM algorithm
will be presented, among comparisons with other existing methods, specifically N2SID and PBSIDopt .
In addition, other characteristics like the length of the amount of available data and the reweighted
nuclear norm approach will present interesting results that will be mention below.

4-0-1 Validation Study

The numerical results of such experiments will be reported in this section. These experiments were
carried out in MATLAB R2013b running on an Intel Core i5-4200U CPU 1.6 GHz with 4 GB of RAM.

An example of the Matlab implementation of this experiments can be seen in Appendix B.

4-0-2 Data selection and pre-processing

The Nuclear Norm PBSIDopt approach was implemented for SISO systems in several real-life DaISy
(Database for the Identification of Systems) data experiments to know if satisfactory results were
obtained. Later on, a defined second order transfer function is introduced for further experiments
and examination of the algorithm.

The DaISy experiments selected are shown in Table 4-2 and their details are presented in Table 4-
3. The d at a l eng th from the individual experiments are indicated by Ni de . Since many of the
data sets contain poorly excited data at their beginning, the first del samples are discarded from
each data set. Finally, each identified model is validated for each test case on the same validation
data set. These validation data sets contain the Nval samples following the sample with index
max(Ni de )+1.

On the other side, the defined transfer function will use different data (mainly randomly created)
to compare results and examine on a more detailed level the solutions obtained.

This data details for both, the DaISy and the defined transfer function experiments may be changed
for each experiment depending on the circumstances presented in each test, if this is the case, the
changes will be defined in each section where this occurs.
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24 Results and discussion

4-0-3 Compared Identification methods

In this section the methods that will be involved in this study will be detailed and explained. The
reasons why this methods were selected and important details about each one for implementation
will be mentioned and described below.

The basis of comparison for the results given by the new PEM-SID PBSIDopt approach, which from
now own will be named N2PBSID, are compared to the ones found in [5], since this document was
the basis of influence for the realization of this thesis. Ans in [5], in [4], which is a source that
influenced [5] publication, has some of the the same SID methods for comparison, which makes
them suitable to be the basis of comparison for the N2PBSID approach.

The methods that are going to be compared are the N4SID, the N2SID and the PEM. The WNNopt

method of [4], included in [5] research, is not included since the DaISy dataset that were selected
show a better fitting result for N2SID and N4SID ([5]), which means that the results given by WNNopt

are not relevant to compare with the N2PBSID. In addition, the PBSID method was included since
this is one of the methods that this new approach is based on, so it is consider interesting if this
new method can have any advantage over the classic PBSIDopt algorithm.

For N4SID the Matlab System Identification App is used in its default settings, no input delays are
estimated and a guaranteed stable simulation model is identified. The model order is determined
automatically in the code by using the option ’best’.

For the N2SID method the ADMM algorithm is implemented with the same specifications men-
tioned in [5]. In the code that is provided in http://users.isy.liu.se/en/rt/hansson/, it is explained
that in the algorithm the user can choose among 3 methods to compute the state-space realiza-
tion. Since this point was not discussed in the paper, the 3 methods were simulated for each λ and
for each Ni de experiment, and the one that got the best fit was selected.

The regular PBSIDopt algorithm is included since its interesting how this new algorithm compares
with the original PBSIDopt algorithm. That’s why the model order of PBSIDopt is the same as the
one determined in N2PBSID method.

4-1 Nuclear Norm dual minimization with PBSID theory (N2PBSID)
results

DaISy experiments

As stated before, the four SID methods that will be tested in Table 4-1 will be compared for the
datasets in Table 4-2. The results of this comparisons are for each experiment summarized in two
graphs in the same figure. The left graph of the figure displays the goodness of the fit criterion
VAF (Variance-Accounted-For) by simulating the model obtained from each method with the val-
idation data. The fit measure is computed by the function VAF in Matlab’s System Identification
Toolbox. It is defined in percentage as

fit = (
1− variance (y − ypr ed )

variance (y)

)∗100% (4-1)
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4-1 Nuclear Norm dual minimization with PBSID theory (N2PBSID) results 25

Method λ p Weighting
N4SID, [Ljung [2007]] / 15 automati c

N2SID [Verhaegen] [10−3,103] 15 /
N2PBSID Algorithm [10−3,103] 15 /
PBSIDopt Algorithm / 15 /

Table 4-1: Methods used for identification and their user selection parameters

for a single output sequence, where y is the validation data output sequence and ypr ed is the pre-
dicted output from the model.

The right graph of the figure displays the model complexity as defined by the model order of the
state space model. This two graphs are graphed versus the length of the identification data bath as
indicated by the symnol Ni de in Table 4-3.

In order to evaluate additional information retrieved from the results, the singular values are com-
puted for the N2PBSID over the N2SID. This methods will be compared because in [5] the N2SID
algorithm is compared to WNNopt from [12] and shows to have an improvement in the gap of the
singular values, giving a better estimation of what the real system’s order is. Therefore, this analysis
will give further information to see if any improvements were obtained from the low rank detection
in N2PBSID. The singular values will be compared from the best fit obtain in any of the data length
sequences from both algorithms independently.

From these methods is important to mention that the key user selection parameters are listed in
Table 4-1. The first user selection is the number of block rows p of the data Hankel matrices. In
methods like N4SID, PBSIDopt and N2PBSID a distinction is made in the block rows because they
are referring to the past and future window of the Hankel matrices, while in N2SID this is not the
case. Since picking this parameter is an open research problem, the number of block rows of past
and future Hankel matrices was chosen to be equal to the number of block rows of the regular
Hankel matrix in N2SID. Usually this number is chosen at least 2 times higher than the real system’s
order; since we don’t know the real order, the number 15 was chosen conservatively because it is
suspected that this mechanical SISO systems will not have an order higher than 5.

For N2PBSID the ADMM algorithm presented in last chapter is implemented. The regulariza-
tion parameter λ spectrum for optimization is given 20 values between 10−3 and 103 using the
logspace Matlab function. The maximum number of iterations in the ADMM algorithm has been
set to 200, since in the majority of the cases the final result doesn’t change after this number in the
algorithm; and the solution accuracy tolerances have been set to 10−3 and 10−6 for relative and
absolute accuracy respectively. The parameters used to update the penalty parameter have been
set to τ = 2 and µ = 10. The final model order is selected by the user, and this will be selected de-
pending on the best fit on the validation data taking into account the model’s order, that will be
selected to be taking into account the one obtained by N2SID.

Experiment 1: Hair dryer (data set 96-006)

The results of this experiment can be seen in Figure 4-1. The goodness of the fitting criterion and
the estimated model order are seen on the left and right of the figure respectively.

The N2PBSID algorithm is effective in finding an appropriate model that describes the system’s
behavior with a VAF mean of approximately 99%, were the best result was given when the data
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Nr Data set Description Ntot

1 96-006 Hair dryer 1000
2 96-002 Steam heat exchanger 4000
3 96-009 Flexible arm robot 1024

Table 4-2: Data sets form the DaISy collection, [13]; Ntot is the total number of data samples
available

Nr Ni de del Nval

1 80 100 120 140 160 180 200 250 300 400 120 450
2 150 200 300 500 750 1000 1250 1500 1750 2000 200 1500
3 80 100 120 140 160 180 200 250 300 400 120 450

Table 4-3: Ni de indicates the increasing length of the data sets used for identification starting
with samples index del ; Nval indicates the length of the validation data starting with samples
index max(Ni de)+1)

available was 400. However, it doesn’t show a better fitting criterion that the other methods besides
N4SID. The method that outperforms the others in this experiment is the PBSIDopt since its the
one that has the highest fitting criterion in 6 out of the 10 data simulations. Subsequently, N2PBSID
and N2SID are next in their performances. Even though both present approximately the same VAF
mean value, N2SID goth better results between Ni de = 250 and 400 and its highest VAF surpass the
highest VAF of N2PBSID. Additionally, N2PBSID and PBSID provide a more stable behavior than
other methods, when Ni de increases the fitting value seem to increase too; this is not the case of
N4SID and N2SID.

