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A B S T R A C T

Three-phase equilibrium calculations for water-CO2-hydrocarbon mixtures are required in the compositional
simulation of various applications in CO2 storage, geothermal systems, and enhanced oil recovery. The very low
solubility of hydrocarbon components in water leads to a special mathematical structure of the problem. Several
techniques were suggested, such as the free-water flash (FWF) and the augmented free-water flash (AFWF); in the
former, the aqueous phase is pure water, while in the latter only certain components, CO2 or methane for
example, are dissolved in the aqueous phase. However, only the first-order successive substitution method was
used in the previous published approaches, making them unattractive for compositional simulations in which a
significant number of phase equilibrium calculations are performed. In this work, a robust and efficient AFWF
method is proposed, using combined successive substitutions-modified Newton iterations. The new method is
general, allowing partial solubility of any selected component in the water-rich phase, depending on the specific
compositions and operating conditions. A detailed description of second-order methods in a Gibbs energy
minimization framework for the general AFWF is presented. In the AFWF, the dimension of the problem and the
number of function evaluations (thus the computation time) are significantly reduced. Moreover, it is shown that
the augmented method always has better convergence properties than its conventional multiphase flash coun-
terpart, in both first- and second-order methods. The new AFWF method is tested for various hydrocarbon-water-
CO2 mixtures and proved to be robust and efficient, systematically outperforming the conventional approach.
Unlike in previous AFWF formulations, the number of components soluble in water is not limited, leading to a
controlled accuracy with respect to a full three-phase equilibrium, even at high pressures and/or large amounts
of CO2.

1. Introduction

Three-phase equilibrium calculations for water-CO2-hydrocarbon
mixtures are required in the compositional reservoir simulation, having
a wide range of applications, from important energy-transitions ones as
CO2 storage in depleted reservoirs and geothermal projects (in which
thermal energy is extracted from the subsurface via CO2 as working
fluid) to a variety of enhanced oil recovery processes. When water is
present in a hydrocarbon mixture, depending on composition and
pressure and temperature conditions, the mixture can exhibit a three-

phase equilibrium, consisting of a vapor (V), hydrocarbon-rich liquid
(L) and a water-rich or aqueous (W) phase, three types of two phase
equilibrium (VL, VW, LW), or to be in single phase (vapor or liquid).
A significant number of phase equilibrium calculations is required in

compositional reservoir simulation. The computational effort required
by thermodynamic calculations generally represents an important part
of the total simulation time, leading to a low computational efficiency in
large-scale reservoir simulations and when an increased number of
components are considered, to describe better the physical processes
taking place in the reservoir. Robustness of the phase equilibrium solver
is also essential, since a failure during a simulation run may lead to
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erroneous results or interruption of the simulation.
A variety of multiphase equilibrium calculation algorithms were

proposed for mixtures containing water (Sabet and Gahrooei [1], Mor-
tezazadeh and Rasaei [2], Nazari et al. [3], Connolly et al. [4], Imai et al.
[5], Li and Li [6], Petitfrere et al. [7], Ma et al. [8], Sun et al. [9]). Al-
gorithms for water-inclusive mixtures at pressure and enthalpy specifi-
cations were presented by Zhu and Okuno [10], Huang and Yang [11]
and Huang et al. [12]. These methods are using full three-phase flash
calculations, that is, with no assumptions concerning the aqueous phase,
which contains all components present in the mixture.
However, the particularity of water-hydrocarbon mutual solubility

can be exploited to simplify phase equilibrium algorithms. The solubility
of hydrocarbon components in the aqueous phase is several orders of
magnitude smaller than the solubility of water in the hydrocarbon-rich
phase. Based on this observation, in the free-water assumption [13–15]
the solubility of hydrocarbon components in the aqueous phase is
neglected and this phase is considered pure water. Tang and Saha [13]
presented the first FWF method based on a modified Rachford-Rice
(MRR) equation. Iranshahr et al. [14] used an even more restricted
model (neglecting also the solubility of water in the hydrocarbon-rich
liquid phase) in compositional EoS based reservoir simulation. Lapene
et al. [15] observed that MRR functions in Refs. [13,14] are not
monotonic and they proposed a new MRR equation, which is monotonic
within the feasible interval. Li and Li [16] used the latter MRR and
proposed a restricted feasible domain. The advantage of the FWF is that
it replaces the three-phase problem with a pseudo-two-phase problem;
the MRR equation is solved for one variable, instead of solving a
three-phase Rachford-Rice problem, which consists of a system of two
nonlinear equations. The FWF was extended to four-phase equilibrium
(Li et al. [17]) and adapted to other phase equilibrium problems having
a similar mathematical structure, such as vapor-liquid-asphaltene
three-phase equilibrium (Chen et al. [18,19]) and chemical and phase
equilibria of mercury in natural gas (Koulocheris et al. [20]). Several
implementations of the FWF in compositional simulations were pre-
sented by Cremon et al. [21] and Cremon and Gerritsen [22,23].
The FWF procedures have a very good accuracy for low to moderate

pressures and for relatively small amounts of water and CO2. Their
limitation is that at high pressures, the deviations from the results ob-
tained with a full three-phase flash are increasing and a percentage of
2–5% of CO2 dissolved in the aqueous phase cannot be neglected any

more [24]. Mole fractions of methane [25] and other light hydrocarbon
components (as will be shown in the results section of this work) in the
aqueous phase may also increase with pressure and the solubility of
these components in water must be considered for certain phase equi-
librium problems.
Early attempts to take into account the solubility of CO2 in water

using Henry’s law were presented by Li and Nghiem [26] and by Enick
and Klara [27]. Yan et al. [28] and Yan and Stenby [29,30] solved the
three-phase VLW problem in compositional reservoir simulation of
various enhanced oil recovery processes, by using different solubility
scenarios, from free-water to arbitrary numbers of components in water,
in an attempt to maintain a high level of simplicity in describing the
three-phase equilibrium in the code. It appeared that neglecting the
solubility of CO2 in water might affect to a high extent the results of
simulations. However, no details on the implementation were given in
Refs. [28–30]; a description of simplified flash calculations in hydro-
carbon mixtures can be found in Ref. [31].
Pang and Li proposed the so-called augmented free-water flash, in

which the algorithm is considering only the solubility of one component
in the aqueous phase, that is, CO2 [24] or methane [25]. A detailed
description of the simplified SSI method using a modified multiphase
Rachford-Rice equation is presented and an initialization procedure for
the AFWF is proposed in Refs. [24,25].
To date, the first-order SSI method was used in all papers in the open

literature presenting different implementations of FWF and AFWF (only
unpublished materials dealt with Newton methods for FWF [32] and
AFWF [31]). In the context of compositional reservoir simulation, the
potentially very slow SSI method is not suitable (except maybe at low
pressures as in some thermal oil recovery methods) and faster methods
such as second-order Newton iteration must be considered.
In this study, a general approach for partial solubility of selected

components in the water-rich phase is developed, in which first- (SSI)
and second order (Newton) methods are applied to solve two- and three-
phase equilibrium problems for hydrocarbon/water/CO2 mixtures. The
algorithm is inspired by the AFWF, but instead of considering only one
dissolved component in the aqueous phase, the solubility of an arbitrary
number of components is considered. Moreover, the fact that we use a
second order method for stability test and phase split calculation reduces
considerably the computational time. The cubic two-parameter Peng-
Robinson equation of state is used, but the proposed method is not

Nomenclature

ci asymptotes of MRR function
fi fugacity of component i
G Gibbs free energy
g gradient
H Hessian matrix
I identity matrix
J Jacobian matrix
Ki equilibrium constant
L hydrocarbon-rich liquid phase fraction
nc number of components
n mole numbers
P pressure
R LHS of RR equation
S convergence matrix
T temperature
U ideal part of Hessian matrix
V vapor phase fraction
W water-rich liquid phase fraction
xi mole fraction of component i in liquid phase
xw mole fraction of water in liquid phase

yi mole fraction of component i in vapor phase
yw mole fraction of water in vapor phase
wi mole fraction of component i in water-rich phase
ww mole fraction of water in water-rich phase
zi feed composition

Greek letters
ε tolerance
φi fugacity coefficient of component i
ω acentric factor
Φ residual part of Hessian matrix

Subscripts
i, j component index
c critical
V vapor phase index
L hydrocarbon rich liquid phase index
W aqueous phase index

Superscripts
(k) iteration number
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model-dependent (any thermodynamic model can be used to describe
the equilibrium phases). To the best of our knowledge, second-order
methods for the AFWF are presented in detail for the first time in this
work.
The paper is structured as follows. First, the formalism and calcula-

tion algorithm for the general augmented free-water flash with partial
solubility in the aqueous phase are presented in detail. Then, the new
algorithm is tested for several CO2-water-hydrocarbon mixtures from
the literature, and results are compared with those of FWF and full three-
phase flash, in term of accuracy and convergence speed. Finally, the
differences between methods are discussed before concluding. Two
appendices present the derivation of the Q-function from the Gibbs free
energy and the input data used by the EoS model.

