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Formation control problems consider a set of mobile agents with the
underlying goal of attaining and maintaining a state where the rel-
ative positions of agents are stable in accordance with the desired
configuration. Navigation for formation control is typically achieved
through localization in a global reference frame, e.g., via GNSS. How-
ever, when a global reference frame is not shared among agents, a
relative navigation approach is required.

Distributed filtering for relative localization in formation control
systems is a relatively unexplored field. The absence of absolute posi-
tioning means motivates the need for a distributed filter that operates
on the edges of the sensing graph of the multi-agent system. In this
thesis, a data model for relative formation control problems and two
edge-based Kalman filters are proposed. The first filter is designed
for an individual edge. The second is a filter designed via decoupling
of the optimal global filter which allows for the joint estimation of
adjacent edges. It is shown that the joint filter is optimal under the
decoupling constraints.

Monte Carlo results show that when random environmental dis-
turbances are correlated among agents, the joint filter outperforms
the local edge filter in a mean square error sense.

Lastly, systems are considered where inter-agent communications
are unavailable, leading to biased prediction steps of the Kalman fil-
ters. We aim to minimize this effect through the proposal of a local
Wiener filter which predicts the control actions of neighboring agents.
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Abstract

Formation control problems consider a set of mobile agents with the underlying goal of
attaining and maintaining a state where the relative positions of agents are stable in
accordance with the desired configuration. Navigation for formation control is typically
achieved through localization in a global reference frame, e.g., via GNSS. However, when
a global reference frame is not shared among agents, a relative navigation approach is
required.

Distributed filtering for relative localization in formation control systems is a rela-
tively unexplored field. The absence of absolute positioning means motivates the need
for a distributed filter that operates on the edges of the sensing graph of the multi-agent
system. In this thesis, a data model for relative formation control problems and two
edge-based Kalman filters are proposed. The first filter is designed for an individual
edge. The second is a filter designed via decoupling of the optimal global filter which
allows for the joint estimation of adjacent edges. It is shown that the joint filter is
optimal under the decoupling constraints.

Monte Carlo results show that when random environmental disturbances are corre-
lated among agents, the joint filter outperforms the local edge filter in a mean square
error sense.

Lastly, systems are considered where inter-agent communications are unavailable,
leading to biased prediction steps of the Kalman filters. We aim to minimize this
effect through the proposal of a local Wiener filter which predicts the control actions
of neighboring agents.
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Introduction 1
1.1 Background

A major trend in science and engineering concerns decentralization. A task first per-
formed by a central unit is now distributed among multiple agents which all perform a
subset of the main task. As such, the main task is performed in a so-called distributed
or decentralized manner. One of the advantages of decentralization is an intrinsic ro-
bustness to single point of failure (SPOF). If any single agent fails, a well-designed
decentralized system can recover and continue with one fewer agent. In a decentral-
ized system, no single central controller exists which can fail and shut down the whole
system. Another advantage of decentralization is computational efficiency, as agents
perform their work on a large task in parallel. Directly related is the scalability of
distributed systems. Local parallel processing allows an increasing number of agents
without increasing the load on a central processing unit or on communication with such
a unit, as would be the case with centralized systems.

Decentralization is seen in countless research areas, from computer processor design
to electricity grids. In this thesis, the focus is on decentralized systems with mobile
agents, i.e., agents which can freely move around in Euclidean space. For various
reasons, it may be desirable to keep the relative dynamical states of agents (i.e., position,
velocity) with respect to other agents stable. If this is achieved, we say the agents are
in formation. The general formation control problem therefore refers to letting a set of
mobile agents converge to a desired formation, and keeping them there. Of course, there
are countless variants of the formation control problem. These differ in e.g., the type
of formation, the dynamics of the agents, the sensing and communication capabilities
of agents, and the control hierarchy of the system.

Before discussing the state of the art and the goals and outline of this thesis, first
some application areas of formation control systems are introduced.

1.2 Application Areas of Formation Control

Three application areas of formation control systems are discussed, with special in-
terest in domains with limited absolute positioning means. First satellite arrays are
considered, followed by UAV and AUV formations, respectively.

1.2.1 Satellite Interferometry

Since the invention of the first telescope, a desire in radio astronomy has been to increase
the resolution of astronomical images. Originally, this meant increasing the size of
telescope dishes. Interferometry provides an alternative. Interferometry involves using
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Table 1.1: Selection of past and present-day multi-satellite interferometry projects.

Project name Lead Observation objective Formation type

IRASSI [2] University Munich Cold space Free-drifting
OLFAR [3] PIPP OLFAR group Early cosmos Free-drifting
Darwin [5] ESA Extrasolar planets Tetrahedral

Cluster II [6] ESA Earth magnetosphere Tetrahedral
MMS [7] NASA Earth magnetosphere Tetrahedral
LISA [4] ESA Gravitational waves Triangular

arrays of telescopes which can achieve the same angular resolution as a much bigger
single telescope [1]. Instead of ground-based astronomy, this also allows the use of
satellite arrays which experience less atmospheric pollution compared to ground-based
telescopes. The recent IRASSI (Infrared Astronomy Satellite Swarm Interferometry) [2]
and OLFAR (Orbiting Low Frequency Array) [3] projects are examples of these types of
systems. Satellite interferometry is however not only used for astronomical purposes,
but can also be used to observe other phenomena, such as gravitational waves [4],
extrasolar planets [5] or Earth’s magnetosphere [6], [7].

There are two general methods of using swarms of satellites for interferometry. One
is to have the satellites free-flying within a certain region, as is done in [2], [3], [8].
This requires less precise control over the satellites. However, for some applications
more control is needed over the (relative) positions of the satellites, as in [5]–[7]. In
these cases, millimeter- or even micrometer-level precision formation control is required.
Formation control for these systems is usually based on relative distance measurements,
since absolute localization, which on Earth is often done through GNSS systems such as
GPS, is problematic in space. A variety of sensors is often used on a single satellite for
relative localization, but for the most accurate position estimates, laser-based sensors
are often used [2].

Translational movement of satellites is achieved through high-precision propulsion
techniques. With thrusters placed such that applied forces are orthogonal to each other,
the control inputs for translational movement can be decoupled into independent control
inputs for all three dimensions [9]. If orbital dynamics are also ignored, the dynamics
of a satellite can be modelled as a double integrator:

ẋ = v, v̇ =
1

M
u (1.1)

with x,v,u ∈ R3 the position, velocity and thrust force of the satellite respectively,
and M the mass of the satellite. Attitude dynamics and -control of satellites are more
involved, and will not be considered in this thesis.

A selection of some projects involving multi-satellite systems are shown in Table 1.1.
While many of the currently launched satellite formations consist of a limited number
of satellites, recent projects like OLFAR include an increased number of (smaller and
cheaper) satellites. Distributed formation control is therefore a promising field for the
future of satellite interferometry projects.
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1.2.2 UAV Formation Flight

Another application area for distributed formation control is that of Unmanned Aerial
Vehicles (UAVs). Formations of UAVs can have a myriad of functions. Some exam-
ples include but are not limited to surveillance operations, surface mapping and crop
inspection.

UAV-based systems can be roughly classified into two classes based on their dy-
namics. Fixed-wing UAVs need to maintain a certain velocity and are often modelled
using modified unicycle models [10], which are nonholonomic and dimensions are not
decoupled. Rotary wing UAVs are often modelled as single- or double integrators in
two or three dimensions [11]. The single- and double integrator models can be justified
because rotary wings UAVs can be in equilibrium when stationary. More complex dy-
namical models for these UAVs are also omnipresent in literature [12], [13]. However,
the decoupled dimensions and holonomicity of the single- and double integrator models
make them particularly attractive as a starting point for stability analysis of formation
control algorithms.

Often, UAVs are equipped with GNSS modules, giving them an absolute reference
frame. There are some specific applications where this is not possible, e.g., in indoor
applications or when GNSS modules are not cost-effective. In these applications relative
position measurements are required for localization. Usually, UAVs measure distances
(e.g., via RSS, radar, lidar, stereo cameras) and bearings (e.g., via omnidirectional
cameras), and then combine these measurements into a relative position estimate.

UAVs are particularly susceptible to disturbances from the environment in the form
of wind [14]. The wind direction and magnitude are generally approximately uniform
over the space spanned by a formation and as such the disturbances are often correlated
among the UAVs in the formation. In addition, wind speed is correlated in time. Prior
information on wind patterns might therefore be exploited to counteract its effect on
formation control in UAV applications.

1.2.3 Underwater Sensing Formations

Another domain where absolute localization is compromised is underwater. GNSS sys-
tems function poorly underwater and vision is similarly limited. As such, distributed
formations of Autonomous Underwater Vehicles (AUVs) based on local relative posi-
tioning are particularly suited to this domain. There are various functions a distributed
formation could fulfill under water. Consider for example the search for naval mines
[15], or the sampling of ocean currents [16]. Distributed AUVs can sweep ocean floor
for mines quicker and are more cost-efficient than a centralized solution. The same
argument can be made for taking spatial samples of currents.

Underwater agents often communicate acoustically between themselves and can
use the acoustic energy to estimate their relative distance. Alternatively, laser-based
rangefinders exist for higher precision rangefinding [17]. Through using multiple
rangefinders on a single agent with some distance between them, bearings may be
estimated using triangulation. Specifically, D + 1 spatially separated rangefinders are
necessary to compute relative position in D-dimensional space. This method of relative
position estimation increases in precision when the distance between the rangefinders
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increases. For underwater systems with acoustic rangefinders this approach is particu-
larly useful because agents are generally relatively large in size and sound waves travel
relatively slowly.

The dynamics of AUVs are highly dependent on the design and type of propulsion.
While many systems are nonholonomic [18], holonomic vehicles with full translational
freedom of movement exist as well [19]. The latter type of vehicles are particularly
useful for maintaining stationary underwater formations.

1.3 State of the Art

In this section, relevant state of the art is summarized. First, the state of the art for
relative formation control systems is covered, followed by a brief summary of recent
work on distributed Kalman filtering for these systems.

1.3.1 Relative Formation Control

In [20], formation control problems are categorized into three groups, based on the
sensing capabilities of agents.

1. In position-based control systems, agents share a common global reference frame.
They are capable of measuring their own position with respect to this global
reference frame. Hence, we call these measurements absolute state measurements.
Systems equipped with GNSS modules generally belong to this category.

2. In displacement-based control systems, agents do not share a common reference
frame, but their local reference frames do share a common orientation. In practice,
this can be achieved through e.g., an onboard compass. Position measurements
taken in a local reference frame are by definition relative state measurements,
which are then generally also the variable to be controlled.

