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Preface

The recent trend for monitoring and control of the distribution networks requires methods
capable to calculate the network’s operating conditions. One way to monitor the distribution
network is by state estimation. Although previously this method was established only for the
transmission networks, its use has begun to also make sense for the distribution networks,
due to the increased availability of smart meters.

Typically, state estimation is a non-linear iterative procedure. Research aims to overcome
this problem, by creating a non-iterative procedure. To achieve this, linearity of measurement
function is a necessity. Although linearity is always desired, the measurement inputs or the
procedure renders the state estimation problem difficult to formulate it in a linear fashion.
The scope of this thesis is to create a linear state estimation algorithm for the distribution
network.

To achieve linearity, a reformulation of the states for the state estimation was used at this
thesis. This reformulation created a linear optimization problem, which is easier and faster
to be solved (Weighted Least Squared method). Since the measurements are not enough to
provide full observability, based on this methods, additional assumptions were made.

As an alternative to the primary method used for the state estimation, another optimiza-
tion method was used, which is called Least Absolute Value. This method will be based on
the same inputs as the previous method, but different optimization goal. The goal was to
compare the two methods and find each one’s limitations.

Measurements used for this thesis were provided tracked and provided by DEPsys S.A., by
their main module, called GridEye. GridEye devices are synchronized SCADA-type devices,
installed on cabinets of the distribution grid, based on the DSO needs. All measurements
provided were from real networks within Switzerland. The smart meter device data were
provided by collaborative projects of DEPsys S.A.. Smart meter devices were installed in
different low-voltage consumers.

Both methods were implemented correctly and were compared. Based on the results, it
was obvious that the Weighted Least Square outperformed the Least Absolute Value method,
in the absence of bad data.

Moreover, the effect of the number of GridEye metering devices on the State Estimation
was compared. While numerically and visually the outputs are comparable, the effect of
having multiple devices is still important for different scenarios.

Finally, bad data cases were examined for both methods under different types of errors for
the smart meter devices. The smart meter devices were manually introduced to bad data, to
understand the algorithm’s capabilities and limitations. An additional algorithm, in addition
to the state estimation one, was implemented to not only detect and identify the location of
the bad data occurrence, but to correct the bad data inserted.

Sotirios
Dimitrakopoulos
Delft, July 2019
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Introduction

Power system networks are quite complex by nature. This complexity tends to increase in
recent years, as the energy demands are shifting and local power production is generating
greater traction. These changes require adaptations in the monitoring and control of the
power systems. To validate the secure operation of such a network, monitoring of operating
states of the network are required. Typically, control methods are implemented via evaluating
measurements of voltage magnitudes, active and reactive power flows. These measurements
are then used to provide a reliable estimate, to access the degree of trust of the validity of the
measurements and the network’s operating conditions.

The need of control and better understanding of the network led to research for methods of
acquiring network information out of the network’s measurements. Using network measure-
ments, the aim is to acquire complete network knowledge, or at least an adequate overview
of strategic points within the network. Acquiring overview of the network’s operating condi-
tions provides outcomes, which are the basis for the development of further actions of the
Energy Management System (EMS) within the network, like for example Demand Response
(DR) techniques.

The transmission systems have been traditionally more important to measure and con-
trol, which lead to many measurement devices in such a network. This created a high redun-
dancy of measurements availability. While measurement and control can still be improved
for transmission networks, the challenge lies in the distribution systems, which up until
recently were totally unmonitored. The changes of the distribution network, where local pro-
duction is gathering greater interest in the recent years, led to high research in the control
and monitor of the distribution systems. This challenge still remains difficult to overcome
due to the distribution’s network complexity and lack of measurements availability.

The correct estimation of the network operating conditions is crucial. The first steps to
acquiring an overview of the transmission’s network state was by solving load-flow calcu-
lations, providing the raw measurements directly acquired from the measurement units. A
significant disadvantage of this method was its inability to cope with missing and bad mea-
surements, as well as lack of flexibility, since specific measurements at specific points we
required.

1.1. Introduction to State Estimation

To tackle the inflexibility of power flow, Schweppe introduced an alternate method, called
State Estimation [1], which was based on solving an optimization problem to estimate mathe-
matically the state values. This measurement processing algorithm for converting redundant
measurements into states revolutionized the monitoring of transmission systems. States
were defined as the minimum set of independent variables, from which all the power-system
quantities can be computed [2]. Full network knowledge can be acquired by successfully
calculating the system states.

The scope of this mathematical approach was to use measurements and topology knowl-
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2 1. Introduction

edge to reach a state estimate. What this approach ensured was overcoming the inflexibility
and error dependency of load flow by taking advantage of the network measurement’s redun-
dancy. This has led to the development of Energy Management System, which helps the grid
operator to manage the energy assets within a network [3]. The EMS system includes the
Supervisory Control and Data Acquisition (SCADA) system and the Remote Terminal Units
(RTU). The measurement quantity was never an issue in the transmission network, where the
State Estimation algorithm was initially developed. The estimator’s goal was to produce the
best states by minimizing the cost function, or the difference between estimated and actual
measurements.

The transmission network, usually equipped with a SCADA system, collects measure-
ments from various devices, which are the necessary inputs for the state estimator. The
transmission network is equipped with multiple devices and acquires measurements. The
recent shift towards a smarter grid, one that encompasses bidirectional flow and local pro-
duction, made monitoring a necessity for the distribution grid.

1.2. State Estimation’s limitations for Distribution Grids

Much research focused on evolving the state estimation method for the distribution network.
Nevertheless, there are major differences of the distribution network and the transmission
one [4]:

* The distribution grid is mostly radial, compared to the the meshed one of the trans-
mission one. There is a shift towards some meshed distribution networks, but still the
majority of them exist in a radial way.

* A distribution grid is mostly unbalanced between the three phases, while the transmis-
sion network is under 3-phase balanced conditions. This is because the lack of knowl-
edge in the load allocation in the distribution network, as well as the unpredictability
of the load consumption within the distribution network.

* In the distribution grid there are higher R/X ratios, meaning that lower impedance
between the nodes. The lower impedance creates in turn small phase angle differences
between nodes.

* Last and foremost, the distribution grid is mostly unobservable, meaning that there
is a significant lack of measurement, compared to the transmission network. In the
transmission network, it is safe to assume that there is a measurement redundancy to
calculate the state estimation, whereas in the distribution grid the lack of measurement
is a contributing factor to the lack of development of state estimating techniques.

Initially, State Estimation algorithm was developed by using only conventional measurements
provided by the RTU, which consisted of voltage magnitudes and power flows. These mea-
surements are typically called conventional measurements or SCADA type measurements.
Devices provide voltage magnitude and power, reactive power flows. The overcome the net-
work’s lack of observability, in most recently developed state estimators, pseudomeasure-
ments based on historical data or assumptions are mostly used. This way, formulated mea-
surements play a role in acquiring sufficient measurements for the state estimation. To
validate the state estimator’s correct initialization, observability analysis and topology pro-
cessing are required.

1.3. Measurements provided by DEPsys S.A.

Currently, metering devices in the distribution grid are installed in transformer’s cabinets,
providing SCADA-type measurements at the installed location. SCADA main problems still
remain the low-refresh rate and the lack of measurement time-stamp. Sometimes time-
stamps are provided, but with poor accuracy. This makes SCADA system highly uncoop-
erative with other measurement type of data. To solve the problem of having to deal with
unsynchronized and low-resolution measurements in the distribution system, a typical mea-
surement problem that the DSOs have to face, DEPsys S.A. was created.
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DEPsys S.A. is a Swiss-based company with the aim to revolutionize the active distribution
grid. The continuous increase of distributed generation in combination with the lack of active
control of the grid led to the idea of creating a device capable of calculating complicated
measurements. Although a start-up, the company grew from 2012 to its current size, and
has expanded to the worldwide market (Germany, Cyprus, Singapor, Austria, Ireland), aiming
to expand its current portfolio of clients even more. Today, DEPsys doesn’t just focus on
providing measurements for the low and medium voltage grid, but the company aims to
provide solutions to enable the current electricity networks to cope with the new constraints
imposed by the ever-growing decentralized production from renewable energy sources. To
solve these problems, a device called GridEye (GE) [5] was created. A typical GridEye device
is shown in figure 1.1.

Figure 1.1: GridEye device.

GridEye is a complex architecture, containing three parts, the hardware, software and
server. As a hardware, the GridEye provides the possibility of measuring and controlling
the active elements and assuring communication with the server. The installation point
is usually at transformer or cabinets within the network, as the DSOs see fit. The software
ensures that grid intelligence is acquired without the need to measure each individual point of
the network. The software contains multiple processes that achieve high operation knowledge
within the network. These processes contain power quality measurement, optimal control,
network planning and many more. Finally, all these are communicated to a server, which
in turn provides visualization, storage and data configuration. More information about the
product and everything that it can achieve can be found in [5]

Since the first step towards a distribution system state estimator is sufficient knowledge in
the MV/LV transformers, GridEye data provide a great tool to acquire better knowledge on the
operating conditions of transformers and cabinets within the network. The measurements
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include voltage, power, current and power quality. If the voltage phase and magnitude are
uncorrelated, the measurements are considered as SCADA-type measurements. Thus, the
measurements provided are still considered as synchronized SCADA-type measurements,
since the measurements contain provided voltage only in the form of magnitude, without in
any way providing sufficient information to extract the voltage phase angle. Typical accuracy
level of GridEye devices are 0.1% possible error for voltage and 1% error for current.

Despite GridEye’s accuracy in the installed location, its use makes only sense at trans-
formers and other strategic position of high significance (i.e. cabinets of high consumption),
where the DSOs prefer having better operating knowledge of those points. For network ob-
servability condition to hold, including the end-customer level, additional measurements are
required.

The rise of the smart metering devices (SM) led in research for their possible use in roles
other than visualizing the consumption over specific time. Their implementation was sug-
gested for state estimators, to presumably solve the observability issue within such networks.
Their disadvantages, however, of high-communication costs, low implementation number
within the network, intrinsic measurement error of the device and lack of sufficient informa-
tion, since most of currently installed smart meters provide only energy consumed through
a specified time period, render them inadequate to be used in their own as stand-alone mea-
surements for network analysis purposes. It must be mentioned, that although DEPsys S.A.
does not own the Smart meter devices, the measurements were provided by agreement be-
tween DEPsys and companies providing smart meters.

To this end, focus of state estimation using multiple measurement inputs is considered.
The problem today still lies in the difficulty of synchronization and availability between dif-
ferent measurements types. This can be tackled by using GridEye devices and smart meter
devices within the same network, which can complement the previously laid disadvantages.
The goal of this thesis is to provide an alternative way of the typical state estimation algorithm,
using measurements of the GridEye devices (high-resolution measurements) and advanced
metering infrastructure devices (low-resolution). This way, higher network knowledge can be
achieved.

1.4. Research questions

The main objective of this thesis is to create a linear state estimation algorithm for the low-
voltage grid using multiple measurement types as inputs. This algorithm will be created
and tested based on a single network with multiple smart meters and GridEye devices.

The main research question is whether such an algorithm is applicable for the low-
voltage network and what are the errors produced for the linear state estimation algo-
rithm under assumptions for the smart meters. The lack of redundancy in the distribution
grid, is a setback for the state estimation. Thus, this thesis project aims to analyze the re-
sults and outputs of such an estimator. The rest of the research questions are summarized
below:

* Which state estimation algorithms can be considered, that satisfy both high pre-
cision and computation time?
There are many different methods to implement a state estimation algorithm. The main
difference between each method lies in the objective solver and the associated solver.
Due to the difference in each optimization, different results and computation times oc-
cur. Thus, only the most promising ones can be considered.

* How can the selected state estimation algorithm be adapted for use in distribution
grids?
All state estimation methods for power system methods were initially considered and
tested for the transmission network. The transmission network contains high mea-
surement redundancy. What are the steps to adapt an algorithm developed for the
transmission network towards the distribution network?

* How does the algorithm perform with different redundancy levels?
Generally, the main issue of power flow analysis is the iterative procedure and the lack
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of use of redundancy. The aimed algorithm of the state estimation aims to tackle both
of these problems. Since the smart meters are mostly providing active power outputs
every 30 minutes, and these data are only available at the end of the day, assumptions
must be made to create such an algorithm. The question lies in the validation of the
degree of the errors between the power flow and the state estimation outputs.

* How does the objective function of the state estimation influence the outputs of
the estimator?
State estimation by nature requires an optimization goal. Thus, the method used, de-
fines by a large margin the outputs of the estimator. To this end, two methods will
be used (WLS and LAV). The considered methods are only compared for output accu-
racy and how they deal with bad data, since LAV optimization requires certainly higher
computation costs.