2. General AFWF

A general AFWF for three-phase equilibrium in water-CO2-hydro-
carbon mixtures is presented, allowing dissolution of selected compo-
nents in the aqueous phase, using a combined SSI-Newton method. We
note with m the number of components present in the water-rich phase
and ns = m − 1 is the number of components soluble in water. Without
losing generality, the ordering in the list of components is: i = 1 for
water, i = 2,m for components soluble in water and i = m +1, nc for
components with neglected solubility in water.

2.1. Material balance equations

The component material balance equations are

zi = niV + niL + niw = Vyi + Lxi +Wwi; i = 1,m (1a)

zi = niV + niL = Vyi + Lxi; i = m+ 1, nc (1b)

and the overall material balance equation is

V + L+W = 1 (2)

Component mole fractions are subjected to

∑nc

i=1
yi =

∑nc

i=1
xi =

∑m

i=1
wi =

∑nc

i=1
zi = 1 (3)

The two sets of equilibrium ratios are defined, taking for convenience
the liquid phase as reference

KiV =
yi

xi
=

φiL

φiV
; i = 1, nc (4a)

KiW =
wi

xi
=

φiL

φiW
; i = 1,m (4b)

From Eqs. (1), (2) and (4), the mole fractions are

xi =
zi
Ei
; i = 1,m (5a)

xi =
zi
Ei
; i = m+ 1, nc (5b)

yi =
ziKiV

Ei
; i = 1,m (6a)

yi =
ziKiV

Ei
; i = m+ 1, nc (6b)

wi =
ziKiW

Ei
; i = 1,m (7)

where

Ei = 1+ V(KiV − 1) +W(KiW − 1); i = 1,m (8a)

Ei = 1+ V(KiV − 1) − W; i = m+ 1, nc (8b)

2.2. Minimization of Gibbs free energy

The dimensionless Gibbs free energy for a three-phase VLW system is

G =
∑np

j=1

∑nc

i=1
nijlnfij =

∑np− 1

j=1

∑nc

i=1
nijlnfij +

∑nc

i=1
niwlnfiw (9)

If the aqueous phase contains only m < nc components, G is

G =
∑nc

i=1
niVlnfiV +

∑nc

i=1
niLlnfiL +

∑m

i=1
niWlnfiW (10)

The nc+m independent variables are niV ; i = 1, nc and niW; i = 1,m.
The vector of independent variables is n = (n1, ..., nnc+m)

T
=

(
n1V ...., nnc,V , n1W, ..., nmW

)T, with ni = niV ; i = 1, nc and ni = ni− nc,W; i =
nc+ 1,nc+ m.
The gradient is

gi =
∂G

∂niV
= lnfiV − lnfiL = lnKiV + lnφiV − lnφiL; i = 1, nc (11a)

gi+nc =
∂G

∂niW
= lnfiW − lnfiL = lnKiW + lnφiW − lnφiL; i = 1,m (11b)

The stationarity conditions of G represent a nonlinear system of
equations

g(n)= 0 (12)

2.3. Newton iterations

2.3.1. Mole numbers as independent variables
The Newton iteration equation is

HΔn = − g (13)

and mole numbers are updated after solving the linear system of equa-
tions, by n(k+1) = n(k) + Δn(k).
The linear system Eq. (13) has a block structure and can be written as

(
HVV HVW
HWV HWW

)

⋅
(

ΔnV
ΔnW

)

= −

(
gV
gW

)

(14)

whereHVV is an [nc× nc] matrix,HVW is an [nc×m] matrix,HWV = HT
VW

and HWW is an [m × m] matrix. The elements of the vector gV are gV,i =
gi; i = 1, nc and the vector gW is gW,i = gi; i = nc+ 1,nc+ m. Subscripts V
and W correspond to the phase index of mole numbers in the first- and
second-order partial derivatives.
The Hessian matrix

H = U+ Φ (15)

has an ideal part U, depending only on phase compositions and a non-
ideal part Φ containing partial derivatives of fugacity coefficients with
respect to mole numbers.
The elements of the matrix U are

Uij = UVVi,j =
1
V

(
δij

yi
− 1
)

+
1
L

(
δij

xi
− 1
)

; i, j = 1, nc (16a)

Ui,nc+j = UVWi,j =
1
L

(
δij

xi
− 1
)

; i = 1, nc; j = 1,m (16b)

Ui+nc,j = UWVi,j =
1
L

(
δij

xi
− 1
)

; i = 1,m; j = 1, nc (16c)
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Ui+nc,j+nc = UWWi,j =
1
W

(
δij

wi
− 1
)

+
1
L

(
δij

xi
− 1
)

; i, j = 1,m (16d)

and the elements of the matrix Φ are

Φij = ΦVVi,j =
∂lnφiV

∂njV
+

∂lnφiL

∂njL
; i, j = 1, nc (17a)

Φi,nc+j = ΦVWi,j =
∂lnφiL

∂njL
; i = 1, nc; j = 1,m (17b)

Φi+nc,j = ΦWVi,j =
∂lnφiL

∂njL
; i = 1,m; j = 1, nc (17c)

Φi+nc,j+nc = ΦWWi,j =
∂lnφiW

∂njW
+

∂lnφiL

∂njL
; i, j = 1,m (17d)

The gradient norm is

Sg =

(
∑nc+m

i=1
gi

)0.5

(18)

and iterations are stopped when Sg < ε.
A modified Cholesky factorization [33,34] is used to restore positive

definiteness of the Hessian matrix when some of its eigenvalues become
negative during Newton iterations. It consists in a diagonal correction by
adding some elements on the main diagonal of the Hessian and solve
(H + E)Δξ(n) = − g. A line search on the Newton direction is performed
to ensure that the Gibbs free energy is decreased at each iteration level,
using the procedure described in Ref. [35]. Note that trust-region
methods can be alternatively used, following the implementation in
Ref. [36].

2.3.2. Natural logarithms of equilibrium constants as independent variables
If the natural logarithms of the equilibrium constants are the inde-

pendent variables, the Newton iteration equation is

JΔlnK = − g (19)

where lnK = (lnK1, ..., lnKnc+m)
T
=
(
lnK1V , ..., lnKnc,V , lnK1W, ..., lnKmW

)T

is the vector collecting the natural logarithms of equilibrium constants,
with lnKi = lnKiV ; i = 1, nc and lnKi = lnKi− nc,W; i = nc + 1,nc + m.
The Jacobian matrix is

J = HU− 1 = I+ ΦU− 1 (20)

with elements

Jij =
∂gi

∂lnKj
; i, j = 1, nc+m (21)

or

Jij =
∑nc+m

k=1

HikU− 1
kj =

∑nc+m

k=1

∂gi
∂nk

∂nk

∂lnKj
; i, j = 1, nc+m (22)

Calculation of U− 1 elements for multiphase equilibrium is tedious.
The calculation procedure from Petitfrere and Nichita [37] can be
readily adapted to the AFWF. However, effective calculation of U− 1 can
be avoided by solving HΔn = − g for Δn, then use the relation

ΔlnK = UΔn (23)

to update equilibrium constants from lnK(k+1) = lnK(k) + ΔlnK(k). This
procedure is equivalent of solving directly Eq. (19) for ΔlnK and was
first proposed by Michelsen [38]. Note that in this case the Hessian and
the gradient are evaluated at n(k)calculated from equilibrium constants
K(k) via the Rachford-Rice equations.
Although not used in this work, note that Newton iterations with lnK

as independent variables are suitable for including the negative flash
[39–42] option.