3. In distance-based control systems, agents share neither a common reference frame
nor a common reference orientation. Inter-agent distances are controlled, while
again only relative state measurements are available.

A comparison of the reference frames of agents for the three categories is shown in Fig-
ure 1.1 This thesis focuses on the second category of formation control systems, which,
along with the third category are referred to as relative formation control systems.

Focus on relative formation control started with agents governed by single-integrator
dynamics. One of the main reasons for this choice was that the formation control prob-
lem for multi-agent systems with single-integrator agents closely resembles consensus
problems. Through extension of consensus algorithms, formations with translational
degrees of freedom were hence among the first displacement-based formation control
schemes proposed [21], [22].

From the consensus-derived translational formation control schemes, a desire arose
to find a control scheme that allows for formations with freedom of rotation and scaling.
As a result, the ordinary graph Laplacian that is used for consensus schemes was gener-
alized to the complex [23], [24] and signed [24], [25] Laplacians. The type of formations

4



(a) Position-based (b) Displacement-based (c) Distance-based

Figure 1.1: An illustration comparing the reference frames for position-, displacement- and
distance-based formation control systems.

proposed using these generalized Laplacians were dubbed the similar formation and the
affine formation, respectively. The price for the extra degrees of freedom comes in the
form of stricter conditions on the sensing graph G: whereas for the translational forma-
tion control scheme, G having a spanning tree is sufficient (and necessary) to guarantee
stability [22], stability of similar formation control systems requires 2-rootedness of the
underlying graph [23], and affine formation control systems require universal rigidity
[25].

Rigidity conditions and rotational degrees of freedom were generally seen in the
domain of distance-based formation control. Hence, the similar and affine formation
control schemes, which were proposed after the publication of [20], do not directly
conform to either of the three categories as proposed in [20].

Since the introduction of the similar and affine formations, many different extensions
and applications have been published. Some focus on time-varying sensing graphs [26],
[27], others on different agent dynamics [10] or heterogeneous agents [28]. Of particular
note are the extensions to rigid formations, proposed in the original publications [23],
[25].

An overview of some relevant publications on relative formation control is given in
Table 1.2.

1.3.2 Distributed Kalman Filtering

The history of filtering in control systems is extensive and will not be considered in much
detail. The classic, widely known (and optimal) filter for linear Gauss-Markov models
is the Kalman filter [33]. Following the popularity of decentralization and distributed
systems, distributed adaptations of the Kalman filter were widespread.

Distributed localization in static systems is omnipresent in literature [34], [35], which
is useful for applications such as sensor networks. However, localization in dynamic sys-
tems is altogether a different problem. For networks of mobile agents, [36] is of partic-
ular note for the extensive optimality analysis. For systems with relative observations
with some anchors, [37] proposes a Kalman filter including an algorithm to compute
the optimal Kalman gain subject to any sparsity pattern, i.e., for any arbitrary com-
munication constraint. Lastly, in [38] additionally relative measurements with a set of
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Reference
Formation
Type

Global
reference
frame

Aligned
orientation

Remarks

Lin et al. [29] Translational 7 3 Consensus-based

Oh et al. [30] Translational 7 7
Orientation alignment
through consensus

Lin et al. [23] Similar 7 3
Incl. extension to
rigid formations

Lin et al. [25] Affine 7 3
Incl. extension to
rigid formations

Han et al. [27] Rigid 7 3
Rigidity through
leader-follower split

Xu et al. [28] Affine 7 3 Heterogeneous agents

Dimarogonas
et al. [31]

Rigid 7 7
Gradient-based,
for tree graphs

Park et al. [32] Rigid 7 7
Gradient-based,
for complete graphs

Table 1.2: Overview of some relevant state of the art for relative formation control systems.

anchors are considered for a dynamical system. However, no control inputs are consid-
ered and hence the problem is purely that of distributed estimation. Despite including
relative observations, [37] and [38], like [36], let agents track their absolute position
with respect to some global reference frame (or anchor set). An anchorless alternative
is hence still lacking.

1.4 Goals and Outline

The main goals of this thesis are to set up a data model for relative formation control
systems with agents governed by single-integrator dynamics, and to design a distributed
Kalman filter for these systems. Additionally, robustness of the filter under communi-
cation constraints is analyzed.

This thesis is structured as follows:

• In Chapter 2, some preliminary results on relative formation control are intro-
duced, including notation standards.

• Chapter 3 introduces the affine formation control scheme as proposed in [25]. The
extension to rigid formations and some benchmark simulations are also considered.

• In Chapter 4 a data model for a formation control system is motivated and intro-
duced, followed by a Kalman filter designed from a local, single-edge perspective

6



on the filtering problem.

• In contrast with the local perspective, Chapter 5 introduces a global perspective
on the filtering problem. First, a centralized filter for the global state-space model
is considered. Then a distributed adaptation of this filter is proposed.

• Chapter 6 explores the robustness of the proposed filters under randomly fail-
ing communication links, or under a completely communication-less setting. A
solution based on a Wiener predictor is introduced.

• The thesis is concluded by Chapter 7. Directions for future work are discussed,
and a brief summary of contributions is included.
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Preliminaries 2
This chapter provides a brief overview of the notation used throughout this report.
Additionally, some preliminary theory is provided on graph theory, frameworks and
their rigidity. For more extensive coverage of these subjects, the reader is referred to
the various references in this chapter.

2.1 Notation

The notation standards for some of the commonly used symbols and operators through-
out this thesis are described in Table 2.1.

2.2 Graph Theory

A graph is defined as a combination of a set of nodes and a set of edges between these
nodes: G = (V , E). The node set V = {1, 2, . . . , N} indexes the N nodes. The edge set
E ⊆ V × V , where equality implies a complete graph. The graphs considered in this

a Local scalar
A Global constant scalar
a Column vector
A Matrix
Aij Element on the ith row and jth column of matrix A
A Set or graph

1N Vector of all ones of length N
0N Vector of all zeros of length N
IN N ×N identity matrix
RN Set of N -dimensional real column vectors

RN×M Set of real matrices with N rows and M columns
SN+ Set of real symmetric positive semi-definite N ×N matrices

N (0, 1) Normal distribution with mean 0 and variance 1
⊗ Kronecker product operator
◦ Hadamard product operator

‖ · ‖ Euclidean norm operator
(·)> Transpose operator
E(·) Expectation operator
tr(·) Trace operator

bdiag(Ai)i∈S Block diagonal matrix with blocks Ai for all i in the set S

Table 2.1: Notation standards used throughout the thesis.
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thesis are considered to be undirected, meaning all edges are bidirectional: if and only if
(i, j) ∈ E , then (j, i) ∈ E . The neighbor set of a node i is defined Ni = {j : (j, i) ∈ E}.
The total number of undirected edges in the graph is denoted M . In addition, the
degree of a node i is defined as the cardinality of the neighborhood of i, i.e., Mi = |Ni|.

Next, a generalization of the graph Laplacian is defined.

Definition 2.1. The generalized Laplacian L of an undirected graph G is an N-by-N
matrix whose elements satisfy the following properties:

Lij =


−lij if i 6= j and j ∈ Ni
0 if i 6= j and j /∈ Ni∑
j∈Ni

lij if i = j

Note that the weights lij can be either positive or negative, in contrast with usual
definitions of the Laplacian. In the remainder of this thesis, the adjective generalized is
often omitted when talking about the generalized Laplacian. It is also worth mentioning
that in some references (e.g., [39], [40]) the generalized Laplacian is referred to as the
stress matrix.

Note that the Laplacian is a stochastic matrix, i.e., L1N = 0N . If the graph G is
undirected the Laplacian is also symmetric: Lij = Lji. It is important to realize that
the generalized Laplacian is not uniquely determined for a graph G. As such, the set
of all generalized Laplacians for an undirected graph G will be denoted L(G).

2.3 Configurations and Frameworks

In order to specify desired formations, we introduce the concepts of configurations of a
graph. For a graph G, a configuration p = [p>1 ,p

>
2 , . . . ,p

>
N ]> ∈ RDN is a concatenated

vector of vectors pi ∈ RD relating node i of the graph to a location in D-dimensional
Euclidean space. While the configuration vector p contains DN elements and thus is
∈ RDN , it is often said that a configuration is in RD to indicate that the configuration
is in D-dimensional Euclidean space.

Similar to [25], in this paper it will be assumed that all configurations are generic.
A configuration is generic if the coordinates of its configuration do not satisfy any
non-trivial algebraic equation with rational coefficients [40].

The combination of a graph G and a configuration p is called a framework (G,p).

2.4 Rigidity

The rigidity of frameworks is important to consider for formation control. Some defi-
nitions related to rigidity will be presented.

First, the concepts of equivalence and congruence will be defined.

Definition 2.2. [25] Two frameworks in RD with equal underlying graph G defined as
(G,p) and (G,q) are equivalent if

‖pi − pj‖ = ‖qi − qj‖ ∀ (i, j) ∈ E (2.1)
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(a) (c)(b) (d)

Figure 2.1: Four frameworks in R2 with increasing rigidity, from left to right.

In other words, equivalence means all edge lengths are equal.

Definition 2.3. [25] Two frameworks in RD with equal underlying graph G defined as
(G,p) and (G,q) are congruent if

‖pi − pj‖ = ‖qi − qj‖ ∀ i, j ∈ V (2.2)

That is, all inter-node lengths are equal. Two congruent frameworks are the same
up to a rigid transformation (translation and rotation) in RD. Note that congruence
implies equivalence by definition. Since congruence does not depend on the graph, it
can be said to be a property of the configurations p and q.

The definitions of equivalence and congruence will be used in turn for the rigidity
definitions.

Definition 2.4. [41] A framework (G,p) in RD is locally rigid if an ε > 0 exists such
that for any configuration q in RD with |p − q| < ε, congruence between (G,p) and
(G,q) must mean that p = q.

In Figure 2.1 only framework (a) is not locally rigid. Instead, it is said to be flexible.

Definition 2.5. [41] A framework (G,p) in RD is globally rigid if for any configuration
q in RD for which (G,q) and (G,p) are equivalent, p and q are also congruent.

Framework (b) in Figure 2.1 is not globally rigid since the bottom node can be
flipped along a horizontal axis such that it is in the same location as the top node. This
flipped framework is equivalent to the shown framework, but they are not congruent
(since the distance between the top and bottom node is not preserved). Frameworks
(c) and (d) are globally rigid.

Definition 2.6. [25] A framework (G,p) in RD is universally rigid if for any configu-
ration q in Rs for which (G,q) and (G,p) are equivalent, p and q are also congruent,
for any s > 0.

