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Finite Basis Physics-Informed Neural Networks
as a Schwarz Domain Decomposition Method

Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley

1 Introduction

The success and advancement of machine learning (ML) in fields such as image
recognition and natural language processing has lead to the development of novel
methods for the solution of problems in physics and engineering. However, algo-
rithms developed in traditional fields of ML usually require a large amount of data,
which are difficult to obtain from measurements and/or traditional numerical simu-
lations. Furthermore, such algorithms can be difficult to interpret and can struggle
to generalize. To overcome these issues, a new research paradigm has emerged,
known as scientific machine learning (SciML) [1, 7], which aims to more tightly
combine ML with scientific principles to provide more powerful algorithms.

One such approach are physics-informed neural networks (PINNs) [4, 10], which
are designed to approximate the solution to the boundary value problem

N[𝑢] (x) = 𝑓 (x), x ∈ Ω ⊂ R𝑑 ,
B𝑘 [𝑢] (x) = 𝑔𝑘 (x), x ∈ Γ𝑘 ⊂ 𝜕Ω

(1)

whereN[𝑢] (x) is a differential operator, 𝑢 is the solution andB𝑘 (·) is a set of bound-
ary conditions, such that the solution 𝑢 is uniquely determined. Note that boundary
conditions are to be understood in a broad sense and the x variable can also include
time. In particular, we do not distinguish between initial and boundary conditions.
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The approximation to the solution of (1) is given by a neural network 𝑢(x, 𝜽)
(for the sake of simplicity we use the same notation for the solution of the PDE and
the neural network) where 𝜽 is a vector of all the parameters of the neural network
(i.e., its weights and biases). The network is trained via the loss function

L(𝜽) = 𝜆𝐼

𝑁𝐼

𝑁𝐼∑︁
𝑖=1
(N [𝑢] (x𝑖 , 𝜽) − 𝑓 (x𝑖))2︸                                  ︷︷                                  ︸

LPDE

+
𝑁𝑘∑︁
𝑘=1

𝜆𝑘
𝐵

𝑁 𝑘
𝐵

𝑁 𝑘
𝐵∑︁

𝑗=1
(B𝑘 [𝑢] (x𝑘

𝑗 , 𝜽) − 𝑔𝑘 (x𝑘
𝑗 ))2︸                                            ︷︷                                            ︸

LBC

.

(2)

Here, {x𝑖}𝑁𝐼

𝑖=1 is a set of collocation points sampled in the interior of the domain,

{x𝑘
𝑗
}𝑁

𝑘
𝐵

𝑗=1 is a set of points sampled along each boundary condition, and 𝜆𝐼 and 𝜆𝑘
𝐵

are
well-chosen scalar hyperparameters which ensure that the terms in the loss function
are well balanced. Intuitively, one can see that the PDE loss tries to ensure that the
solution learned by the network obeys the underlying PDE whilst the boundary loss
tries to ensure it obeys the boundary conditions.

In practice, the presence of the boundary loss in eq. (2) often slows down train-
ing as it can compete with the PDE term [12]. In a slightly different formulation,
boundary conditions can instead be enforced exactly as hard constraints by using the
neural network as part of a solution ansatz C𝑢 where C is a constraining operator
which enforces that the solution explicitly satisfies the boundary conditions [4, 8].
This turns the optimization problem into an unconstrained one, and only the PDE
loss from eq. (2) is required to train the PINN. For example, suppose we want to
enforce that 𝑢(0) = 0 when solving a one-dimensional ODE, then the ansatz and
constraining operator can be chosen as [C𝑢] (𝑥, 𝜽) = tanh(𝑥)𝑢(𝑥, 𝜽). The rationale
behind this is that the function tanh(𝑥) is null at 0, forcing the boundary condition
to be obeyed, but non-zero away from 0, allowing the network to learn the solution
away from the boundary condition.