In this case N2SID and N2PBSID present the same order’s model which is n = 3, that can be easily
seen in the biggest gap of the singular values presented in Figure 4-3 (furthermore, the N2PBSID
method seem to improve the singular value gap spacing over N2SID).

Experiment 2: Steam heat exchanger (data set 96-002)

Once again, the goodness of the fitting criterion and the estimated model order are shown in Fig-
ure 4-3.

In this experiment the data was detrended before analysing. Usually detrending is used to remove
a feature thought to distort or obscure the relationships of interest [14]. In this case the trend pre-
sented in the data lead to undesired results. This was the only dataset were the data was detrended
since the other two experiments presented approximately the same results without applying the
detrending pre-step, if not slightly worse.

In this method is clear that the N2PBSID outperforms all the other methods. Not only has 100% of
the cases the highest fitting value, is the one that tends to have the smallest model order estimation.

In this experiment it can also be seen that the accuracy of the model is higher when more data is
present for identification purposes, unlike N2SID. This can be seen from Ni de =1000 to 2000, when
the N2PBSID algorithm chooses a first order model for its result. Besides that, the highest fitting
accuracy (Ni de =750) is where the N2PBSID algorithm chooses the highest order model, making
this a consistent algorithm in the trade off between fitting accuracy and model order estimation.
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Figure 4-1: VAF and Order DaISy #1 - Hair dryer

The N4SID and PBSIDopt methods cannot compete with the last two algorithms. PBSIDopt seem to
get a good value on the first experiment, but as the amount of data available for analysis increases
the method seem to deteriorate in its efficiency, which means that it is not reliable for this kind of
experiments. The same can be said about N4SID. In detail, the VAF values in this experiment were
lower than in the first experiment, it seems that is due to lower signal to noise ration or system
nonlinearities; which seem to be a problem to handle for the PBSID algorithm.

Also, the singular values of the best fits of both experiments are presented in Figure 4-4. In this
plot it is seen again that the N2PBSID method has an advantage over N2SID to detect easier the
order of the model by making larger the gap between the significant singular values from the other
ones. In N2SID the model order chosen for Ni de = 750 was n = 4, which is consistent with what its
seen on the plot, while with the N2PBSID method is its clear that the model order selected should
be n = 3 for the Ni de = 750 data batch. This is not the case since in the experiments it can be
that for Ni de = 750 the order of the estimated model was chosen to be n = 4 just as in N2SID, this
happened because the number of λ experiments is limited, and the chosen interval values of the
regularization parameter were to wide, thus, the λ values available didn’t identify a model n = 3
that could be chosen.

Experiment 3: Robot arm (data set 96-009)

The goodness of the fitting criterion and the estimated model order are shown in Figure 4-5.

In this experiment a new change was made. The vector in Eq. (3-10) named a is reformulated.
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Figure 4-2: Singular values of DaISy #1 - Hair dryer

minimize ∥A (x)+ A0 ∥∗ +1

2
(x −a)T H(x −a)

In the original equation this vector’s value was given by a = (Z T Zk,p,N )−1Z T
k,p,N Yk,p,N , while in this

experiment the vector utilizes the MATLAB function pinv to create a pseudo-inverse matrix. This
matrix allows a more stable formulation because, when dealing with this specific experiment, the
inverse of the multiplication of two matrices that have small values (input and output) can create a
singular or almost singular matrix, which creates really inaccurate further formulations. The new
a vector’s formula reads as a = (Z T

k,p,N )†Y T
k,p,N .

It was tested in the other experiments if this vector change could improve the results obtained.
The conclusion was that this formulation only affected significantly this experiment, that’s why the
original formulation was kept for the last couple of experiments since it was theoretically proven
how to get to that formulation in Chapter 3 and therefore easier to follow for future references.

The N2SID method seem to be the leading one in fitting values compared to all the others. In the
first plot it can be seen that the N4SID and PBSID algorithms fail to get a good fitting criterion for
this system, were N4SID displayed values around 20% and PBSID didn’t show any result.

Even though the N2SID algorithm has a better VAF in 90% of the cases, the N2PBSID algorithm
seems more stable and shows clearly the trade-off between model complexity and model accuracy.
The blues lines representing the N2PBSID in both plots show the same pattern, the higher the order
of the model, the accuracy follows as well; nonetheless just in one case the N2PBSID shows the
same fitting value as N2SID when they have the same high order (Ni de = 180), in other instances
even when both model orders are high (like in Ni de = 120), the fitting criterion of N2PBSID doesn’t
match up with the model found with N2SID.

J. E. Bautista Gauna Literature Survey



4-1 Nuclear Norm dual minimization with PBSID theory (N2PBSID) results 29

Figure 4-3: VAF and Order DaISy #2 - Steam heat exchanger

Experiment Ni de N2SID (sec) N2PBSID (sec)
1 (96-006) 400 24 18
2 (96-002) 2000 260 40
3 (96-009) 400 20 12

Table 4-4: Time taken by each iterative algorithm to find a suitable solution with the maximum
amount of data available

It is interesting to mention too that the singular values presented in Figure 4-6 are interesting. Both
models present a different visualization of the singular values. N2SID shows a bigger gap in the 4th
singular value, while N2PBSID has two major gaps, one in the 2nd and the other one in the 7th
singular value. Nonetheless both model orders seen in the singular values differ from the model
order that in selected for the estimated system. Both methods chose a 8th order, which doesn’t
coincide with the gaps in Figure 4-6 or the missing λ values available for the model. Which makes
this problem an open research question that can be examined furthermore.

Execution time

It was of interest to test the speed of the algorithms that require iterations for its solution. This was
tested for each of the DaISy experiments with the largest identification data available max(Ni de ).
The times are presented in Table 4-4.

It can be seen that the N2PBSID algorithm is faster than the N2SID algorithm. It is hypothesize that
this occurs because the N2PBSID algorithm doesn’t require to calculate any Fourier transformation
matrix which N2SID does. This speeds the algorithm up to 5 times.
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Figure 4-4: Singular values of DaISy #2 - Steam heat exchanger

4-1-1 Small number of samples

As is known, SID methods perform better when more information is used. This is due to the irreg-
ularities that short data batches can contain, some examples can be noise trends, non-exciting in-
put signals, nonlinearities, etc.; which makes them not representative of the behavior of the whole
system, altogether affecting the results from the estimation model. Equally important, some SID
methods use projections to derive the low rank matrix that lead to the approximate model, and
this can lead to a loss of information, which again, can result in poor estimation models.

On the other hand, in cases were there is a limited amount of available data a trade-off occurs be-
tween the number of block rows (the user parameter p) and the amount of columns in the Hankel
matrices of stack data. As it is known, there is an structural property that states that the number of
block rows must be higher than the order of the system to have a low rank matrix approximation
(p > n), but when there is a short amount of data available, the number of block rows also must be
low enough to create a Hankel matrix of stack data with enough columns. After all, the amount of
columns can affect the real rank of the matrix and future calculations can be influenced negatively
by this case.