* How does redundancy in the higher-resolution (GridEye) devices affect the state
estimation?
As mentioned, state estimation was originally created to take advantage of measurement
redundancy. Nevertheless, the low-voltage network operation is highly unobservable.
Most times only the transformers are measured, due to their high value to the network’s
understanding. But a question lies in what happens if more high-resolution measure-
ments are available and could be used for the state estimation. The question that arises
is, does higher network knowledge create a higher algorithmic performance?

* How does the algorithm deal with bad data?
A major problem observed is the lack of trust in the measurement outputs, especially
the smart meter provided data. Lost data and failing communications are the major
problems for bad data in smart meter measurements. In the transmission grids, the
redundancy offers some methods that can tackle this problem? This thesis aims to
answer the question, if the low-voltage network bad data identification is possible.

1.5. Thesis outline

The work-flow of the thesis is divided into five chapters. In chapter 2, mathematical back-
ground for state estimators is provided and typical methods of state estimation are briefly
explained. In chapter 3, the implemented state estimators used for this thesis will be dis-
cussed, mathematically analyzed and explained. In chapter 4, the test-cases of the methods
will be provided and comparisons will be made. In chapter 5 the conclusions will be dis-
cussed, as well as future possible ideas for expansion of the state estimation algorithm.
Chapter 6 will be the bibliography.






Introduction to State Estimation

This chapter provides the necessary mathematical background for State Estimation (SE), the
general methods and the limitations. The thorough analysis of the methods used will be in
chapter 3.

2.1. Basic introduction

Contrary to the power flow analysis (PF), state estimation is a mathematical method of cor-
relating measurements and states, which as previously mentioned, are the minimum set of
independent variables from which all the power-system quantities can be computed. State
estimation evaluates a set of provided measurements to establish the operating conditions
of the network. The evaluation is done by an optimization, which aims to minimize the error
between measured and estimated values. Estimated values are established via a measure-
ment function, which contains the correlation between states and provided measurements.
This measurement function aims create estimated measurements, by minimizing the errors
that exists between estimated and metered measurements.

The main advantage of the state estimation is the flexibility of the measurements. Obvi-
ously, the quantity of measurements must suffice to perform such an optimization. Adequate
measurement availability is called observability analysis and evaluates whether the mea-
surements, states and measurement function can provide state estimation outputs. Thus,
it assures mathematical feasibility. Every state estimation formulation requires definition of
the following:

¢ States definition
¢ Method
¢ Measurement function

Following the observability analysis, states must be defined, in a way that they can completely
characterize network’s operating conditions.

2.2. States definition

The two common types of states are node-voltage-based and a branch-current-based. While
both are used, depending on the advantages of each [6], the node voltage is the typical one
used. Examples of branch-current-based state estimations are in [7] [8]. This is because
voltage validation is easier compared to branch-current validation. Nevertheless, states are
adaptable to the needs of every method.

Since measurement devices typically provide voltage magnitude, phase angle knowledge
is a necessity for the complete network knowledge. Thus, for a system with N buses, the
number of state variables must be 2N — 1, since the slack voltage phase angle is always zero

7



8 2. Introduction to State Estimation

as the reference phase angle. A typical example of states in the form of voltage magnitude
and phase angle in a network of N number of buses is:

X = [[/1 112 o VN 62 53 . 6N]T (21)

2.3. Measurement function

Following the definition of the system states, the correlation between the states and estimated
outputs must be formed, to calculate the estimated outputs. These outputs will be compared
to the measured ones. Equations are formed within the measurement function h(x), which
is completed by establishing the relationship between states and outputs. Usually in power
systems, these equations are Kirchhoff voltage or current laws and their expansions. These
equations produce "expected” results, which aim to match the provided measurements. Since
the perfect match is impossible in real scenarios, the goal is to minimize the error between
expected outputs and measurements. For m measurements and for N buses, the equations
for minimizing the error are:

Z1 hqi(x) €1
z=| "7 |= hzz(x) +| Z)=heo+e (2.2)
Zm hn (x) em

where: z is the measurement vector of m number of measurements, h;(x) is a specific mea-
surement function based for the measurement m; and e; is the error between the estimated
and the measured value. Since the definition of states is flexible, the measurement function
is flexible as well. The measurement function contains topological and measurement infor-
mation with respect to the state variables. Essentially, state variables are correlated with
the measurement function based on the equations provided in the measurement function,
thus creating estimated outputs. These estimated outputs aim to match the measurements
provided. Following the equations formulation, the estimation problem is formulated as an
optimization of solving equation 2.3 :

min J(z— h(x))

st gx)=0 (2:3)

where | is the objective function, x € R?*"! is the state vector, z € R™ is the measurement
vector and h :€ R?""1 - R™ is the measurement function. Constraints can be provided in the
form of equality or inequality constraints within the constraint function g(x). All optimization
methods aim to minimize the objective function J, but the means of each optimization is
different. While the optimization always aims to minimize 2.3, the minimization goal of ] is
different for each method. For example, some methods try to minimize the square root of
errors or the absolute of the errors, while others can also take weights into consideration.
Thus ] depicts optimization goal of each method.

2.3.1. Linearity and non-linearity within the State estimation

Linearity in the State Estimation is established by linear correlation between the states and
the measurements function. State estimation was initially an approach to solve a non-linear
optimization problem. The non-linearity mentioned, in the power system, is the result of the
function that links power or energy to voltage and current, as shown in 2.4. To be precise, to
calculate power and its flow direction, voltage and current as complex numbers are required.
Since the standard state definition of 2.1 has separate states for voltage magnitude and phase
angle, a multiplication between states creates a non-linear problem. This, in turn, creates an
iterative procedure for the optimization calculation, which affects mainly the computational
costs and efficiency of the algorithm.

Sj = VLI;

2.4
= |Vlebir @4
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where V; is nodal voltage of node i, [ is the conjugate of the line current of line j and §; is
the apparent power flowing through line j.

In recent years, to tackle this issue of non-linearity, PMUs have provided a good alter-
native in the formulation of the State Estimation problem in transmission systems, since
PMUs are able to provide voltage and phase angles separately [9]. In the absence of PMUs,
different approaches have been attempted to tackle the non-linearity. Most ideas, which
aim to achieve linearization, are focused on convexification of power flow equations through
semidefinite and conic programming [10]. To this point, no known output was successful
in implementing linear solution for the measurement function with multiple measurement
inputs. The minimization process is what distinguishes the different optimization methods.
Objective function /] depends on how to minimize the error, thus every methods has a sepa-
rate optimization goal.

2.4. State estimation methods

Generally, there are two types of State Estimations approaches. Static state estimation as-
sumes no correlation and memory between individual time measurements. Typical static
estimators are the weighted-least square method, least absolute value, maximized likeli-
hood method etc. On the other hand, dynamic state estimators recursively track systems
changes at any time instant to relate them with the next one in the future. Typical dynamic
state estimators are Kalman filters and further extensions [11]. Generally, state estimation
approaches depend on the network knowledge, measurement availability, device used and
desired output.

The original State Estimation algorithm was developed as a static estimator by a weighted
least square (WLS) minimization, disregarding correlation between different time stamps.
Power systems have two operating conditions, quasi-steady state and transient state. The
former, which is an approximation, assumes a non-dynamic character in the operating point,
meaning that network changes are suggested as negligible to be taken into consideration. The
latter, considers the sudden disturbances in the system, due to a fault or due to change in
the operating point and capture the network’s operating condition better. Implementing a
state estimator based on transient state is impossible in cases of no real-time measurement
availability. Generally, state estimators that operate on non-real-time measurements are
based on the assumption of the quasi-steady state [12], which disregards sudden abrupt
changes and system dynamics within the network. This is a good approximation for SCADA
type of measurements. Essentially, every time-stamp is treated independently of other mea-
surements within the same network and also independent of the previous or future ones for
the same metering device.

The inherent flaws of static state estimation is the lack of dependence between two time-
stamps, meaning that it’s more prone to bad data, while the dynamic state estimation pro-
vides an acceptable value for the next time-stamp, which is a good way to filter bad data. The
measurement availability provided for this thesis, which are SCADA type measurements,
make static estimators the appropriate methods for the State Estimation formulation. As
previously mentioned, the typical methods for State Estimation are the previously mentioned
WLS, Least Absolute Value method (LAV) and Generalized Maximum likelihood method (GM),
Schweppe Huber generalised M (SHGM) [4]. The most optimal method in terms of three sta-
tistical measures, namely bias, consistency and quality, was deemed the WLS, then WLAV
and then SHGM [13]. The measurements provided in the state estimator were SCADA-type
measurements. This means, that for a non-linear problem, the WLS method outperforms
other methods, for SCADA type of measurements.

2.4.1. Non-linear WLS method

In the typical implementation of WLS for a power system introduced by Schweppe in 1970 [1].
The WLS estimator is a static estimator, since as previously mentioned, it does not consider
previous or future dependency between either the measurements or the state variables. As
such, it is formulated by solving an adjusted optimization problem of 2.3 in the following
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manner:
min (z—h(x))TW(z — h(x)) (2.5)

where the W € R™™ is the diagonal weight matrix, which is formed by the relative accuracy
and trust levels of the measurements. Usually the weight matrix is based on the variance of
the errors of the measurements. Three assumptions are needed, to successfully implement
a WLS optimization:

e The noise of measurements must be a normal distribution and the error mean value
must be zero.

¢ The correlation between measurements is zero, which means that no measurement has
an impact on another measurement device outputs.

* Observability must be ensured, which typically means that the number of measure-
ments at least exceeds the number of states. The mathematical representation of ob-
servability is m > n, only if there are sufficient independent equations for the measure-
ment function h, thus rank(h) = n.

To solve the minimization problem stated, the first optimality condition must be satisfied [3],
as shown in 2.6.
dj(x) r
gx) = a4 = —H(x)" xW(Zz—-hx)=0 (2.6)
In that sense, the objective function is derived into the Jacobian of the measurement function
h(x). As mentioned, power, voltage and current correlation is a non-linear relationship, as
voltage and current in their complex forms must be used. This also means that the solving
problem is non-linear, as this non-linearity is transferred within the measurement function.
The most common way to solve a non-linear optimization in an iterative procedure is the
Gauss-Newton method. There is a lot of research and years of implementation of a non-
linear WLS State Estimator. Since this is not a part of the thesis project, the procedure will
be explained only briefly. Nevertheless, more details of the solving procedure are available in
[1].
To find a solution, an iterative procedure begins, where the constraint function g(x) is
linearized around a specific points by Taylor expansion. This achieves a local linearization
for every point. For every linearized point, a matrix called Gain matrix is calculated, G(x),

where

G(x) = % = HO)TWH(x) 2.7)

which is necessary to for the step calculation of the iterative procedure of
G () (xir — %) = HOOTW x (z — h(x)) (2.8)

where x; is defined as the it" iteration of the Gauss-Newton algorithm, H(x) is the linearized
measurement function.

This procedure occurs until convergence is reached or number of iterations exceed the
limits of the algorithm. Convergence is reached when the x;,; — x; is less than the tolerance
limit. The iterative procedure is computationally costly, but matrix decomposition methods
like Cholesky or LU decomposition are helpful due to sparsity of the function matrix. The
decomposition can be made through a decoupled approach for solving a state estimation
problem [15]. Still, like every iterative procedure, speed of convergence and failure to converge
are the main issues faced in every non-linear method.

2.4.2. Linear Weighted Least Square method
When solving a linear problem, the optimization requires no iterations to reach a solution.
The measurement functions is transformed into a linear matrix and the equations of WLS
method change to

Hx+e=z (2.9)
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where the size of H is still m X (2n — 1). Therefore, unconstrained optimization problem aims
to minimize the objective function of equation 2.10 :

1
min J(x) = ErTR_lr (2.10)
The solution of the aforementioned problem is transformed into solving the following problem:
G£=HTR 'z (2.11)

where G is the gain matrix
G=HTR™'H (2.12)

Thus, the problem is transformed into the typical form of linear equations, where AXx = b. A
solution occurs by matrix multiplication as shown in 2.13 :

%= (H*R'H)"'H'R 1z (2.13)

Therefore, the solution is reached by solving 2.13, disregarding the greatest obstacle of non-
linear problems, which are iterative procedures and inability to converge within a pre-defined
converge time. The goal is always to have a linear system, but the main issue thus far
for the power systems was the inability to create linear equations that correlate states and
active/reactive powers.

2.4.3. Least Absolute Value method

The LAV method is an optimization technique that, instead of minimizing the square of the
errors, aims to minimize the absolute value of errors [16]. This difference puts the LAV into
the robust estimators, which are estimators with high breakdown-point [17]. Breakdown-
point is the minimum number of measurements that will lead to an incorrect SE solution.
Essentially, LAV method does have an intrinsic bad data rejection ability, contrary to the
weighted-least square method, which is more prone to bad data errors. Nevertheless, the
disadvantages of this method lie in the much higher computation time and the vulnerability
towards leverage measurements [18]. The LAV state estimation problem is formulated in
equation 2.14:

min  cT|r| 014

st. z—h(x)=r (2.14)

where c is a vector of ones and r is the vector of measurement residuals. Another advantage

of this method is using the minimum number of data points required, which can be equal

to the number of states), thus inherent filtering of measurements considered as outliers,

which WLS does not. The LAV problem is usually formulated as a Linear programming (LP)

problem, by linearizing the system around the operating point. The LAV state estimation is
formulated thus as a series of LP problems, thus still it’s an iterative process.