Whilst PINNs have proven to be successful for solving many different types of
differential equations, they often struggle to scale to problems with larger domains
and more complex, multi-scale solutions [8, 11]. This is in part due to the spec-
tral bias of neural networks [9] (their tendency to learn higher frequencies much
slower than lower frequencies), and the increasing size of the underlying PINN op-
timization function. One way to alleviate these scaling issues is to combine PINNs
with a domain decomposition method (DDM); by taking a divide-and-conquer ap-
proach, one hopes that the large, global optimization problem can be turned into
a series of smaller and easier localized problems. In particular, [8] proposed finite
basis physics-informed neural networks (FBPINNs) where the global PINN is par-
titioned into many local networks that are trained to approximate the solution on
an overlapping domain decomposition. Related approaches are the deep domain de-
composition method (D3M) [5] and the deep-learning-based domain decomposition
method (DeepDDM) [6], which combine overlapping Schwarz domain decompo-
sition methods with a PINN-based discretization. Other earlier works on the use
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Fig. 1 Local FBPINN subdomains and window functions 𝑤𝑗 (left), local solutions 𝑢 𝑗 (right)

of machine learning and domain decomposition methods include the prediction of
the geometrical location of constraints in adaptive FETI-DP and BDDC methods;
see [2]. For an overview of the combination of domain decomposition methods and
machine learning, see [3].

In this work, we build upon FBPINNs by showing how Schwarz-like additive,
multiplicative and hybrid iterative training strategies for FBPINNs can be developed.
We present numerical experiments on the influence of these training strategies on
convergence and accuracy. We propose and evaluate a preliminary implementation
of a coarse space correction for FBPINNs, to further improve their efficiency.

2 Finite basis physics-informed neural networks (FBPINNs)

First we briefly present the FBPINN method introduced by [8] from a DDM per-
spective. The FBPINN method can be seen as a network architecture that allows for
a localization of the network training. Therefore, let us consider a set of collocation
points 𝑋 = {x𝑖}𝑁𝑖=1 in the global domain Ω and a decomposition into overlapping
domains Ω = ∪𝐽

𝑗=1Ω 𝑗 inducing a decomposition into subsets of collocation points

𝑋 𝑗 = {x 𝑗

𝑖
}𝑁 𝑗

𝑖=1, 𝑗 = 1, . . . , 𝐽. As usual in overlapping Schwarz methods, 𝑋 = ∪𝐽
𝑗=1𝑋 𝑗

is not disjoint. For each subdomain Ω 𝑗 , we denote N𝑗 the index set of neighboring
subdomains, Ω◦

𝑗
= ∪N𝑗

𝑙=1Ω𝑙 ∩ Ω 𝑗 the overlapping subset of Ω 𝑗 , and Ωint
𝑗

= Ω 𝑗 \ Ω◦𝑗 ,
the interior part of the domain; let 𝑋◦

𝑗
and 𝑋 int

𝑗
be the corresponding sets of col-

location points, and 𝑋◦ = ∪𝐽
𝑗=1𝑋

◦
𝑗

and 𝑋 int = ∪𝐽
𝑗=1𝑋

int
𝑗

. We now define the global
network 𝑢 as the sum of local networks 𝑢 𝑗 (x, 𝜽 𝑗 ) weighted by window functions 𝜔 𝑗 :
𝑢 =

∑
𝑗 ,x𝑖 ∈Ω 𝑗

𝜔 𝑗𝑢 𝑗 . Here, the local networks have individual network parameters 𝜽 𝑗 ,
and of course, they could simply be evaluated everywhere in R𝑑 . In order to restrict
them to their corresponding overlapping subdomains, we multiply them with the win-
dow functions, which have the properties supp(𝜔𝑖) ⊂ Ω𝑖 and Ω ⊂ ∪𝐽

𝑗=1supp(𝜔𝑖);
the specific definition of 𝜔𝑖 employed here can be found in [8, eq. (14)]. See Fig. 1
for a graphical representation of the overlapping subdomains, their overlapping and
interior sets, window functions, and local solutions for a simple one-dimensional
example. If we insert the expression for 𝑢 into eq. (2), we see that the loss function
can be written as:
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L(𝜽1, . . . , 𝜽𝐽 ) =
1
𝑁