Framework (c) is not universally rigid since if the formation is considered to live in 3-
dimensional space, a framework can be found which is equivalent but not congruent. For
example, the center node may be lifted out of the plane with all nodes still maintaining
the same edge distances.

There are numerous useful corollaries which follow from these definitions. Note for
example that any formation where G is a complete graph is by definition universally
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rigid. As such, framework (d) in Figure 2.1 is universally rigid. This can be used as
a starting point for defining a class of graphs which are generically universally rigid
(i.e., graphs whose frameworks are universally rigid for generic configurations) in RD,
called trilateration graphs [42]. A D-trilateration graph is a graph which is constructed
in the following way: The first D + 1 nodes form a complete graph (i.e. a D-simplex).
Every subsequent node is adjacent to at least D + 1 other nodes. The class of trilater-
ation graphs can be used to determine whether a framework is universally rigid or to
construct frameworks that have this property.

2.5 Affine and Rigid Formations

Next, the concepts of affine and rigid formations are introduced. Before introducing
affine formation control in the next chapter, we define the affine image. A subset of the
affine image is the rigid image, which we will use when extending the affine formation
control toward rigid formations.

Definition 2.7. [25] The affine image of p is defined as

A(p) =
{

(IN ⊗A)p + 1N ⊗ a : A ∈ RD×D, a ∈ RD
}

From this definition, note that if we denote A = UΣV via a singular matrix
decomposition, we can see the transformation of p as a rotation V, a scaling along
axes Σ, another rotation U and finally a translation a. If A is orthogonal, all its
singular values are 1 and we get Σ = ID and so the transformation is rigid, meaning
distances between the nodes are conserved and the only degrees of freedom are rotation
and translation. This leads to the definition of the rigid image.

Definition 2.8. The rigid image of p is defined as

R(p) =
{

(IN ⊗A)p + 1N ⊗ a : A ∈ RD×D, a ∈ RD,A>A = ID

}
A position vector z is said to be an affine formation of p if it is in the affine image

of p: z ∈ A(p). Similarly, z is a rigid formation of p if z ∈ R(p). This last statement
is equivalent to stating that z and p are congruent.

2.6 Procrustes Error

Given a set of node positions z, it is useful to quantify how close the set of nodes is to
the rigid image R(p). For this purpose, we define the Procrustes error. The Procrustes
method of determining the distance between z and R(p) can be seen as finding the
projection z∗ of z onR(p) and then computing the distance between z and z∗. In detail,
it works as follows: First a centering matrix is applied to the positions of the nodes
to remove any translational degrees of freedom. Following that, the optimal rotation
is found using the singular value decomposition solution to the orthogonal Procrustes
problem [43]. The scalar Procrustes error is then defined as the Frobenius norm of the
remaining difference between the configuration and optimally translated and rotated
positions, normalized by the number of nodes.
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Definition 2.9. The Procrustes error e is defined as

e = min
t,Ω

1

N
‖ZΩ + 1Nt> −P‖F

s.t. Ω>Ω = ID

where Z ∈ RN×D and P ∈ RN×D represent the node positions z and configuration
p rearranged in matrix form, respectively. t ∈ RD and Ω ∈ RD×D respectively denote
the translation vector and orthogonal rotation matrix.
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Relative Formation Control 3
In this chapter, we consider a relative formation control problem in D-dimensional
Euclidean space. The methods of [25] are used to present a local control law which
allows a multi-agent system to converge to a rigid formation.

First, in Section 3.1 the problem context is introduced, including the dynamics of
the set of homogeneous agents and the structure of the local control law. After the
affine formation control problem is formulated in Section 3.2, necessary and sufficient
conditions for the realizability and stability of the closed-loop system are given in
Section 3.3. The control law weight design is discussed in Section 3.4, followed by
the extension from affine to rigid formations in Section 3.5. To conclude the chapter,
simulations in Section 3.6 show convergence of a set of randomly initialized agents to
a rigid formation.

3.1 Agent Dynamics and Control Law

Before the problem can be formulated, first the dynamics of the agents and the structure
of the control law will be set up. As discussed in Chapter 2, the desired configuration
p denotes the desired formation of agents up to a rigid transformation. The locations
of the agents are denoted by the vector z = [z>1 , z

>
2 , . . . , z

>
N ]> ∈ RDN , with zi ∈ RD a

vector denoting the location of agent i in D-dimensional Euclidean space. The locations
of the agents over time are determined by single-integrator dynamics:

żi = ui i = 1, . . . , N (3.1)

with ui ∈ RD the control variable for agent i. The graph G denotes the sensing graph of
the agents, meaning agent i can measure the relative positions of its neighbors j ∈ Ni.
As such, agent i has access to zi− zj j ∈ Ni. The control law should be a function of
these measurements. Hence, the control law has the following structure.

ui = −
∑
j∈Ni

lij(zi − zj) (3.2)

which is linear and locally computable for each agent. lij represent weights, which we
will see correspond with the elements of the generalized Laplacian. The multi-agent
system from the perspective of agent i is visualized in Figure 3.1.

The agent dynamics (3.1) and the control law (3.2) of all agents together can be
aggregated in vectors to arrive at the closed-loop system in matrix form, written in
terms of the generalized Laplacian:

ż = −(L⊗ ID)z (3.3)
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Figure 3.1: Multi-agent system from the perspective of agent i.

3.2 Problem Formulation

With the definition of affine formations given in Section 2.5 and the agent dynamics
and control law as defined in Section 3.1, a formulation is given for the affine formation
control problem. The rigid formation control problem will be discussed as an extension
of the affine case in Section 3.5.

Given a group of agents in a framework described by the graph G and the config-
uration p, with dynamics described by (3.1). A distributed linear control law of the
form of (3.2) should be applied for which

(i) A(p) equals the equilibrium set of the closed-loop system;

(ii) for any initial position vector z the closed-loop system converges to an equilibrium
in A(p).

The two conditions are referred to as the realizability condition and the stabilizability
condition, respectively. The variables open to design are the weight variables lij of
the generalized Laplacian. In the following subsection, such a Laplacian will be shown
to always exist such that both the realizability and the stabilizability conditions are
satisfied, under certain conditions on the sensing graph. This will be done via the
methods shown in [25].

3.3 Conditions for Realizability and Stabilizability

First, the realizability condition is considered. From observing the closed-loop system
(3.3) it is obvious that the equilibrium set of the system is the set of points z satisfying
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(L ⊗ ID)z = 0DN . As such, the equilibrium set of the closed-loop system is the null
space of (L ⊗ ID). The realizability condition is satisfied if the equilibrium set equals
the affine image of the configuration: (L⊗ ID)z = 0DN if and only if z ∈ A(p). We will
see that a Laplacian satisfying this condition always exists if the underlying framework
is globally rigid, formalized by the following theorem. The theorem is followed by an
outline of the proof.

Theorem 3.1. Given an undirected graph G with N ≥ D+2 and a generic configuration
p in RD. An affine formation of p is realizable over G if and only if (G,p) is globally
rigid.

Proof. For the proof, let us start with a result presented in [40] and [41] which states
that for an undirected graph G with N ≥ D + 2 and a generic configuration p in RD,
a matrix L ∈ L(G) satisfying (L⊗ ID)p = 0DN exists whose rank is N −D − 1 if and
only if the framework (G,p) is globally rigid.

The condition (L⊗ ID)p = 0DN which is satisfied by such a Laplacian implies that
p is an equilibrium of (3.3). If p is an equilibrium of (3.3), then all points in A(p) are
also equilibria:

(L⊗ ID)[(IN ⊗A)p + 1N ⊗ a] = (L⊗A)p

= (IN ⊗A)(L⊗ ID)p

= 0DN

for any A ∈ RD×D and a ∈ RD. As a result, we know that the affine image of p is a
subset of the equilibrium set on the condition that the framework is globally rigid.

To complete the proof, the last step is to prove under which conditions the affine
image of p equals the equilibrium set, i.e., we need to prove all equilibria are in the
affine image of p. We use the fact that if the coordinate vectors of p span RD, thenA(p)
is a linear subspace of dimension D2 +D as proven in [25]. From the result above on the
existence of L, we know that for a generic configuration p, the null space of L⊗ ID has
dimension (D + 1)D. Given that this null space has the same dimension as the linear
subspace A(p) combined with the fact that A(p) is a subset of the equilibrium set, we
can conclude that the equilibrium set and A(p) are equal, as long as G is globally rigid.
This concludes the proof.

The next condition to satisfy is the stabilizability condition. We will see that for
this, a graphical condition even stronger than global rigidity is necessary and sufficient.
The following theorem states that stabilizability of the continuous-time closed-loop
system is guaranteed if and only if the framework (G,p) is universally rigid.

Theorem 3.2. Given an undirected graph G with N ≥ D + 2 and generic configura-
tion p in RD. An affine formation of p is stabilizable over G if and only if (G,p) is
universally rigid.

Proof. We will extend on the relation between the existence of a Laplacian and rigidity
of the graph via a result in [39]. For an undirected graph G with N ≥ D + 2 and
generic configuration p in RD, a positive semi-definite Laplacian L ∈ L(G) exists with
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rank N − D − 1 if and only if the framework (G,p) is universally rigid. Notice the
addition of positive semi-definiteness of the Laplacian when the global rigidity condition
is tightened to universal rigidity. Positive semi-definiteness of L guarantees that its
eigenvalues are all positive apart from the D + 1 zero eigenvalues. The Kronecker
product with the identity matrix ID only increases the multiplicity of the eigenvalues.
As a result, the closed-loop system (3.3) has all eigenvalues in the left half-plane, and
is thus asymptotically stable for continuous-time systems.

3.4 Laplacian Weight Design

Given that a framework is universally rigid, we now know that a Laplacian exists
for which the resulting system is stable and converging to an affine formation of the
configuration. In this section, the design method proposed in [25] is explained which
actually computes this Laplacian.

First, we introduce the vectors q1, . . . ,qD ∈ RN with qi representing the ith el-
ement of the configuration vector pi. For a generic configuration p, the vectors
q1, . . . ,qD,1N are all linearly independent. As such, we introduce an orthogonal matrix
Q ∈ R(N−D−1)×N whose orthonormal rows are orthogonal to q1, . . . ,qD,1N .

Second, we will write the Laplacian as a function of the weights to be designed.
With w ∈ RM a vector containing the edge weights, the Laplacian can be written as
follows:

L = Bdiag(w)B> (3.4)

where B ∈ {−1, 0, 1}N×M represents the standard incidence matrix of the underlying
sensing graph. We now have three constraints for the Laplacian:

(i) The Laplacian should correspond to the underlying graph: L ∈ L(G) which is
satisfied if L = Bdiag(w)B>.