Therefore, the motivation behind testing the N2PBSID algorithm with batches of really small amount
of samples, is to see if in this specific case the method can handle this situation, and if it does, no-
tice if it shows any advantage over the other methods already available.
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Figure 4-5: VAF and Order DaISy # 3 - Robot arm

Defined transfer function

The first experiments were performed with a specifically chosen second order transfer function.
Inputs for identification and validation were created randomly for this purpose. The past window
block rows user parameter was chosen to be p = 9 and the amount of data available for identifi-
cation was chosen to be 18 samples (2 times the block row parameter), while the validation was
chosen to be 3 times the identification samples this amount with 54 samples, and the relative ac-
curacy tolerance was set to 10−1. The rest of the parameters, like the absolute accuracy tolerance,
penalty parameters, the maximum amount of iterations, etc. were chosen with the same values as
in the DaISy experiments.

Certainly, it is important to mention that for small data batches the change in the a vector is crucial.
As mentioned before, the noise behavior can affect the identified model, in this case it can make
the formula inv(Z Z T

k,p,N ) singular or badly scaled, which means that when multiplying Z Z T
k,p,N ×

inv(Z Z T
k,p,N ) the result will not result in identity, which makes the algorithm find wrong solutions

when handling this equation for the fitting criterion. Thus, the a vector was again changed for
a = (Z T

k,p,N )†Y T
k,p,N .

Also, the N4SID method is not shown in the results, because the amount of values for identification
was not enough for analysis.

The results obtained from this experiment are summarized in Figure 4-8. It was noticed that while
repeating random experiments the results obtained were not always the same. It seem that de-
pending on the noise presented on the system the algorithms sometimes could and sometimes
could not detect a model. That’s why it was decided to make 100 consecutive experiments to see
what kind of results the methods tend to exhibit.
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Figure 4-6: Singular values of DaISy #3 - Robot arm

What we can see in Figure 4-8 is that on the left plot each circle represent one experiment and its
height represents the fitting obtained from the estimated model. On the right plot a representation
of the amount of instances the experiments had, in percentage, in a specific range of VAF fitting
obtained by the models

For example, it is shown in Figure 4-8 that the PBSIDopt method couldn’t find suitable solutions
due to the bad scaling of inv(Z Z T

k,p,N ), all results tend to have a fitting of 0%. On the other hand, the
N2SID seem to be suitable for most cases, it can be seen in Figure 4-8 that in approximately 75% of
the cases the model selected has between 95% and 100% fitting against the validation output. From
the other 25% is important to mention that almost all of the models had a fitting VAF higher than
60%, that show that in most cases a good model is guaranteed. While in N2PBSID this is not the
case, even though almost 50% of the cases have a 95%-100% fitting against the validation output,
and other 20% present a good model estimation with a VAF between from 80% to 95%, there are
other cases were the fitting was not satisfactory; approximately 10% didn’t show any result at all,
and the other (approximately) 20% had a VAF between 20% and 80% fitting.

It was verified that for the N2PBSID those bad model cases were related solely to the noise, be-
cause some inputs and outputs were tested with different noise vectors, and the algorithm showed
that for some specific noise sequences the results of the estimated model were not adequate. When
analysis visually this specific noises sequences nothing particular was observed, it is hypothesize/-
believed that in this specific sequences the noise is colored or has one or several outliers/spikes
that affect how the system interprets the overall noise in the outputs.

Nonetheless another experiment with a slight increase in the identification samples gives a dif-
ferent perspective. This time the same experiment (with the same amount of data for validation
Nval = 54) was performed with Ni de = 27 samples for identification, which makes the Hankel ma-
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Figure 4-8: Left: VAF representation of 100 random experiments with Ni de = 18.Ri g ht :
Per cent ag eo f i nst anceso f theV AF valuesobt ai ned wi thNi de = 18

trix of stack data a squared matrix.

The results of these experiments can be seen in Figure 4-10. Then again, on the left each circle
represent one experiment and its height represents the fitting obtained from the estimated model.
On the right a representation of the amount of instances the experiments had, in percentage, in a
specific range of VAF fitting obtained by the models.

In Figure 4-10 you can now see that the PBSID method is able to get better results than in the
last experiments, yet again the noise batches affected at least 30% of the samples obtaining fitting
models of with less than 60% fitting, nevertheless approximately 50% of the models obtained had
a fitting between 95% and 100%, but this results are not comparable with the ones obtained with
N2PBSID. In N2PBSID more than 95% of the experiments could obtain a model, and almost all
of them (more than 90%) had a model with a fitting between 95% and 100% VAF. Only a small
percentage of the results landed in the range of 90% to 95% fitting and less than 10% didn’t obtain
a model whatsoever. This makes a N2PBSID a better method than N2SID. On the other hand, the
N2SID method seem to show the same trend as the previous experiments, since approximately
80% of the models have the 95% to 100% accuracy compared with the 75% of the last experiment;
and all the other experiments showed almost the same values of fitting of less than 10%.

DaISy experiments

Thanks to the baffle results obtained in these experiments with random noise sequences and in-
puts, another experiment was designed. It was decided that this new experiment will use some of
the DaISy datasets and validation data but with a much smaller amount of identification samples,
this with the purpose of testing real systems to know if the results given resemble the ones of the
previous 2 experiments.

The same algorithm parameters were chosen as the ones detailed in section 4-2, the only difference
is that for identification purposes the data batches were selected to be of 30 samples long (twice the
amount of past window block rows of the Hankel matrices), and 10 different batches were selected
from the data available, to see if this batches had differences in the results presented.

Literature Survey J. E. Bautista Gauna



34 Results and discussion

Figure 4-10: Left: VAF representation of 100 random experiments with Ni de = 27.Ri g ht :
Per cent ag eo f i nst anceso f theV AF valuesobt ai ned wi thNi de = 27

These batches had been selected by first discarding the poorly excited data (del ), and then grab-
bing intervals of 30 samples until 10 batches are collected. Furthermore, each batch is validated
on the same validation data set. This validation data sets contain the same Nval samples following
the sample with index max(Ni de ) from Table 4-3.

Then again, the N4SID method results will not be presented since the amount of data available for
analysis is not enough for identification.

Experiment 1: Hair dryer (data set 96-006)

Results of this experiment can be seen in Figure 4-11. On the left plot it can be seen that in 8 out
of the 10 experiments the N2PBSID method outperforms the fitting of the results obtained with
N2SID method, while the results on the right plot shows a equivalence in the order selected by
both methods (mainly on order n = 2).

It can also be seen that in the first sample batch the fitting of both methods sets around the 50%
and 60% VAF, which means that the first sample was not representative of the system, meaning
that it is highly likely that the input was not exciting enough or the noise present at that particular
stage was high for the signal to noise ratio be small.

Nonetheless, the N2PBSID seem to have increased in accuracy on comparison with the N2SID
method, since in the first experiment with more data available, shown in Figure 4-1, both methods
had comparable results, now it seems that the N2PBSID method is better.

Likewise, it can be noticed that even when the results of the last experiment always round in the
99%, the fitting values presented in the small batch experiments are around the 95%. Furthermore,
a reduction on the order of the system identified was present from n = 3 to n = 2. This means that
the results obtained when a really small amount of data is present, even when the accuracy is lower,
are acceptable and satisfactory with a more simple model order.

Experiment 2: Steam heat exchanger (data set 96-002)

The results of the second experiment can be seen in Figure 4-12. Now it can be seen on the left plot
that the N2PBSID methods outperforms the fitting results of the N2PBSID method. This coincides
with the results obtained with the first experiment in 70% of the times.
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Figure 4-11: VAF and Order for small number of samples DaISy #1 - Hair dryer

Despite that, it can be seen that the N2PBSID method couldn’t managed to analyse correctly the
last experiments, giving on batch 7, 9 and 10 results below 70% fitting while N2SID was able to give
suitable results for all samples.

On the first experiment with a bigger amount of data the right plot shows a model order n = 1,
while on this experiment the order of the model, on the majority of the cases, seems to be n = 1,
while the N2SID shows a model order in both experiments at n = 3.

