
TabFuzz: High-level mutations for tabular data

Martijn Smits,

Computer Science and Technology,

TU Delft

June 25, 2021

Abstract
Big Data is an expanding industry, yet exhaustive
and automated testing of Big Data applications
is still in its early stages. In the last few years,
testing framework for Big Data applications have
started appearing. BigFuzz is a program that uses
fuzz testing for Big Data applications. Fuzz test-
ing means generating random, potentially invalid
or erroneous, inputs in attempt to find exceptions.
This paper introduces TabFuzz, a tool that im-
proves and extends the BigFuzz solution. TabFuzz
reproduces the BigFuzz implementation and ex-
tends on it, by improving the generation of random
input files. TabFuzz can generate a valid input file
based on an input specification. It then mutates
this file using high-level mutations. These muta-
tions generate new test inputs that mimic real-
world problems. This is an improvement over bit
or byte level mutations. These mutations are sup-
posed to mimic real-world problem, which is an
improvement over random bit or byte level mu-
tations. Most fuzzing programs start from a user-
defined initial input file, called a seed file. TabFuzz
offers the possibility to generate such a file. This
research shows that these generated files are just
as effective as starting from a seed file.

1 Introduction
Big Data is currently a 56 billion dollar indus-
try and is expected to grow to almost double that
amount by the year 2027 [1]. Despite the fact that
Big Data applications are becoming increasingly
more popular, exhaustive and automated testing
for these applications is still in early development.
BigTest [2] is one of the first frameworks to address

this problem. It is a white-box testing framework
that takes an Data-Intensive Scalable Computing
(DISC) program as input and automatically gen-
erates data for testing. However, BigTest is lim-
ited to dataflow operators where execution is sup-
ported, this means that developing a robust test
generation tool for DISC applications is still an
unanswered problem [3].

Fuzzing could be the solution to this prob-
lem. Fuzzing means automatically providing un-
expected input to software and monitoring for ex-
ceptions [4]. This technique is considered one of
the most effective methods to test the security of
software [5]. It has been deployed by some of the
largest companies in the world, such as Adobe,
Cisco, Google and Microsoft [6].

Recently Zhang et al. released a paper about
applying fuzz testing on DISC systems and they
released a framework called BigFuzz [3]. However,
fuzzing cannot be directly applied to big data sys-
tems. The authors of BigFuzz describe the follow-
ing three problem: (1) the long latency of DISC
systems, (2) conventional branch coverage is un-
likely to scale to DISC applications because most
binary code comes from the framework implemen-
tation; and (3) random bit or byte level mutations
can hardly generate meaningful data. In their pa-
per they present a solution for these problems.

The goal of this research is to address the fol-
lowing problem: random bit or byte level muta-
tions can hardly generate meaningful data. In
order to test DISC applications, it is important
that all branches of the code get tested. In the
case of bit or byte level mutations, there is a big
chance that the structure of the data is affected.
This would most likely throw exceptions early on
in the test progress in nearly every iteration. This
means that many branches are never tested. This

1

paper specifically focuses on designing and imple-
menting high-level mutations for tabular data and
assessing the effectiveness of these mutations.

This paper answers the following main ques-
tion: How can we provide users to enter input
specifications and implement mutations in a generic
way for all kinds of tabular data? This question
has been divided in the following four subques-
tions: (1) What are the possible ways of program-
mers specifying input?, (2) How can random in-
puts be generated based on the specification pro-
vided by the user?, (3) How can these inputs be
mutated based on the specified structure, such
that these mutations mimic real-world errors of
big data applications?; and (4) How does the pro-
posed framework perform compared to BigFuzz in
terms of effectiveness?

The paper is structured in the following way.
Section 2 provides a short background on some of
the subjects. Section 3 explains the methodology
in detail. Section 4 presents the contribution to
this project. Section 5 discusses the evaluation
and results of the experiments. Section 6 discusses
the ethical side of this project. The conclusion can
be found in section 7.