(ii) The smallest eigenvalue not corresponding to one of the D + 1 zero eigenvalues
should be positive: λmin(QLQ>) > 0.

(iii) The configuration vectors q1, . . . ,qD should be in the null space of the Laplacian:
Lqi = 0N for all i = 1, . . . , D.

An optimization problem incorporating these constraints can be set up as follows:

max
w

λ

s.t. L = Bdiag(w)B>

0 < λ < λ̄

QLQ> � λIN−D−1

Lqi = 0N i = 1, . . . , D

(3.5)

which is a semi-definite program and thus convex. λ̄ can be any positive constant and
is added to make sure the solution to the problem is bounded. As per Theorem 3.2, we
know that if the framework is universally rigid, then a solution is guaranteed to exist.
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3.5 Extension to Rigid Formations

In many applications, a rigid formation (which allows only rotations and translations
with respect to the configuration) is more favorable than an affine formation. Fortu-
nately, the affine formation control law described above can be extended to force the
system to converge to a rigid formation (i.e., congruent to the configuration). The
concept is simple: if we force a subset M ⊆ V of D + 1 agents to keep to a rigid
formation, the complete formation will also be rigid, even when all other agents V \M
follow control law (3.2). This is formalized by the following theorem.

Theorem 3.3. [25] Given a generic configuration p in RD. A configuration z ∈ A(p)
is congruent to p if and only if there exists a set M of at least D + 1 agents such that
the dimension of the convex hull of {zi : i ∈M} is D and

‖zi − zj‖ = ‖pi − pj‖ ∀ i, j ∈M (3.6)

Proof. Note that for an affine image zi = Api + a for all i, (3.6) implies that A must
be unitary:

A>A = ID (3.7)

As such, for any pair (i, j) of agents

‖zi − zj‖ = (pi − pj)
>A>A(pi − pj) = ‖pi − pj‖ (3.8)

and thus z is congruent to p, i.e., z ∈ R(p).

Note that this property, which is often referred to as a leader-follower split, has
been exploited in a number of papers (e.g., [27], [44]).

Also worth noting is that for trilateration graphs, the D + 1 initial agents forming
a simplex in D-dimensional space can be appointed the leaders. Since these agents
form a complete subgraph, the distance-based control law proposed in [32] can be used,
which guarantees a KD+1 (i.e., the complete graph of D + 1 nodes) formation in RD

converges to a rigid formation.
Note finally that while the leader-follower split takes away from the homogeneity of

agents, it scales particularly well for an increasing amount of agents, since the number
of leader agents is constant at D + 1 (which in real life means 4 agents at most for
three-dimensional formations).

3.6 Simulations

Simulations were set up to illustrate the formation control proposed in [25]. The sim-
ulations consider agents governed by single-integrator dynamics (3.1) and local linear
control laws (3.2). A subset of D + 1 leader agents forming a complete subgraph are
given a different control law to make sure the formation converges to a rigid formation
rather than an affine formation as discussed in Section 3.5.

Agents have access to relative position measurements with respect to their neighbors,
as characterized by the framework. This framework is defined as a hexagonal formation
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Figure 3.2: Hexagonal framework in R2.

in R2 consisting of N = 10 agents, as shown in Figure 3.2. The framework is universally
rigid as its graph is a 2-trilateration graph.

Pseudocode for the affine formation control simulation is shown in Algorithm 1.
Initial positions of agents were randomly drawn from a normal distribution N (µ,P)
with µ = 0D and P = ID. For every iteration k, the control law (3.2) is applied1. Note
also that the simulation is performed in discrete-time. We have seen that conditions for
realizability and stability are for continuous-time dynamical systems. When introduc-
ing measurements and digital simulations, the step to discrete-time is inevitable. To
preserve the stability of the simulated system, the time steps ∆t of the simulation need
to be chosen sufficiently small. For the single-integrator dynamics the discrete-time
equivalent to ż = u is zk+1 = zk + ∆tuk. For Algorithm 1 and all subsequent simu-
lations we use ∆t = 0.001. Algorithm 1 was run 50 times, and the results are shown

Algorithm 1 Relative formation control

1: Constants: N,D,∆t,µ,P

2: Known local constants: lij for i = 1, . . . , N , j ∈ Ni
3: Draw initial positions zi1 from N (µ,P)

4: k = 1

5: while k ≤ kmax do

6: for i ∈ V do

7: uik = −
∑
j∈Ni

lij(z
i
k − zjk) . Control law

8: zik+1 = zik + ∆tuik . Dynamics update

9: end for

10: k = k + 1

11: end while

in Figure 3.3. In Figure 3.3 the mean Procrustes error for varying initial positions is

1Although not specified in Algorithm 1, a set of D + 1 leader nodes use a different local control law to
guarantee the rigidity of the system.
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Figure 3.3: Convergence towards rigid formation over time for Algorithm 1.

plotted over a period of 30 seconds (kmax = 30000). The ±1 standard deviation regions
are also shown. Figure 3.4 additionally shows the paths of individual agents and the
final formation in R2, for a single run of the simulation. We notice that the Procrustes
error decreases exponentially (note the logarithmic scale), after the initial 2 seconds
where the Procrustes error is still unstable when agents rearrange themselves after their
random initial positions. Clearly visible is that the final positions of the agents conform
with a rigid transformation of the framework.
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Figure 3.4: Paths of agents in R2 over time for Algorithm 1.
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Local Approach to Edge State
Filtering 4
In Chapter 3 the affine and rigid relative formation control problems were explored.
Necessary and sufficient conditions were given for the convergence of a multi-agent sys-
tem governed by single-integrator dynamics. When applying the proposed solution in
real-life systems however, we have to deal with uncertainty. In control theory, uncer-
tainty is a broad term, which is generally considered when a system is not perfectly
known. This can e.g. be due to unknown deterministic system parameters or unmod-
eled dynamics. Alternatively, uncertainty is introduced in a system as randomness, i.e.
statistical noise. This thesis focuses on uncertainty of the latter form.

In Section 4.1 a motivation is provided for modelling statistical uncertainty in for-
mation control systems. Subsequently, in Section 4.2 a data model is proposed which
attempts to model statistical uncertainty in relative formation control systems in two
forms: measurement noise and process noise. Given sequences of noise-corrupted rela-
tive position measurements, we aim to optimally track the movement of the agents over
time. This is a so-called filtering problem. In this chapter, we will approach the filter-
ing problem from a local perspective, i.e., we consider a single arbitrary agent i which
attempts to track its relative position to an arbitrary neighbor j. We start with an op-
timal instantaneous estimator (the MLE) in Section 4.3 and then move on to recursive
Bayesian estimation (the MMSE estimator) in Section 4.4 and finally, a Kalman filter
is proposed in Section 4.5. Contrary to many Kalman filters in literature (e.g., [36],
[37]), the proposed Kalman filter operates on the edges of the sensing graph. Hence,
the filter is referred to as the edge-based Kalman filter. Step by step, we will explore
the performance of the considered methods via simulations, whose setup is explained
in Section 4.2.3.

4.1 Motivation for Statistical Noise Modelling

Statistical uncertainty can be split into two categories. Measurement noise acts on the
observations of an agent, while process noise acts on the dynamics of the agent. The
motivations behind modelling each of these sources of uncertainty for relative formation
control systems are discussed in order.

4.1.1 Motivation for Measurement Noise Modelling

The first form of modelled uncertainty is measurement noise. Perfect sensors don’t
exist, and as such most measurements are modelled as the sum of the true quantity to
be measured and some noise drawn from a probability distribution function modelled
after the sensor. If agents are homogeneous and carry the same sensors, the mea-
surement noise can often be modelled via the same probability distribution function.
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Additionally, for many types of sensors measurement noise is uncorrelated over time,
i.e., the noise realizations on two measurements taken in succession are statistically
independent.

On the other hand, noise on Cartesian relative position coordinates is more often
correlated between the x−, y− (and z−) coordinates. Consider for example a system
where relative position measurements are done based on bearing and range measure-
ments. The transformation from polar or spherical coordinates to Cartesian coordinates
introduces correlation between the dimensions, even when the original range and bear-
ing measurements were independent. We will see this via the following example.

Let us consider a simple 2D scenario showing that relative position estimations in
Cartesian coordinates are correlated when combining range and bearing measurements.
We assume the measurements of a range and bearing sensor to be normally distributed
around the true value and independent with respect to each other:[

R
θ

]
∼ N

([
µR
µθ

]
,

[
σ2
R 0
0 σ2

θ

])
(4.1)

We then transform to Cartesian coordinates:[
X
Y

]
=

[
Rcos(θ)
Rsin(θ)

]
(4.2)

The Cartesian random variables X and Y are not independent, nor are they jointly
Gaussian. The expected values of the Cartesian variables are

E
([

X
Y

])
= E

([
Rcos(θ)
Rsin(θ)

])
=

 µRcos(µθ)e
−σ

2
θ
2

µRsin(µθ)e
−σ

2
θ
2

 (4.3)

and the covariance matrix is given by

Cov

([
X
Y

])
=

[
Var(X) Cov(X, Y )

Cov(X, Y ) Var(Y )

]
(4.4)

with

Var(X) = (µ2
R + σ2

R)(
1

2
+

1

2
e−2σ2

θcos(2µθ))− µ2
Rcos2(µθ)e

−σ2
θ

Cov(X, Y ) = (µ2
R + σ2

R)
1

2
sin(2µθ)e

−2σ2
θ − µ2

R

1

2
sin(2µθ)e

−σ2
θ

Var(Y ) = (µ2
R + σ2

R)(
1

2
− 1

2
e−2σ2

θcos(2µθ))− µ2
Rsin2(µθ)e

−σ2
θ

which for this very simple case already grows rather complex. The main takeaway
however is that the covariance matrix is no longer diagonal. In three-dimensional space,
where two bearing measurements are needed, this covariance matrix grows even more
complex. If solid assumptions can be made on the noise distribution of the range and
bearing measurements, then the covariance matrix transformed to relative positions in
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Euclidean space can be exploited when aiming to optimally estimate relative positions,
as we will see in this chapter.

It is worth noting that in real life, relative positions are never measured directly.
In many cases, range and bearing measurements are fused to find the relative position
(e.g., [45], [46]). Range sensors are plentiful and exist for a variety of different applica-
tions. Laser-, radar- sound- or received signal strength-based sensors can all measure
inter-agent distances with varying degree of accuracy, depending on the application.
Bearing-only sensors include omnidirectional cameras. Some sensors can measure both
bearing and range, such as laser rangefinders, stereo vision, radar, lidar and sonar [47],
[48]. Note that for these sensors still, the range and bearing should be seen as separate,
independent measurements, rather than a direct relative position measurement.