𝑁∑︁
𝑖=1

©­«N[C
∑︁

𝑗 ,x𝑖 ∈𝑋 𝑗

𝜔 𝑗𝑢 𝑗 ] (x𝑖 , 𝜽 𝑗 ) − 𝑓 (x𝑖)
ª®¬

2

. (3)

The contribution to the global loss function can be split into a part coming from
interior points and another one from points in the overlap, respectively:

L(𝜽1, . . . , 𝜽𝐽 ) =
1
𝑁

∑︁
x∈𝑋 int

(
N[C

∑︁
𝑙,x∈𝑋𝑙

𝜔𝑙𝑢𝑙] (x, 𝜽𝑙) − 𝑓 (x)
)2

︸                                                   ︷︷                                                   ︸
=:Lint (𝜽1 ,...,𝜽𝐽 )

+ 1
𝑁

∑︁
x∈𝑋 ◦

(
N[C

∑︁
𝑙,x∈𝑋𝑙

𝜔𝑙𝑢𝑙] (x, 𝜽𝑙) − 𝑓 (x)
)2

.

(4)

Note also that, since 𝑋 int
𝑖
∩ 𝑋 int

𝑗
= ∅ for 𝑖 ≠ 𝑗 , the interior contribution can be

simplified as follows:

Lint (𝜽1, . . . , 𝜽𝐽 ) =
1
𝑁

𝐽∑︁
𝑗=1

∑︁
x𝑖 ∈𝑋 int

𝑗

(
N[C𝜔 𝑗𝑢 𝑗 ] (x𝑖 , 𝜽 𝑗 ) − 𝑓 (x𝑖)

)2
.

In [8], the authors introduce the notion of scheduling which is related to the
degree of parallelism one can consider in Schwarz domain decomposition methods.
For example in the well-know alternating Schwarz method, local solves take place
sequentially, in an alternating manner, with data being exchanged at the interfaces. In
the case of the parallel Schwarz method, local solutions are computed simultaneously,
but subdomains only have access to interface data at the previous iteration. As is
well-known in DDMs, the alternating method convergences in fewer iterations than
the parallel method, whereas the second methods allows the concurrent computation
of the local solutions; hence, the parallel Schwarz method is often more efficient in
a parallel implementation.

In the case of many subdomains, one can define a so-called coloring strategy, i.e.,
subdomains with the same color are computed in parallel and different colors are
processed sequentially. Here, we will consider any possible coloring scheme, allow-
ing for arbitrary combinations of additive and multiplicative coupling. In particular,
let us split the set of subdomain indices as follows {1, . . . , 𝐽} = A ∪ I, such that
subdomainsΩ 𝑗 , 𝑗 ∈ A are allocated the same ‘color’ which is different than those of
the subdomains Ω 𝑗 , 𝑗 ∈ I. In the case of training FBPINNs, the notion of coloring
is replaced by that of scheduling, that is, subdomains indexed in A are considered
to be active at a given iteration and those indexed in I are inactive. The case when
I = ∅ corresponds to the fully parallel Schwarz method, whereas the case where
only one subdomain is active at a time corresponds to a fully alternating Schwarz
iteration. Denoting a subdomain Ω 𝑗 as inactive corresponds to fixing 𝜽 𝑗 during the
optimization of L(𝜽1, . . . , 𝜽𝐽 ).
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Algorithm 1 FBPINN training step for each subdomain
if 𝑗 ∈ A (Ω 𝑗 is an active domain) then

Perform 𝑝 iterations of gradient descent on 𝜽𝑘
𝑗

(𝜽𝑘
𝑖

where 𝑖 ≠ 𝑗 are kept fixed):

𝜽𝑘+𝑙𝑗 = 𝜽𝑘+𝑙−1
𝑗 − 𝜆∇𝜽 𝑗

L(𝜽𝑘1 , . . . , 𝜽
𝑘
𝑗−1, 𝜽

𝑘+𝑙−1
𝑗 , 𝜽𝑘𝑗+1, . . . , 𝜽

𝑘
𝐽 ) , 𝑙 = 1, . . . , 𝑝.