2 Background

2.1 Fuzz Testing
Fuzzing is a tool for finding bugs using randomly
generated invalid or erroneous inputs [7]. Fuzzing
mostly falls within black box and gray box testing,
which, respectively, means that there is no or lim-
ited information available about the inner work-
ings of the program [4]. Automated testing, such
as fuzzing, is really convenient for black and gray
box testing, because it allows the programmer to
easily test the program on large amounts of dif-
ferent inputs. Fuzz testing initially started off as
a technique to find security-related bugs, but it is
becoming more common to use it for non-security
programs [6]. What is important to note is that
fuzz testing is not used to check the validity of
outputs, but rather focuses on finding unexpected
behaviour and exceptions within a program. A
drawback of fuzzing is, however, that it there is
no guarantee that fuzzing finds all bugs, no mat-
ter how long it runs [5].

2.2 BigFuzz
BigFuzz [3] is a program that applies fuzz test-
ing to DISC applications. According to the au-
thors of BigFuzz, setting up a test environment
takes 98% of the time, because of the high latency
of DISC applications. BigFuzz can transform a
DISC application into abstracted Java program in
order to solve the latency issues. BigFuzz then
starts applying fuzz testing on the program using
the JQF [8] framework, a framework used for fuzz
testing on Java applications. However, instead of
applying random bit and byte level mutations, the
BigFuzz framework applies high-level mutations in
order to create more meaningful test data. Big-
Fuzz then returns the files that either cause an
exception or discover new branches. This action
is performed for a user-defined number of trials.

3 Methodology
The contribution of this research can be divided
into three big components: (1) the specification of
test input, (2) the generation of valid input files
and (3) the mutations on valid input files. The
methodology for each of these components is de-
scribed in this section.

3.1 Input Specification
In order to generate valid input files and perform
mutations on these input files, it is essential to
know what makes the data valid or invalid. The
input specification has two requirements. The first
requirement is that it collects all properties that
are important for the program. The second re-
quirement is that it is user-friendly.

The properties were derived using the following
two techniques. The first one was inspecting the
input specifications of the benchmarks provided
by the BigFuzz authors. The second one is by
adding properties that either improve the solution
or solve unanswered problem that came up during
the implementation of this solution.

The goal is to make the input specification
user-friendly. The idea is to let the programmer
specify the input it as basic or advanced as they
prefer. This means that they can either specify
certain properties, or leave them open and auto-
matically apply the default values of these prop-
erties.

2

3.2 Input Generation
In current fuzzing solution, such as BigFuzz, the
framework can often be executed either with a
user-defined seed file or without any seed file at
all. The TabFuzz solution will provide the option
to generate such a seed file, instead of running the
program without a seed file. The program will
use the input specification and generates a seed
file that is valid according to all properties of the
specification. TabFuzz will also still provide the
option to run the program using a user-defined
seed file.

3.3 Mutations
Mutations are used to create more test inputs by
modifying the seed file. The BigFuzz authors de-
scribe several high-level mutations, these muta-
tions are used for TabFuzz. On top of that, Tab-
Fuzz will also be frequently run to analyze what
sort of errors take noticeably longer to detect than
others. In case a pattern can be discovered in
what sort of inputs cause these errors, new mu-
tations may be introduced in order to find these
failures quicker. The idea of TabFuzz is that it
is an extendable framework, which can always be
improved and optimized.

4 TabFuzz
This section explains how the methods described
in section 4 are being applied. Section 4.1 focuses
on the important properties to represent the input
and how the programmer is able to specify these
properties. Section 4.2 describes a method to gen-
erate a file that is valid according to the input
specification. In section 4.3 the method to mu-
tate files is described. These mutations generate
new test inputs that mimic real-world problems in
order to find erroneous behaviour in big data pro-
grams. Section 4.4 discusses how the fuzz testing
works.