It can be concluded that, again, the fitting values of N2PBSID with the limited amount of data are
close to the values obtained by the experiments done with all the samples, making this method
suitable for this kind of cases.

Experiment 3: Robot arm (data set 96-009)

It was decided that the results of this experiment were not going to be included in this report. The
results obtained for both methods, N2PBSID and N2SID, were not only inconsistent (each exper-
iment gave a vast range of different results), but the fitting values obtained were on the majority
below the 60%. These poor results are presumed to be explained by the complexity of the system,
a low noise to signal ratio and/or a non-representative or non well excited sample of data of the
system.

4-2 Reweighted nuclear norm application

The reweighted nuclear norm implementation of the already described algorithm is tested here.
The purpose of this implementation is to see if further developments can be made to the singular
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Figure 4-12: VAF and Order for small number of samples DaISy #2 - Steam hear exchanger

values, also it will be checked if the fitting accuracy and the order of the system picked is changed
thanks to the iterations made in the algorithm.

This exercise main goal is to see a change in the singular values, were the gap between the domi-
nant singular values and the weak singular values increases, by means of getting higher dominant
singular values, lower the weak singular values or a combination of both.

It is indispensable to mention that the first initial results are given by the original N2PBSID algo-
rithms. Then for the weighted iterations the SDP solver cvx program is used to find a solution since
the ADMM implementation with the weights require some changes requiring linear algebra calcu-
lations. Due to time limits, it was decided to use the cvx solver, so this modification is open for
further research to see if the ADMM algorithm can get different results from the cvx solver.

Defined transfer function

The first experiment was set to be a given transfer function. Again the same second order transfer
function as in the experiment with the small batches of data was tested. The same user choice’s
and parameters are used except for the λ range values, it was changed from 10−3 and 103 to 10−1 to
105 because it seem that better results were observed if the range was increased towards a high λ.
The amount of data for identification is Ni de = 90 samples (a number that was tested with regular
N2PBSID as a choice that always gave good results) and the validation data is the same amount
with Nval = 90 as suggested in [15].

Also, the number of iterations used to see if the weights were effective in moving the singular values
was 20, since more iterations didn’t change the results and also took a bigger computation time to
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perform.

The plots that will be shown representing the singular values will have two types of markers, a circle
and a plus, the red plus represents the singular values found by the regular N2PBSID algorithm, the
blue pluses represent the changes made by the weighted iterations, were the lighter blue pluses are
the first iterations and the dark blue or black ones are the latest iterations.

Examples of the results obtained are presented here.

The majority of the results presented with random inputs and noise sequences are (representative)
depicted in Figure 4-13.

Figure 4-13: Arbitrary experiment - Left plot: Singular values from both, the system found by
N2PBSID and its reweighted iterations. Right table: VAF values obtain by N2PBSID and its
reweighted iterations.

As it can be seen, the singular values are not moved significantly to observe a notably change in
the gap between the dominant and the weak singular values. Furthermore, the iterations don’t
seem to give any advantage in the fitting accuracy. In the table found in Figure 4-13, several details
from the N2PBSID algorithm and the reweighted iterations are presented. From left to right the
columns presented are: the number of the test, the λ used for the optimization, the order that
the algorithm picked as suitable for the system, the fitting accuracy form the N2PBSID algorithm
and the fitting accuracy once the reweighted iterations are performed. In this table it can be seen
that the iterations present three cases, sometimes the iteration help to get a more accurate result
in the fitting value, clearly evident in test number 12, secondly, most of the times the iterations
decrease the accuracy found first by the N2PBSID algorithm, clearly seen in test 13, 14 and 15, and
in the third case the fitting value doesn’t change significantly from the originally found, seen in test
number 16 to 20.
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test λ order NN VAF RewNN VAF
1 0.100 1 16.602 0
2 0.206 1 9.557 0
3 0.428 1 4.511 0
4 0.885 1 1.718 0
5 1.833 1 1.322 0
6 3.792 1 1.527 0
7 7.847 1 0.568 0
8 16.237 2 32.421 0
9 33.598 2 50.929 36.355

10 69.519 2 58.175 50.032
11 143.845 2 62.110 25.919
12 297.635 3 36.658 94.655
13 615.848 3 78.888 35.231
14 1274.3 2 95.464 57.330
15 2,636.7 2 98.011 76.877
16 5,455.6 2 99.033 99.389
17 11,288 2 99.363 99.419
18 23,357 2 99.507 99.427
19 48,329 2 99.567 99.432
20 100,000 2 99.586 99.438

In some particular cases the reweighted nuclear norm optimization seem to have desirable out-
comes as shown in Figure 4-14. Were a more significant gap can be seen thanks to both, a higher
position of the dominant singular values and a lower position of the weak singular values. Then
again, the fitting accuracy behavior was the same as last example, were if the accuracy didn’t de-
crease with the iterations, it didn’t change significantly.
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Figure 4-14: Arbitrary experiment - Singular values from both, the system found by N2PBSID
and its reweighted iterations.

On the third case of results presented the singular values show a modification depicted in Figure 4-
15, were the weak singular values decrease, but the gap between the dominant and the weak ones
remains the same.

Figure 4-15: Arbitrary experiment - Left plot: Singular values from both, the system found by
N2PBSID and its reweighted iterations. Right table: VAF values obtain by N2PBSID and its
reweighted iterations.

In this case the fitting accuracy seems to have in most of the cases better values in the iterations

Literature Survey J. E. Bautista Gauna



40 Results and discussion

than in the original N2PBSID, seen from test 11, 12 14 and 15.

test λ order NN VAF RewNN VAF
1 0.100 0 0 0
2 0.206 0 0 0
3 0.428 0 0 0
4 0.885 1 0 0
5 1.833 1 0 0
6 3.792 1 0 0
7 7.847 1 0 0
8 16.237 2 0 0
9 33.598 2 0 1.316

10 69.519 3 3.129 4.968
11 143.845 3 3.7108 32.751
12 297.635 3 6.700 97.548
13 615.848 3 18.912 29.105
14 1274.3 3 66.284 99.425
15 2,636.7 2 95.999 99.842
16 5,455.6 2 99.463 99.786
17 11,288 2 99.907 99.783
18 23,357 2 99.988 99.782
19 48,329 2 99.973 99.782
20 100,000 2 99.955 99.784

The conclusion from this experiments was the same as in the original N2PBSID algorithm, the re-
sults seem to be perplexing. There is not clear advantage or disadvantage of the weighted iterations
done of this system, probably due to the noise variations presented in the output.

DaISy experiments

From the last conclusions it was decided that testing this method on real-life data was going to
clarify if this algorithm modification can bring an advantage from the original N2PBSID algorithm.

On this experiments it was decided to pick the best results (fitting accuracy) given from the last
section to see if the weighted iterations could improve them. For this reason the first experiment
(hair dryer #) is done with Ni de =400 samples, the second experiment (steam heat exchange #) the
experiment is done with Ni de =750 samples and the third experiment is performed with Ni de =300.
For all the experiments the validation data used is the same described in the first section of this
chapter from Table 4-3 and the λ ranges return to the original ones with 10−3 to 103.

Since in these experiments the focus is on the benefit that the reweighted iterations have on the
singular values, the singular values plots that will be show display several markers. The red circle
represents the original singular values found by the N2PBSID algorithm with theλ chosen, the plus
sign (+) are the singular values after every iteration, were the more blue ones are the first iterations
and the more black ones are the last iterations. Since the blue and black colors are sometimes
difficult to distinguish and to follow, a red plus was placed in the last iteration.