Nevertheless, LAV is prone to errors in leverage measurements [17]. Leverage measure-
ments are measurement points that impact significantly more the output of the State Esti-
mation compared to others. Typical leverage points within a network are usually flows within
short lines and injections at buses with large number of connections [19]. An occurrence of
an error in those measurements can disregard the intrinsic capability of bad data rejection
of LAV, thus leading to a bad estimation. Currently, the implementation of LAV is only con-
sidered in cases with PMUs, which are capable of providing voltage measurements in real
and imaginary part, thus tackling the issue of severe iterative procedures that cripple the
LAV optimization. This linear answer to an otherwise non-linear problem, has forced many
to reapproach the state estimation under LAV methods [20],[21].






Mathematical formulation of the Linear
State Estimation algorithm for
low-voltage network

This chapter introduces the mathematical formulation of algorithms that will be used in this
thesis project. The analysis entails the idea and the establishment of the algorithm, which
is based on the Weighted Least Square (WLS) method, but is an expansion of the typical
approach. This method, called also as Ultra-fast WLS method, will be the base for the State
Estimation in the test cases. Moreover, an LAV method based on the expanded case will also
be developed.

3.1. Linear Weighted Least Square State Estimation method for trans-

mission network with high-redundancy

In this section the methodology behind the linear State Estimation based on WLS will be
briefly analyzed, as initially introduced in [22]. The general idea is reformulating the state
estimation problem into a two-step procedure, by smart reformulation of the states. This
procedure requires knowledge of voltage and current measurements. In the first step, without
the use of weights, and taking advantage of mathematical properties, the phase angles are
calculated. In the second step, the voltage in its complex form is calculated, based on the
phase angles calculated in the first step. This two-step procedure is vital to avoid any non-
linearized occurrences in the measurement function matrix. Thus, a whole linearized state
estimation is achieved by matrix multiplications.

To begin with, a distinction between complex numbers and magnitudes is necessary. To
distinguish between real and complex numbers, the notation of bold represents complex
numbers, whereas the rest represent real numbers. Since the measurement function is
built on both complex and real numbers, notations to differentiate these values are deemed
necessary.

As previously mentioned, voltage and current, when provided, are given only in magni-
tudes, since the measurements are assumed to be SCADA type. Thus, the voltage is calcu-
lated as:

E, = Ege/%a (3.1)

where E, is the voltage in its complex form, E, is the voltage magnitude provided and &, is
the phase angle with reference to the slack voltage. Similar notation is used for the current in
its complex form. The notation of I'°°® signifies only the complex form of current irrespective
of the voltage reference. Thus in 3.2, this number signifies the output of current with respect
to the power factor, but disregarding voltage phase angle. Two ways of calculating current

13
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in its complex form, depending on if the amplitude is provided, which are shown in 3.2.

Iope/0ap if 1, provided

1, tocal — P, —i 3.2
ab MTQ‘”’ if I, is not provided (3:2)
a

where 6,;, = tg‘l(—%) is the power factor at the branch a-b, P,; is the active power of the

branch and Q,; is the reactive power of the branch and V, is the bus voltage magnitude of
the associated branch.

i f .
- SAS —
Vi - = Vs
E, .
f )

Figure 3.1: Single line pi-equivalent for distribution line [23]

Using the typical m equivalent shown in figure 3.1, the current flowing between two nodes
can be calculated by using Kirchhoff law:

1 1
lap = (Yap + 7—)Eq + (-3 )Ep (3.3)
ab ab

where Y, is the shunt admittance and Z,,, is the series admittance. This equation expresses
the complex current at any bus a that goes through the branch a—b in terms of state variables.
To take into consideration the complex current with respect to the phase angle of the node,
as shown in equation 3.2, the equation 3.3 is converted to the equation 3.4:

1 1
IablocaleaEa = (ya,b + Z_)Ea + (_Z_)Eb (34)
ab ab

Similar to the previous equation, the injected current between a nodes b, where b € L,.
Injected current is calculated as:

1 1
Lo ;o™ e®a = E Yap + 7o )Eq + (—Z—b )E, (3.9)
a a

bELg

Taking advantage of the above formulations of equations only, a linearized system of equa-
tions occur in the form of

Hx —-e=2z (3.6)
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It’s worth noting H is the size of m X (2N — 1), thus m = (2N — 1) to avoid observability issues.
Moreover, it can be obvious that H matrix could be partitioned in four different sub-matrices,

as shown in equation 3.7.
H = [”A HB] (3.7)

He Hp

where the size of Hy is N X N, the size of Hg is N X N — 1, the size of H; is (m — N) X N, the size
of Hpis(m—N) X N — 1.

This can help create some notations about the H matrix, where the upper part of the
matrix H is in equation 3.8. Similarly, the lower part of the matrix H is in equation 3.9.
This is done to differentiate that the upper part of the matrix H contains voltage-related mea-
surements only, while the lower part of the H matrix contains current-related measurements.

Hupper = HyHg (3.8)

Hiower = HcHp (3.9)

Likewise, the left part of the matrix H is in equation 3.10 and the right part of the matrix
is in equation 3.11. This differentiation is done to note that the left part of the matrix is
topology related only, means that it doesn’t change as long as the topology in the network
doesn’t change, while the right part of the matrix contains measurements, that of course
change over time. Thus, an occurring advantage of this method, is that the left part of the
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matrix for many time-stamps is calculated once at the beginning, and the is concatenated
with the right part of the matrix, to avoid needless iterative procedures.

H
Hiepe = [Hﬁ] (3.10)

H
Hyighe = [Hi] (3.11)

Effectively, what this H measurement function does, is change the way the states are repre-
sented in the network. The states still in a way represent the voltage magnitudes and phase
angles, but the typical used states are altered from

to
x=[ VB .. W e% e¥ . e (3.12)

If the observability condition is true m > (2N — 1), then the above set of equations has the
solution of the closed form of
2= (H*H)'H*z (3.13)

where the % is the least-squares estimate of x. To avoid direct matrix inversion of m*m matrix,
the paper suggests an alternative formulation. This suggestion simplifies the inversion by
creating submatrices and thus inverting smaller matrices instead. The procedure is creating
variables based on the two sets that constitute the equation 3.13, H*H and H*z, which are

H'H = [‘2 g] (3.14)
HZ = [Z] (3.15)

This separation’s technique gain is threefold:

* The size of matrices for calculations is reduced. Despite the fact that more inver-
sions and multiplications must take place, it is computationally more efficient to invert
smaller matrices.

* The last N-1 columns (right side of H matrix, equation 3.11) of the matrix are highly
sparse, having at most one non-zero element in every column in the upper and the
lower part. Sparsity hastens matrix multiplication. Also, this will make D a diagonal
matrix.

* Vector Z contains measurements associated with the slack bus only, since there are
required no phase angle states to calculate currents associated with slack node. This
means that, for every row, when a current appears on the last columns of the matrix
H, there is a zero value in the same row of the Z vector. Therefore, all elements of z,
submatrix in 3.15 are zero.

Taking advantage of the inversion formula from paper [22],

_1 _ _
[A B] _[ (A-BD'C)™! E] (3.16)

¢c pD| ~|-D7cA-BDC)! F

Here lies the importance of the third advantage of this separation method, since the z, is
a row matrix of zeros, which means that the multiplication of the two created submatrices
render E and F unimportant, since they are multiplied by zero elements of the same matrix.
Thus, an unweighted solution occurs for

(3.17)

. [ @a-BD )z
—D-C(A-BDC) iz
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An unweighted solution is provided by solving the above matrix, but since the wanted solution
should be weighted, in this part only the phase angle is calculated, which is not affected by
the weight values. So,
ejSAZ
i |=-D"€(A-BD™C) 1z, (3.18)
eion
which is easily solved by either calculating the real or the imaginary part of the Euler identity
e/® = cosd +jsiné

This helps calculate the bottom part of the state matrix, which includes the voltage phase
angles. Following the calculation of voltage phase angles, voltage magnitudes are computed
as a linear minimum-variance estimation, while taking into consideration the weights. Es-
sentially, from the H matrix the only keeping the left side that are correlated with the voltages
in their complex form and creating a matrix of the expected outcomes in the measurement
matrix m, there is created a minimum variance of weighted least square method for m equa-
tions and N states, where m > n. Essentially the previous equation is transformed to this
form:

1 0 0 E,
0 1 0 E,el%2
0 0 0 E,el%s
; : : E, ;
Yi2 +Z557! ~Z1p7! 0 E, Iptect
0 Yon +Z2n7" —Zm™ || E3 | =| —In'ocel%:
0 - n2_1 Ynz ‘|'an_1 En Inzlocalejﬁn
~Zpy 7" 0 o Yoy +Zpg ! I,,,localibn
Yig + 217" +Yin + 215" ~Z3™t R At —Iy ;"0
~Zy ! Yio+Z1p7 ' + Yo + 23" - ~Zyn " —Iinj0c e]%2
(3.19)

which is in matrix representation form as
Ty+e=m (3.20)

thus the minimum variance of the above equation, following the similar procedure, but now
inserting weights is

y=(T*RIT)"IT*R'm (3.21)
where R is the diagonal m X m covariance matrix. It the paper studied, the standard deviation

of the measurement error for this specific measurement was considered for voltages, current
and phase angles.

3.2. Limitations of adapting existing algorithm in the low-voltage
grid

As mentioned, there are challenges of using an algorithm made for transmission networks
to distribution ones. The main one is the unobservability of the network. This smart refor-
mulation of the equations is able to be of great help reducing the computation costs for the
calculation of State Estimation. This idea is really helpful to achieve linearity, but the prob-
lem still lies in using redundant and synchronized measurements, which are only available
in the transmission network. The example provided at the studied paper [22] implements
test cases for IEEE 118-bus Test System, 1354- and 9241-bus Pan-European High-Voltage
Grids. In the first example, the number of state variables are approximately 235, while using
over 600 measurements equations to achieve a result. Generally, all study cases examined
are equipped with ratio of redundancy %ﬁe’“e"“ of 2.5 or higher.

Additionally, the measurements required for this linear approach are difficult to acquire
in the low-voltage network. This method of linear state estimation is based on knowledge
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of two network operating conditions in all points, voltage and current. For N nodes, the
requirements are voltage knowledge of all N nodes, as well as knowledge at least about all
active and reactive powers of lines or nodes (or a combination of them capable of creating
sufficient information). Essentially, the observability condition is unaltered (m = (2N—1)), but
now m is comprised of voltage and currents only. Due to the nature of low-voltage network,
these requirements for such an algorithm are impossible, since for most cases only energy of
smart meters at most could be provided. Overall, the list of limitations for adapting a linear
state estimation in the low-voltage grid are:

* Multiple smart meters are used for the same nodes of the network. Thus, smart meter
data can not be used directly.

* The energy of the smart meter devices is provided for a single phase and it is unknown
which one, or for all three phases. Also, it must be converted to active power. Thus,
reactive power can not be calculated.

* The examined algorithm relies on solving the equation stated in 3.6, which suggest
knowledge of voltages and currents throughout the network. While current can be cal-
culated, when voltage, active and reactive power are available, for low-voltage grids the
assumption of voltage knowledge for every node is impossible.

» Different measurement types of different time-resolution of provided data must be used.
This creates problems in the data coordination and cooperation.

* The distribution grid are highly complex networks. To add up, the cables used overall
have low resistance and reactance values, due to shorter cable distance. Moreover, most
DSOs provide network connections with fictitious nodes to represent fuses, breakers,
switches and sectionalizers. These have minimal or zero values, which in turn cause
issues in the matrix multiplications in the algorithm.

* The susceptibility to bad data is quite high, since the lack of concrete knowledge re-
garding the metering devices and their availability is questioned (since most metering
devices are sent to their collector once per day).

3.3. Innovation required for distribution grid applications

This part contains the innovations and adjustments made to adapt the algorithm towards a
distribution network. As previously established, there are many limitations to adapting the
linear state estimation in distribution grid. To overcome these limitations, the following steps
were taken.

* Multiple smart meters are used for the same nodes of the network. Thus, smart
meter data can not be used directly. For this part, allocation of smart meter based on
their node names is necessary. This is process which requires merging of smart meter
data of within the same time-period. The merging requires aggregating the smart meter
data for every node. This process also helps identifying which nodes are measurement
nodes (GridEye or smart meter devices) and which are zero-injection nodes. The zero-
injection nodes are potential nodes for removal in the network reduction process. Due
to the complexity of the network, a two-step network reduction is implemented, where
non-metered nodes and fictitious nodes are removed.