Update the solution in the overlapping regions (communicate with neighbours):

∀x ∈ Ω◦𝑗 , 𝑢 (x, 𝜽
𝑘+𝑝
𝑗
) ←

∑︁
𝑙,x∈Ω𝑙

𝜔𝑙𝑢𝑙 (x, 𝜽𝑘+𝑝𝑙
) .

end if

The FBPINN training algorithm follows the ‘coloring’ strategy described above.
Let us denote by 𝜽𝑘

𝑗
the parameter values at the 𝑘-th training step, and to simplify

the presentation, we focus on the case of a first order gradient-based optimizer. If we
start from an initial guess 𝜽0

𝑗
, then the training step for each subdomain is given by

Algorithm 1. Once all active subdomains have completed one training step, the setA
and I are updated. This whole procedure is repeated until any stopping criterion,
such as a maximum number of iterations or a tolerance for the loss, is met.

Let us note that:

• The gradient updates can be performed in parallel and are fully localized even
if the loss function is global; only in the update step are network solutions and
network gradients transferred between neighboring subdomains.

• It is not necessary to perform communication in the overlaps (here in orange)
at every iteration of gradient descent, but rather every 𝑝 iterations for a better
computational efficiency. The overall convergence can also be affected; cf. Fig.2.

• Unlike in classical domain decomposition methods, in our approach, the global
problem is not decomposed into local problems, which can be solved indepen-
dently. Instead, we always compute gradient updates with respect to the global loss
function, and the domain decomposition and hence the localization enters through
the window functions in the definition of the architecture of global network.

To illustrate the behavior of this algorithm we will consider a scaling study for its
flexible training strategy. In particular, we fix the number of global collocation points
and investigate the influence of changing the number of subdomains and the value
of 𝑝 on convergence when solving the simple 1D ODE 𝑑𝑢

𝑑𝑥
= cos𝜔𝑥, 𝑢(0) = 0, with

𝜔 = 15. All subdomains are kept active all of the time, and all other FBPINN design
choices are kept the same, including window function and local network architecture
per subdomain. We only consider the case of relatively large overlap of 70% of the
subdomain width, but the results are qualitatively the same for other sizes of overlap.
As discussed in [8] and as in classical overlapping Schwarz methods, performance
generally improves when increasing the size of the overlap; a systematic investigation
is still open.

In Figure 2, we display the convergence of the loss function when the communi-
cation between subdomains takes place every 𝑝 ∈ {1, 10, 100, 1000} epochs. We ob-
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Fig. 2 FBPINN convergence for decompositions into 8 (upper left), 16 (upper right) and 32 (lower
left) subdomains and different 𝑝 values. Each network has 2 layers and 16 hidden units per
layer. A total of 3,000 collocation points regularly sampled over the domain are used. For each
decomposition, subdomains are regularly spaced, with an overlap of 70% of the subdomain width.

serve that the case of 8 subdomains is rather special since convergence appears rather
unstable and there is no option that performs clearly best. As we increase the number
of subdomains to 16 and 32 we observe an expected behavior, that is, the conver-
gence rate improves if we communicate solutions and gradients in the overlaps every
iteration. Moreover, when increasing the number of subdomains, naturally the global
training performs less well, which is well known in domain decomposition as lack
of scalability; we observe this behavior for all values of 𝑝. This is expected because
the method above corresponds to a one-level method (meaning only neighboring
subdomains communicate and there is no global exchange of information). Surpris-
ingly, we do not see any clear difference in the convergence depending on 𝑝, that is,
depending on how often we communicate. Since, in a parallel setting, it is computa-
tionally more efficient to communicate less, the results seems to indicate that, if we
do not communicate in each step, it is beneficial to communicate as little as possible.