Experiment 1: Hair dryer (data set 96-006)
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Figure 4-16: VAF and Order for small number of samples DaISy #2 - Steam hear exchanger

We can observe the singular values of the first experiment in Figure 4-16. Here we can see that
the singular values change drastically thanks to the weighted iterations. It can be seen that the
iterations made all but the first singular value to decrease. This result is not consistent with the
one obtained by the N2PBSID, since it was detected a third order system form this data, while this
reweighted iteration shows that a better selection would be a first order system. Not only that, it is
interesting to see in Table 4-5 that the order selected by the N2PBSID that could get a stable system
after the iterations started at order n = 9, which is not consistent with the singular values gap in
Figure 4-16. Nonetheless the solution found by N2PBSID for a system of order n = 9 was used to
calculate the matrices of a first order system to see if this system reflected a better or similar fitting
accuracy than the third order system found by N2PBSID; but this was valueless since the fitting
accuracy decrease to 66%. Not only this, the system with the n = 9 order was computed and the
fitting from this system reached the 99%, which is the same accuracy reached with the original
N2PBSID system with a much lower order (n = 3).

Experiment 2: Steam heat exchanger (data set 96-002)

The singular values of this experiment can be observe in Figure 4-17. Here it can be seen that all
singular values move to a lower vertical position, but the gap between the dominant and weak sin-
gular values didn’t increase, but decreased. What it seem to have been a third order system (which
is the order found by the N2SID with the best fitting values in the first DaISy experiments) now is a
system with really ambiguous singular values. Nonetheless, if the solution found is tested with the
original fifth order (n = 5) selected by the N2PBSID the fitting value reaches 89% accuracy. Which
is the highest value found by any of the methods for any Ni de test, since the highest fitting value
was found by N2SID with nearly 77% accuracy, which is a difference of more than 10 percentile
points for a fifth order system (the one computed by N2SID was n = 4).
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test λ order NN VAF RewNN VAF
1 0.001 1 66.699 0
2 0.002 2 77.488 0
3 0.004 3 90.543 0
4 0.008 4 98.315 0
5 0.018 4 98.418 0
6 0.037 3 99.017 0
7 0.078 3 99.147 0
8 0.162 4 99.197 0
9 0.335 5 99.165 0

10 0.695 6 99.191 0
11 1.438 7 99.227 0
12 2.976 9 99.227 99.056
13 6.158 10 99.215 99.044
14 12.743 13 99.211 99.421
15 26.367 13 99.195 99.166
16 54.556 13 99.193 99.137
17 112.883 13 99.198 99.114
18 233.572 13 99.218 99.229
19 483.293 13 99.229 99.226
20 1000 13 99.231 99.231

Table 4-5: VAF results for each λ for N2PBSID and then applying reweighted iterations # 1 -
Hair dryer Ni de =400
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Figure 4-17: VAF and Order for small number of samples DaISy #2 - Steam hear exchanger

On Table 4-6 it can be seen that we can draw the same conclusion about the accuracy. The itera-
tions not necessary improve the accuracy of the system, but in some cases it is possible, that is the
case of the test number 5, which is the one chosen for the results presented.

Experiment 3: Robot arm (data set 96-009)

The singular values of the third experiment can be noticed in Figure 4-18. Here again a significant
change can be observed in the singular values, from a system that seem to be between a second
and fourth order system, the weighted iterations created a big gap between the second and third
singular value (even when the N2PBSID selected a fourth order system); making the ambiguity in
the original singular values disappear, making it suitable for a second order system. Then again
this gap created by the weights doesn’t mean that the second order system creates a better model,
this was tested and the fitting accuracy decrease to 23% compared to the 75% obtained with the
fifth order model (seen in Table 4-7). In spite of this, it is important to recalled from the first DaISy
experiment that this particular example was already atypical. In this experiment the model order
selection of the original experiment with the best VAF was 8, which didn’t coincide with the gap of
both the system from N2SID and N2PBSID methods. Making this an abnormal result.
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test λ order NN VAF RewNN VAF
1 0.001 1 76.925 50.494
2 0.002 1 82.312 75.855
3 0.004 1 82.471 80.456
4 0.008 4 82.306 54.683
5 0.018 5 82.898 89.129
6 0.037 4 85.096 78.575
7 0.078 5 86.632 81.828
8 0.162 6 86.481 76.672
9 0.336 6 87.796 82.073

10 0.695 6 88.220 75.160
11 1.438 7 88.299 83.480
12 2.976 7 88.714 89.493
13 6.158 8 89.265 65.218
14 12.743 9 89.306 69.175
15 26.367 10 89.212 83.054
16 54.556 10 88.968 87.890
17 112.883 11 88.475 89.680
18 233.572 11 88.517 87.141
19 483.293 12 88.497 89.781
20 1000 14 89.413 90.019

Table 4-6: VAF results for each λ for N2PBSID and then applying reweighted iterations # 2 -
Steam heat exchanger Ni de =750
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Figure 4-18: VAF and Order for small number of samples DaISy #2 - Steam hear exchanger

In this experiment the fitting accuracy decreased compared to the ones obtained from the original
VAF in all λ cases as seen in Table 4-7.

4-2-1 Conclusions

As conclusions it can be seen on the first DaISy experiments that in 2 out of 3 cases the accuracy
was superior than all the other 3 method compared. Not only it gave better accuracy, the model
order was, if not the same, inferior to the one chosen by N4SID or N2SID, giving an advantage in the
simplicity of the models found. Furthermore, the N2PBSID has an advantage in its computation
time compared to the N2SID because in its iterations no Fourier transformation matrix needs to
be calculated.

Independenly from the last benefits, the N2PBSID method created a bigger gap in the singular
values than what N2SID could improved form the WNNopt method ([5], [12]), making it even more
simple to identify the order of the system.

Certainly, we can also mention in this analysis the ability of the N2PBSID algorithm to handle
small data batches because of its structural properties. Where the formulation of the matrices
doesn’t lead to any projections, avoiding any loss of information. On the contrary, methods like the
N4SID and PBSIDopt cannot perform effectively in this kind of instances. When tested on a defined
transfer function it seem that it has an advantage over the N2SID method when the amount of data
available is 3 times as much as the number of block rows. When having available only 2 times the
number of block rows of data, it was observed that the N2SID method had a better performance.
We wanted to verify this by using the DaISy datasets to test this results with real life data.

When using only data samples that were 2 times the number of block rows and the validation data
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test λ order NN VAF RewNN VAF
1 0.001 0 0 0
2 0.002 0 0 0
3 0.004 0 0 0
4 0.008 0 0 0
5 0.018 0 0 0
6 0.037 1 0 0
7 0.078 2 0 0
8 0.162 2 0 0
9 0.336 2 8.526 0

10 0.695 2 30.189 0
11 1.438 3 81.278 0
12 2.976 3 80.494 0
13 6.158 3 83.705 0
14 12.742 3 82.559 0
15 26.366 5 83.767 0
16 54.555 5 72.984 0
17 112.883 4 89.745 75.249
18 233.572 5 80.228 72.569
19 483.293 6 88.743 56.187
20 1000 7 97.374 74.788

Table 4-7: VAF results for each λ for N2PBSID and then applying reweighted iterations # 3 -
Robot arm Ni de =300
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being the same amount as defined in the first experiment the results were decisive. Both meth-
ods obtained good results, but the N2PBSID seem to be the favorable method when comparing
accuracy and model complexity.

Finally, the reweighted nuclear norm brings an interesting perspective on how to choose the sys-
tem’s order. But this option seem to be efficient in reducing the singular values, but not necessarily
in making the gap between the dominant and weak singular values more clear. In the same way,
the results that did show a bigger gap between singular values didn’t seem to give a better fitting re-
sults than the results obtained with the order chose by the regular N2PBSID algorithm. Moreover,
not only the fitting results obtained were not better, but the iterations sometimes didn’t converge
to stable solutions, making this implementation not recommended for N2PBSID.
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Chapter 5

Conclusions

This chapter gives an overview of the conclusions drawn in this thesis, and the recommendations
for future work.