4.1.2 Motivation for Process Noise Modelling

The second form of random uncertainty appears in real-life systems in the form of
random perturbations originating in the environment. These perturbations enter a
system via the dynamics of agents, e.g., in UAV systems wind affects the movement of
agents [14]. The disturbance can be modelled via some process noise source modelled
after the type of disturbance it represents.

Many environmental disturbances are spatially and temporally correlated. A single
gust of wind, for example can affect a group of UAVs over a period of time. Research on
spatial and temporal correlation research in wind models is extensive and mostly data-
based, see e.g. [49]. As for an example in a different application domain, the dynamics
of a group of satellites may be disturbed by a period of increased solar radiation pressure
[50], while AUVs experience disturbances in the form of oceanic currents.

It is a small step to see that disturbances acting on agents are consequently also of-
ten correlated. If one agent is disturbed by a gust of wind, its neighbor is likely to suffer
a similar disturbance. Figure 4.1 visualizes this inter-agent disturbance correlation as
a result of a spatially correlated environmental disturbance source. The disturbances
acting on agents that are spatially close to each other are generally more highly cor-
related than disturbances between agents with a large distance between them. The
assumption that environmental disturbances are often correlated between agents is key
to the results of this thesis. Knowledge about the inter-agent disturbance correlation
will be exploited by agents in counteracting the detrimental effect of these disturbances
and keeping the multi-agent system in formation.

4.2 Data model

We consider two types of statistical noise sources affecting the formation control system.
The first type is that of measurement noise. Since we consider the formation control
problem in the context of relative navigation, i.e., agents measure only relative positions
with respect to neighbors, the measurement noise can be modelled on the edges of the
bidirectional sensing graph. The second type of modelled uncertainty is process noise,
which models random disturbances on the dynamics of agents. Since the agents are
represented by nodes in the sensing graph, this type of uncertainty is modelled on
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Figure 4.1: A multi-agent system in a spatial random field representing spatially correlated
environmental disturbances.

the nodes of the sensing graph. In this section, an exact model for both types of
uncertainties is presented.

4.2.1 Measurement Model

As a first step, uncertainty in the form of measurement noise is modelled. A multi-
agent system is considered with agents performing relative position measurements with
respect to its neighbors. The relative position between agents i and j can, in a more
general sense, be considered to be the ’state’ of edge (i, j), and it will be referred to
as such. Additive noise is introduced on the edge states, denoted as vij ∈ RD. The
measurements yij available to agent i are modelled as follows:

yij = zi − zj + vij i = 1, . . . , N j ∈ Ni (4.5)

= zij + vij i = 1, . . . , N j ∈ Ni (4.6)

where the edge state vector zij = zi − zj is defined for more compact notation. The
probability distribution function of the noise source is characterized by both agents i
and j. For some special cases, the noise source may be argued to be characterized only
by the sensor on agent i, e.g., when the sensor is a camera or laser rangefinder. For
homogeneous agents, one may even argue that the noise probability distribution is the
same for all agent combinations. In the most general case however, the measurement is
a function of both agents, e.g., in two-way ranging methods. As such, this more general
case is chosen for the model. A block diagram showing where measurement noise enters
the system is shown in Figure 4.2.

Measurements are assumed to be independent with respect to other measurements,
both in time (i.e. measurements taken at different time instances are independent) and
between different agents (i.e. measurements between agents i and j are independent of
measurements between agents k and l, for any i,j,k and l).

We will assume the noise vij is Gaussian with zero mean and known covariance
matrix Rij ∈ SD+ , which characterizes correlation between the D Euclidean dimensions.
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Figure 4.2: Measurement noise model.

vij ∼N (0D,Rij) i = 1, . . . , N j ∈ Ni (4.7)

To further generalize the model, we may assume that the agents have access to
multiple measurements per control update. We consider that agent i can perform T
measurements over a time period indexed by k, in which zijk is assumed to remain con-

stant. Consider yijk ∈ RDT as the measured relative positions between agent i and agent
j, aggregated over T measurements. We will write the model for the measurements in
the form of a Linear Gaussian model:

yijk = Hzijk + vijk (4.8)

With H = 1T⊗ID ∈ RDT×D. vijk ∈ RDT is a stacked vector of T realizations of noise
modelled as in (4.7), i.e. zero-mean Gaussian and correlated with regard to dimension,

but uncorrelated with regard to time: R̃ij = IT ⊗Rij.

4.2.2 Process Model

In addition to measurement errors, another source of uncertainty are unknown pertur-
bations on the dynamics of the agents. This uncertainty is modelled as process noise
wi acting on the dynamics update of agent i (see Figure 4.3):

zik+1 = zik + ∆tuik + wi
k i = 1, . . . , N (4.9)

Random disturbances are often correlated among agents because they originate in
the environment in which the agents operate, as discussed in Section 4.1. Therefore the
process noise will be modelled as a random vector wk = {wi

k}Ni=1 ∈ RDN which stacks
the process noises of all agents. Like the measurement noise model, the process noise is
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Figure 4.3: Disturbance uncertainty model.

assumed to have zero first-order moment and its second order moment is characterized
via the covariance matrix Q ∈ SDN+ . If we assume the process noise to be Gaussian, we
can write:

w ∼N (0DN ,Q) (4.10)

In multi-agent systems consisting of homogeneous agents, we might assume that
the process noise wi enters the dynamics of the agents in the same way for all agents.
Then the process noise for a single agent is identically distributed with zero mean
and covariance QD ∈ SD+ . The covariance matrix Q then has some structure via the
Kronecker product:

Q = QA ⊗QD (4.11)

where QA ∈ SN+ represents correlation of environmental disturbances between agents
and QD represents correlation of these disturbances between dimensions.

As discussed in Section 4.1, environmental disturbances are often best modelled via
a spatial (or spatiotemporal) covariance function. An often-used example of such a
covariance function is the squared exponential function (see e.g. [51]):

[QA]ij = f(‖zi − zj‖) (4.12)

= σ2 exp−‖zi − zj‖
θ2

(4.13)

where [QA]ij is the disturbance covariance between agent i at position zi and agent j
at position zj. σ and θ are scaling parameters. With mobile agents whose position is
changing over time, we thus see that the covariance structure also changes over time.
Hence, we can add the subscript k to the covariance matrix (Qk) to indicate that it is
time-varying. When the subscript is omitted, the covariance matrix is assumed to be
constant in time. Note that with a time-varying covariance matrix, we can no longer
assume that agents know the covariance matrix, and hence agents will need to estimate
(part of) this covariance matrix, using knowledge of the covariance function instead.
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4.2.3 Data Model for Simulations

Throughout this chapter and Chapters 5 and 6, formation control simulations are run
to verify the performance of proposed estimators and filters. The general setup for
these simulations is equivalent to the simulations in Section 3.6. The same hexagonal
framework and control law are used, but for the simulations in this chapter and the
following chapters, we introduce statistical noise. Hence, in this section the noise
statistics used for the simulations are defined.

The measurement noise on the relative positions are modelled to be additive and
Gaussian as described in Section 4.2.1. We assume all agents are homogeneous and
therefore all measurements represented by edges of the sensing graph have the same
covariance matrix. For the framework in R2, we use the following covariance matrix:

Rij = σ2
v

(
1 0.3

0.3 1

)
i = 1, . . . , N j ∈ Ni

with varying values for the noise level σv. The measurement noise is considered to be
independent with respect to time and between agents.

The process noise is considered to be structured via a Kronecker product. No
correlation between dimensions is assumed: QD = σ2

wID. The process noise is correlated
between agents, via the covariance matrix QA. Correlation is assumed to be related to
the distance between agents, i.e. if agents are close by, the disturbance affecting them
is highly correlated, whereas this correlation decreases if the distance between agents
becomes larger. Hence, the covariance matrix QA is defined by a standard squared
exponential covariance function:

[QA]ij = exp
(
− 1

2
‖pi − pj‖

)
(4.14)

where pi is the normalized configuration vector of agent i known in advance by the
agents. Since (4.14) satisfies Mercer’s condition [52] the matrix QA is guaranteed to be
positive semi-definite and thus a valid covariance matrix. Note that a constant, known
disturbance covariance matrix is chosen for the simulations. Ideally one would want to
use real positions zi to model the disturbance rather than the configuration positions
pi, but these positions are not constant and more importantly not known by the agents.
See Chapter 7 for further discussion on this subject.

The full ND × ND process noise covariance is Q = QA ⊗ QD. Process noise is
further assumed to be uncorrelated in time, i.e. realizations wk are assumed to be i.i.d.
for all k.

The pseudocode for the affine formation control simulation with noise is thus as
shown in Algorithm 2. In contrast with Algorithm 1, notice that now noise is added
both on the dynamics via wk and on the edge observations via vijk . The noise covariances
Q and Rij are as defined above. Lastly, the data model from the perspective of a single
node i is also visualized in Figure 4.4. The main goal for the remainder of the thesis is
to design a local filter which optimally tracks local edge states, visualized by the filter
block in the block diagram.
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Algorithm 2 Relative formation control with modelled noise

1: Unknown global constants: N,∆t,µ,P,Q,Rij for i = 1, . . . , N , j ∈ Ni
2: Known global constants: D

3: Known local constants: lij for i = 1, . . . , N , j ∈ Ni
4: Draw initial positions zi1 from N (µ,P)

5: k = 1

6: while k ≤ kmax do

7: Draw process noise wk from N (0DN ,Q)

8: for i ∈ V do

9: for j ∈ Ni do

10: Draw observation noise vijk from N (0D,R
ij)

11: yijk = zik − zjk + vijk . Measurements

12: end for

13: uik = −
∑
j∈Ni

lijy
ij
k . Control law

14: zik+1 = zik + ∆tuik + wi
k . Dynamics update

15: end for

16: k = k + 1

17: end while

Figure 4.4: Data model for the local closed-loop system for an arbitrary agent i.
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4.3 Maximum likelihood estimator

Given that uncertainty is introduced on the edges (via noisy measurements) and the
nodes (via random disturbances) of a multi-agent system, we aim to optimally estimate
the edge states such that the influence of the uncertainty in the closed-loop system is
minimized. In this section, we will introduce a maximum likelihood estimator (MLE)
for each edge. This estimator does not take into account evolution of the system over
time, hence it can be called instantaneous. This estimator will mainly be used as a
benchmark for future estimators and filters.