2.4. SSI iterations

In the SSI method, the equilibrium constants are updated in an outer
loop and phase mole fractions are calculated in an inner loop at constant
K-values by solving the Rachford-Rice equations. If in the expression of
the Jacobian matrix the partial derivatives of the fugacity coefficients
with respect to mole numbers (elements of theΦ matrix) are neglected,
that is, J = I, the SSI iteration equation (outer loop) is

ΔlnK = − g (24)

which is equivalent of updating the nc+m equilibrium constants from
Eqs (4).
The SSI methods of Lapene et al. [15] for FWF and of Pang and Li [24,

25] are particular cases of our procedure for m=1 and m=2,
respectively.
The convergence rate of the SSI method is controlled by the

maximum eigenvalue of the convergence matrix S [38], with elements

Sij =

(
∂lnK(ν+1)

i

∂lnK(ν)
i

)

ν→∞
; i, j = 1, nc+m (25)

or

S= I − J (26)

The SSI method is linearly convergent to a local (at least) minimum
of the Gibbs free energy [38]. Converge requires that ρS < 1, where the
spectral radius is

ρ = max
i

|λi|; i = 1, nc+m (27)

Two eigenvalues of S are equal unity exactly at the critical point
[38], or on the convergence locus for the negative flash [39,40].
The switch to the second-order method is performed either after a

predetermined small number of SSI iterations, or at a certain value of the
Euclidean norm of the gradient, which can be predetermined or calcu-
lated using some switching criteria indicating that the SSI iterations
became too slow.

2.5. Rachford Rice equations

The Rachford-Rice equations are solved for phase mole fractions in
the inner loop of flash calculations (with lnK as independent variables)
at constant K-values. Starting from the equations

∑nc

i=1
(yi − xi) = 0 (28a)

∑m

i=1
wi −

∑nc

i=1
xi = 0 (28b)

and combining Eqs. (5) to (7) and Eqs. (28), the Rachford-Rice equations
for AFWF are

RV(V,W) =
∑m

i=1

zi(KiV − 1)
Ei

+
∑nc

i=m+1

zi(KiV − 1)
Ei

= 0 (29a)

RW(V,W) =
∑m

i=1

zi(KiW − 1)
Ei

−
∑nc

i=m+1

zi
Ei

= 0 (29b)

The Q function for AFWF is

Q(V,W) = −
∑m

i=1
zilnEi −

∑nc

i=m+1
zilnEi (30)
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and the Rachford-Rice equations are exactly the zero-gradient equations
of Q with changed signs.

∂Q
∂V = − RV(V,W) (31a)

∂Q
∂W = − RW(V,W) (31b)

The Q function can be derived directly from the expression of the
Gibbs free energy (as shown in Appendix A). The Q functions used by
Pang and Li [24,25] and their modified Rachford-Rice equations for only
one component soluble in water (CO2 [24] or methane [25]) are
particular cases of Eqs. (31) and of Eqs. (30), respectively. The function
Q is convex, since the Hessian of Q is positive semi-definite [42,43]
within the feasible domain (the negative flash window [41]) defined by
the conditions Ei > 0; i = 1,m and Ei > 0; i = m+ 1,nc.
The bounds of a restricted feasible domain (Okuno et al. [43]), as an

extension of those proposed by Pang and Li [24,25] are

V(1 − KiV) − W(1 − KiW) ≤ min
i
{1 − zi,1 − KiVzi, 1 − KiWzi}; i = 1,m

(32a)

V(1 − KiV) +W ≤ min
i
{1 − zi,1 − KiVzi}; i = m+ 1, nc (32b)

The function Q is minimized using a Newton method with line search
as in Okuno et al. [44]. An inexact line search with quadratic and cubic
backtracking is used.

2.6. Two-phase AFWF

The calculation procedure starts with a three-phase AFWF. If a
detected infeasibility of the three-phase RR indicates the absence of the
aqueous phase or if the aqueous phase vanishes during iterations (unless
a negative flash is performed), a conventional VL two-phase flash of
dimension nc is carried out (details on two-phase VL flash can be found
in Refs. [36,45]).
If one of the hydrocarbon-rich phases vanishes, a WV (here V stands

for convenience for the hydrocarbon-rich phase, which may be vapor or
liquid) two-phase AFWF with only m variables described below is car-
ried out.
In the VW case, the component material balance equations are

zi = niV + niw = Vyi +Wwi; i = 1,m (33a)

zi = niV = Vyi; i = m+ 1, nc (33b)

and the overall material balance equation is

V +W = 1 (34)

The equilibrium constants (taking water as the reference phase) are

Ki =
yi

wi
=

φiW

φiV
; i = 1,m (35)

The mole fractions are

wi =
zi
Ei
; i = 1,m (36)

yi =
ziKi

Ei
; i = 1,m (37a)

yi =
zi
V
; i = m+ 1, nc (37b)

where

Ei = 1+ V(Ki − 1); i = 1,m (38)

The Rachford-Rice equation is

∑m

i=1
wi −

∑nc

i=1
xi =

∑m

i=1

zi(KiW − 1)
Ei

−
1
V
∑nc

i=m+1
zi = 0 (39)

or, using Muskat’s notation [46], ci = 1/(1 − KiW); i = 1,m

∑m

i=1

zi
V − ci

−
1
V
∑nc

i=m+1
zi = 0 (40)

In this case, the function Q is

Q(V) = −
∑m

i=1
zilnEi − lnV

∑nc

i=m+1
zi (41)

However, in two-phase flash calculations, it is more convenient to
solve the nonlinear Rachford-Rice equation than to minimize Q. The
Rachford-Rice equation is solved using convex transformations (Nichita
and Leibovici [47,48]). In this case, the change of variables is a =

V/(cw − V); a > 0.
The dimensionless Gibbs free energy for a VW equilibrium is

G =
∑nc

i=1
niVlnfiV +

∑m

i=1
niWlnfiW (42)

and the gradient is

gi =
∂G

∂niV
= lnfiV − lnfiW = lnKi + lnφiV − lnφiW; i = 1,m (43)

The elements of the Hessian matrix H = U+ Φ are

Ui,j =
1
W

(
δij

wi
− 1
)

+
1
V

(
δij

yi
− 1
)

; i, j = 1,m (44)

and

Φi,j =
∂lnφiW

∂njW
+

∂lnφiV

∂njV
; i, j = 1,m (45)

2.7. Initialization

The equilibrium ratio of water component in the vapor phase is [15]

KwV =
P
Pcw

Tcw

T
(46)

where Pcw and Tcw are the critical temperature and pressure of water. For
the other components the K-values are calculated using the Wilson
equation [49]

KiV =
Pci

P
exp
[

5.37(1+ωi)

(

1 −
Tci

T

)]

; i = 2, nc (47)

and ωi is the component acentric factor.
The initial guess for mole fraction of water component in vapor phase

is [15]

yw =
Pw

sat
P

(48)

where yw is the phase fraction of water component in vapor phase, Pw
satis

the vapor pressure of pure water and its values are calculated according
to Antoine law.
The expression of KwW is obtained by combining the definition

equations of equilibrium ratios, xw = yw/KwV and KwW = ww/xw, giving
[25]

KwW =
KiW

yw
ww (49)

The mole fraction of water component is the aqueous phase in Eq.
(49) is set to ww = 1 as in FWF and the eequilibrium ratios in the water-
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rich phase are defined as in Refs. [24,25]

KiW =

⎧
⎨

⎩

KwW;

0.5/KwW;

0;

i = 1
i = 2,m

i = m+ 1, nc
(50)

The empirical correction of KwW calculated with Eq. (49) is [24]

Knew
wW = − 0.1K2wW + 1.9KwW;KwW > 3.2 (51)

In this work, the initialization scheme based on ideal and empirical
equilibrium constants from Lapene et al. [15] and Pang and Li [24,25]
presented above was used. Note that starting from poor initial guesses
represents a supplementary test for the robustness of the method. An
initialization strategy using sequential phase stability and flash calcu-
lations [38,50], tailored for AFWF, which takes full advantage of the
particularities of hydrocarbon-water-CO2 phase equilibrium and of the
AFWF assumption (partial solubility in the aqueous phase) is being
currently developed by our research team.

3. Results and discussion

In this section, the proposed method for augmented free-water flash
with partial solubility in the liquid water phase, is validated in terms of
efficiency and robustness using three different hydrocarbon-water
mixtures. This method is compared with the results obtained from the
free-water flash and the conventional multiphase flash, which will serve
as the reference for the tests conducted. The tests with an increasing
number of components soluble in the water phase show how close to the
reference solution the new algorithm can get. Furthermore, the effi-
ciency of the method is investigated by considering the number of it-
erations in phase split calculation as a parameter. Three-phase
envelopes, phase fractions and mole fractions are used to verify the
deviation of the results from both free-water flash and the proposed
method with respect to the conventional three-phase flash algorithm.
For the results using the AFWF, an integer number, ns will identify the
number of components soluble in the aqueous phase. The enumeration
follows the order given by the tables of properties of mixtures. The Peng-
Robinson EoS [51,52] is used in all examples. The tolerance for flash
calculations is 1e-10 and the switch criterion to pass from the SSI to
Newton is 1e-2 in all examples.