In this thesis we introduce both PEM and SID methods as our main focus for system identification
purposes to a single optimization problem using PBSIDopt theory. This with the purpose of having
the benefits of the dual cost function, a good fitting criterion while maintaining a low order model.
In addition, commonly an SID method is performed as a first step to be the initial estimate for the
PEM to be performed secondly. In this algorithm we have the advantage that there is only one step
involved for the user.

This new perspective to solve system identification methods by combining both families not only
takes the advantages of each method, both opens new fields for new research and discoveries. In
this case, this new approach consist in reformulating the l ow r ank matr i x and the fitting cost
function inspired by the PBSIDopt algorithm.

This method was tested to see if searching for the Markov parameters using the N2PBSID method
could bring any further benefits compared with the N2SID method with its structural analysis, or
better fitting results than the N4SID or the classic PBSIDopt algorithm.

From the results presented in Chapter 4, it can be concluded that the N2PBSID method is effective
for system identification purposes.

We can mention that the advantages on N2PBSID as follow: in general it provides better accuracy
results, in these cases a lower or equal model order is selected compared to all the other meth-
ods, the computational time to execute the method is lower than the N2SID method (which is the
method that also perfoms iterations for its solution), it creates a bigger gap in the singular values
for model order distinction and can handle small data batches in a suitable way.

Concluding that the algorithm gives what it promises in an conceptual way. It not only has a good
trade-off between the complexity and accuracy of the system, its results in both aspects are notice-
ably better than the other methods already tested thanks to its structural properties.

Finally, the reweighted nuclear norm implementation didn’t show the same benefits as promised.
The method definitely changes the singular value positions, but this didn’t necessarily create an

Literature Survey J. E. Bautista Gauna



50 Conclusions

advantage on the model order or fitting results. Moreover, the iterations sometimes gave unstable
results, making this implementation not a satisfactory one for N2PBSID.

Overall we can conclude that the N2PBSID by its own is a good way to analyse system’s data if both
a large or a small amount of data is available. However, it is important to notice that even though
the N2PBSID seem to have favorable results compared to the existing methods, the algorithm is
not foolproof.

At first it was speculated that this algorithm was a simple method to implement in any system
identification problem due to the fact that only the data for analysis and some user parameters are
required to obtain the complete model of the system. The user parameters that are needed for this
implementation are only the correct range of λs and the size of the past window p. Nonetheless,
these are not the only specifications that this method needs for the correct use and analysis of the
algorithm. An engineer is needed to tune certain important factors that crucial for its performance,
such as the a vector change (as mentioned in Chapter 4), pick the adequate tolerance accuracy
limits and select the data to identify. Likewise there are other elements that require to make an
educated decision like selecting the model order once the algorithm finds a solution, see whether
or not the data needs to be detrended, choose what kind of approach will be chosen to compute
the system matrices, among other tuning details makes this algorithm complex enough not to be
suitable for implement with an inexperienced user. That’s why it is important to have a control
engineer behind the implementation of this kind of algorithms that can comprehend how this
kind of parameters can influence the results obtained. Debunking the idea that this is a simple
method for implementation.

Finally, from the foregoing, or from this report in general, it may be concluded that this algorithm
is, even if not the most straightforward easy, suitable for system identification purposes. Making
this method a fresh view on how system identification algorithms are advancing and developing,
always looking for easier, robust and more effective methods to solve our everyday system prob-
lems with the information available.

J. E. Bautista Gauna Literature Survey



Appendix A

Linear mapping and adjoints

The ADMM algorithm requires to have a generic form equation of the nuclear norm and quadratic
regularization term. In this appendix it will be described how the linear mapping and consequently
the adjoint of the optimization variable is slightly changed due to the nature of the PBSI Dopt

algorithm low rank nuclear norm matrix.

x = [
Ξ1 Ξ2 Ξ3 Ξ4 · · · Ξp(l+r )

]′

A(x) =


Ξ1 Ξ2 Ξ3 Ξ4 · · · Ξp(l+r )−1 Ξp(l+r )

0 0 Ξ1 Ξ2 · · · Ξp(l+r )−3 Ξp(l+r )−2
...

...
...

...
. . .

...
...

0 0 0 0 · · · Ξ1 Ξ2



B =


b1 b(p×l )+1 b2(p×l )+1 b3(p×l )+1 · · · b(p×l )(p(l+r )−2)+1 b(p×l )(p(l+r )−1)+1

b2 b(p×l )+2 b2(p×l )+2 b3(p×l )+2 · · · b(p×l )(p(l+r )−2)+2 b(p×l )(p(l+r )−1)+2
...

...
...

...
. . .

...
...

bp×l b2(p×l ) b3(p×l ) b4(p×l ) · · · b(p×l )(p(l+r )−1) b(p×l )(p(l+r ))


〈A(x),B〉 (A-1)

〈
Ξ1 Ξ2 Ξ3 · · · Ξp(l+r )

0 0 Ξ1 · · · Ξp(l+r )−2
...

...
...

. . .
...

0 0 0 · · · Ξ2

 ,


b1 b(p×l )+1 · · · b(p×l )(p(l+r )−1)+1

b2 b(p×l )+2 · · · b(p×l )(p(l+r )−1)+2
...

...
. . .

...
bp×l b2(p×l ) · · · b(p×l )(p(l+r ))


〉

〈A(x),B〉 = tr (B∗A(x)) (A-2)
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tr




b1 b2 · · · bp×l

b(p×l )+1 b(p×l )+2 · · · b2(p×l )
...

...
. . .

...
b(p×l )(p(l+r )−1)+1 b(p×l )(p(l+r )−1)+2 · · · b(p×l )(p(l+r ))



Ξ1 Ξ2 Ξ3 · · · Ξp(l+r )

0 0 Ξ1 · · · Ξp(l+r )−2
...

...
...

. . .
...

0 0 0 · · · Ξ2




tr(B∗A(x)) =

b1Ξ1 +b(p×l )+1Ξ2 +b2(p×l )+1Ξ3 +b3(p×l )+1Ξ4 +b4(p×l )+1Ξ5 · · · +b(p×l )(p(l+r )−1)+1Ξp(l+r )

+b2(p×l )+2Ξ1 +b3(p×l )+2Ξ2 +b4(p×l )+2Ξ3 · · · +b(p×l )(p(l+r )−1)+2Ξp(l+r )−2

+b4(p×l )+3Ξ1 · · · +b(p×l )(p(l+r )−1)+3Ξp(l+r )−4
. . .

...
+b(p×l )(p(l+r ))Ξ2

〈A(x),B〉 = 〈A (B), x〉 (A-3)

It is easy to verify that the adjoint of B is given by summing upwards the diagonals of B

〈


b1 +b2(p×l )+2 +b4(p×l )+3 · · · +b(p×l )(p(l+r )−1)

b(p×l )+1 +b3(p×l )+2 +b5(p×l )+3 · · · +b(p×l )(p(l+r ))

b2(p×l )+1 · · · +b(p×l )(p(l+r )−1)−1

b3(p×l )+1 · · · b(p×l )(p(l+r ))−1
. . .

...
b(p×l )(p(l+r )−2)+1

b(p×l )(p(l+r )−1)+1


,



Ξ1

Ξ2

Ξ3

Ξ4
...

Ξp(l+r )−1

Ξp(l+r )


〉

(A-4)

In the case of the PBSI Dopt algorithm the mapping of our optimization variable converts into ΓK
(A(x) = ΓK ), which is not the complete low rank matrix ΓK Z . This new term will add a variable in
our regular mapping, which will affect our adjoint term.