4.1 Input Specification
In the input specification the programmer can en-
ter several properties per column.

TabFuzz offers a way for program to define an
input specification. In this input specification the
programmer can create columns and add proper-
ties to these columns. Some of these properties

determine whether some input is a valid or invalid
input. Other properties are used to increase ef-
ficiency. The possible properties are as follows:
Datatype, Range, Special values, Column name
and Repeat.
Datatype is the only column-property that is es-
sential. The supported datatypes for the program
are all the primitive datatypes and Strings.
Range is an optional column-property, but deter-
mines together with the datatype whether some-
thing is valid or invalid data. In case the range
is left open, the program assumes that all values
within the boundaries of the datatype are valid
data entries. However if the programmer wishes
to define a range on a column then they can do
so as follows: Ranges on Strings and chars can
be defined using Regular Expressions (REGEX),
ranges on numeric values can be defined using one
or more intervals, ranges on booleans can be set
to either true or false.
Special values are specifically introduced in this
research, to allow the programmer to specify val-
ues that may be interesting to test the program
with. Bringing the programmer inside the loop
can increase the efficiency of testing, programmers
often know details about the internals of the pro-
gram that can help speed up the testing process.
Specifying special values heavily increases the prob-
ability of testing with these values.
Column name is introduced in order to help the
programmer keep an overview of the specification.
It helps the programmer keep track of which col-
umn is which. The property is not important for
the testing itself.
Repeat is introduced to support the possibility of
a variable amount of columns. The programmer
can add the repeat property to a certain column
followed by the amount of times it should be re-
peated. Repeat: x-y means that it is repeated
between x and y times. It uses the data specifica-
tion of the certain column for each of the repeated
columns.

On top of the properties per column, it is also
possible for the programmer to alter the settings
of the writer. These settings can also be defined in
the same file as the rest of the input specification.
The programmer can change: the separator char-
acter, which is the delimiter that separates the dif-
ferent columns; the quote character, which is used
to enclose a column, in case it contains the sepa-
rator character; and the escape character, which
is used to escape the quote character. In case no

3

writer settings were defined, the program uses the
same format as was used for all the benchmarks
of the BigFuzz research.

Besides the question of what information is im-
portant to specify, is the question of how the infor-
mation should be specified. The definitive version
of this format is shown in Figure 1.

Separator : $

Column : Zipcode
Datatype : S t r ing
Range : 900[0−9]{2}
Spe c i a l : 90042

Column : I n t e r v a l s
Datatype : int
Range : <−50, −10#15, 27#120 , >1300
Spe c i a l : 15 , 27 , 1301

Column : Mult ip l e Choice
Datatype : char
Range : (a | b | c | d)

Datatype : S t r ing
Repeat : 4−7

Figure 1: Data specification format example

The Writer Settings can be optionally defined
at the top of the file. Followed by the specification
of all the columns, separated by an empty line. As
mentioned earlier, the only property that must be
defined is the datatype, the rest of the properties
can simply be left out in case the programmer does
not want to define these. The special values can
be entered using comma separated values. The
range can also be defined using comma separated
intervals. The intervals can be defined as follows:

• < x means x and all values smaller than x

• > x means x and all values larger than x

• x#y means all values between x and y, in-
cluding x and y

The full specification of the data is stored as
Java objects and is used for the input generation
and mutations.

4.2 Input Generation
In fuzzing solutions, such as BigFuzz, the program
often uses a so-called seed file. A seed file should
contain only valid inputs. Containing only valid
inputs heavily increases the chance that the pro-
gram does not not crash very early in the test-
ing process. These files are usually provided by
the programmer, and the ability to provide such a
seed still remains in the TabFuzz solution. How-
ever, TabFuzz also gives the programmer the pos-
sibility to generate such a valid seed file. The pro-
gram takes the data specification and generates
a value per column of the appropriate datatype
within a valid range. Using a fuzzing framework
with a user-defined seed file almost always yields
better results [3] than without such a file. There-
fore in section 5 the effectiveness of user-defined
seeds versus generated valid seeds is evaluated to
see whether generated valid seeds can approach
effectiveness of user defined seeds.