3.1. Water/CO2/North Ward Estes (NWE) oil mixture

This fluid consists in a mixture of CO2/water/NWE-oil from Pang and
Li [24]. Table B1 shows the components’ properties and Table B2 pre-
sents the binary interaction parameters (BIPs).

3.1.1. Accuracy of FWF and AFWF
The phase envelope of water/CO2/NWE-oil mixture is shown in

Fig. 1 and is in good agreement with Ref. [24]. In Table 1, the results for
phase fractions and mole fractions of each phase are listed for the
water/CO2/NWE-oil mixture at 400 bar and 600 K. For this case, the
methods used are full three-phase flash, FWF and AFWF using one and
five components dissolved in water phase. The AFWF with ns=1 is
already close to the reference solution, while for ns=5 the results are
even closer to the full flash results. However, for the FWF, the results are
relatively distant from the full three-phase flash. In this particular case,
at high pressure and temperature, the effect of solubility of components
in the water phase is not negligible and may cause significant discrep-
ancies in the calculated compositions, as confirmed by the results shown
in Table 1. At a higher pressure, 470 bar, and temperature, 620 K (see
Table 2), the deviation is more pronounced in AFWF with only CO2
dissolved in the aqueous phase, and in the FWF only two phases appear.
The lower the number of components considered in the water-rich

phase, the higher is the difference in composition as compared to the
conventional method. In addition, this test shows that trace components

can be handled by applying the same procedure; once a component
reaches a certain minimum value, the algorithm can disregard this
component in that particular phase, with negligible influence on the
accuracy and reduction of the computational time. Such a strategy is
possible since the proposed algorithm gives the flexibility to choose the
number of components dissolved in the aqueous phase.
The phase envelopes in Fig. 2 for full three-phase flash, FWF and

AFWF were constructed by performing flash calculations in the whole
domain, with small pressure and temperature steps. The FWF deviates
from the expected solution when the pressure and temperature are
higher, more specifically in a temperature range from 550 K to 630 K
and pressure interval from 300 bar to 540 bar. For the AFWF, the results
show good agreement with the expected solution, with the exception to
the case that considers only CO2 dissolved in the water phase. This can
be seen more clearly when looking at the detail in Fig. 3, which shows a
significant difference between the results of FWF and AFWF with only
CO2 dissolved, with respect to the full three-phase flash. On the other
hand, when three or more components are considered in the water-rich
phase, the results are very close to those of the full flash.
Further comparison of the flash methods is done considering the

phase fraction distribution with respect to temperature for a pressure of
400 bar, as presented in Fig. 4. In the AFWF, one and five components
are considered. Results for FWF have a significant deviation, especially
for higher temperatures, when compared to the ones obtained from
AFWF, which gives basically the same result as the reference method.
Another phase fraction distribution verification is done in Fig. 5, but in
this case temperature is kept constant and pressure is varied. For this
case, both FWF and AFWF have close values with respect to the three-
phase conventional flash at lower pressures, but as pressure increases
deviations become evident.

3.1.2. Convergence analysis
In this section, the convergence behavior of first- and second- order

methods is analyzed for FWF, AFWF, and full three-phase flash.
The convergence rate of the SSI method is controlled by the

maximum eigenvalue (absolute value) of the convergence matrix S in
Eq. (25) [38]. The higher the spectral radius of S, the slower is the
convergence of SSI. The elements of the matrix S are calculated at the
solution, as well as its eigenvalues. In Table 3, the spectral radius,
number of iterations and phase fractions are presented for the SSI
method applied to the full flash and to the augmented method consid-
ering one and five components soluble in water. As expected, the
number of iterations increases when the value of the maximum eigen-
value increases.
The spectral radius plays a significant role when pressure and

Fig. 1. Phase envelope of the water/CO2/NWE-oil mixture.
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temperature are relatively high and close to the critical point. This can
be seen in Fig. 6, where the spectral radius is calculated for an isobar for
water/CO2/NWE-oil mixture. AFWF with only CO2 component dis-
solved in water has the lowest maximum eigenvalue, as compared with
full three-phase flash and AFWF with 5 components dissolved in water
phase. The relation between the spectral radius of the convergence
matrix S and the number of iterations can clearly be seen in Fig. 7, which
depicts the number of iterations of each method. The higher the spectral
radius, the higher is the number of iterations. For the water/CO2/NWE-
oil mixture at 450 bar, even though it is a high pressure, there is not a
significant difference in the phase distribution, as presented in Fig. 8.
For this particular case, it is clear that using the AFWF with only CO2
dissolved in the aqueous phase is more advantageous not only because it
requires less iterations to converge, but also because it gives a good
accuracy.

Let us now look at the Gershgorin bounds of the eigenvalues of the
matrix S

RiS =
∑

j=1
i∕=j

nc+m
⃒
⃒Sij
⃒
⃒; i = 1, nc+m (52)

where RiS are the Gershgorin radii, which bound the eigenvalues of the
matrix [53]. Every eigenvalue of the matrix S lies within at least one of
the Gershgorin discs, D(Sii,RiS); i = 1,nc+ m.
In Fig. 9, the Gershgorin bounds are depicted for AFWF with ns=1

and ns=5 and the full flash at 450 bar and 615 K. This figure clearly
shows that the length of the intervals containing the eigenvalues of S are
decreasing when fewer components are dissolved in water. In other
words, it is expected to have smaller eigenvalues as ns decreases, with

Table 1
Comparison of phase compositions obtained with the three different methods for the water/CO2/NWE-oil mixture at 400 bar and 600 K.

Component Full Three-Phase Flash Three-Phase FWF Three-Phase AFWF- 1 Three-Phase AFWF - 5

yi xi wi yi xi wi yi xi wi yi xi wi

H2O 0.4486 0.3197 0.9605 0.4872 0.3260 1.0000 0.4529 0.3202 0.9668 0.4486 0.3197 0.9605
CO2 0.2944 0.2517 0.0359 0.2810 0.2378 - 0.2927 0.2498 0.0332 0.2944 0.2517 0.0359
C1 0.0595 0.0527 0.0030 0.0560 0.0498 - 0.0595 0.0527 - 0.0595 0.0527 0.0030
C2–3 0.0339 0.0353 0.0005 0.0316 0.0339 - 0.0337 0.0352 - 0.0339 0.0353 0.0005
C4–6 0.0413 0.0514 6.644E-05 0.0379 0.0506 - 0.0409 0.0513 - 0.0413 0.0514 6.644E-05
C7–14 0.0748 0.1215 2.112E-06 0.0673 0.1240 - 0.0739 0.1218 - 0.0748 0.1215 2.112E-06
C15–24 0.0341 0.0856 3.114E-09 0.0292 0.0908 - 0.0335 0.0862 - 0.0341 0.0856 -
C25þ 0.0134 0.0820 3.662E-11 0.0099 0.0869 - 0.0129 0.0828 - 0.0134 0.0820 -
Phase Fraction 0.7079 0.1530 0.1389 0.7547 0.1675 0.0776 0.7140 0.1544 0.1315 0.7079 0.1530 0.1389

Table 2
Comparison of phase compositions obtained with the three different methods for the water/CO2/NWE-oil mixture at 470 bar and 620 K.