* The energy of the smart meter devices is provided for a single phase and it is
unknown which one, or for all three phases. Also, it must be converted to active
power. Thus, reactive power can not be calculated.

The provided data for smart meters were three phase data, which is common in Switzer-
land. Every smart meter energy is transformed into power by using P = %, where P,E
are the active power and energy of the smart meter respectively. The next step is allo-
cation of smart meter per phase. In this part, the GridEye in the transformer, which
contains all the network information aggregated, is of great use. Since GridEye device in
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the transformer contains information about the active power for every phase, for every
phase by the GridEye measurements we have a phase ratio that is calculated by:

PpGE

GE _

L) o
p=1

Assuming that the same ratio for phase p is kept for every smart meter device, the active
power for every smart meter device i is calculated as:

Bi = P' xrfE (3.23)
p p

To calculate the ratio for every smart meter device with respect to the total consumption
of all smart meters for phase p and smart meter i, we use:
, P}
= —er—— (3.24)
P SM
X1 ()

Following that, the smart meter power aggregation, based on the provided measure-
ments, should ideally match the measurements provided by GridEye device in the trans-
former. Since this is never the case, the active power correction factor per phase is

calculated: o
21 ()
ESM = lPGE 4 (3.25)
7
Thus, for reactive power calculation for every phase p and smart meter i is:
Qb = ExM x QSF x (3.26)

Overall, based on the two measurements types provided, the reactive power is estimated
for every smart meter device.

* The examined algorithm relies on solving the equation stated in 3.6, which sug-
gest knowledge of voltages and currents throughout the network. While current
can be calculated, when voltage, active and reactive power are available, for low-
voltage grids the assumption of voltage knowledge for every node is impossible.
Since voltage is mostly unavailable, the main contribution of this research is to make
assumptions based on the provided voltage data, which are the GridEye devices. Nev-
ertheless, the algorithm was implemented in a flexible way, where smart meter voltage
could be provided and thus enhancing the outputs of the smart meters.

In the case of lack of knowledge of smart meter’s voltage, assumptions are made. The
upper part of the H matrix, as shown in 3.8, contains information about voltages. The
advantages of the WLS method is using weights, based on the degree of trust for every
measurement. In the examined paper [22], the weights are used based on the measure-
ment accuracy of the device used to provide that measurement. For this research, the
upper part of the matrix will be assigned with such a weight value, that the algorithm
will deem it totally unimportant. This weight value is 10° in order of magnitude less
important than the other weight values. The values which were used, numerically, are
provided in chapter 4.2, in table 4.1. What this achieves, is faking observability, without
jeopardizing the outputs of the estimation.

Moreover, the current calculation required is based from the equation:
P—i

I= ¢
%4

_P-iQ

VIe®

(3.27)

Based on the above equation, the current with respect to the reference, as it is required
for the linear state estimation, can be calculated, if the voltage V is assigned. This part is
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the major assumption of the algorithm, which, in the absence of information regarding
the voltage of the smart meter, is using the voltage of the nearest GridEye device. What
this means, is that the closest GridEye device is responsible for the value of current.
Thus, a graph search algorithm was also created, identifying the closeness of smart
meters and GridEye devices. Overall, the further a smart meter is from the GridEye
device, the larger the error and the higher mismatch between the estimated and real
current.

Moreover, since there are many zero-injection nodes in the network (all nodes not con-
suming or producing are zero-injection measurements), to reach observability, the zero-
injection nodes are considered as measurements, where the output is O.

* Different measurement types of different time-resolution of provided data must
be used. This creates problems in the data coordination and cooperation.
To tackle this problem, only common time-stamps between GridEye and smart meter
devices are used. Since both measurements are provided with a specific time-stamps,
the initial step is to match these time-stamps. It must be noted, that since energy is
provided for the smart meters, the calculation of power requires correct conversion from
energy to power based on the time-window of measurements.

* Distribution grids are topologically simple, but otherwise highly complex net-

works. Specifically, the cables used overall have low resistance and reactance
values, due to shorter cable distance. Moreover, most DSOs provide network con-
nections with fictitious nodes to represent fuses, breakers, switches and section-
alizers. These have minimal or zero values, which in turn cause issues in the
matrix multiplications in the algorithm.
To overcome this issue, and also enhance the algorithm, network reduction is nec-
essary. Fictitious nodes are located in cabinets usually, containing many branches
around them. In the network reduction process, nodes that should be kept or removed
are identified. The fictitious nodes (which account for 40% of the total nodes in networks
examined) must all be removed. To achieve this, a two-step procedure is required for
the total network reduction, based on the Kron reduction method for eliminating nodes
without loads [23]. In the first part of the procedure, the important nodes (smart meter
and Grideye devices) that must be kept are identified, as well as nodes that are cross-
sections and are necessary to be kept to retain the network’s topological sense. In the
second part, the network is checked to evaluate if there are any fictitious nodes left
(lines with zero resistance). If they are, important nodes are reallocated to the closest
node, to make the nodal removal possible. Thus, the fictitious nodes are removed.

* The susceptibility to bad data is quite high, since the lack of concrete knowledge
regarding the metering devices and their availability is questioned (since most
metering devices are sent to their collector once per day)

The analysis of bad data is discussed in detail in Chapter 3.5.

All these procedures are necessary to adapt a transmission network state estimation to a
distribution network one.

3.4. Least absolute value state estimation with linear inputs

The advantages between WLS and LAV methods have already been mentioned in the chapter
2. To define the algorithm’s effectiveness and limitations, an LAV-based approach will also
be implemented, as part of the thesis scientific questions. The advantage of this alternative
method is that it does not require and additional information or implementation from the ultra
fast WLS formulation previously analyzed. but the same inputs are given and the results are
then directly compared. This helps to better understand the problems that lie in each method,
the limitations, as well as the advantages. Similarly to the WLS and any optimization method,
the goal is to minimize the error between the estimated and the measured value. Using the
same notations as the WLS method

Hx —-e=2z (3.28)
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where still H is the measurement function, x is the state matrix and z is the measurement
matrix related only to the slack node.

It must be noted to this point, that the LAV method requires only the measurement func-
tion H and the vector containing the slack measurements z, as shown in equation 3.6. Thus,
same inputs are provided as the WLS method, but the stop step process is not used. So,
other than defining the constraints of the algorithm, no further actions are necessary for the
data preparation process.

As mentioned, the goal is to minimize the absolute value of the errors, instead of the
square of the errors. In this case the measurement function H and states are complex num-
bers, which is harder to deal for optimization. To overcome this issue, the optimization is
separated into real and imaginary part. Taking into consideration the initial approach for
the optimization:

min J(z—h(x))

3.29
s.t. gx)=20 ( )
where g are the constraint functions, the problem is translated into the following:
min CT(Rreal + Rimag) (330)
but the constraint functions are now
Hrealxreal - Himagximag — Zreal < Rreal
_(Hrealxreal - Himagximag - Zreal) < Rreal
0 <R
s.t. reat (3.31)
Hrealximag + Himagxrealzimag < Rimag
_(Hrealximag + Himagxreal)zrealimag < Rimag
0 < Rimag

where Ry.q and R;;,q4 are the mX1 sized residuals (or errors) of the optimization’s objective,
cT is a 1 X m sized matrix of ones, H,.q and Himqg are the real and imaginary parts of the
measurement function matrix H, x,.q and x;mq4 are the real and imaginary parts of the states
of vector x.

3.5. Bad data management

A great obstacle against optimization is the inclusion of bad data as inputs. Especially when

dealing with smart meters, the probability of bad data is higher. Inherently no optimization

method has a bad data detector, but methods treat bad data differently than others. As

previously mentioned, WLS optimization is more prone to bad data, as the optimization’s

goal is to minimize the square of errors. Thus, it is expected, that an LAV optimization is

better in that regard, since the optimization aims to minimize the absolute value of the errors.
For a successful bad data analysis, 3 steps must be completed, which are:

¢ Bad data detection
¢ Bad data identification
¢ Bad data correction

The first one, which is bad data detection, aims only to identify if there are bad data in the
given inputs. The second step’s goal is to identify which of the provided measurements was
deemed as bad data, and the last part aims to correct the data given, if possible. Obviously,
the lower data redundancy, the more difficult it is to complete the above three-parts of bad
data. It must be mentioned that for all static state estimation algorithms, all bad data meth-
ods operate after the state estimation is completed. This means that a successful bad data
detection requires a further re-run of the state estimation, to validate the outputs.
Typically, there are two methods capable of detecting and identifying bad data in static
estimators, which are the x? test (or chi-squared test) and the normalized residual test.
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Nevertheless, the x? test, despite the low-computation cost, can not identify with precision
the measurement containing the bad data [24]. For this reason, most bad data detection
algorithms opt for the normalized residual test method. Based on this method, the goal is to
calculate the residuals under a normalized scope (to make sense with respect to the weights
used). Then, if the largest one of the residuals is over a threshold manually chosen, this
measurement corresponding to this residual is deemed as bad data, meaning it should be
either removed or altered. An obvious disadvantage to this method is the manually decided
threshold for the largest residual to remove, as well as the inability to cope if the measure-
ment providing the error is critical (if the measurement is removed then there is lack of
observability). Generally, the residuals are calculated as:

r=z—H() (3.32)

where X represents the outcomes of the state estimation. Since the measurement function
H is linear, this means that combining output equation 3.21 and 3.32, the residual vector is
calculated as shown in [25]:

r=2z2-z
=(—HG 'HTR )z
=({—-HG*HTR™Y)(Hx +e) (3.33)
=(—HG *HTR Ve
= Se

where S is a matrix defined for simplicity and G is the gain matrix, which was directly used
in the state estimation. The second to last step simplified the equation due to SH = 0, thus:

S=1-HG 'HTR?

G = H'R-H (3.34)

Since the error assumption was a normal distribution (for the WLS method), the residual
covariance matrix is calculated as
Q= E@r")
= SE(ee™)ST
= SRST
=SR

(3.35)

The last step is verified by substituting 3.34 for S. Thus, the calculation of the normalized
residuals is essentially affected by the standard deviations of the measurements residuals
inside the Q diagonal elements. This means that the normalized residuals are calculated as:

N Rii Ry

122
§= =
v Qi SiiRi;

Thus, the normalized residuals are affected by the square root of the 1 and the residual value.

At this point, the threshold is established. This means that if the largest normalized
residual vV > typresnoia, then the value is deemed as bad data. Nevertheless, due to imperfect
matches of the state estimation, there will always be a largest normalized residual. The
threshold is necessary to ensure that after a value of error in the normalized residual values,
there could be bad data. This value is manually defined, based on specific network operating
points and characteristics. To make it more clear, without a threshold, there will always be
a triggered algorithm of bad data identification and correction. To overcome this, usually
the threshold is adapted to the needs of the estimator. With this part, the detection and
identification processes are completed.

The next and final step is to decide whether to correct the bad data measurement, or to
completely remove it. The consequence of removing the bad data is reduced redundancy
and measurement unavailability on the node or branch of removal. Thus, no information

(3.36)



3.5. Bad data management 23

can be provided at that node, which is at the expense of the algorithm as a whole. On the
other hand, bad data correction can carry the inherent errors of the estimator inside to the
changed value. Nevertheless, it is deemed better to change the value of the bad data, since
it does not only provide information about the node that had bad data, but also it does not
change the data structure. The bad data correction process is provided as shown in [26] as:
T
Zcorri = Zpad,i — S,
o (3.37)
_gy - R
bad,i Qii i

To overcome the issue of lack of redundancy in the low-voltage networks, historical data are
necessary for the smart meters. In bad data analysis under high redundancy, no further
information are required, and all steps in the detection, identification and correct are as
explained above. For the case of low-voltage grid, as the algorithm is destined for such a
network, the voltage assumptions and the low-weights initialized on voltages, make the cur-
rents the only information available at the disposal of the estimator. As such, the estimator
can not sometimes define which node could potentially have bad data. To this end, histori-
cal data can estimate more probable nodes that could potentially be described as bad data.
Without historical data, the algorithm can understand the part of the network (under which
GridEye device) bad data potentially occur, but can not identify the correct node. Thus, if
the threshold is exceeded, the historical data prove helpful to the assumptions created for

the linear low-voltage state estimation.






Experimental Results

4.1. Information regarding the results and test cases

In this section, basic information will be provided regarding the simulation processes, the
test cases, the validation process and the methodology. There are necessary for the in depth
analysis of the results.

4.1.1. Validation and error reference

Although the trust in GridEye device measurement accuracy is quite high, a prior power
flow analysis is necessary in every algorithm evaluating procedure. First of all, power flow
is an established tool for acquiring network operating conditions. Thus, evaluating a new
algorithm’s performance requires a established method as reference, capable of validating
the outputs results. So, power flow provides a comparison possibility, that is otherwise
impossible.