4.3 Input Mutations
The mutations generate new test inputs. The mu-
tation is always applied to the seed file. It per-
forms exactly one mutation per trial. TabFuzz
consists of the following six mutations:
The Data Distribution Mutation replaces an
element with another element of the same data
type. This mutation either generates a valid or in-
valid input in terms of range. TabFuzz generates
valid or invalid inputs using a REGEX generator
called RgxGen [9]. This library allows the user
to generate a string that is either within or not
within a certain regular expression. The ranges
on numeric values can be entered as one or mul-
tiple intervals. To generate a valid input TabFuzz
randomly picks one interval and generates a value
within that range. To generate an invalid numeric
input, TabFuzz reverses all the intervals and ran-
domly picks one of the reversed intervals and gen-
erates a value within that interval.
The Data Type Mutation modifies the data
type of an element. BigFuzz always makes the
element keep the same value (e.g. changing an in-
teger with value 20 to 20.0). TabFuzz approaches
this mutation slightly differently. Since each datatype
is essentially stored as a String (it is an inputfile),
it means that in order to make its data type in-
valid, it must become a value that is not within the
bounds of its datatype (e.g. trying to change an

4

integer to a short does not make any difference,
since any short can also be read as an integer).
Therefore the following changes of datatypes are
possible:

Numeric values: are increased to be outside of
the range of the datatype. They also get appended
by non-numeric characters in order to make them
into Strings. In case of whole-number types, ".0"
is being appended to the element in order to try
and make it a floating point value. While ana-
lyzing the results of the algorithm a discovery has
been made, replacing a numeric value by an arith-
metic operator would often cause an unique fail-
ure. Since the implementation at that time would
only rarely generate these values, it would often
take insanely high number of cycles (over tens of
thousands in a program with only 3 columns) to
detect these bugs. Therefore, the data type muta-
tion for numeric values also replaces the element
by an arithmetic operator every now and then.

Booleans: are replaced by any value that is not
true or false.

Chars: are made invalid by replacing the ele-
ment by a value that has more than one character.

Strings: are impossible to change its datatype
by changing characters, since every sequence of
characters is a valid String. Although there tech-
nically is a way to make a String invalid, which is
done by entering more characters than the maxi-
mum amount of characters, this action is not per-
formed due to performance issues.
The Data Column Mutation adds an extra col-
umn to a random row.
The Null Data Mutation removes an column
from a random row.
The Empty Data Mutation picks a random col-
umn and replaces its value by the empty String.
After analyzing the results of the program, it was
discovered that one empty character would cause
a unique failure. Therefore the empty data muta-
tion picks either an empty string
The Special Values Mutation was introduced
in TabFuzz. As explained earlier, the programmer
can provide the program with special values. This
mutation picks a random element and replaces it
by one of its special values.

There are two scenarios in which the muta-
tion does not perform anything meaningful. As
explained earlier, in the case of Data Type Mu-
tations, it does not perform anything interesting
on Strings. In the case of Special Values Muta-
tion, it does not perform any action in case the

programmer did not specify any special values for
the certain column. Therefore in the case one of
these mutations are picked, it only chooses from
the columns that can actually receive a meaningful
change from the mutation. In case no such column
exists, the program chooses another mutation to
perform. This addition performs less meaningless
mutations and the overall efficiency goes up.
The Data Format Mutation changes a delim-
iter by another character. This mutation is also
one of the mutations described by BigFuzz. Since
this character can theoretically be any character,
this mutation would essentially just merge the two
columsn into one. Moreover, the program split-
ting data on non-delimiter characters is problem-
atic behaviour itself. This behaviour is already
caught by basically any other sort of data input
and/or mutation. Therefore this mutation is omit-
ted from this research.