The parameter to be estimated is the relative position zij = zi − zj ∈ RD of an
agent i relative to a neighbor j. We wish to estimate this parameter using only the T
measurements yij as in (4.8). The maximum likelihood estimator is defined as

ẑijk = arg min
zijk

p(zijk ; yijk ) (4.15)

Using the noise model (4.8), which is linear with Gaussian noise, the maximum likeli-
hood estimator takes a standard form:

ẑij = (H>R̃−1
ij H)−1H>R̃−1

ij yij

=
1

T
H>yijk

(4.16)

where H = 1T ⊗ ID is the observation matrix as introduced in Section 4.2 and R̃ij =
IT ⊗Rij is the known measurement covariance matrix. For the linear Gaussian model,
the MLE is efficient, i.e. it equals the Minimum Variance Unbiased Estimator (MVUE).

The posterior covariance of the MLE estimate is given by the inverse of the Fisher
information matrix:

Σpost,MLE
ij = (H>R̃−1

ij H)−1

=
1

T
Rij

(4.17)

The posterior covariance indicates the variance of the obtained estimate. Algorithm
2 can now be adapted by applying the MLE at every iteration. The affine formation
control simulation with MLE is described by Algorithm 3. Note that in this algorithm,
T independent measurements are aggregated for each edge. The MLE (4.16) is then
applied to optimally estimate each edge state. Then, the control law uses the estimated
edge state as inputs rather than the direct measurements as in Algorithm 2. Note that
for T = 1, the MLE reduces to the estimator-less case, and Algorithms 2 and 3 are
equivalent.

The simulation specified by Algorithm 3 is run for varying measurement rates T .
Note that with a time interval of ∆t = 0.001 seconds, agents measure at a rate of T
kHz. Convergence results for the hexagonal formation for various T are shown in Figure
4.5, where only observation noise is applied (σv = 0.1, σw = 0). The MLE results are
compared against the simulation without estimator, as described in Algorithm 2. As
expected, the simulations with uncertainty converge to a rigid formation up to some
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Algorithm 3 Relative formation control using MLE

1: Unknown global constants: N,∆t,µ,P,Q

2: Known global constants: D,T,H

3: Known local constants: lij ,Rij for i = 1, . . . , N , j ∈ Ni
4: R̃ij = IT ⊗Rij for i = 1, . . . , N , j ∈ Ni
5: Draw initial positions zi1 from N (µ,P)

6: k = 1

7: while k ≤ kmax do

8: Draw process noise wk from N (0DN ,Q)

9: for i ∈ V do

10: for j ∈ Ni do

11: Draw observation noise vijk from N (0DT , R̃ij)

12: yijk = H(zik − zjk) + vijk . Measurements

13: ẑijk = 1
T H>yijk . MLE

14: end for

15: uik = −
∑
j∈Ni

lij ẑ
ij
k . Control law

16: zik+1 = zik + ∆tuik + wi
k . Dynamics update

17: end for

18: k = k + 1

19: end while

noise floor. When the MLE is applied, this noise floor is lower than when the noisy
measurements are directly used in the control law. This is expected since the MLE has
access to T measurements compared to the single measurement for the estimator-less
case. The noise floor for the MLE is a factor of roughly

√
T smaller than without

estimator. We also note that the convergence variance similarly scales down by the
same factor (note that the error axis in Figure 4.5 is logarithmic), visible through
the plotted standard deviation region. Convergence speed seems to be unaffected by
the introduced uncertainty, as both noisy simulations converge just as quickly as the
noiseless simulation, up until the moment their noise floor is met. From these results,
we know that improvement in Procrustes error floor is possible. However, there is still
room for improvement. The MLE is instantaneous, i.e., it does not take into account
past information which might be exploited. In the next sections we will expand on the
MLE with the intent of improving convergence further.
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Figure 4.5: Convergence of hexagonal formation. The plot shows the mean convergence for
50 runs of Algorithms 2 and 3, and the ±1 standard deviation regions.

4.4 Minimum Mean Square Error Estimator

Extending on the MLE estimator proposed in Section 4.3, we will now attempt to in-
clude temporal information in the edge state estimates. As such, we enter the Bayesian
realm of estimation. Since we know that the relative position of agent i with respect to
agent j will not drastically change over a short period of time, we will use the relative
position estimate at time index k− 1 as a prior for the estimate of the relative position
at time index k. When the Minimum Mean Square Error (MMSE) estimator is used
for consecutive time indices, we can call this an MMSE filter.

Consider the prior for zijk to be Gaussian with mean ẑijk−1 and some fixed covariance
Σij:

zijk ∼N (ẑijk−1,Σij) (4.18)

The observation model is the linear Gaussian model (4.8), repeated here:

yijk = Hzijk + vijk (4.19)

Minimizing the covariance in a minimum mean square error sense gives the following
estimator (see e.g., [53]):

ẑijk = ẑijk−1 + ΣijH
>(HΣijH

> + R̃ij

)−1
(yijk −Hẑijk−1) (4.20)
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We can get an expression for the posterior covariance of the MMSE relative position
estimate:

Σpost,MMSE
ij = (Σ−1

ij −H>R̃−1
ij H)−1 (4.21)

Note that this posterior covariance is always smaller than the posterior covariance of
the MLE (4.17). Generally, when the covariance of the prior is small, then the posterior
covariance will be small as well. In the limit, when the covariance of the prior becomes
very large, the MMSE estimator reduces to the MLE estimator.

Algorithm 4 describes the simulation with MMSE filter. Notice that the MMSE
filter uses the previous estimate as the prior mean in the next iteration. The choice of
the prior covariance Σij is very significant here. When chosen too large, the MMSE
filter does not show any improvement over the MLE (i.e., the prior information given
is too weak). With decreasing Σij more weight is placed on the prior (i.e., the previous
estimate). This will likely result in better estimates when the previous estimate is good
and the system is near steady state (i.e., the agents are near formation and control
inputs are small). However, convergence speed may become slower since the MMSE
filter will give past measurements larger weights, which may already be outdated.

Algorithm 4 Relative formation control using MMSE filter

1: Unknown global constants: N,∆t,µ,P

2: Known global constants: D,T,H

3: Known local constants: lij ,Σij ,Rij for i = 1, . . . , N , j ∈ Ni
4: R̃ij = IT ⊗Rij for i = 1, . . . , N , j ∈ Ni
5: Draw initial positions zi1 from N (µ,P)

6: k = 1

7: while k ≤ kmax do

8: Draw process noise wk from N (0DN ,Q)

9: for i ∈ V do

10: for j ∈ Ni do

11: Draw observation noise vijk from N (0DT , R̃ij)

12: yijk = H(zik − zjk) + vijk . Measurements

13: ẑijk = ẑijk−1 + ΣijH
>(HΣijH

> + R̃ij

)−1
(yijk −Hẑijk−1) . MMSE

14: end for

15: uik = −
∑
j∈Ni

lij ẑ
ij
k . Control law

16: zik+1 = zik + ∆tuik + wi
k . Dynamics update

17: end for

18: k = k + 1

19: end while

This effect can indeed be observed via the formation convergence shown in Figure
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Figure 4.6: Convergence of hexagonal formation. The plot shows the mean convergence for
50 runs of Algorithms 3 and 4 (both using T = 10) for varying σ2

prior, and the ±1 standard
deviation regions.

4.6. Three priors were used of the form Σij = σ2
priorID. For a tighter prior (i.e., smaller

σ2
prior) the initial convergence of the MMSE filter is clearly slower and initially even

diverges. Near steady state, the supposed positive effect of the prior is not immediately
visible. The steady state error is equivalent for all priors, and additionally equal to
that of the MLE. Upon zooming in, it can be seen that a tighter prior does make the
steady state estimates less erratic over time. This can be desirable since it will make
sure that the control input (which is a linear function of the filtered edge states) is less
erratic as well, which is desirable in practical applications.

Ideally, we would want two improvements over the MMSE estimator. First would
be a varying prior based on the uncertainty at that moment in the simulation, instead
of a fixed prior. Second is a prediction element which includes the control action of
the agent in the prior for the next estimate. The edge-based distributed Kalman filter
introduced in the next section incorporates both of these elements.

4.5 Edge-based Kalman Filter

So far, edge state smoothing via the MLE (Section 4.3) and the MMSE estimator
(Section 4.4) have been introduced. Already, the MMSE estimator is similar to a
Kalman filter for the state estimation of a single edge. In this section, we will extend
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the MMSE filter to arrive at a proposed filter which is called the edge Kalman filter
(Edge-KF).

From the MMSE estimator introduced in Section 4.4, we can identify two short-
comings. Both shortcomings originate in the prior used for the estimate. First of all,
the prior used for the estimation of the edge state has a mean which is the previous
estimate. However, since the agents are mobile, they move and the previous estimate
might be outdated. Since agents know the control signal they apply, a prediction can
be made for the next time instance based on the previous estimated state and the
predicted movement of the agent. As such, we exploit the fact that the state space
model of agents is known. However, note that while an agent knows its own movement,
the edge state is a function of two agents. The control inputs therefore will need to
be communicated locally to allow unbiased prediction of the edge state. Secondly, the
prior used in the MMSE estimator has fixed covariance matrix. This is usually not
desirable. For example, initially an agent may know very little about its edge states
due to there being few aggregated measurements. However, over time the state esti-
mates will improve and once near steady state, edge states will be relatively stable. As
such, more weight can then be placed on the prior information by decreasing the prior
covariance Σij. The Kalman filter introduces solutions to both of these problems.

We will now see what the agent model and prediction and update equations will
look like for the edge-based distributed Kalman filter (Edge-KF). To do this, we will
look at the system from the perspective of an agent i observing one of its neighbors j.

For agent i, the discrete-time dynamics are as follows:

zik+1 = zik + ∆tuik + wi
k i = 1, . . . , N (4.22)

The index k ∈ N is the time index, and ∆t ∈ R is a scalar denoting the time step
period of the filter.

The observations of agents with respect to their neighbors follow the data model in
Section 4.2:

yijk = Hzijk + vijk i = 1, . . . , N j ∈ Ni (4.23)

with vijk zero-mean and with covariance R̃ij.
We can rewrite (4.22) by combining the dynamics of agents i and j to describe the

dynamics of the edge (i, j):

zijk+1 = zijk + ∆t(uik − ujk) + wij
k i = 1, . . . , N j ∈ Ni (4.24)

The process noise for the edge wij
k can be expressed as a sum of process noise on the

node, to comply with the data model set up in Section 4.2:

wij
k = wi

k −wj
k i = 1, . . . , N j ∈ Ni (4.25)

In terms of the global process noise vector wk, we can write the edge process noise wij
k

as follows:
wij
k = Bijwk i = 1, . . . , N j ∈ Ni (4.26)

where Bij ∈ RD×DN is a selection matrix that can be written as bij ⊗ ID. The ith
entry of bij is 1, the jth entry is −1 and all other entries are zero. As such, it can
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Figure 4.7: Dynamics of the edge state zijk in R2.

be considered a transposed column of the incidence matrix of the bidirectional sensing
graph. If wk is Gaussian, then wij

k will be too, since (4.26) is linear. The covariance of

wij
k can be written Qij = BijQB>ij.