Component Full Three-Phase Flash Three-Phase AFWF - 1 Three-Phase AFWF - 5

yi xi wi yi xi wi yi xi wi

H2O 0.4683 0.3894 0.9411 0.4817 0.3882 0.9554 0.4683 0.3894 0.9411
CO2 0.2730 0.2568 0.0522 0.2702 0.2523 0.0445 0.2730 0.2568 0.0522
C1 0.0551 0.0534 0.0051 0.0546 0.0528 - 0.0551 0.0534 0.0051
C2–3 0.0319 0.0337 0.0011 0.0313 0.0335 - 0.0319 0.0337 0.0011
C4–6 0.0397 0.0464 0.0514 0.0385 0.0464 - 0.0397 0.0464 0.0002
C7–14 0.0748 0.1016 1.928E-05 0.0716 0.1032 - 0.0748 0.1016 1.928E-05
C15–24 0.0372 0.0644 1.053E-07 0.0347 0.0667 - 0.0372 0.0644 -
C25+ 0.0196 0.0539 3.123E-09 0.0171 0.0565 - 0.0196 0.0539 -
Phase Fraction 0.7928 0.0870 0.1201 0.7777 0.0688 0.1533 0.7928 0.0870 0.1201

Fig. 2. Three-phase envelopes for the water/CO2/NWE-oil mixture. Fig. 3. Detail of the three-phase envelopes for the water/CO2/NWE-oil mixture
at high pressure and temperature.
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favorable impact on convergence properties.
In Fig. 10, the number of iterations in phase split calculations versus

temperature is shown for the AFWF with only CO2 dissolved in the
aqueous phase and full three-phase flash with SSI and SSI-Newton
methods for the water/CO2/NWE-oil mixture at P=80 bar. Conver-
gence is obtained in 6 to 8 iterations using the combined SSI-Newton
method in the AFWF and the full three-phase flash. At this moderate
pressure, it suffices to consider only the CO2 dissolution in water; if ns

increases, no significant improvements are expected. The Euclidean
norm is plotted versus iterations in Fig. 11 at 450 bar and 615 K. As
expected, for both SSI and SSI-Newton methods, the AFWF performs
slightly better than the full flash. From this example, it is clear that SSI
alone is extremely slow, while AFWF requires for convergence only 6 SSI
iterations, followed by 5 Newton iterations.
The condition number of the Hessian matrix also gives valuable in-

formation when comparing different methods [45]. The condition
number of H at the solution and phase fractions are listed in Table 4, for
full flash and AFWF with five, three, and one component dissolved in
water at 450 bar and 615 K. In this example, all considered AFWF
converge faster than the full flash, requiring a smaller number of SSI
iterations before the switch.
In Fig. 12, the phase distributions are drawn for full three-phase flash

and AFWF at 450 bar, showing they are fairly close to each other; even
using the AFWF with only CO2 dissolved in the aqueous phase it is
possible to reach basically the same composition as in the conventional
flash. In Fig. 13, the number of iterations versus temperature is shown at
the same pressure. The number of iterations is clearly decreasing with
the number of components soluble in water, the faster being the AFWF
with only CO2 dissolved. The condition number is plotted vs

Fig. 4. Phase fractions for full multiphase method, free water flash and with
augmented method for partial solubility for the water/CO2/NWE-oil mixture at
400 bar.

Fig. 5. Phase fractions for full multiphase method, free water flash and with
augmented method for partial solubility for the water/CO2/NWE-oil mixture at
480 K.

Table 3
Maximum eigenvalue at the solution, number of iterations and phase fractions
for different ns for the water/CO2/NWE-oil mixture at 450 bar and 615 K.

Method Max |λi| Iterations L V W

Full 3-Phase
flash-SSI

0.968433 521-SSI 0.139882 0.764563 0.095555

AFWF-SSI-5 0.968433 503-SSI 0.139882 0.764563 0.095555
AFWF-SSI-3 0.968263 495-SSI 0.140363 0.764695 0.094942
AFWF-SSI-1 0.964039 451-SSI 0.152987 0.765798 0.081214

Fig. 6. Maximum eigenvalue of matrix S at the solution for each flash method
for the water/CO2/NWE-oil mixture at 450 bar.

Fig. 7. Number of phase split iterations for the water/CO2/NWE-oil mixture at
450 bar.

J. Heringer et al. Fluid Phase Equilibria 594 (2025) 114378 

8 



temperature at 450 bar in Fig. 14, and it is clear that the condition
number has a direct relation to the number of iterations necessary to
reach convergence; the lower the condition number, the lower the
number of iterations.
As a general remark, the AFWF systematically showed an advantage

in terms of the number of iterations over the full three-phase flash; when
the number of components dissolved in water is increased, the number
of iterations is also increasing, but it is still lower than for the full flash.

3.2. CO2/water/ Bob Slaugther Block (BSB)-oil mixture

The Bob Slaugther Block (BSB) oil mixture has a CO2 concentration
higher than 55% and a wide three-phase region. This study uses a ratio
of 15:2:3 for water, CO2, and BSB oil, respectively, as used in Pang and Li
[24]. Table B3 lists the component properties and Table B4 presents the
non-zero binary BIPs.

3.2.1. Accuracy of FWF and AFWF
Fig. 15 presents the phase envelope in thr P-T plane for the water/

CO2/BSB-oil mixture obtained after using the conventional three-phase
flash, and matches the results in Ref. [24]. Table 5 presents phase
compositions and phase fractions for three different methods, the full
flash, FWF and AFWF at 360 bar and 630 K. In the augmented flash, two
cases are shown, one that considers only one component dissolved in
water, and the other with five components. The higher the number of
components used in the mixture for the AFWF, the closer the results to
the reference solution. At higher pressure and temperature, 390 bar and
650 K, respectively, phase mole fractions are listed in Table 6. At these
conditions, only two phases are predicted by the FWF method and the
gap between the results for AFWF with only one component dissolved in
aqueous phase and the results for conventional flash are significant, as
can be clearly seen when looking at CO2 and H2O mole fractions in the
aqueous phase.
The phase boundaries of the three-phase region, constructed using

the full method, FWF, and AFWF (with several values of ns), are drawn
in Fig. 16, with a detail in Fig. 17. The FWF reaches a good agreement
with the curve obtained from the full method, except for relatively high
pressures and temperatures. For temperatures higher than 400 K, the
deviation between the phase boundary given by FWF and the one given

Fig. 8. Phase fractions for each method for the water/CO2/NWE-oil mixture at
450 bar.

Fig. 9. Gershgorin bounds at the solution for the full flash and augmented free-
water flash with one and five components dissolved in water for the water/
CO2/NWE-oil mixture at 450 bar and 615 K.

Fig. 10. Number of iterations for the water/CO2/NWE-oil mixture at 80 bar,
considering AFWF with only CO2 dissolved in the aqueous phase and the con-
ventional full three-phase flash.

Fig. 11. Euclidean norm as a function of iterations for the full flash and
augmented flash for the water/CO2/NWE-oil mixture at 450 bar and 615 K.
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by the conventional flash becomes significant, especially for high pres-
sures. The envelope calculated using the augmented method basically
overlaps the one calculated using the conventional flash method for
temperatures lower than 600 K. Nevertheless, as seen in Fig. 17, for
higher pressure and temperature the augmented method only gets closer
to the expected solution when the number of components present in the
water phase increases.
The phase distribution calculated with the full three-phase flash, the

FWF and the AFWF at T=500 K is shown in Fig. 18. The results are
similar to the ones obtained in Ref. [24]. As the pressure increases in the
three-phase region, the aqueous phase fraction increases rapidly, while
the hydrocarbon liquid phase levels up steadily and vapor fraction

decreases. Moreover, the FWF increases its deviation with respect to the
full three-phase flash as the pressure increases, as a result of increased
solubility of CO2 and hydrocarbon components in the aqueous phase.
Fig. 19 shows phase distribution for the three flash methods at 220

bar, matching the results from Pang and Li [24]. In this case, phase
fractions calculated with the FWF present some deviations at high
pressures, while AFWF results are closer to the ones from the full
three-phase flash.

3.2.2. Convergence analysis
The maximum eigenvalue of the matrix S, the number of SSI itera-

tions, and phase fractions at 350 bar and 620 K are presented in Table 7,
to compare the full flash and the augmented method considering one,

Table 4
Condition number, iterations and phase fractions for different ns for the water/CO2/NWE-oil mixture at 450 bar and 615 K.

Method Condition number Iterations L V W

Full 3-Phase flash SSI+Newton 3.76E+11 9-SSI + 5-Newton 0.139882 0.764563 0.095555
AFWF- 5 SSI+Newton 3.51E+07 6-SSI + 5-Newton 0.139882 0.764563 0.095555
AFWF- 3 SSI+Newton 4.12E+05 6-SSI + 5-Newton 0.140363 0.764695 0.094942
AFWF -1 SSI+Newton 6.74E+03 5-SSI + 5-Newton 0.152987 0.765798 0.081214

Fig. 12. Phase fractions for each flash method for the water/CO2/NWE-oil
mixture at 450 bar.

Fig. 13. Number of phase split iterations for the water/CO2/NWE-oil mixture
at 450 bar.

Fig. 14. Condition number of the Hessian matrix at the solution for phase split
calculation using SSI and Newton methods for the water/CO2/NWE-oil mixture
at 450 bar.