4.4 Fuzzing
TabFuzz start the fuzz testing by creating a JQF
[8] fuzz testing environment. It generates a seed
file if necessary. Then the fuzzing loop runs for
the pre-defined amount of trials. Each trial, one
random mutation is applied to the seed file and
the program is tested using this randomly mutated
file. This mutated file can either run the program
successfully or cause an (unique) exception. An
exception is considered unique if its stack trace
is unique. Once the fuzzing is completed, the re-
sults are saved to the output folder. This output
folder contains: the initial seed file, all the mu-
tated files, a list of all the unique failures (includ-
ing their stack trace) and the random-seed that
was used for the test run. This random-seed can
be used for reproducing the results.

5 Evaluation
In this section the effectiveness of TabFuzz is eval-
uated. The effectiveness is expressed in amount
of unique failures found within a certain amount
of trials. Firstly, the TabFuzz solution is com-
pared to the TabFuzz-basic1 solution. Secondly,

1TabFuzz could not be compared to the BigFuzz solu-
tion, more on that can be found in Responsible Research.
TabFuzz-basic is the TabFuzz solution, without any of the
additional functionality proposed in this research and rep-
resents a rough version of the BigFuzz framework.

5

the effectiveness of seed generation is compared to
running the program with pre-defined seed files.
The solution is tested against 12 benchmarks (Ta-
ble 1). Section 5.1 presents the findings. The rest
of the sections explain the results.

5.1 Results
The results can be found in Figure2. Each of
the presented results is the average of 50 indepen-
dent runs of 5000 trials. The x-axis represents the
amount of unique failures. The y-axis represents
the number of trials. Four benchmarks did not re-
turn a single failure and therefore the correspond-
ing graph is trivial. These graphs of these four
benchmarks have been omitted from the paper.

5.2 Seed File Generation
TabFuzz shows huge improvement in fuzzing with-
out a seed file. Current fuzzing tools [3] notice a
considerable decline of performance when running
the tool without a seed file. The performance of
running TabFuzz with or without a seed file is
comparable. This means that TabFuzz elmimi-
nates the need to fuzz with a user-defined seed file.
Interestingly, in StudentGrade, the runs without a
seed file even outperform the runs with a seed file.

5.3 TabFuzz Effectiveness
The TabFuzz framework outperforms the TabFuzz-
basic framework on several benchmarks. All of the
benchmarks where it outperforms are benchmarks
that accept numeric values as input. As mentioned
earlier, arithmetic operators on places where nu-
meric values are expected introduce unique fail-
ures, however it often took an enormous amount of
trials to randomly replace a numeric value by one
of these artihmetic operator. Therefore TabFuzz
does this operation more frequently and the results
suggest that this is the addition that boosts the
performance of TabFuzz compared to TabFuzz-
basic.

5.4 Zero Failures
As mentioned earlier, neither of the test frame-
works can find a single failure on four of the bench-
marks. These benchmarks are: WordCount, Ex-
ternalCall, MapString and IncomeAggregation. For
the first three of the benchmarks it can be easily

explained why there was not a single bug. Each of
these three benchmarks expect a single column of
datatype String. Since every character and combi-
nation of characters can be interpreted as a String,
these programs accept every sort of input. The
other benchmark, IncomeAggregation, does have
a structured input, on which one would expect the
program to crash. Inspecting the internals of the
benchmark suggested that there are pieces of code
that should throw exceptions on certain inputs.
For example, one operation in IncomeAggregation
tries to parse values of multiple columns to inte-
gers. In case there is a wrong number of columns it
should throw an ArrayIndexOutOfBoundsException.
In case the column does not contain an integer, it
should throw an NumberFormatException. Both
of these scenarios do occur in the test data and
therefore it is unclear why the fuzzer cannot find
a single failure in this benchmark.

6 Responsible Research
There are several aspects that should be taken into
account when reading this research. Each of the
following sections introduces an ethical aspect of
the research.