For the power flow calculation, the network parameter information, slack bus voltage and
power injections of all nodes were required. The network parameter information are provided
by the DSO, and the goal is to create an admittance matrix, which is a matrix containing
information regarding the nodal connections and admittances [23]. Furthermore, active and
reactive injections of smart meters were used, and their calculation was discussed in 3.3.
Nodes that were not smart meters had O power. Slack voltage is calculated by combining the
GridEye device measurements of the transformer (current and voltage) and network topology.

Moreover, device and topology errors exist in real networks. Inherent device errors and
topology provided errors are not uncommon, when provided by DSOs. These errors can
be hard or impossible to trace and could create differences between the outputs and the
inputs of the state estimation. To avoid this issue, power flow outputs are used as inputs,
in the form that the measurement device would provide them. That way, power flow
provides a generalized solution for the problem, disregarding the issue of wrongly provided
data. Effectively, instead of providing the algorithm directly with metered data, the equivalent
output of power flow, but in the same measurement type as the and with a device-specific
signature, will be provided. Thus, the algorithm can be evaluated without external factor
jeopardizing its performance.

4.1.2. Methodology

As mentioned in Chapter 3.3, many processes are required for running a state estimation,
like data preparation, network creation, network reduction et.c. The general idea of these
functions are shown in the figure 4.1. To get the real network sense, noise is inserted, in
the test cases that it is possible (due to computational burden noise ensues). The noise is
equivalent to the level of error estimated by the device measured. The noise equivalents for
the used devices are:

* 0.1% for voltage, when provided by GridEye device

25
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* 1% for current, when provided by GridEye device
* 3% for active power, when provided by smart meter device

The noisy inputs will be provided to the estimator, whose outputs will be evaluated with
respect inputs provided. It must be mentioned, that since noise increases the computational
cost of the algorithm, only specific test scenarios were evaluated by noise injection.

Start
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Figure 4.1: Simplified methodology of State Estimation inputs.

Also, bad data analysis, was only considered for one test case, and is not implemented
in every test scenario. Bad data is discussed only in 4.3.7. The bad data methodology as a
block diagram is shown in figure 4.2.
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Figure 4.2: Bad data block diagram.

4.1.3. Test cases
The first test case consists of a reduced network with only GridEye devices. This helped
acquire a better sense of the algorithm in a smaller network with sufficient measurements
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and high redundancy to check the validity of the outputs. Thus, in the first case, no smart
meter measurements were used, and the outputs were evaluated both with respect to both
power flow outputs and other GridEye devices within the same network.

In the second test case, an existing large-scale low-voltage network was provided as an
input. The initially provided network was unreduced. Within this network there were GridEye
devices and smart meters.

Different scenarios are tested for the test cases. Unless mentioned specifically, noise is
not included. These cases are namely:

» Test case 1: Network with GridEye devices.

1. Network with only GridEye devices, only WLS method. This is the first test
case, where only the WLS method was implemented. Noise was included.

2. Use of only 2 devices, both methods used. For this scenario, both methods were
implemented. To reduce the redundancy, only two GridEye devices were used.
Noise was included.

* Test case 2: Network with GridEye and smart meter devices.

1. Assumed voltage knowledge, both methods used. In this scenario, voltage of
smart meters were "assumed” to be known, based on the data provided by the
power flow outputs. This is to validate whether the algorithm can operate in high-
redundancy, to then find the errors for lower redundancies.

2. True measurement availability, both methods used. In this scenario, everything
that is available based on the measurements provided is used. This would be the
case base, based on the available information.

3. Effect of number GridEye devices in noiseless scenario, WLS method. In this
scenario, the comparison was made between using a single or three GridEye devices
in the network.

4. Effect of number GridEye devices in noisy scenario, WLS method. In this sce-
nario, the comparison was made between using a single or three GridEye devices in
the network. This is the scenario where noise is included for all devices, to validate
the algorithm’s adaptability to noise.

5. Bad data injection in smart meters, both methods used. In this scenario, the
base case (containing all three GridEye devices) was used. At this point, in every
SM device bad data are injected or different values. Only one bad data injection is
created (not multiple bad data simultaneously).

Last but not least, the error is calculated as

€ = Xinput — Xoutput (4-1)

where input describes the input for the specific node or branch of the state estimation, and
output describes the output of the same node or branch of the state estimation.

4.1.4. Simulation

To evaluate the effectiveness of the developed algorithm, simulations were conducted in Mat-
lab, version 2015b [27]. The LAV was implemented based on YALMIP-Matlab implementation
[28]. The solver was decided to be CPLEX solver. For WLS, the method was created from
scratch. The whole algorithm was developed within the Matlab environment and the mea-
surements provided as inputs were provided from existing networks both within Switzerland.
Every function used was created by the author of the report.

4.2. Test case 1: Network with only GridEye devices

The first case consists in a real-network within Switzerland, where a week worth of mea-
surements were provided from the end of August. The initial topology consists of 253 nodes
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and 252 branches, as it is seen in 4.3. The MV/LV transformer of this network is 250KVA.
This network has a high penetration of renewable energy, which means higher fluctuations
in voltage between day, night, sunny or cloudy time-stamps. In this network, as it’s the
standard working case, network reduction was established to only work with the GridEye
devices, since in this network no smart meters we available. Thus, the network where the
final estimation algorithm will be tested consists only of the GridEye devices, which are 4,
and the transformer. Thus, in this discussed network, there will be noted 5 nodes and 4
branches, which are only correlated to GridEye measurements, as shown in the figure 4.4.

] .-
~ .- 3
® GridEye devices
® Transformer
Figure 4.3: Unreduced network for case 1.
L
.:
. L

® GridEye measurements

. @® Transformer

Figure 4.4: Reduced network for case 1.
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GridEye measurements and network topology characteristics were provided for this case.
It should be noted that since this is the reduced network, the network was treated as such
network was the initial case, meaning that the state estimation was created only for the
aforementioned nodes. What this achieved in higher knowledge within the network, which is
an important step in creating a state estimation algorithm from scratch. Thus, this case is a
case of high redundancy, which theoretically should enhance the State estimation outputs.

Furthermore, from the provided GridEye data measurements, only voltage, branch cur-
rent, active and reactive power of branches were used for every phase.

To further expand the algorithm, another sub-case is examined where only 2 GridEye
devices are used. By taking advantage of GridEye’s ability to measure all the phases for up
to 3 different branches, branch currents can be provided, while lacking the nodal voltage
of the unmeasured nodes. This is used to start expanding the algorithm without complete
network knowledge. The base test cases for this are visualized in the figure 4.5, where the
branches measured are also shown:

= Q=

Case 1 Case 2

<O>—
<> —_—

<> <(y> = GridEye <H>—-

Figure 4.5: One-line diagram of the main test case divided into two sub-cases.

4.2.1. Test case 1 - Scenario 1: Use of all GridEye devices with only WLS method

In the first part of the test, the Ultra fast WLS was only implemented with weights for every
device, since the trust of every GridEye device is the same. In this test scenario, all GridEye
devices are included, as shown in the lest test scenario of the figure 4.5. The LAV method
was not implemented for this scenario. The outputs of the State Estimation are compared
with the power flow outputs, and the noise that is inserted is with regard to the error of the
GridEye device (0.1% for voltage measurement and 1% for current measurement). In this
scenario 1000 noise cases with normal distribution and noise levels mentioned above are
implemented. For this reason only the visual representation of the state estimation outputs
for the voltage, current and phase angle outputs of transformer node and transformer branch
are provided. The other results are too similar to visualize. The outcomes are shown in the
figures 4.6, 4.7 and 4.8.
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Figure 4.6: Voltage magnitude output for SE for all the noise cases for a week.
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Figure 4.7: Current amplitude output for SE for all the noise cases for a week.
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Figure 4.8: Voltage phase angle output for SE for all the noise cases for a week.

As it’s obvious from the above graphs, the state estimation successfully estimates the
states based on the provided equations. For deeper analysis, it is obvious that the day 4
represents a cloudy day, where day 6 represents a sunny day. The error variations within
the mentioned days for voltage magnitude, current amplitude and phase angle are depicted

in the figures 4.9, 4.10 and 4.11.
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Figure 4.9: Voltage magnitude differences

for a cloud to a sunny day.
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Figure 4.11: Voltage phase angle differences for a cloud to a sunny day.

Based on these figures, it’s quite obvious that the State Estimator based on the Ultra-fast
WLS method successfully captures the network measurements for noise cases, in all scenar-
ios (with high and low DG-penetration). To evaluate the errors, histograms are provided in
figure 4.12, 4.13 and 4.14
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Figure 4.12: Histogram of voltage magnitude errors for SE for all nodes and all time-stamps due to noise
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Figure 4.13: Histogram of current amplitude errors for SE for all nodes and all time-stamps due to noise
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Figure 4.14: Histogram of phase angle errors for SE for all nodes and all time-stamps due to noise

The errors of the outputs are following a normal distribution, as the noise provided. The
mean error revolves around zero, while the maximum error for voltage is 0.2209V ( = 0.1% X
240V ) and for current is 0.4174A (= 1% X 41.7A4), which means that the outputs are equal to
the injected noise. Thus, low-errors occur for this test case.

4.2.2. Test case 1 - Scenario 2: Use of only 2 devices, both methods used

This test scenario uses less GridEye devices, as shown in the right part of the figure 4.5.
In this test scenario also the LAV method was included included. Since the LAV and WLS
methods outputs are too similar, only plots with direct comparison (maximum errors, his-
tograms) between the methods are considered. Higher level analysis is only done for this test
case scenario, due to the similarity between the methods and the low numerical error. While
maximum errors and histograms are not robust statistical ways or representing errors, max-
imum errors and histograms are sufficient for this test scenario. Moreover, the comparison
is made only with respect to the unknown branches and nodes, which can be noted in figure

4.5. Thus, first, the error distribution within the nodes and branches are plotted in figures
4.15, 4.16, 4.17
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Figure 4.15: Maximum voltage magnitude error distributed for every node for all noise cases
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Figure 4.17: Maximum voltage phase angle error distributed for every node for all noise cases

Moreover the histogram of the previously mentioned plots, for the direct comparison of the
errors is shown in figures 4.18, 4.19 and 4.20. It must be noted that these histograms are
not the same with the histograms provided for the WLS method in the figures 4.12, 4.13 and
4.14, because only the voltages and currents of unknown nodes and branches respectively
are compared.
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The difference between the comparison figures (4.18, 4.19, 4.20 and 4.12, 4.13, 4.14 ) is
due to running more noise scenarios for the case of only having the WLS method (50000 in
the former, 1000 in the latter), as it’s faster. Thus the outputs get more normalized, whereas
in the inclusion of LAV it’s highly computationally costly to do likewise.

For this case, WLS produces lower errors for voltage magnitudes and current amplitudes
for the same inputs. Nevertheless, phase angle seems to produce better outputs for the phase
angle. Since phase angles are really low in magnitude (< 1e~%, they are not the dominant
factor in the current calculation, but the current is.

Overall, minimizing the square of errors for this case produces better results.

4.3. Test case 2 - Larger-scale network containing smart meter de-
vices

Contrary to the previous network, this network is an unreduced real network, where only 3
GridEye devices are available, 1 in the transformer cabinet and the other 2 in other cabinets
within the network. The original networks consists of 143 nodes and 142 branches. The
number of smart meter devices are 177, which are installed in 41 different nodes. Since
a node can have multiple loads, the aggregate of Smart Meter devices for every node is used.
Thus, for this network, 41 Smart Meters are visualized. 3 GridEye devices are also in-
stalled at 3 different locations within the network. The original network provided is in figure
4.21:
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Figure 4.21: Single-line diagram of the second case-network.

The available measurements will also be used on the time-span of 1 week. Based on
the visualization of the network, it can easily be observed that this network would require
some reduction, to reduce the number of states and improve the algorithm’s computational
efficiency. This is done by utilizing the Kron reduction method, as mentioned in [23], in two
steps. First, reduce all the nodes that appear only twice and are not metering nodes (i.e. the
continuous branches). Nodes that appear only two times and are not metering nodes means
that these are intermediate nodes that could be removed, without influencing the network by
the Kron Reduction, since Kron reduction is tricky on situations where are node is connecting
multiple branches together. In the second step the nodes that may appear more than twice
in the connection matrix (From - To), but are not important to the examined network (not
correlated with any measurement whatsoever). Moreover, the algorithm now requires manual
weights representing the trust level of every measurement in the measurement function, as
explained in Chapter 3.3 . Thus, the algorithm is expanded by adjusting the weights based
on the trust of every measurement used in every specific equation. The explanation for the
weights is shown below, but the numerical values are shown in 4.1. It must be noted that the
higher the value, the lower these measurements impact the State Estimation. The reasoning
behind the range of values chosen is described in the following:

* The highest trust is for the zero-injection nodes within the network. Since there are no
major assumptions for these nodes, the trust level is much higher compared to the other
nodes. This, nevertheless, can cause accumulated errors. This means that the nodes
and branches that aggregate the errors of the metering devices (or leverage points), will
be expected to have higher errors.