Fig. 15. Phase envelope of the water/CO2/BSB-oil mixture.
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three, and five components in water rich phase. As expected, the number
of iterations increases with the value of the maximum eigenvalue.
Fig. 20 presents the spectral radius of the matrix S along the

P=350bar isobar. The AFWF method with only CO2 component dis-
solved in water has the lowest maximum eigenvalue as compared to the
full three-phase flash and the augmented method with five components
dissolved in water phase. The relation between the spectral radius of the
convergence matrix S and the number of iterations for each method is
given in Fig. 21; the higher the spectral radius, the higher is the number
of iterations. However, we must note that phase fractions are different
from the exact solution, as shown in Fig. 22.
The Gershgorin bounds are plotted in 23 for AFWF with ns=1 and

ns=5 and the full three-phase flash at 300 bar and 580 K. Again, the
length of the intervals containing the eigenvalues of S are decreasing
when less components are dissolved in water, with favorable impact on

convergence properties.
The proposed AFWF method has the advantage of being flexible

concerning the number of components dissolved in the aqueous phase,
ranging from no component dissolved in aqueous (FWF) to all compo-
nents present in the mixture dissolved in the aqueous phase (the full
flash). Beyond this advantage, the inclusion of a second order method
reduces significantly the computational effort of three-phase flash cal-
culations for hydrocarbon/CO2/water mixtures with respect to the use
of SSI alone.
The number of SSI+Newton iterations for FWF, AFWF and full flash

calculations is plotted vs temperature at P=300 bar in Fig. 24 and the
phase distributions at the same pressure are drawn in Fig. 25. The FWF is
more efficient, but the discrepancy in terms of composition is consid-
erable, as seen in Fig. 25, and it confirms that for relatively high

Table 5
Comparison of phase compositions obtained with the three different methods for the water/CO2/BSB-oil mixture at 360 bar and 630 K.

Component Full Three-Phase Flash Three-Phase FWF Three-Phase AFWF - 1 Three-Phase AFWF - 5

yi xi wi yi xi wi yi xi wi yi xi wi

H2O 0.6087 0.4378 0.9631 0.6934 0.4376 1.0000 0.6231 0.4347 0.9721 0.6087 0.4378 0.9631
CO2 0.1688 0.1484 0.0321 0.1500 0.1338 - 0.1650 0.1442 0.0278 0.1688 0.1484 0.0321
C1 0.0219 0.0196 0.0024 0.0183 0.0171 - 0.0227 0.0203 - 0.0219 0.0196 0.0024
C2–3 0.0389 0.0422 0.0017 0.0303 0.0374 - 0.0382 0.0421 - 0.0389 0.0422 0.0017
C4–6 0.0427 0.0554 0.0004 0.0317 0.0513 - 0.0407 0.0546 - 0.0427 0.0554 0.0004
C7–15 0.0782 0.1388 2.233E-05 0.0540 0.1440 - 0.0734 0.1394 - 0.0782 0.1388 2.233E-05
C16–27 0.0316 0.0944 1.30E-07 0.0184 0.1083 - 0.0290 0.0979 - 0.0316 0.0944 -
C28+ 0.0088 0.0630 5.04E-09 0.0035 0.0701 - 0.0075 0.0665 - 0.0088 0.0630 -
Phase Fraction 0.4411 0.1080 0.4507 0.5908 0.1224 0.2866 0.4720 0.1068 0.4211 0.4411 0.1080 0.4507

Table 6
Comparison of phase compositions obtained with the three different methods for the water/CO2/BSB-oil mixture at 390 bar and 650 K.

Component Full Three-Phase Flash Three-Phase AFWF - 1 Three-Phase AFWF - 5

yi xi wi yi xi wi yi xi wi

H2O 0.7041 0.4900 0.9492 0.7420 0.4903 0.9693 0.7042 0.4899 0.9493
CO2 0.1333 0.1241 0.0417 0.1231 0.1179 0.0307 0.1333 0.1241 0.0417
C1 0.0169 0.0164 0.0037 0.0158 0.0162 - 0.0169 0.0164 0.0036
C2–3 0.0294 0.0357 0.0036 0.0263 0.0348 - 0.0294 0.0357 0.0036
C4–6 0.0320 0.0485 0.0016 0.0275 0.0475 - 0.0320 0.0485 0.0015
C7–15 0.0573 0.1308 2.689E-04 0.0463 0.1333 - 0.0573 0.1308 2.668E-04
C16–27 0.0216 0.0936 6.707E-06 0.0157 0.0985 - 0.0216 0.0936 -
C28+ 0.0054 0.0608 4.922E-07 0.0033 0.0616 - 0.0054 0.0608 -
Phase Fraction 0.5794 0.1245 0.2960 0.6753 0.1373 0.1874 0.5797 0.1245 0.2958

Fig. 16. Three-phase envelopes for the water/CO2/BSB-oil mixture. Fig. 17. Detail of the three-phase envelopes for the water/CO2/BSB-
oil mixture.
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pressures, using the free water assumption may give significant de-
viations from the full three-phase flash. The AFWF is slightly faster than
the full flash and phase distributions are closer to the exact ones as more
components are considered in the aqueous phase.
In Fig. 26, the Euclidean norm variation during iterations is depicted

at 300 bar and 610 K for the SSI and SSI+Newton methods. The latter
method converges in 8–9 iterations, while using SSI alone requires more
than 120 iterations for convergence.
The condition number of the Hessian at the solution, the number of

iterations and the phase fractions at 300 bar and 610 K are shown in
Table 8 for the full flash and augmented free-water flash with five, three,

Fig. 18. Comparison of phase distribution for full flash, free-water flash, and
augmented free-water flash for the water/CO2/BSB-oil mixture at 500 K.

Fig. 19. Comparison of phase distribution for full flash, free-water flash and
augmented free-water for the water/CO2/BSB-oil mixture at 220 bar.

Table 7
Maximum eigenvalue at the solution, iterations and phase fractions for the
water/CO2/BSB-oil mixture at 350 bar and 620 K.

Method Max |λi| Iterations L V W

3-Phase flash-SSI 0.959018 326-SSI 0.112915 0.374663 0.512422
AFWF-SSI-5 0.959017 306-SSI 0.112915 0.374664 0.512422
AFWF-SSI-3 0.958484 302-SSI 0.112499 0.376765 0.510735
AFWF-SSI-1 0.951465 290-SSI 0.110312 0.395399 0.494290

Fig. 20. Maximum eigenvalue at the solution for each method for the water/
CO2/BSB-oil mixture at 350 bar.

Fig. 21. Number of phase split iterations using SSI for each method for the
water/CO2/BSB-oil mixture at 350 bar.

Fig. 22. Phase fractions for each method for the water/CO2/BSB-oil mixture at
350 bar.
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and one component dissolved in water rich liquid phase. The condition
number can vary with several order of magnitude and influences the
number of iterations necessary to reach convergence.
The phase fraction distribution at 350 bar is presented In Fig. 27. The

results of the AFWF with only CO2 dissolved in the aqueous phase are
different from the ones obtained with the full three-phase flash for the
entire temperature range, and these deviations increase with tempera-
ture. At the same pressure, the number of iterations and the condition
number of the Hessian at the solution are plotted in Figs. 28 and 29,
respectively. As the number of dissolved component in the aqueous
phase decreases, AFWF is slightly faster and the condition number is
decresing.

3.3. Water/gas condensate mixture

A synthetic gas-condensate mixture containing 75% of water [25] is
used to test the AFWF for partial solubility of hydrocarbon components
in the aqueous phase. Component properties and BIPs from Pang and Li
[25] are listed in Table B5.

3.3.1. Accuracy of FWF and AFWF
The phase boundaries of the three-phase region are drawn in Fig. 30

for the conventional three-phase flash, free-water flash, and augmented

Fig. 23. Gershgorin bounds at the solution for the full flash and augmented
free-water flash with one and five components in dissolved in water for the
water/CO2/BSB-oil mixture at 300 bar and 580 K.

Fig. 24. Comparison of number of iterations for the water/CO2/BSB-oil
mixture at 300 bar.

Fig. 25. Phase fraction distribution for the water/CO2/BSB-oil mixture at
300 bar.

Fig. 26. Comparison of number of iterations for the water/CO2/BSB-oil
mixture at 300 bar and 580 K.

Table 8
Condition number, iterations and phase fractions for different ns for the water/
CO2/BSB-oil mixture at 300 bar and 610 K.