6.1 Overrelying risk
Testing frameworks, such as TabFuzz, introduce a
risk that programmers start relying on these pro-
grams. However, one of the problems with ran-
dom fuzzing is that there is no guarantee that it
finds all bugs within a certain amount of trials.
There is not even a guarantee that some bugs are
found at all. Fuzzing tools, such as TabFuzz, defi-
nitely speed up the process of finding corner cases
and exceptions, however they should never fully
replace all other methods of testing or verification.

6.2 Empty stacktrace bug
During the course of this project, one bug was
found that influences the results of this research.
The amount of unique failures are measured by
the amount of unique stack traces found during
the run of the program. However, sometimes these
stack traces would be null. The error has been in-
vestigated and seems to occur somewhere in the
JQF or JUnit framework. Therefore this issue has
been considered out of the scope of this research.

6

Figure 2: Results

7

ID Subject Program Description
1 WordCount Find the frequency of words
2 CommuteType People count using each form of transport for daily commute
3 ExternalCall Find the frequency of words
4 FindSalary Total income of individuals earning <= $300 weekly
5 StudentGrade List of classes with more than 5 failing students
6 MovieRating Total number of mobies with rating >= 4
7 InsideCircle Check whether the point (x,y) is in a circle
8 MapString String mapping
9 NumberSeries Find the numbers whose 3n+1 series’ length is 25
10 AgeAnalysis Total number of people with different age ranges
11 IncomeAggregation Average income per age range in a district
12 LoanType The frequency of each loan tpye within a metropolitan area

Table 1: Benchmarks [3]

The bug, however is not a massive problem for the
following reasons. First, it can only occur once
per run of the program, this is because an empty
stack trace is also considered a unique stack trace.
Secondly, the empty stack traces always seem to
be duplicate failures, this was concluded after in-
specting the input files on which it returned du-
plicate failures. These input files were often du-
plicates of files earlier in the run. This suggests
that no unique failures were missed, because the
empty stack trace was already in the unique failure
list. Finally, the amount of unique failures found
is not that important for the users, the users are
mostly interested in what errors were found and
what input caused the error. Both of these pieces
of information are still available.

6.3 BigFuzz
In this research the plan was to replicate and ex-
tend the BigFuzz solution. However, unfortunately
we did not manage to get the BigFuzz framework
to work. The BigFuzz solution provides a tool to
transform a scala program into a java version us-
ing a tool called the transformer. It then tests
these java versions of the program using the JQF
framework and the input files generated by their
mutation class. Unfortunately the transformer did
not work as intended, the programs generated by
this class did not compile. Furthermore the mu-
tation class seemed incomplete, it did not contain
the mutations as described in the paper. The most
likely explanation is that the BigFuzz repository
that we used did not contain the final version of
BigFuzz. Unfortunately this means that it was not

possible to compare the results of TabFuzz to the
results of BigFuzz.

6.4 Reproducibility
The results presented in this paper can be repro-
duced by using the same random seeds given in the
repository. The repository also contains a file with
instructions on how to replicate the results. The
versions that were used to create the results are
on the branches TabFuzz-unaltered-final and
Tabfuzz-basic-final.

7 Conclusions and Future Work
TabFuzz provides programmers a framework to
specify tabular inputs and mutating these inputs.
A programmer can specify an input structure by
defining the columns and specifying the proper-
ties of these columns. A column can be speci-
fied using the properties: Datatype, range, column
name, special values and whether it should be re-
peated or not. The program can then generate
inputs based on these specifications. For Strings
and characters, this is done by generating inputs
within a regular expression. For numeric values
this is done by generating values within a certain
interval. After this valid file is generated, the mu-
tating can begin. These mutations are selected in
attempt to mimic real-world problems.