The edge dynamics are visualized in Figure 4.7 for a pair of mobile agents in R2.
We notice that the edge state dynamics (4.24) and observations (4.23) are linear

and Gaussian, having used the data model described in Section 4.2.
The proposed edge-based Kalman filter updates can thus be introduced as a series of

parallel Kalman filters for each agent, one for each of its neighbors. The exact Kalman
filter prediction and update equations will now be examined in more detail.

The edge-based Kalman filter updates consist of two steps. The first is the prediction
step, where the relative positions for the next time step are predicted based on the
control input and current estimated state. Second is the update step, where the new
measurement is examined and the relative position estimate is updated with this new
information, using the predicted state as a prior.

Edge-KF initialization
The initialization is similar to that of the centralized Kalman filter, where we
exploit the fact that the initial positions of agents are independent. The expected
initial edge state is zero:

ẑij0|0 = E(zij0 ) = E(zi0)− E(zj0) = µ− µ = 0D (4.27)

The initial covariance then becomes

Σij
0|0 = E(zij0 zij>0 )− E(zij0 )E(zij0 )>

= E((zi0 − zj0)(zi0 − zj0)>)

= E(zi0z
i>
0 ) + E(zj0z

j>
0 )− 2E(zi0z

j>
0 )

= 2P

(4.28)

which indicates that the initial uncertainty on the edge states is twice as high as
the uncertainty on the node states.
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Edge-KF prediction step
The prediction step is computed by an agent before acquiring a new set of mea-
surements, and is given by the following equations:

ẑijk+1|k = ẑijk|k + ∆t(uik − ujk) i = 1, . . . , N j ∈ Ni (4.29)

Σij
k+1|k = Σij

k|k + Qij i = 1, . . . , N j ∈ Ni (4.30)

The prediction for the edge state follows the edge dynamics equation (4.24). Note
that agent i which is tracking the edge state requires the control input of agent j.
As such, to make an unbiased prediction the control inputs need to be communi-
cated between neighbors. In Chapter 6, we will see what happens if the neighbor
control input is not available and the prediction is biased. The predicted covari-
ance Σij

k+1|k increases in the prediction step to indicate that, since process noise

is added to the system, uncertainty about the state of the system increases. A
large process noise covariance Qij means a large increase in uncertainty, and vice
versa.

Edge-KF update step
The update step weighs the newly acquired measurements yijk against the pre-

dicted state ẑijk|k−1, and updates the estimation as follows:

ẑijk|k = ẑijk|k−1 + Kij
k

(
yijk −Hẑijk|k−1

)
i = 1, . . . , N j ∈ Ni (4.31)

Σij
k|k =

(
ID −Kij

k H
)
Σij
k|k−1 i = 1, . . . , N j ∈ Ni (4.32)

Kij
k = Σij

k|k−1H
>(HΣij

k|k−1H
> + R̃ij

)−1
i = 1, . . . , N j ∈ Ni (4.33)

This update step works identically to the update step for state tracking in the
distributed Kalman filter in [36]. The Kalman gain Kij

k is dependent on the

covariance of the measurement noise R̃ij. If the uncertainty on the measurements
is very small, then the Kalman gain is close to identity meaning the estimated
state closely follows the measurement. If the measurement noise is large, the
estimated state will place more weight on the prediction based on the agent’s
known control actions and measurements in the past.

The edge-based Kalman filter (Edge-KF) is tested via simulations described by
Algorithm 5. Two simulations were performed. For the first, only measurement noise
was applied (σv = 0.1, σw = 0). For the second, additionally process noise was applied
(σv = 0.1, σw = 0.001). The results are shown in Figures 4.8 and 4.9. The initialization
equations (4.27-4.28), prediction equations (4.29-4.30) and update equations (4.31-4.33)
all feature in Algorithm 5. The control law then takes the updated edge estimates as
inputs.

Figure 4.8 shows the average evolution of the Procrustes error over time. The steady
state error for the Edge-KF is approximately 10 times lower than the MLE and MMSE
errors after convergence which is significantly lower. Under process noise however, the
noise floor difference is reduced. Figures 4.8 and 4.9 show that when observation noise
is dominant, the Edge-KF is a clear improvement in steady-state Procrustes error over
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Figure 4.8: Convergence of a hexagonal formation for MLE, MMSE and Edge-KF with ob-
servation noise. The plot shows the mean convergence for 50 runs of Algorithms 2, 3, 4 and
5, and the ±1 standard deviation regions.

Figure 4.9: Convergence of a hexagonal formation for MLE, MMSE and Edge-KF with ob-
servation and process noise. The plot shows the mean convergence for 50 runs of Algorithms
2, 3, 4, and 5, and the ±1 standard deviation regions.
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Algorithm 5 Relative formation control using Edge-KF

1: Unknown global constants: N,µ

2: Known global constants: D,T,∆t,H,P

3: Known local constants: lij ,Rij ,Qij for i = 1, . . . , N , j ∈ Ni
4: R̃ij = IT ⊗Rij for i = 1, . . . , N , j ∈ Ni
5: Draw initial positions zi1 from N (µ,P)

6: ẑij0|0 = 0D for all i ∈ V, j ∈ Ni
7: Σij

0|0 = 2P for all i ∈ V, j ∈ Ni
8: ui0 = 0D for all i ∈ V
9: k = 1

10: while k ≤ kmax do

11: Draw process noise wk from N (0DN ,Q)

12: for i ∈ V do

13: for j ∈ Ni do

14: ẑijk|k−1 = ẑijk−1|k−1 + ∆tuik−1 −∆tujk−1

15: Σij
k|k−1 = Σij

k−1|k−1 + Qij

16: Draw observation noise vijk from N (0DT , R̃ij)

17: yijk = H(zik − zjk) + vijk . Measurements

18: Kij
k = Σij

k|k−1H
>(HΣij

k|k−1H
> + R̃ij)

−1

19: ẑijk|k = ẑijk|k−1 + Kij
k (yijk −Hẑijk|k−1)

20: Σij
k|k = (ID −Kij

k H)Σij
k|k−1

21: end for

22: uik = −
∑
j∈Ni

lij ẑ
ij
k|k . Control law

23: zik+1 = zik + ∆tuik + wi
k . Dynamics update

24: end for

25: k = k + 1

26: end while

the MLE and MMSE estimators. When process noise is dominant, the Edge-KF shows
less significant improvement in steady-state Procrustes error compared to the MLE and
MMSE estimators. However, the improvement in estimation error is significant. The
norm of the difference between the true edge states and the estimated edge states are
plotted in Figure 4.10, defined as follows:

εk =

√∑
i∈V

∑
j∈Ni

‖zijk − ẑijk ‖2 (4.34)
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Figure 4.10: Estimation errors for MLE, MMSE and Edge-KF with observation and process
noise. The plot shows the mean estimation error for 50 runs of Algorithms 2, 3, 4, and 5, and
the ±1 standard deviation regions.

After initially suffering from the rapid movement of agents during the first phase
of the simulation, the MMSE estimator shows improved steady-state estimation error
compared to the MLE. However, the Kalman filter shows even better performance.
Therefore, the conclusion can be drawn that although the superiority of Edge Kalman
filter is not directly visible from the Procrustes error when faced with dominant process
noise. However, from 4.10 the improved estimation accuracy is evident.

The paths of agents under measurement and process noise in R2 for a single run of
the simulations are also shown in Figure 4.11.
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(a) No estimator (b) MLE (T = 10)

(c) MMSE (T = 10) (d) Edge-KF (T = 10)

Figure 4.11: Paths of agents in R2 over time for the hexagonal framework (σv = 0.1, σw =
0.001).
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Global Approach to Edge State
Filtering 5
In Chapter 4 a data model for the formation control problem was introduced, and
estimators and filters were proposed by approaching the filtering problem locally. This
makes sense, since the formation control problem is a multi-agent problem, which we
desire to solve in a decentralized manner. However, from the data model we have seen
that the system is heavily interconnected, for example via the disturbance model. As
such, in this chapter we will take a global perspective on the multi-agent system. Using
a global state-space model, a centralized Kalman filter will be considered. The next
step is to find a way to distribute the centralized Kalman filter over the individual
agents. Via this approach, we again arrive at the edge-based Kalman filter seen in
the previous section, but also a distributed joint method is presented which is shown
to have superior performance compared to the Edge-KF through abusing the coupled
disturbance model.

First, we introduce a global state-space model in Section 5.1. The centralized global
Kalman filter is introduced in Section 5.2. Then, in Section 5.3 a distributed adap-
tation of the centralized filter is proposed, dubbed the joint edge-based Kalman filter.
Section 5.4 concludes the chapter with simulations showing the performance of the
proposed filters.

5.1 Global State-Space Model

To consider the the multi-agent system from a global perspective, a state-space model
of the multi-agent system is presented in this section. Initially, the state-space model is
written in terms of the node states. However, we will introduce a state transformation
which makes the global state a concatenation of the edge states instead. This will allow
the direct application of a centralized edge-based Kalman filter in the next section.

In discrete-time, and with additive process noise we can write the dynamics of the
global system as a concatenation of the local dynamics (4.9):

zk+1 = zk + ∆tuk + wk (5.1)

where zk = {zik}Ni=1 ∈ RDN is a concatenated vector of the positions of the N mobile
agents in D-dimensional space. Similarly, the control input uk = {uik}Ni=1 ∈ RDN is a
concatenation of the control inputs of all agents. The process noise, as described in
Section 4.2 is Gaussian with zero mean and covariance matrix Q. The relative positions
can similarly be written as a linear function:

yk = (B> ⊗H)zk + vk (5.2)

where yk ∈ R2MTD is a vector with all the observations made by agents. Remember
that H = 1T ⊗ ID is the observation matrix, where T is the number of observations

43



per filter update. M is the number of edges in the undirected sensing graph. Since
every edge is bidirectional, the number of relative position observations is thus 2MT .
B ∈ RN×2M is the incidence matrix of the bidirectional sensing graph. Without loss
of generality, the convention is chosen that the incidence matrix is ordered such that
the columns are grouped per agent, starting with all edges directed towards agent 1
and ending with edges directed towards agent N . A similar convention is chosen in
[37]. The observation noise vk is, as introduced in Section 4.2, zero-mean Gaussian. Its
covariance matrix R is block-diagonal with matrix Rij for observations of agent i with
respect to agent j. In case of homogeneous agents (i.e. Rij = RD for all i, j) we can
write the covariance matrix of yk as R = I2MT ⊗RD.