Method Condition
number

Iterations L V W

3-Phase
flash-
Newton

1.64E+11 6-SSI + 3-
Newton

0.091507 0.439075 0.469417

AFWF-
Newton-
5

4.42E+06 5-SSI + 3-
Newton

0.091507 0.439075 0.469417

AFWF-
Newton-
3

1.25E+04 4-SSI +4-
Newton

0.091409 0.439854 0.468737

AFWF-
Newton-
1

2.72E+03 4-SSI + 4-
Newton

0.090276 0.450684 0.45904
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free-water flash with one, two, and seven hydrocarbon components
dissolved in the aqueous phase. All the curves are very close one to
another for temperatures lower than 600 K, but for higher temperatures,
the free water flash deviates considerably from the full three-phase flash.
For the AFWF, all the curves are closer to the exact solution than the
free-water flash. The case with only methane dissolved in water is still
far from the full flash for higher temperatures and pressures; however, as
the number of components allowed in the water phase increases, the
solution gets closer to the one from three-phase flash, as can be seen in
Fig. 31.
The mole fractions for each method for the water/gas condensate

mixture at 360 bar and 630 K are listed in Table 9. Following the same
trend as for the water/CO2/NWE and water/CO2/BSB, the augmented
free-water flash is very close to the full three-phase flash, while the free-
water flash has a higher deviation. Since the amount of C1 is relatively
high, and as this hydrocarbon has a relatively high solubility in water,
neglecting the solubility of this component in the aqueous phase is not a
good approximation at higher pressures. For an even higher pressure
and temperature (430 bar and 645 K), as shown in Table 10, the FWF
gives a two-phase response. The AFWF with ns=1 have a significant

difference for both phase fractions and composition, while the AFWF
with seven components is very close to the reference method.
The phase distributions for full three-phase flash and AFWFwith one,

four, and seven components dissolved in water are presented in Fig. 32.
For a pressure of 400 bar at different temperatures, the AFWF-1 deviates
considerably from the reference result, while the augmented method
with a greater number of components dissolved in the aqueous phase
gets closer to the expected solution. For high pressures and tempera-
tures, a larger number of components must be included in the aqueous
phase to reduce the deviation from the full three-phase flash solution. A
case in which the phase mole fractions calculated with the FWF has
relatively small differences with respect to the full three-phase flash as
shown in Fig. 33. At a temperature of 470 K, even for higher pressures all
methods match well.

3.3.2. Convergence analysis
Fig. 34 shows the number of SSI iterations at 400 bar for full three-

phase flash and the AFWF. For temperature below 640 K, there is a
clear correlation between the number of iterations and the number of
components soluble in aqueous phase. However, this is not true anymore

Fig. 27. Phase fractions for each flash method for the water/CO2/BSB-oil
mixture at 350 bar.

Fig. 28. Number of phase split iterations for the water/CO2/BSB-oil mixture at
350 bar.

Fig. 29. Condition number of the Hessian matrix at the solution for phase split
calculation for the water/CO2/BSB-oil mixture at 350 bar.

Fig. 30. Phase envelopes for the water/gas condensate mixture. Conventional
three-phase flash, FWF, and augmented free water-flash for different
solubilities.
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for temperatures higher than 640 K, since for this case AFWF-1 and
AFWF-4 have the highest number of iterations. The number of iterations
levels up near the phase boundary for high temperatures where the
aqueous phase disappears. Since three-phase phase boundaries of AFWF-
1 and AFWF-4 are shifted to the left, the number of iterations is also
lagged.
The maximum eigenvalue of the matrix S, the number of iterations

and phase fractions at 400 bar and 638 K are listed in Table 11 for the
AFWF considering seven, four, and one component in aqueous phase
and for the full three-phase flash. As expected, the number of iterations
increases with the value of the highest eigenvalue; the AFWF-1, which
considers only one component dissolved in the aqueous phase, has the

lowest number of iterations, but the phase fraction deviates significantly
from the full three-phase flash.
The phase distribution at 420 bar is presented in Fig. 35, showing the

deviation between results with AFWF-1 and the full flash. The number of
SSI+Newton iterations for AFWF and full three-phase flash is depicted in
Fig. 36 at the same pressure, showing a decreasing trend when less
components are considered in the aqueous phase. For this case, AFWF-4
would be the best option in flash calculation, since it performs better
than the full method and AFWF-7, and still give compositions that do not
deviate significantly from the full flash.
The condition number of the Hessian at the solution, the number of

iterations and phase fractions for the full three-phase flash and the
AFWF with one, four, and seven components dissolved in aqueous phase
are given in Table 12. It appears that as the condition number increases,
the number of iterations also follow the same tendency. The AFWF with
only C1 dissolved in water outperforms the other methods in terms of
number of iterations. On the other hand, this particular method shows
important deviations of the phase fraction from the full three-phase flash
results. Therefore, in this case, the AFWF with four components dis-
solved in the aqueous phase is preferred, since it gives close phase
fraction and has a lower number of iterations as compared to the full
three-phase flash method.

4. Conclusions

In this work, a new robust and efficient augmented free-water flash
method is proposed for CO2-water-hydrocarbon mixtures. The new
method is general, allowing partial solubility of any selected component
in the water-rich phase, depending on the specific compositions and
operating conditions. In the general AFWF, the dimension of the prob-
lem is reduced; the reduction of the dimensionality is significant if the
number of components considered soluble in the aqueous phase is small.
The number of components soluble in water is not limited, leading to a
controlled accuracy with respect to a full three-phase equilibrium, even

Fig. 31. Detail of the calculated phase envelope for the gas condensate/
water mixture.

Table 9
Comparison of phase compositions obtained with the three different methods for the water/gas condensate mixture at 360 bar and 630 K.

Component Full Three-Phase Flash Free-Water Flash Three-Phase AFWF - 1 Three-Phase AFWF - 7

yi xi wi yi xi wi yi xi wi yi xi wi

H2O 0.6599 0.4484 0.9768 0.7032 0.4505 1.0000 0.6629 0.4486 0.9796 0.6599 0.4484 0.9768
C1 0.2556 0.2508 0.0218 0.2287 0.2362 - 0.2533 0.2493 0.0204 0.2556 0.2508 0.0218
C2 0.0172 0.0196 0.0010 0.0152 0.0185 - 0.0174 0.0199 - 0.0172 0.0196 0.0010
C3 0.0069 0.0089 2.199E-04 0.0060 0.0084 - 0.0069 0.0089 - 0.0069 0.0089 2.199E-04
C4 0.0070 0.0098 1.182E-04 0.0060 0.0094 - 0.0069 0.0098 - 0.0070 0.0098 1.182E-04
C5 0.0070 0.0109 7.779E-05 0.0060 0.0106 - 0.0069 0.0109 - 0.0070 0.0109 7.779E-05
C6 0.0035 0.0062 1.497E-05 0.0029 0.0061 - 0.0034 0.0062 - 0.0035 0.0062 1.497E-05
C7 0.0070 0.0137 1.427E-05 0.0058 0.0136 - 0.0069 0.0137 - 0.0070 0.0137 1.427E-05
C16 0.0201 0.0951 1.013E-08 0.0154 0.1042 - 0.0198 0.0956 - 0.0201 0.0951 -
C29 0.0160 0.1366 4.080E-09 0.0109 0.1425 - 0.0156 0.1372 - 0.0160 0.1366 -
Phase Fraction 0.6992 0.0099 0.2909 0.7916 0.0273 0.1811 0.7068 0.0108 0.2823 0.6992 0.0099 0.2909

Table 10
Comparison of phase compositions obtained with the three different methods for the water/gas condensate mixture at 430 bar and 645 K.

Component Full Three-Phase Flash Three-Phase AFWF - 1 Three-Phase AFWF - 7

yi xi wi yi xi wi yi xi wi

H2O 0.6580 0.5014 0.9598 0.6700 0.4999 0.9680 0.6580 0.5014 0.9598
C1 0.2559 0.2723 0.0373 0.2488 0.2687 0.0320 0.2559 0.2723 0.0373
C2 0.0173 0.0204 0.0018 0.0173 0.0209 - 0.0173 0.0204 0.0018
C3 0.0070 0.0090 4.714E-04 0.0069 0.0091 - 0.0070 0.0090 4.713E-04
C4 0.0071 0.0097 2.928E-04 0.0069 0.0098 - 0.0071 0.0097 2.927E-04
C5 0.0071 0.0106 2.112E-04 0.0068 0.0106 - 0.0071 0.0106 2.112E-04
C6 0.0036 0.0058 5.049E-05 0.0034 0.0058 - 0.0036 0.0058 5.047E-05
C7 0.0071 0.0126 5.681E-05 0.0068 0.0126 - 0.0071 0.0126 5.679E-05
C16 0.0205 0.0728 2.612E-07 0.0186 0.0750 - 0.0205 0.0728 -
C29 0.0164 0.0854 1.179E-07 0.0145 0.0874 - 0.0164 0.0854 -
Phase Fraction 0.6679 0.0179 0.3142 0.6849 0.0297 0.2854 0.6679 0.0179 0.3142
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at high pressures and/or large amounts of CO2.
All previously published FWF and AFWFmethods used the first-order

SSI method, which may be very slow. Second-order methods are pre-
sented in detail for the first time in this work for solving the AFWF
problem. Newton iterations with a modified Cholesky factorization and
line search are used in a highly robust combined SSI-Newton sequence.
The new AFWF method is tested for several hydrocarbon-water-CO2

mixtures and proved to be robust (with no particular convergence issues
observed) and efficient, systematically outperforming the conventional
full three-phase approach. We have shown for all test examples that the
maximum eigenvalue of the convergence S-matrix (which controls the
convergence rate of the SSI method) and the condition number of the
Hessian matrix (which affects the convergence behavior of the Newton
method) are smaller for the AFWF than for the full three-phase flash.
This explains why the number of iterations required by the AFWF in both
first-and second-order methods is systematically smaller than in the full
three-phase flash.