The effectiveness of the framework was then
tested. The TabFuzz solution has shown to be ef-
fective. Also the generated seed file has a neg-
ligible difference with using a user-defined seed
file. This is a huge improvement compared to

8

other fuzzing solutions, where the authors notice
a decline of effectiveness in case there is no user-
defined seed file.

As for future works, the solution presented in
this research can always be optimized and expanded.
Many improvements can be made to increase the
effectiveness of the framework.

First of all, redundant test inputs can be elim-
inated. A duplicate file should in theory always
cause the same errors. Removing this would sig-
nificantly reduce the amount of trials required to
find failures. Duplicate files are currently a com-
mon occurence, because not every mutation has
an endless amount of possible new values. The
null data mutations, for example, can only create
a very limited amount of unique files, yet it is cho-
sen 1/6th of the time.

Secondly, ranges on numeric values can be im-
proved. Currently it can only accept one or more
intervals. Allowing the programmer to specify a
range based on a mathematical formula gives the
programmer a lot more freedom in specifying ranges.

Finally, several functionalities can be improved.
First of all, variable amount of columns only works
on the last column as of now. Allowing the pro-
grammer to define this anywhere in the specifica-
tion allows more types of input specifications. Sec-
ondly, the writer settings functionality does not
work as intended. The CSV-reader library does
not parse custom delimiters properly. Finally, the
RgxGen generator is an impressive tool, however
it does have its limitations. For example certain
expressions contain serious issues with the distri-
bution of values.

9

References
[1] Statista. • Global Big Data market size 2011-2027 | Statista. 2020. url: https://www.statista.

com/statistics/254266/global-big-data-market-forecast/ (visited on 05/06/2021).

[2] Muhammad Ali Gulzar, Madanlal Musuvathi, and Miryung Kim. “BigTest: A Symbolic Execution
Based Systematic Test Generation Tool for Apache Spark”. In: Proceedings - 2020 ACM/IEEE
42nd International Conference on Software Engineering: Companion, ICSE-Companion 2020.
ACM, 2020, pp. 61–64. isbn: 9781450371223. doi: 10.1145/3377812.3382145.

[3] Qian Zhang et al. “BigFuzz: Efficient Fuzz Testing for Data Analytics Using Framework Ab-
straction”. In: Proceedings - 2020 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2020. Australia, 2020, pp. 722–733. isbn: 9781450367684. doi: 10.1145/
3324884.3416641. url: https://doi.org/10.1145/3324884.3416641.

[4] Michael Sutton, Adam Greene, and Perdam Amini. Fuzzing - Brute Force Vulnerability Dis-
covery. 2007. url: http://bxi.es/Reversing- Exploiting/Fuzzing%20Brute%20Force%
20Vulnerability%20Discovery.pdf.

[5] Lei Zhang et al. “Improvement of the sample mutation strategy based on fuzzing framework
peach”. In: 2018 International Conference on Artificial Intelligence and Big Data, ICAIBD 2018
(2018), pp. 33–37. doi: 10.1109/ICAIBD.2018.8396162.

[6] Valentin J.M. Manès et al. The Art, Science, and Engineering of Fuzzing: A Survey. 2018. arXiv:
1812.00140.

[7] Gustavo Grieco et al. “QuickFuzz testing for fun and profit”. In: Journal of Systems and Software
134 (2017), pp. 340–354. issn: 01641212. doi: 10.1016/j.jss.2017.09.018. url: http:
//quickfuzz.org/..

[8] Rohan Padhye, Caroline Lemieux, and Koushik Sen. “JQF: Coverage-guided property-based test-
ing in Java”. In: ISSTA 2019 - Proceedings of the 28th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. 2019, pp. 398–401. isbn: 9781450362245. doi: 10.1145/
3293882.3339002. url: https://doi.org/10.1145/3293882.3339002..

[9] GitHub - curious-odd-man/RgxGen: Regex: generate matching and non matching strings based on
regex pattern. url: https://github.com/curious-odd-man/RgxGen (visited on 06/03/2021).

10