* The next highest trusted equations within the measurement function are the nodal
voltages of the GridEye devices. These nodes require no assumption.

* Following the nodal voltages, the next trusted values are the branch current equations
provided by GridEye devices. The trust level of nodal voltages is higher than branches
provided by GridEye, due to lower noise ratio.

* Smart meter current calculation requires two major assumptions. First, that active
and reactive power are uniformly distributed within the time-period of the Smart Meter
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device. Second, the current calculation requires voltage assumption in nodes with un-
known voltages. This means that equations with smart meters have lower weights than
the previous cases. Finally, since smart meter devices are assumed to have 3% error,
they should impact the state estimation less.

* Finally, for assumed voltages, since the upper part of the measurement matrix H (as
shown in equation 3.8 is constituted by voltage equations in the form of ¥, = V,e/%
and all voltages that are not GridEye devices are unknown. Thus, the weight used
should make these totally unimportant to the state estimation. This is done, because
for the linear SE estimation a high measurement redundancy is required. Since this
is not available, assumed voltages of low importance as used to create overcome the
observability issue that ensues otherwise.

| Weight | Value |
Zero-injection node 0.1
Voltage GridEye 0.3
Current GridEye 0.7
Current SmartMeter 3

Voltage of unknown nodes 100000

Table 4.1: Numerical values of the weights used for the WLS method

Since power flow outputs are used, it’s important to validate their match to the transformer’s
metered outputs of the GE device. This is shown in figure 4.22.

Current [A]

Figure 4.22: Comparison of the PF measurements and GE inputs provided for voltage magnitude and current amplitude.

After everything mentioned regarding reducing the network size, the reduced network is
shown in figure 4.23:
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Figure 4.23: Reduced network with the radial representation.

The reduced network consists of 70 nodes and 69 branches. The enumeration of the
reduced network will be kept for all tests. The network state estimation will be for a week
during December, where there was a time-match between the measurement units. Every
time-stamp represents a 30-minute interval, which is the common ground for the first phase
between 10-minute and 15-minute interval measurements. The range of voltage values with
respect to time and with respect to every node are visible in the figures 4.24 and 4.25. Figure
4.24 is used to get a general idea of the numerical distribution of voltages during specific
time-stamps, which will be useful to understand the time during the day of higher occurring
errors. The figure 4.25 shows the nodal voltage variation for every node during this weekly
period. The figures visualize the variation of voltages within the network. Similar for the
voltage visualization, the current distribution within the branches is noted at 4.26. The

examined network is of high consumption for a low-voltage network, thus higher current
variations are expected.
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Figure 4.25: Power flow voltage magnitude variation for every node.
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Figure 4.26: Power flow current amplitude variation for every branch.

For this test case, to understand the advantages and limitations of the algorithms, many
scenarios will be studied. These scenarios will be numerically correlated in the end of the
chapter. For every scenario, the distributions of errors within time and node/branch will be
provided. Distribution of errors within the nodes will be shown in boxplots. This is done to
realize the true variation within the errors for every node. Since robust statistics are median,
and quartiles (25% and 75%) [29], boxplots provide the robustness of every node. Plots will
be used to realize the maximum error within every specific time-frame. Histograms will be
used to show how to errors of all nodes and branches vary for the examined period. This will
be done separately for voltage magnitude, phase angle and current amplitude. A network
visualization of the four most inaccurate nodes and branches for the studied time-span will
be provided, when deemed necessary. Some scenarios include noise variations and some do
not. Finally, in all figures provided, when a comparison is made, similar limits are used to
easily visually compare the differences within the graphs.

4.3.1. Test case 2 - Scenario 1: Assumed voltage knowledge, both methods used

In this scenario, the measurement redundancy is high, since voltage availability is assumed
from the power flow outputs as voltage magnitudes. This represents a case of having a
Smart Meter or GridEye device in every one of the nodes within the network. Since voltage
is available and there is no noise, really small errors are expected as outputs. This can be
made obvious in figures 4.27,4.28 and 4.29, where close to zero errors are achieved. This
means that the algorithm works for high redundancy in larger-scale networks.
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Figure 4.29: Histogram of voltage phase angle error distribution of both methods.

The errors are minimal (degree of magnitude of 10~° for voltage and 10~°, thus the wanted
results for this ideal scenario are achieved.

4.3.2. Test case 2 - Scenario 2: True measurement availability, both methods
used

The difference of this scenario, compared to the previous one, is the lack of knowledge of the
nodal voltages of smart meter devices. Still all GridEye devices are used. This scenario is the
base case scenario, meaning that all available measurements are used. The distribution of
error for every node and branch are shown in figures 4.30, 4.31 and 4.32.
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Figure 4.30: Voltage magnitude errors for every node.
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Figure 4.32: Voltage phase angle errors for every node.

As it’s obvious from figure 4.30, the errors are higher for the LAV method. The nodes that
are susceptible to outliers and highest errors (nodes 32, 38 and 49) are either loads of the
highest consumption or their closest nodes. The highest errors occur at the time of highest
consumption, as this causes higher errors for the branch current calculation. While slightly
more comparable values for the phase angle are computed for both methods, still higher
level of voltage phase angle error ensues for the LAV method, as shown in 4.32. Mainly
voltage magnitude error is responsible for the major differences in the branch currents, as
shown in the figure 4.31. Similar patterns and outliers for all the mentioned figures occur
for both LAV and WLS method. This means that both methods operate quite similarly, but
the minimization of squares for assumed values seems better for this case.

The maximum error between inputs and outputs is provided in the figures 4.33, 4.34 and
4.35. These figures are necessary to understand which time-stamps produce the highest
errors and to validate that trully the times of highest consumption cause higher errors (see
4.22).
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Figure 4.35: Maximum voltage phase angle errors for every time-stamp.

Similarly to the boxplots, the maximum error for voltage, current and phase angle at every
time-stamp is lower for the WLS methods. It’s also more visible now that the same patterns
occur for both methods, but also in times of higher consumption, LAV is more prone to
errors than the WLS one. The higher error for the voltage magnitudes thus creates higher
maximum error for every branch. Since the errors are provided in absolute terms, to further
comprehend the error distribution of the methods irrespective of node or time-stamp, the
histogram of the errors is shown in figures 4.36,4.37 and 4.38.

g Error WLS

=100 ‘

2 ol ~-Limis|

E e e

.8 0 : ! .

i -0.41 0 0.61

gm Error LAV

250l L]

27 =

O O: ! :

®]

a -0.41 0.01 0.61
Voltage [V]

Figure 4.36: Histogram of voltage magnitude error distribution of both methods.
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Figure 4.38: Histogram of voltage phase angle error distribution of both methods.

Both methods still follow a distribution around 0, with a higher range of error for the LAV
method, as previously discussed. The voltage assumptions cause lower current estimates
of branches, which in turn creates that mismatch between inputs and outputs. It’s also
worth noting that the errors are the positive side are higher for the LAV and lower for the
WLS. For branch currents, the signs of errors are changed, while still having a much higher
error for the LAV case. Similar results can be reached for the phase angle distribution error
distribution.
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Figure 4.39: Most erroneous nodes and branches of SE outputs throughout the test period.

Furthermore, it can be seen in 4.39 that similar branches have the most mismatches for
the examined time period for both methods. In this case of WLS, highest nodal error occurs
at different nodal positions that with the LAV method.

4.3.3. Test case 2 - Scenario 3: Methods comparison with only using one Grid-
Eye

In this examined scenario, the use of explicit use of nodal voltages and line currents only of
the GE device in the transformer is provided, alongside with the smart meter devices. The
difference thus lies in not knowing the voltage and currents correlated to the GridEye devices.
This is done to evaluate the importance of the quantity of GridEye with respect to the outputs.
The boxplots are provided in 4.40, 4.41 and 4.42.
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Figure 4.40: Voltage magnitude errors for every node.
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Figure 4.42: Voltage phase angle errors for every node.

Here the limitations of the LAV implementations are more clear. While the WLS is only
slightly worse in terms of outputs, the LAV method is much worse and not trustworthy. The
patterns are still kept for the nodes, but the error in some cases exceed 1V. This instantly
affects the branch currents, as it’s obvious in 4.41. As current is calculated through the
voltage state outputs, currents are more erroneous one for the LAV. Similarly for nodal phase
angle,the outputs are considerably worse for the LAV than the WLS.

The maximum error between inputs and outputs is provided in the figures 4.43, 4.44 and
4.45.
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What was previously mentioned regarding the differences between both method outputs is
quite visible in figure 4.43. The pattern of errors is repeated, meaning at highest errors of WLS
the highest errors of LAV are noted. Nevertheless, this error at times of high consumption
make LAV, at this state, prone to an assumption-based SE. Similar problems occur for the
branch currents and the phase angle, rendering LAV for this specific scenario inadequate.
Nevertheless, WLS errors are within adequate limits. Since the errors are provided in absolute
terms, to further comprehend the error distribution of the methods irrespective of node or
time-stamp, the histogram of the errors is shown in figures 4.46, 4.47 and 4.48.
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Figure 4.48: Histogram of voltage phase angle error distribution of both methods.

While both methods follow a normal distribution around O, it’s obvious that LAV has a
higher variance for all histograms. While the extreme cases are slim, they produce untrust-
worthy outputs. It’s important to notice that most errors are around O for all histograms.
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Figure 4.49: Most erroneous nodes and branches of SE outputs throughout the test period.

The highest errors still appear in the similar nodes for the WLS, as it’s shown in figure
4.49. But, the branches of highest errors change, moving to branches closer to GE. This
is done, since as previously mentioned, zero-injections nodes are treated with high weights,
thus sometimes carrying the errors of other nodes to the nodes closer to the transformer.
For LAV, similar nodes are also causing higher issues, and the accumulated error of those
nodes cause errors to different branches than the WLS. Thus, the quantity of GE devices also
change where most errors occur for branches mostly.

4.3.4. Test case 2 - Scenario 4: Effect of number GridEye devices in noiseless
environment, WLS method

In this case, the difference between using multiple or a single device will be analyzed for a
noiseless scenario. Since it was inconclusive whether noise was interfering with the higher
current amplitudes of the previous case, a noiseless comparison disambiguate the differ-
ences. Also, due to the advantages of WLS, for this case only the WLS method will be directly
compared for this scenario. This makes sense, because in the noisy scenario it is difficult to
implement LAV, thus to directly correlate them afterwards, LAV will not be used.

As it is seen from figure 4.50, slightly higher voltage errors occur when using only one
GE device, but these errors are comparable between the two cases. More outliers appear in
the case of a single device. Furthermore, the number of the devices do not play a significant
role in the branch current calculation, as it’s obvious from figure 4.51. There are obvious
differences in the branches where the GE was installed (branches 2 and 48), while the rest
seem unaffected by the the number of devices implemented. Still, phase angle errors remain
similar for both cases, as it’s shown in 4.52. Node 24 produces the highest possible phase
angle error, which is a zero-injection node close to high consumption loads.
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In terms of maximum error per time-stamp, both cases produce similar outputs, as it is
shown in figure 4.53. Slightly higher peaks at times of high consumption are noticed, but
overall the outputs are not much different neither for current outputs, as noted in figure
4.54. Nonetheless, there is no significant disadvantage in terms of maximum error for phase
angle when using a single module of GE in the network is noted in 4.55.
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Finally, what was earlier discussed in terms of errors, is shown also in figure 4.56, where lower differ-
ences are shown between the two examined cases. Slightly more centered around zero are the the
errors when using 3 GE devices for all histograms. The boundaries are similar. For cases where 1 GE
device is better, is because the accumulated errors between the neighbouring nodes or branches to
GridEye devices create a mismatch, which in turn creates slightly higher errors than not specifying the

nodal or current values.
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Figure 4.58: Histogram of voltage phase angle error distribution of both methods.

As it’s overall shown, the amount of GridEye device enhances the outputs, but not to a
big margin.

4.3.5. Test case 2 - Scenario 5: Effect of number GridEye devices in noisy envi-
ronment, WLS method

Noise is an important part of any mathematical calculation within the power systems. For
an algorithm to be valid, noise must be inserted relative to the possible error of the metering
devices. This error for GE devices is 0.1% for voltage measurements and 1% for current
measurements. Similarly, the SM device error is assumed to be at 3% for active power.
These noises will be implemented in the measurements, to validate the error with respect to
a noiseless input. The noises cases for every time-stamp are 100.