If we apply the same theory,

〈A(x)×Z ,B〉

〈
Ξ1 Ξ2 Ξ3 ··· Ξp(l+r )

0 0 Ξ1 ··· Ξp(l+r )−2

...
...

...
. . .

...
0 0 0 ··· Ξ2




z1 zp(l+r )+1 · · · z(p(l+r ))2−p(l+r )+1

z2 zp(l+r )+2 · · · z(p(l+r ))2−p(l+r )+2
...

...
. . .

...
zp(l+r ) z2p(l+r ) · · · z(p(l+r ))2



[
Z1 Z2 · · · Zp(l+r )

]︷ ︸︸ ︷
,


b1 b(p×l )+1 ··· b(p×l )(p(l+r )−1)+1

b2 b(p×l )+2 ··· b(p×l )(p(l+r )−1)+2

...
...

. . .
...

bp×l b2(p×l ) ··· b(p×l )(p(l+r ))

〉
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x
〉
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)
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1

Ξ
2

Ξ
3

Ξ
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Appendix B

Matlab implementation

1 clear all ; clc ; close all
2

3 % Parameters
4 Min_PastWindow=9;
5 Max_PastWindow=0;
6 Num_Periods=10;
7 Min_lambda=4;
8 Max_lambda=20;
9 Lambda_Points=20;

10

11 % Defining system
12 Sim . P = Min_PastWindow ; % period (only required for periodic scheduling )
13 Sim . np = Num_Periods ; % number of periods (only required for periodic

scheduling )
14 Sim . N = Sim . np*Sim . P ; % number of data points
15 Sim . noise2 = 1 ; % Noise on state
16 Sim . SNR = 80; % Noise level
17 Sim . Monte = 1 ; % Number of monte carlo simulations
18

19 % Creating system
20 Sim . l=1;
21 Sim . r=1;
22 Sim . n=2;
23 sys=tf ( [ 1 ] , [ 1 2*0.01 1 ] ) ; sys=c2d (sys , 0 . 0 5 ) ;
24 [Sim . A , Sim . B , Sim . C , Sim . D]=ssdata (sys ) ;
25 [sys1 . A , sys1 . B , sys1 . C , sys1 . D]=ssdata (sys ) ;
26 sys=ss (sys1 . A , sys1 . B , sys1 . C , sys1 . D , 0 . 0 5 ) ;
27

28 loops=20; % number of iterations
29 for g=1:loops
30

31 % Simulation of the system
32 u=randn (Sim . N , Sim . r ) ;
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33 uv=randn (Sim . N , Sim . r ) ;
34 x0 = zeros (Sim . n , 1 ) ;
35 [yn , x ] = lsim (sys , u ) ;
36 vary = sqrt (var (yn ) .*10^(−Sim . SNR/20) ) ;
37 e=Sim . noise2 * (diag (vary ) *randn (Sim . l , Sim . N ) ) ’ ;
38

39 % Time sequences
40 t= 1 : 0 . 0 5 :size (u , 1 ) *0.05+1− .05;
41 t2= 1 : 0 . 0 5 :size (uv , 1 ) *0.05+1− .05;
42

43 % Outputs
44 y=yn+e ;
45 y_val=lsim (sys , uv , t2 ) ;
46

47 % Stack data vector
48 z=[u y ] ’ ;
49 l=size (y , 2 ) ; % # of outputs
50 N=size (y , 1 ) ; % sample size
51 r=size (u , 2 ) ; % # of inputs
52 lr=l+r ; % # of inputs + # of outputs
53

54 if Max_PastWindow==0
55 Max_PastWindow=Min_PastWindow ;
56 end
57

58 for h=Min_PastWindow : Max_PastWindow
59

60 p=h ;
61 % Stacked data Hankel matrix
62 ZZ=zeros (p*lr , N−p ) ;
63 for i= 1 : 1 :p
64 ZZ ( ( i−1)*size (z , 1 ) + 1 : (i ) *size (z , 1 ) , : ) =z ( : , i : end−p+i−1) ;
65 end
66

67 % Output matrix of the rest of the data (p+1:end )
68 Y=y (p+1:end , : ) ’ ;
69

70 % Computing M
71 [M]=M_matrix (ZZ , p , l , r ) ;
72

73 %% ADMM algorithm
74

75 % Initialization
76 lambda=logspace (Min_lambda , Max_lambda , Lambda_Points ) ; % logspace (a , b

, n ) n points between 1e^a and 1e^b
77

78 for k=1:size (lambda , 2 )
79

80 x=transpose ( [ zeros (size (Y*ZZ ’ ) ) ] ) ;
81 a=inv (ZZ*ZZ ’ ) *ZZ*transpose (Y ) ;
82

83 H_2norm=lambda (k ) * (ZZ*transpose (ZZ ) *ZZ*transpose (ZZ ) ) ;
84
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85 A0=[zeros (l*p , size (ZZ ’ , 2 ) ) ] ;
86 X=A0 ;
87 Z=[zeros (l*p , size (ZZ ’ , 2 ) ) ] ;
88 rho=1;
89

90 %% Algorithm
91

92 % Stopping criterion
93 eps_rel=10^(−1) ;
94 eps_abs=10^(−6) ;
95

96 [order , VAF3 , x , X , varx]=algorithm (x , a , H_2norm , A0 , X , Z , rho , M , Y , p , l , lr , ZZ ,
eps_rel , eps_abs ) ;

97

98 NN (k , : ) =order
99 FC5 (k , : ) =VAF3 ;

100 CKs ( : , : , k ) =x ;
101 Xs ( : , : , k ) =X ;
102

103 GammaK1=Operator (x , p , l , lr ) ;
104

105 % Computing the system matrices
106 [U1 , S1 , V1]=svd (GammaK1*ZZ ) ;
107 state_vec1=S1 ( 1 : order , 1 : order ) *V1 ( : , 1 : order ) ’ ;
108

109 try
110 [Ae_new , Be_new , Ce_new , De_new , Ke_new ] = dx2abcdk (state_vec1 , u , y , p , p )

;
111 % Simulation
112 [y_new , x_new ] = dlsim (Ae_new , Be_new , Ce_new , De_new , u ) ;
113 VAF_new (k , : ) = mean (max (vaf (y , y_new ) , 0 ) ) ;
114 catch
115 try
116 [Ae_new , Be_new , Ce_new , De_new , Ke_new ] = dx2abcdk (state_vec1 , u , y ,

p , p , ’ stable1 ’ ) ;
117 % Simulation
118 [y_new , x_new ] = dlsim (Ae_new , Be_new , Ce_new , De_new , u ) ;
119 VAF_new (k , : ) = mean (max (vaf (y , y_new ) , 0 ) ) ;
120 catch
121 VAF_new (k , : ) =0;
122 end
123 end
124

125 end
126

127 answer=2;
128

129 while (answer==2)
130

131 % Selecting best choice for system
132 Lambda = [ 1 : size (lambda , 2 ) ] ’ ;
133

134 T = table (Lambda , NN , VAF_new )
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135

136 I = input ( ’ Enter the lambda number that its more suitable for
implementation : ’ ) ;

137

138 %% Computing system matrices
139

140 % Choosing optimal variable ’x ’
141 q=size (Y , 1 ) ;
142 GammaK2=zeros (q*p , ( l+r ) *p ) ;
143 CK2=CKs ( : , : , I ) ’ ;
144 NN_order=NN (I , : ) ;
145

146 for i=1:p
147 GammaK2(1+(q ) * (i−1) : i*q , 1 + (l+r ) * (i−1) : ( l+r ) *p ) =CK2 ( : , 1 : ( l+r ) * (p+1−i