In our test examples, up to 5% of CO2 can be dissolved in the aqueous
phase. Moreover, we show that at high pressures, solubility of additional
components in water must be allowed to reduce deviations with respect
to full three-phase flash results in terms of phase boundaries, phase
distributions, and mole fractions; the user can choose the desired level of
approximation. The AFWF methodology was designed for implementa-
tion in compositional reservoir simulators, with applications ranging
from CO2 storage and geothermal projects to a variety of enhanced oil
recovery processes.

Fig. 32. Phase fractions for each flash method for the water/gas condensate
mixture at 400 bar.

Fig. 33. Phase fractions for each flash method for the water/gas condensate
mixture at 470 K.

Fig. 34. Number of iterations for each method for the water/gas condensate
mixture at 400 bar in the three phase region.

Table 11
Maximum eigenvalue at the solution, iterations and phase fractions for the
water/gas condensate fluid mixture at 400 bar and 638 K.

Method Max |λi| Iterations L V W

3-Phase flash-SSI 0.837333 374-SSI 0.007955 0.679213 0.312832
AFWF-SSI-7 0.837332 224-SSI 0.007955 0.679214 0.312831
AFWF-SSI-4 0.837197 222-SSI 0.008223 0.680611 0.311165
AFWF-SSI-1 0.834787 217-SSI 0.012101 0.690545 0.297354

Fig. 35. Phase fractions for different ns for the water/gas condensate mixture
at 420 bar.

J. Heringer et al. Fluid Phase Equilibria 594 (2025) 114378 

16 



CRediT authorship contribution statement

Juan Heringer: Writing – original draft, Validation, Software,
Methodology, Formal analysis, Conceptualization.Michiel Wapperom:
Software, Methodology, Conceptualization. Catinca Secuianu:Writing
– review & editing, Validation, Methodology, Conceptualization. Denis
Voskov: Writing – review & editing, Validation, Supervision, Method-
ology, Funding acquisition, Conceptualization. Dan Vladimir Nichita:
Writing – review & editing, Writing – original draft, Validation, Super-
vision, Methodology, Funding acquisition, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Juan Heringer, Michiel Wapperom reports financial support was pro-
vided by Total Energies. If there are other authors, they declare that they
have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Acknowledgements

JH and MW thank Total Energy for financial support. CS and DVN
thank the ISIFoR Carnot Institute for a mobility grant.

Appendix A. Derivation of the Q-function from the Gibbs free energy

In the expression of the dimensionless Gibbs free energy

G =
∑nc

i=1
niVlnfiV +

∑nc

i=1
niLlnfiL +

∑m

i=1
niWlnfiW (B1)

we add and subtract

∑nc

i=1
zilnzi =

∑nc

i=1
niVlnzi +

∑nc

i=1
niLlnzi +

∑m

i=1
niWlnzi (B2)

we obtain

G =
∑nc

i=1
zilnzi + lnP+

∑nc

i=1
niVln

(
yiφiV

zi

)

+
∑nc

i=1
niLln

(
xiφiL

zi

)

+
∑m

i=1
niWln

(
wiφiW

zi

)

(B3)

Using the mole fractions and equilibrium constants expressions (Eqs. 4) we get

Fig. 36. Number of iterations for different ns for the water/gas condensate mixture at 420 bar in the three phase region.

Table 12
Condition number, iterations and phase fractions for different ns for the water/gas condensate fluid mixture at 420 bar and 650 K.

Method Condition number Iterations L V W

3-Phase flash-Newton 1.31E+08 16 0.049503 0.783834 0.166663
AFWF-Hybrid-7 1.92E+06 14 0.049511 0.783896 0.166593
AFWF-Hybrid-4 5.24E+05 12 0.051394 0.792231 0.156375
AFWF- Hybrid-1 1.13E+05 11 0.063343 0.834569 0.102088
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(B4a)

(B4b)

(B4c)

Similarly,

(B4d)

(B4e)

Introducing Eqs. (B4) in Eq. (B3) and taking into account Eq. (1) gives

G =
∑nc

i=1
zilnzi + lnP+

∑nc

i=1
zilnφiL −

∑m

i=1
zilnEi −

∑nc

i=m+1
zilnEi (B5)

If the fugacity coefficients (thus the equilibrium constants) are not dependent on compositions, that is, the ideal case, G can be written as

G = C − Q(V,W) (B6)

where

Q(V,W) = −
∑m

i=1
zilnEi −

∑nc

i=m+1
zilnEi (B7)

is exactly the function from Eq. (30).
If we introduce

Ei = SiφiL (B8a)

Ei = SiφiL (B8b)

where

Si =
V

φiV
+

L
φiL

+
W

φiW
; i = 1,m (B9a)

Si =
V

φiV
+

L
φiL

; i = m+ 1, nc (B9b)

in Eq. (B5), Michelsen’s Q-function [43] is obtained, as in Yan and Stenby [42].

Appendix B. Composition, component properties and non-zero BIPs

Table B1, Table B2, Table B3, Table B4, Table B5

J. Heringer et al. Fluid Phase Equilibria 594 (2025) 114378 

18 



Table B1
Component properties of water/CO2/NEW oil mixture.

Component Tc (K) Pc (bar) ω Mol%

H2O 647.30 220.48 0.344 50.0000
CO2 304.20 73.76 0.225 25.1925
C1 190.60 46.00 0.008 5.0625
C2–3 343.64 45.05 0.130 2.9500
C4–6 466.41 33.50 0.244 3.7100
C7–14 603.07 24.24 0.600 7.1575
C15–24 733.79 18.03 0.903 3.7250
C25+ 923.20 17.26 1.229 2.2025

Table B2
BIPs for water/CO2/NEW oil mixture.

Component kH2O kCO2

H2O - 0.1896
CO2 0.1896 -
C1 0.4850 0.1200
C2–3 0.5000 0.1200
C4–6 0.5000 0.1200
C7–14 0.5000 0.0900
C15–24 0.5000 0.0900
C25+ 0.5000 0.0900

Table B3
Component properties of BSB oil mixture.

Component Tc (K) Pc (bar) ω Mol%

H2O 647.30 220.48 0.344 75.0000
CO2 304.20 73.76 0.225 10.5055
C1 160.00 46.00 0.008 1.2915
C2–3 344.22 45.00 0.131 2.2545
C4–6 463.22 34.00 0.240 2.5065
C7–15 605.78 21.75 0.618 4.9560
C16–27 751.00 16.54 0.957 2.4165
C28+ 942.50 16.42 1.268 1.0695

Table B4
BIPs for water/CO2/BSB oil mixture.

Component kH2O kCO2

H2O - 0.1896
CO2 0.1896 -
C1 0.4850 0.0550
C2–3 0.5000 0.0550
C4–6 0.5000 0.0550
C7–15 0.5000 0.1050
C16–27 0.5000 0.1050
C28+ 0.5000 0.1050

Table B5
Component properties and BIPs of water/reservoir mixture.

Component Tc (K) Pc (bar) ω Mol% kH2O

H2O 647.30 220.48 0.344 75.00 -
C1 190.58 46.04 0.011 18.75 0.485
C2 305.42 48.80 0.099 1.25 0.500
C3 369.82 42.49 0.152 0.50 0.500
C4 408.14 36.48 0.177 0.50 0.500

(continued on next page)
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Table B5 (continued )

Component Tc (K) Pc (bar) ω Mol% kH2O

C5 464.78 35.29 0.233 0.50 0.500
C6 507.43 30.12 0.305 0.25 0.500
C7 540.26 27.36 0.351 0.50 0.500
C16 717.00 14.19 0.742 1.50 0.500
C29 816.55 14.51 1.129 1.25 0.500

Data availability

No data was used for the research described in the article.
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