The computation cost for LAV to produce outputs for all times in a noisy environment ren-
ders LAV incapable of noise inclusion. Since WLS method produces better and faster results,
it will be preferred as the method of SE when introducing noise to the measurements. Two
noise sub-scenarios will be evaluated. The first is the base case of including all GE devices
of the network and the second only the GE installed in the transformer will be included. Fi-
nally, the network representation of highest errors will not be included in these parts, since
the outputs are similar to the previous cases and do not provide any new input for the state
estimator. It must be also mentioned that since there is knowledge of more branch currents,
more errors are implemented in the scenario of 3 GE devices, which can probably contradict
each other.

It makes sense to have higher variations for all cases, compared to noiseless scenarios.
Since including noise in the level of 0.1% for voltages, which maximum voltage is 240, as
shown in 4.25 (thus a possible additional 0.24V of variation through all measurements), as
well as 1% metering error for transformer current, which maximum value is 360A, as shown
in 4.26 (thus maximum possible variation of 3.6A). The first notable remark from 4.59 is
slightly higher voltage magnitude error outputs for the case where only one GE device. More
outliers appear in the single device. Nevertheless, no notable differences exist for this case.
Similar for the current outputs, 3 GE are similar to 1 GE, and it’s due to the noise of the
current that affects the estimation of other branches. Nodal phase angle has no significant
differences.
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In terms of maximum voltage error, 1 GE device produces slightly higher errors in time-
stamps of really high consumption. But, overall, figure 4.62 shows that the errors are quite
comparable. Similar results are estimated for current of branches, as noted in figure 4.63.
Moreover, the mismatch of phase angle is minimal, as shown in figure 4.64.
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Figure 4.62: Maximum voltage magnitude errors for every time-stamp.
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Figure 4.64: Maximum voltage phase angle errors for every time-stamp.

The distribution of voltage errors is shown in 4.65, where the normal distribution around
a mean value of O is kept for the voltages for both examined cases. The limits slightly differ,
but overall they follow the same pattern. Similar outputs are shown for current and phase

angle, as noted in 4.67 and 4.66.
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Figure 4.65: Histogram of voltage magnitude error distribution for different number of GE devices.
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Figure 4.66: Histogram of current amplitude error distribution for different number of GE devices.
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Figure 4.67: Histogram of voltage phase angle error distribution for different number of GE devices.

It’s shown that 3 GE devices do produce similar results in both cases. Thus, for complete
network knowledge, using more devices could be rendered useless. Nevertheless, more de-
vices are useful for cases of less network knowledge, where more assumptions for the load
distribution must be made.

4.3.6. Test case 2 - Numerical comparison of results

Based on the visual representation of the outputs, understandably WLS is better than LAV,
and possibly using more devices is worthy in terms of outputs. For mathematical comparison,
the Root Mean Square Error was used. RMSE is a quadratic scoring rule that measures the
average magnitude of the error. It’s the square root of the average of squared differences
between prediction and actual observation. Since the WLS optimization’s goal is the RMSE,
it is expected to have inflated results for this method, compared to LAV. Still, since the WLS is
superior thus far to the LAV, this mathematical approach is deemed acceptable. The results
for method comparison are shown in the table 4.2.

Ideal 3 GridEye 1 GridEye

WLS V[V] 1e-05 0.01450 0.02320
LAV 1e-05 0.06052 0.11500
WLS [[A] 1.3e-04 0.15718 0.19734
LAV 3e-04 0.74165 1.23219
WLS Vph [deg] 0 1.00E-05 2.00E-05
LAV 0  5.00E-05 0.00011

Table 4.2: Numerical error comparison of WLS and LAV for scenarios 1,2 and 3

A similar approach is done to identify the difference in the use of number of GE devices,
with and without noise. In this scenario, the use of 2 GE devices was also examined, but due
to the similarities in the outputs, the visualization of the outputs is rendered unnecessary.
For this case, combinations of usage of GridEye devices are made. Similar to the case of
using just a single GridEye device to the network, two GridEye devices are used. Always
the GE installed on the transformer is kept, so the combinations are made for the other 2
devices. The possible scenarios are thus:

1. All devices, which will be called 3 GridEye
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2. Two of them using GridEye devices on transformer and node 3 as seen on figure 4.23,
which will be called 2 GridEye (1 + 3)

3. Two of them using GridEye devices on transformer and node 29, which will be called 2
GridEye (1 + 29)

4. A single GridEye device on the transformer 1 GridEye

The outputs are seen on table 4.3. Since, as mentioned, the disadvantages of LAV became
obvious, the comparison was done only by WLS methods.

3 GridEye 2 GridEye (1+3) 2 GridEye (1+29) 1 GridEye

noise V [V] 0.05872 0.06439 0.06439 0.05785
noiseless 0.01450 0.02291 0.01533 0.02320
noise 1TA] 0.32057 0.32923 0.32923 0.31104
noiseless 0.15718 0.19345 0.16295 0.19734
noise Vph [deg] 9.00E-05 0.00012 0.00012 0.00010
noiseless 1.00E-05 2.00E-05 1.00E-05 2.00E-05

Table 4.3: Numerical comparison of the impact of GridEye devices on errors, scenarios 3 and 4

It’s obvious that the amount of GE increase the performance ratio of the algorithm. Still,
one GE is capable of producing quite good results in terms of outputs.

4.3.7. Test case 2 - Bad data injection in smart meters, both methods used (Sce-
nario 2)

As mentioned on chapter 3, the optimization is always prone to bad data errors. These
become even more critical in networks with low information amount, as the low-voltage net-
works. To this end, sometimes bad data analysis is either too burdensome computationally,
depending on the number of data. In this section, a bad data detection, identification and
correction algorithm was used. It is worth emphasizing that the bad data analysis is always
after the state estimation outputs are calculated, and will require re-runs of state estimation
in the event of existence of bad data.

To validate the algorithm, both methods were used at a specific time, due to high com-
putation costs of doing it for every different time-stamp. Since the most prone to error mea-
surements are the Smart meters, the error detection is only for smart meters. Thus, for this
case, the GridEye devices are deemed are the most trustworthy devices in the network.

The insertion of bad data in smart meter measurements is done for three scenarios for
every device, thus there will be 41 X 3 cases. These three scenarios are:

* Using O instead of the value of power the SM device.
* Using 10 times the value of power of the SM device.
* Using the negative value of power of the SM device.
It must also be mentioned that statistical data of the smart meter devices at a specific point

are used, to guide the choice of the largest normalized residual. This is done as the estimator
can not understand completely which device could be the erroneous one.

Scenario 1: Zero output of Smart meter device
In this scenario every device’s active power is set to zero. This is done for one device at a

time. The outputs for voltage magnitude and current amplitude are shown in figures 4.68
and 4.69.
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Figure 4.69: Histogram of current error in the event of bad data for both methods.

As it’s obvious the error is not only higher, but under no circumstance does it provide
quality state estimates. While still performing slightly better, WLS does not provide quality
outputs, as the maximum error for voltage and current are close to 2.5V and 30A respectively.
The outputs after the bad data algorithm are provided in figures 4.70 and 4.71.
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Figure 4.70: Histogram of voltage magnitude error in the event of bad data for both methods after bad data algorithm.

40 Error WLS
=
2>
320
©
o]
e :
o 0 : ! H
-3.173 -0.017 2.196
30 Error LAV
Sl
220/; :
s i
S0+ H
o ' :
o ol | :
-3.173 -0.005 2.196
Current [A]

Figure 4.71: Histogram of current error in the event of bad data for both methods after bad data algorithm.

It can be easily seen that both voltage and current remain within the expected range for
the whole network. Still WLS outperforms the LAV estimator on this case.

Scenario 2: Ten times the output of Smart meter device

In this scenario every device is set to ten times the initial input, and still one at a time.
Normally, the outputs prior to the bad data correction are provided. The outputs for voltage
magnitude and current amplitude are shown in figures 4.72 and 4.73.
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Figure 4.72: Histogram of voltage magnitude error in the event of bad data for both methods.
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Figure 4.73: Histogram of current error in the event of bad data for both methods.

It is noted that both estimators fail to adapt to such a high error, thus providing terrible
values for both current and voltage. It is also noteworthy that LAV provides better outputs
at this scenario, which is expected as it’s a more robust estimator to bad data. The outputs
of the bad data algorithm are shown in 4.74 and 4.75.
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Figure 4.74: Histogram of voltage magnitude error in the event of bad data for both methods after bad data algorithm.
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Figure 4.75: Histogram of current error in the event of bad data for both methods after bad data algorithm.

The difference is notable, as both methods provide the similar outputs for this scenario.
While most errors remain around 0O, some extreme cases where the algorithm is unable to
identify which smart meter has bad data provides some higher error for voltage and currents.
Still, the network’s operating conditions are fairly met, despite the large looming error of
input.

Scenario 3: Negative output of Smart meter device

In this scenario every device is set to negative the initial input, and still one at a time. This
scenario also is important to note the case of production, since the test network was only
consuming Normally, the outputs prior to the bad data correction are provided. The outputs
for voltage magnitude and current amplitude are shown in figures 4.76 and 4.77.
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Figure 4.77: Histogram of current error in the event of bad data for both methods.

It’s quite obvious that both estimators fail to adapt to such a high error, providing error
values similar to the first scenario for both current and voltage. Still, as the second scenario,
LAV provides better outputs at this scenario, which is expected as it’s a more robust estimator
to bad data. The outputs of the bad data algorithm are shown in 4.78 and 4.79.
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Figure 4.78: Histogram of voltage magnitude error in the event of bad data for both methods after bad data algorithm.
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Figure 4.79: Histogram of current error in the event of bad data for both methods after bad data algorithm.

The difference is notable, as both methods provide the similarly good outputs for this
scenario, similar to the first one. The maximum and the mean errors do remain within some
good margins. The network’s operating conditions is correctly depicted, despite the error of
input.



Conclusions

This chapter contains all the outcomes of the research analysis for this project. The visual
and numerical outputs are available in Chapter 4, but the outputs with respect to the ques-
tions posed in Chapter 1 are discussed in this chapter.

5.1. Summary of the project

The goal of this research was to create a linear state estimation algorithm in the low-voltage
network. The transition from state estimation in the transmission grid to the distribution grid
is no easy task due to lack of sufficient and accurate measurements to correctly represent
the operating conditions of the low-voltage network. Currently in the distribution grid, at
most, only transformers are monitored due to their importance, as well as the general mon-
itoring of the specific low-voltage grid. Thus, an observability issue ensues in low-voltage
networks. The rise of smart meters led to research of their use further than customer visu-
alization devices. An idea to overcome the issue of lacking measurements in the low-voltage
network is the use of smart metering devices. This mentioned idea is still raw, due to many
hurdles in such an implementation. In this project, lower-resolution measurements (smart
meters), as well as SCADA-type measurements of higher-resolution (GridEye data), were used
to calculate a state estimation. Generally, what was achieved in this project was:

* A linear state estimation algorithm for the distribution grid was developed, which will
be used for the needs of the measurement provider, DEPsys S.A.. The algorithm, which
constitutes of several functions, from network creation, network reduction, measure-
ment correlation and power flow comparison, achieved good computational performance
and accuracy. Its main advantage is, that it is a fast process, able to cope with different
types of measurements with variable number of inputs. Moreover, the algorithm was
created and run for two optimization methods, based on WLS and an LAV one, which
have different optimization goals. WLS outperformed the LAV method. It is important to
note that all voltage errors were lower than 0.14% of the inputs provided for the WLS
method.

* The total aggregation of smart meter devices was matched every 30 minutes to the Grid-
Eye device allocated in the transformer node. This correlation helped generate assumed
reactive power outputs for the smart meters, based only on the active power provided by
the smart meter and the GridEye device on the transformer. Thus, profiles were created,
by correlating two different types of devices, to estimate a reactive power consumption
throughout the day for the smart meter devices. This, in turn, was useful for the state
estimator, as smart meter currents were calculated through that process.

* An analysis was made for the effect of the number of GridEye devices, with respect to
the errors of the state estimator. For the state estimation problem, it was found that
more GridEye devices enhance the outputs, but the degree of enhancement is not by a
large margin.
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* Inserting noise didn’t affect the outputs more than the level of the noise. This means
that the noise does not affect the outputs, more than the inherent possible errors of the
used devices.

* Bad data analysis for the state estimator was performed. All state estimators face the
problem of bad data, especially when dealing with smart meters. In this analysis, an
algorithm was developed to detect, identify and correct the bad data possibly provided.
The output of this analysis is that historical data are necessary to perform such an
algorithm. The residuals that exist due to the voltage assumption of the smart meters,
as well as the lack of redundancy, are obstacles in the algorithm’s ability to identify the
problematic injection. Thus, the identification process is aided by historical information.
The correction process does not reach the values of the case of no bad data injection,
which is a direct correlation of the existing residuals due to voltage assumptions of
smart meters. Nevertheless, the state estimation produces accurate outcomes.