) ) ;
148 end
149

150 % Computing the system matrices
151 [U2 , S2 , V2 ] = svd (GammaK2*ZZ ) ;
152 state_vec2=S2 ( 1 : NN_order , 1 : NN_order ) *V2 ( : , 1 : NN_order ) ’ ;
153 [Ae_newADMM , Be_newADMM , Ce_newADMM , De_newADMM ] = dx2abcd (state_vec2 , u , y ,

p , p ) ;
154

155 % Simulation
156 [y_newADMM , x_newf ] = dlsim (Ae_newADMM , Be_newADMM , Ce_newADMM , De_newADMM ,

u ) ; VAF_NEW=vaf (y , y_newADMM ) ;
157 [y_new_val , x_new_val ] = dlsim (Ae_newADMM , Be_newADMM , Ce_newADMM ,

De_newADMM , uv ) ; VAF_NEW_val=max (vaf (y_val , y_new_val ) , 0 ) ;
158

159 % PBSID/SVD approach
160 Gammahat = U2 ( : , 1 : NN_order ) ;
161 S = pinv (Gammahat ) ;
162 Up = u (p+1:end−1 , : ) ’ ;
163 Zp = ZZ ( : , 1 : end−1) ; Zf=ZZ ( : , 2 : end ) ;
164 Zpi = ZZ ’ * inv (ZZ*ZZ ’ ) *ZZ ;
165 Zor = eye (N−p )−Zpi ;
166 % Estimate of the state
167 Xe = S*GammaK2*ZZ ;
168 Xep = S*GammaK2*Zp ;
169 Xef = S*GammaK2*Zf ;
170 % Computing the system matrices
171 Ee = Y−CK2*ZZ ;
172 Eep = Ee ( : , 1 : end−1) ;
173 Ce2 = (Y−Ee ) *Xe ’ * inv (Xe*Xe ’ ) ;
174 ABKhat = Xef*pinv ( [ Xep ; Up ; Eep ] ) ;
175 Ae2 = ABKhat ( : , 1 : NN_order ) ;
176 Be2 = ABKhat ( : , NN_order+1:NN_order+r ) ;
177 Ke2 = ABKhat ( : , NN_order+r+1:NN_order+r+l ) ;
178

179 %Simulations
180 y_NN_PBSID=lsim (ss (Ae2 , Be2 , Ce2 , 0 , 0 . 0 5 ) ,u , t ) ; VAF_NN_PBSID=vaf (y ,

y_NN_PBSID ) ;
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181 y_NN_PBSID_val=lsim (ss (Ae2 , Be2 , Ce2 , 0 , 0 . 0 5 ) ,uv , t2 ) ; VAF_NN_PBSID_val=
vaf (y_val , y_NN_PBSID_val ) ;

182

183 VAF = { ’ Original ’ ; ’Validation ’
} ;

184 NEW_ADMM_PBSID = [ vaf (y , y_NN_PBSID ) ; vaf (y_val ,
y_NN_PBSID_val ) ] ;

185 NEW_ADMM_DX2 = [ vaf (y , y_newADMM ) ; vaf (y_val , y_new_val )
] ;

186

187 T = table (VAF , PBSID , NEW_ADMM_PBSID , NEW_ADMM_DX2 , N2SID )
188

189 answer = input ( ’ Are you happy with the lambda you chose? 1/2 (Yes/No ) :
’ ) ;

190

191 if answer==2
192 close all
193 end
194 end
195 end
196

197 Final_N2PBSID (g , I ) =max ( [ vaf (y_val , y_NN_PBSID_val ) ,vaf (y_val , y_new_val ) ] ) ;
198

199 end
200

201 %% Plots
202

203 % Simulation of output with validation data
204

205 figure
206 plot (t , y_val , ’ k ’ ) ; hold on
207 if I==1
208 plot (t , y_NN_PBSID_val , ’ c− . ’ ) ;
209 else
210 plot (t , y_new_val , ’ c− . ’ ) ;
211 end
212 legend ( ’ Real system ’ , ’ N2PBSID ’ )
213 title ( [ ’ Validation fit using different input with past window ’ ,num2str (p ) ] )

Literature Survey J. E. Bautista Gauna



60 Matlab implementation

J. E. Bautista Gauna Literature Survey



Bibliography

[1] L. Ljung, ed., System Identification (2Nd Ed.): Theory for the User. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 1999.

[2] M. Verhaegen and V. Verdult, “Filtering and identification: A least squares approach.” Cam-
bridge University Press, 2007.

[3] M. Fazel, Matrix Rank Minimization with Applications. PhD thesis, Standford University,
2002.

[4] Z. Liu, A. Hansson, and L. Vandenberghe, “Nuclear norm system identification with missing
inputs and outputs,” Systems & Control Letters, vol. 62, pp. 605–612, April 2013.

[5] M. Verhaegen and A. Hansson, “N2sid: Nuclear norm subspace identification,” CoRR, January
2015.

[6] D. Sadigh, H. Ohlsson, S. Seshia, and S. Sastry, “Robust subspace system identification via
weighted nuclear norm optimization,” in The International Federation of Automatic Control
(B. Edward, ed.), (Cape Town, South Africa), pp. 9510–9515, August 2014.

[7] E. Canès and B. Recht, “Exact matrix completion via convex optimization,” May 2008.

[8] K. Mohan and M. Fazel, “Reweighted nuclear norm minimization with application to system
identification,” Proc. American Control Conference (ACC), 2010.

[9] Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm approximation with ap-
plication to system identification,” SIAM Journal on Matrix Analysis and Applications, vol. 31,
no. 3, p. 1235âĂŞ1256, 2009.
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p. 1339 âĂŞ 1358, July 2013.

[11] J. Cai, E. Candes, and Z. Shen, “A singular value thresholding algorithm for matrix comple-
tion,” Arxiv preprint arXiv:0810.3286, October 2008.

Literature Survey J. E. Bautista Gauna



62 Bibliography

[12] A. Hansson, Z. Liu, and L. Vandenberghe, “Subspace System Identification via Weighted Nu-
clear Norm Optimization,” in IEEE 51st Annual Conference on Decision and Control (CDC),
pp. 3439–3444, IEEE; 1998, 2012.

[13] B. De Moor, P. De Gersem, B. De Shutter, and W. Favoreel, “Daisy: Database for the identifica-
tion of systems,” Journal A, vol. 38, no. 3, pp. 4–5, 1997.

[14] K. Hu, P. Ivanov, Z. Chen, P. Carpena, and E. Stanley, “Effect of trends on detrended fluctuation
analysis,” PHYSICAL REVIEW E, vol. 64, June 2001.

[15] L. Ljung, System Identification Toolbox: User’s guide. MathWorks Incorporated, 1993.

J. E. Bautista Gauna Literature Survey


	Cover Page
	Title Page
	Table of Contents
	Main Matter
	Introduction
	Introduction to System Identification
	Motivation
	Goals of this thesis
	Outline

	Nucelar Norm Subspace Identification
	Problem formulation
	Pareto optimal convex optimization
	Low Rank Matrix Selection
	Solving approaches
	Semi-Definite Programming (SDP)
	ADMM algorithm
	Iterative minimization
	Conclusions

	Nuclar Norm PBSIDopt form
	PBSIDopt formulation proposal
	PBSIDopt method
	PBSIDopt nuclear norm inspired formulation

	Implementation
	ADMM
	Calculation of the system matrices
	Other calculations

	Reweighted PBSID Nuclear Norm

	Results and discussion
	Validation Study
	Data selection and pre-processing
	Compared Identification methods

	Nuclear Norm dual minimization with PBSID theory (N2PBSID) results
	Small number of samples

	Reweighted nuclear norm application
	Conclusions


	Conclusions

	Appendices
	Linear mapping and adjoints
	Matlab implementation
	Back Matter