3 Coarse correction

Coarse spaces are instrumental in DDMs, as they ensure the robustness of a given
method with respect to the number of subdomains as well as other problem-specific
parameters, such as physical properties like frequency for wave problems or con-
ductivity for diffusion type problems. Coarse spaces are often defined based on
geometrical information (like a coarser mesh) but more sophisticated coarse spaces
can be constructed using spectral information of underlying local problems. When
training PINNs, it is not immediately clear how to define a coarse space, that is,
a coarse network model, nor how to choose the number of collocation points and pa-
rameters of the coarse model. In what follows, we propose and evaluate a preliminary
implementation of a coarse space correction for FBPINNs.
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Fig. 3 Coarse correction for FBPINNs. Each subdomain network and the coarse network has
2 layers and 16 hidden units per layer. A total of 500 collocation points regularly sampled over
the domain are used to train the coarse network, and 3,000 for the local networks. For the local
networks, the subdomains are regularly spaced, with an overlap of 70% of the subdomain width.

In particular, we exploit the spectral bias of neural networks in order to build
a coarse correction. This is the well-studied phenomenon that they tend to learn
higher frequencies much slower than lower frequencies [9], and similar effects are
observed for PINNs [8, 11]. Indeed, this effect is what motivated the use of domain de-
composition in FBPINNs. More precisely, we first train a small but global network for
enough epochs to learn the low frequency component of the solution; in particular, we
employ a coarse network with the same architecture as a single local network. Then,
local subdomains are added to approximate missing higher frequency components.
The resulting FBPINN solution is given by 𝑢 = 𝑢𝑔 +

∑
𝑗 ,x𝑖 ∈Ω 𝑗

𝜔 𝑗𝑢 𝑗 , where 𝑢𝑔 (x, 𝜽𝑔)
is the coarse network and 𝑢 𝑗 (x, 𝜽 𝑗 ) are the local networks. Because of spectral bias,
low frequencies are first learned by the coarse network, and a relatively small network
is sufficient to approximate the low frequencies. Then the local networks only need
to learn the remaining higher frequencies. Since the local models only have to learn
a local part of the solution, relatively small local network models are also sufficient.

We will apply these ideas on the simple 1D ODE, 𝑑𝑢
𝑑𝑥

= 𝜔1 cos(𝜔1𝑥) +
𝜔2 cos(𝜔2𝑥), 𝑢(0) = 0, where two frequencies are present in the solution,
𝑢(𝑥) = sin(𝜔1𝑥) + sin(𝜔2𝑥). For our test case, we choose 𝜔1 = 1 as a lower
frequency and 𝜔2 = 15 as the higher frequency and we decompose the global do-
main into 30 overlapping subdomains; see Fig. 3. We note, as shown in [8] for an
ODE with a single high frequency, solving such a problem with a single PINN re-
quires a high network complexity and large number of iterations. First, we train the
global coarse network, 𝑢𝑔, until the lower frequency is learned. We illustrate this
progressive process in Fig. 3 where we see that we need roughly 3,000 epochs to
identify the lower frequency. Here, we have chosen the number of epochs by hand
based on the accuracy of the coarse solution, but in the future, we will work on
automating the training of the coarse network. Then, the coarse network is fixed
and the local networks are trained to approximate the remaining component of the
solution, with all local networks kept active at each training step. As can be seen
in Fig. 3, using our proposed approach, the coarse network approximates the coarse
component of the solution, and the local subdomain networks approximate the high
frequency components on the local subdomains.
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4 Conclusions

In this work, we provide first insights on how to incorporate techniques from classical
Schwarz domain decomposition methods into the FBPINN method. We show that its
algorithmic components can be translated in the language of domain decomposition
methods, and the well-established notions of additive, multiplicative and, hybrid
Schwarz iterations can be identified through the notion of the flexible scheduling
strategies introduced in [8]. Finally, we start exploring the notion of coarse space for
FBPINNs. In particular, we train a coarse network to approximate the low frequency
components of the solution and then continue by training local networks to approx-
imate the remaining high frequency components. These ideas can be extended in
a straightforward way to other, more complex boundary value problems.
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