5.2. Research questions

As mentioned 1.4, the main research question that was asked was whether such an algo-
rithm is applicable for the low-voltage network and what are the errors produced for
the linear state estimation algorithm under assumptions for the smart meters.

* In the first test case, which consisted only of GridEye devices, the errors were minimal
when compared to the power flow outputs. Only some minor mismatches were noticed
for voltage magnitude, current amplitude and voltage phase angle. These results were
promising, since that meant for a reduced network, the state estimation could fully
adapt to the provided data. Nevertheless, the case scenario always requires input of
noise, due to the inherent errors that could be provided by the measurements. The
noise levels inserted, which were normally distributed with the maximum error based
on the levels of trust of GridEye devices, proved that noise does not get amplified by the
algorithm, since the maximum errors were in the range of error introduced by the noise
inserted. Essentially, the output errors were not magnified by the noise, which meant
that the first test-case produced high quality outputs. Overall, the first test-case, which
resembled a network of high-redundancy, produced similar outputs to the power flow.

* In the second test case, which consisted of both GridEye and smart meter devices, a test-
case scenario was first implemented, which constituted of the active power and voltage of
the smart meters. These values were provided from the power flow outputs. Essentially,
this artificially created test-case created a higher-redundancy, to validate the degree of
successful operation of the algorithm. This was the first examined scenario, this process
helped identifying problems when running the algorithm and limitations. Essentially,
voltages of smart meters were only used for the current calculation of smart meters. It
was proved that the outputs were completely matching the desired power flow outputs
for all voltage magnitude, current amplitude and voltage phase angle. This meant that,
in cases where voltage or current of smart meter devices is provided, the outputs should
perfectly matching the power flow ones.

In the real case, where no voltage of smart meters was provided, and only the active
power of every smart meter was included, the outputs had a higher error, as expected.
This error naturally occurred, since the calculation of current, which is the necessary
input for the measurement function, required a voltage estimation of the smart me-
ter. To reduce the error, the estimated voltage of the smart meters was with respect to
the closest GridEye device, which as previously mentioned, provide voltage magnitude.
For this linear state estimation, in terms outputs, accuracy must be traded, when ob-
servability is not met (lack of availability of all voltages and currents throughout the
network). Nevertheless, the errors were minimal compared to the operating point of the
network for every specific node and branch. This trade-off of accuracy to computation
time was characterized as a successful scenario, since the errors were minimal for all
the monitored values (voltage magnitude, current amplitude and phase angle).
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Based on the above, it is noted that the smart meter assumption requirements for a linear
implementation of the state estimation in the low-voltage network do not hinder the state
estimation’s accuracy. The trade-off of low-accuracy errors for linearity is important for bigger
and more complex networks.

Addressing the main scientific question involved the answering of the sub-questions that
were posed in Chapter 1. These scientific questions and their answers are summarized below:

* Which state estimation algorithms can be considered, that satisfy both high pre-
cision and computation time?
As mentioned thoroughly in chapter 2.4, the most prominent methods for state esti-
mation implementation in power systems are the WLS, LAV and the SHGM methods.
Overall, the choice of the method is dependent on the measurement availability. It was
concluded that WLS method outperformed the other two methods in the absence of PMU
data for transmission systems.

* How can the selected state estimation algorithm adapt from the transmission net-
work that they are initially created for, to the distribution grid?
State estimations were designed for the transmission network of the power systems.
High-redundancy is absent from distribution network. Should the basic observability
condition be met, it was found out that assumptions can help the algorithm produce
results with high accuracy. This can be achieved by adjusting the weights in the WLS
method, not only by the measurement device trust level, but also by the degree of knowl-
edge available about that specific device. Thus, this forces the optimization to effectively
ignore measurements that are assumption-based.

* How does the algorithm deal with different redundancy levels?

The low-redundancy case, which is the main test scenario studied, consisted in the lack
of voltage knowledge of the smart meter devices. As previously mentioned, the smart
meter voltage was necessary for the current calculation of the smart meter devices. The
algorithm was proven to be matching the power flow outputs when the smart meter
voltage was provided, but in the case of no voltage knowledge errors of low margin oc-
curred. The maximum errors, which were low compared to the operating point (0.24V
and 2.2A), proved that the lack of high redundancy for state estimation is a trade-off
between the linearity and accuracy. Since linearity creates a problem of certain conver-
gence, the errors were deemed minimal compared to this provided advantage. What this
also ensures, is that in cases where the DSOs could provide further information about
the smart meter devices, the outputs will also be enhanced. Nevertheless, with only
active power provided, the rest of the assumptions created a solvable linear problem.

* How the objective function of the state estimation influences the outputs of the
estimator?
Essentially, the objective function defines the method used for the state estimation. Al-
though the advantages of each method used for state estimation has been studied a lot
in literature, this research aimed to also differentiate between the advantages of two
different methods, both based on the same inputs. The WLS problem was linear, since
the matrix involved were linear, but the LAV optimization is still an iterative procedure,
despite the linear measurement function. Nevertheless, linear measurement function
reduces the computational burden. For one run case, after initialization, the solving
time for the WLS and LAV was 0.02 and 0.06 seconds respectively. The research
aimed to use same inputs for both methods, which meant that both methods could be
directly correlated with respect to their outputs. Due to the fact that LAV is iterative
procedure by a CPLEX solver, the computation time outcome was expected. The ques-
tion lied in which method produced better outputs, for all the test cases, to examine
whether the LAV could outperform the WLS one. In the first case, the error margins
were too similar for voltage magnitude, current amplitude and phase angle. For the
second case, in the ideal scenario, the errors were even smaller than the WLS one, de-
spite the fact that WLS were deemed negligible. Nevertheless, in the rest of scenarios for
the second test-case, the outputs of LAV, in terms of maximum error and distribution
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error, were worse for all scenarios. This means that the LAV method, performs worse
in scenarios where voltage assumptions must be made. Thus, since LAV has a higher
computational burden and the outputs were worse than WLS for cases of knowledge of
only active power of smart meters, LAV method was deemed inferior.

* How does redundancy in the higher-resolution (GridEye) devices affect the state
estimation?
Another question that rose, was the effect of the number of GridEye devices in the state
estimation outputs. Essentially, do more devices used reduce the errors, as expected,
and if yes, how much does the error change. This is a research question related to
the interests also to DEPsys S.A., since the number of devices necessary to have good
operating knowledge of the network is necessary. To evaluate this, more scenarios were
created for both test cases.

— In the first case, taking advantage of the GridEye’s ability to measure multiple
current in many phases, a case was considered where only two of the four devices
were only used as inputs for the state estimation. For this case, due to still having
sufficient redundancy, the outcomes were similar.

— In the second case, three GridEye devices were used. Thus, the scenarios con-
sisted in creating different combinations of the GridEye devices as inputs. As it
was shown, the errors were higher the less GridEye devices were used, especially
in a noiseless environment. This is expected, as GridEye devices contribute to fur-
ther inputs in the state estimation. In the noisy environment, in some cases using
more devices created higher errors, which is a result of conflicting outputs in the
estimator. But, overall, one device used in the transformer could produce suffi-
cient results as outputs, where the errors are deemed as low-enough. The case
occurred for the LAV, where having a single devices was inferior to having more
devices. Generally, for the LAV, the number of GridEye devices affected more the
errors than the WLS one.

* How does the algorithm deal with bad data?

Generally, all mathematical optimization methods are prone to errors, when bad mea-
surements are provided. Since the smart meters are aggregating the consumed power
within a time period, these were deemed as the most prone to bad data errors, and thus
only smart meters were introduced to errors. This was proved in the figures 4.68,4.72
and 4.76 for voltage, where just one device could shatter all the outputs of the state
estimation. The most important aspect of bad data analysis was deemed to detect and
identify the position of the error. For the detection aspect, a manual threshold was used,
based on observations of errors. Manual selection of threshold could lead to weak or
strong thresholds, that either ignore or misinterpret data. This also means that the
threshold should be defined based on the specific network and the devices used, and
the redundancy of the specific network. Thus, a prior analysis is necessary for such an
algorithm, to correctly detect bad data with a high degree of trust.

Following the detection, identification proved to be a tricky point in the bad data analy-
sis. As mentioned, the lack of redundancy, in a network with assumptions (due to the
voltage assumption for smart meters), creates a problem in identification of the possible
node of error. To this end, historical data of the smart meter devices based on a specific
time point during the day were used. What this achieved is creating a range of possi-
ble values for the smart meter device, which if exceeded, could mean that this specific
smart meter is more likely to be part of the bad data. While not ideal, this idea proved
to be an asset in the identification process.

Bad data correction, despite the voltage assumptions of smart meters, corrected the bad
data to a sufficient degree. Of course, the assumptions for the voltage affect also the
correction part of the detection process, although in most cases the correction was of
high accuracy.

Overall, the bad data analysis process was quite successful, as all three parts of the bad
data analysis were met in different degrees.
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5.3. Future work

Further improvements can be implemented in the algorithm to enhance the outputs under
different scenarios. These improvements, which will not be part of the project, are subject to
discussion with the DEPsys S.A., to decide the possible next goals for the expansion of the
algorithm.

* Better nodal voltage assumptions for smart meters. It was shown, that when the
smart meters voltage was available, just to calculate the current of the smart meter de-
vices, the output errors were close to 0. This means that, for the real test case, where
voltages are not available, linearity came to the cost of the accuracy. Some ideas to
enhance the algorithm could be focused on making better voltage assumptions about
the smart meter devices, based on probable historical data with respect to the trans-
former measured outputs. In this algorithm, the voltage used was corresponding to the
closest GridEye device, which inherently creates an error in the estimator. Geograph-
ical position and historical data are considered, to further improve the outputs of the
estimator.

* Use more constraints in the LAV estimator, to produce even better results, to possibly
match or even overcome the WLS method in the cases where assumptions were made.
Based on the outputs, it is quite obvious that LAV suffers more under uncertainty than
the WLS. While the estimator treats weights in a similar manner, the optimization goal
of WLS proved better for this scenario. As it was obvious from the ideal scenario with the
smart meters, the LAV produced similar results with the WLS method. This means that,
uncertainty, under circumstances, could not be improved with some constraints, that
could further push the algorithm towards better results, since LAV is an optimization
method with manually implemented constraints. Ideas on equations that could help
the LAV were discussed, but to this point no concrete outcomes were achieved.

* Probabilistic state estimation is an already discussed idea, due to the nature of smart
meter devices. Generally, in real networks, not every house is outfitted with a smart
meter device. As such, smart meter devices installed alone are not able to create a
state estimation problem under certainty or uncertainty. This, combining that with
the fact that they are not always trustworthy or available during the day, prove that
adjustments can be made to algorithm to operate on real case scenario with a higher
degree of uncertainty. The probabilistic or stochastic scope aims, with a percentage of
smart meter devices in specific points used, to create profiles for the rest of smart meter
based on historical data, annual consumption and correlation to the aggregate data of
the transformer. A similar idea is shown in [30], to create state estimation runs at times
different that the provided data, under some uncertainty. To achieve this, data mining
processes are necessary, to create clusters and profiles for the unknown smart meters.
Then, correlations are necessary for time-stamps during different days to create these
profiles, based on Markov-chain models. This is a process of high importance, and due
to the nature of the work needed for such a case, it is deemed outside the scope of this
report.

* Enhancing the smart meter measurements for shorter time periods based on Grid-
Eye provided data. Currently, the 10 and 15 minute window of smart meters and Grid-
Eye devices respectively, creates the issue of when should the state estimation be per-
formed. In this research, the matching time of 30 minutes between the devices was
used. For this time window, smart meter devices provide the aggregate consumption,
meaning that there is no information of the processes that happen through this period.
As such, the idea of optimal matching based on the GridEye devices data occurred. An
idea to achieve this is through data fitting under uncertainty [31]. This still requires
total knowledge of the network, optimal matching can be implemented in collaboration
with probabilistic state estimation under uncertainty. The goal would be to create a
state estimation problem, irrespective of the time window of the provided smart meter
devices.



76

5. Conclusions

* Adapt the algorithm to medium voltage and meshed networks. The current algo-
rithm was created for low-voltage network, assuming a radial network. Further anal-
ysis is required for the meshed network, as it is slightly more complex than the radial
one, and requires some further attention. Moreover, although low-voltage networks re-
quire smart meters for state estimation, medium-voltage ones with just GridEye devices
should have enough information to create a state estimation problem and then solve it.

* Re-run algorithm in the case where only active power is available for smart me-
ters. It was noted, that the errors of the estimators occur in the current calculation for
the smart meters, as the equation requires voltage knowledge. The estimation provides
good outputs for voltage, but the outcomes can be even more accurate if the state esti-
mation is re-calculated for the newly found voltages. This way, such errors are avoided.
Obviously, the main issue is that the algorithm is run two times, but nevertheless, a
case could be made for scenarios of the highest errors, if that is deemed necessary.
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