Now, note that using zk as the state is not particularly useful for the formation
control problem considered. After all, the local inputs to the control law (3.2) are
relative positions. Since the measurements are also considered to be on the edges of
the sensing graph, it is natural to also choose the edge state as the tracking variable.

We introduce the vector x ∈ R2MD which is a concatenation of all edge states. We
have the following relation between node states z and edge states x:

x = (B> ⊗ ID)z (5.3)

We will use the matrix B̃> = (B> ⊗ ID) for compact notation. We can now transform

the state space model by pre-multiplying the state update equation with B̃>. The
measurement equation can likewise be rewritten:

xk+1 = xk + ∆tB̃>uk + B̃>wk (5.4)

yk = (I2M ⊗H)xk + vk (5.5)

This change of variable does not change the linearity of the system, and the noise is
still Gaussian, although the distribution of the process noise w̄k = B̃>wk becomes
N (0ND, B̃

>QB̃).

5.2 Centralized Edge Kalman Filter

Using the edge-based global state-space model introduced in 5.1, an optimal Kalman
filter is introduced in this section which we call the centralized edge-based Kalman filter
(C-Edge-KF) because the filter can only be applied centrally, using information from the
whole multi-agent system. The advantages of distributability (robustness, scalability,
parallel execution of tasks) have been discussed earlier. However, the centralized edge-
based Kalman filter will be a starting point for the design of distributed filters.

With the linear and Gaussian state update (5.4) and measurement (5.5) equations,
the standard Kalman initialization, prediction and update equations can be applied.

C-Edge-KF initialization
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x̂0|0 = B̃>(1N ⊗ µ) (5.6)

= (B> ⊗ ID)(1N ⊗ µ)

= (B>1N ⊗ µ)

= 02MD

Σ0|0 = B̃>(IN ⊗P)B̃ (5.7)

= (B> ⊗ ID)(IN ⊗P)(B⊗ ID)

= B>B⊗P

Since we know that B>, as the incidence matrix, has rows summing to 0, the
product B>1N equals 02M . This means that no matter the initial distribution of
the agents, the initial edge state estimates are always zero as long as the initial
agent positions are independent and identically distributed (i.i.d.).

C-Edge-KF prediction step

x̂k+1|k = x̂k|k + ∆tB̃>uk (5.8)

Σk+1|k = Σk|k + B̃>QB̃ (5.9)

C-Edge-KF update step

Kk = Σk|k−1H̃
>(H̃Σk|k−1H̃

> + R)−1 (5.10)

x̂k|k = x̂k|k−1 + Kk(yk − H̃x̂k|k−1) (5.11)

Σk|k = (I2MD −KkH̃)Σk|k−1 (5.12)

where H̃ = (I2M ⊗H) is used for compact notation.

Algorithm 6 combines the Kalman filter iteration steps described in (5.6-5.12). Note
again from this algorithm that the initialization, prediction and update steps are per-
formed in one step for all agents.

The dimension of the estimated edge states x̂ is 2MD which is generally larger
than ND which is the dimension of the concatenation of node states. As a result, one
might argue that tracking node states is computationally more efficient than tracking
edge states. This is true for the centralized filter. However, note that in a distributed
filter, nodes would need to communicate estimated node states to neighbors in order to
convert node states to edge states. Since we assume that agents do not share a common
reference frame, this is not feasible. Through this reasoning, the choice of edge states
as a tracking variable is justified.
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Algorithm 6 Relative formation control using C-Edge-KF

1: Unknown global constants: µ

2: Known global constants: D,N,M, T,∆t,P,B,H,R,Q,L

3: B̃ = B⊗ ID

4: H̃ = I2M ⊗H

5: Draw initial positions zi1 from N (µ,P) for i = 1, . . . , N

6: x̂0|0 = 02MD

7: Σ0|0 = B>B⊗P

8: u0 = 0DN

9: k = 1

10: while k ≤ kmax do

11: x̂k|k−1 = x̂k−1|k−1 + ∆tB̃>uk−1

12: Σk|k−1 = Σk−1|k−1 + B̃>QB̃

13: Draw observation noise vk from N (02MDT ,R)

14: yk = H̃B̃>zk + vk . Measurements

15: Kk = Σk|k−1H̃
>(H̃Σk|k−1H̃

> + R)−1

16: x̂k|k = x̂k|k−1 + Kk(yk − H̃x̂k|k−1)

17: Σk|k = (I2MD −KkH̃)Σk|k−1

18: uik = −
∑
j∈Ni

lijx̂
ij
k|k for i = 1, . . . , N . Control law

19: Draw process noise wk from N (0DN ,Q)

20: zk+1 = zk + ∆tuk + wk . Dynamics update

21: k = k + 1

22: end while

5.3 Joint Edge Kalman Filter

The main goal of this section is to adapt the centralized Kalman filter of Section 5.2
such that agents can track their own local states using only local information. In other
words, we try to find a distributed solution. For this purpose, we will place sparsity
restrictions on the structure of the Kalman gain matrix. It will be shown that a Kalman
gain matrix with a certain block-diagonal structure allows distribution of the filter over
the agents. Furthermore, we will explore how to compute the optimal Kalman gain
subject to these sparsity constraints.

The following theorem states under which conditions on the Kalman gain matrix
the centralized edge-based Kalman filter decouples and can be distributed over the
individual agents.

Theorem 5.1. The centralized edge-based Kalman filter given by the equations 5.6-
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5.12 decouples over the agents if the Kalman gain Kk is restricted such that it is a
block-diagonal matrix with Ki

k ∈ R|Ni|D×|Ni|TD the ith of N block matrices.

Proof. We divide the state estimates x̂k|k into N local edge states denoted by x̂ik|k ∈
R|Ni|D. Similarly, the covariance matrix Σk|k is split into the covariance matrices Σi

k|k ∈
S|Ni|D+ . For a block-diagonal Kalman gain matrix, the prediction and update equations
can all be computed locally, provided communication between neighboring agents is
available:

• The state prediction equation (5.8) is a vector sum which can be split into N sums
that can be performed locally as long as all agents have access to the control inputs
of their neighbors. I.e., agent i can compute the matrix product (B>i ⊗ ID)uk,
with Bi ∈ RN×|Ni| the matrix aggregating the columns of the incidence matrix B
corresponding to edges directed toward agent i.

• The predictive covariance equation (5.9) as a matrix sum can be decoupled sim-

ilarly. The disturbance covariance summand is the matrix B̃>i QB̃i, which thus
only requires agent i to have (partial) knowledge of the constant matrix Q.

• The state update equation (5.11) is decoupled since the block-diagonal structure
of Kk ensures the edge measurements performed by agent i are only used for
the updated state estimate of edges tracked by agent i. Hence, measurement
information is only used locally. Similarly, the predicted local edge states x̂ik|k−1

are also used exclusively for the updated state estimate of agent i.

• The posterior covariance equation (5.12) describes the posterior covariance matrix
only for the optimal Kalman gain provided in (5.10). Given that the block-
diagonal Kalman gain matrix is generally not optimal, the Joseph form of the
posterior global covariance matrix should be used instead:

Σk|k = KkRK>k + (I2MD −KkH̃)Σk|k−1(I2MD −KkH̃)> (5.13)

The matrix I2MD − KkH̃ keeps the block-diagonal structure with the ith block
being I|Ni|D−Ki

kH. Hence, the local covariance update Σi
k|k is a function of only

the local gain matrix Ki
k, the local measurement covariance Ri and the local prior

covariance Σi
k|k−1.

Since all Kalman filter iteration steps are shown to be decoupled, the whole filter can
be said to be decoupled as well.

While Theorem 5.1 states that the Kalman filter iterations can be decoupled given a
block-diagonal Kalman gain matrix, we do not yet have a way to compute the optimal
Kalman gain subject to the block-diagonality constraints, let alone a decentralized way
to do so. The Kalman filter aims to minimize the error in a mean square error sense.
Since the Kalman filter is unbiased, minimizing the mean square error is equivalent to
minimizing the trace of the posterior covariance matrix:

min
Kk

tr
(
Σk|k

)
(5.14)
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This minimization problem can be rewritten with additional constraints on the struc-
ture of the gain matrix.

min
Kk

tr
(
Σk|k

)
s.t. Kk ∈ K

(5.15)

where K ⊆ R2MD×2MTD is a set representing all matrices that satisfy some arbitrary
sparsity pattern, i.e., with arbitrary elements forced to zero. In [37] a centralized closed-
form solution to (5.15) is provided, which is valid for any sparsity pattern. However,
in the special case of a block-diagonal sparsity constraint, we can solve (5.15) via a
decentralized method, as shown via Theorem 5.2.

Theorem 5.2. Let K denote the set of all block-diagonal matrices with |Ni|D×|Ni|TD
the dimensions of the ith of N block matrices. Then (5.15) is solved by

Ki
k = Σi

k|k−1H
>
i

(
HiΣ

i
k|k−1H

>
i + Ri

)−1
(5.16)

for all i, with Hi = I|Ni| ⊗ H and Ri a block-diagonal matrix with blocks Rij with
j ∈ Ni.

Proof. First, the Joseph form of the posterior covariance (5.13) is substituted into
(5.15):

min
Kk

tr
(
KkRK>k

)
+ tr

(
(I2MD −KkH̃)Σk|k−1(I2MD −KkH̃)>

)
s.t. Kk ∈ K

(5.17)

Note again that in addition to Kk, the matrix I2MD −KkH̃ is also block-diagonal. As
a result, we rewrite the problem by applying Lemma 5.1:

min
Ki
k

tr
(
Ki
kRiK

i>
k

)
+ tr

(
(I−Ki

kHi)Σ
i
k|k−1(I−Ki

kHi)
>) , i = 1, . . . , N (5.18)

Note that the problem is decoupled and the structural constraint on the gain matrix is
gone. Without this constraint, (5.18) is solved by the standard optimal Kalman gain,
which is shown in (5.16).

Lemma 5.1. With A a block-diagonal matrix and F a full matrix of appropriate sizes:

A =


A1 0 . . . 0

0 A2
. . .

...
...

. . . . . . 0
0 . . . 0 AN

 ,F =


F11 F12 . . . F1N

F21 F22
. . .

...
...

. . . . . .
...

FN1 . . . . . . FNN


the trace of AFA> is distributable:

tr(AFA>) = tr(A1F11A
>
1 ) + tr(A2F22A

>
2 )

+ . . .

+ tr(ANFNNA>N)
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Since Theorems 5.1 and 5.2 allow the complete decoupling of the centralized edge-
based Kalman filter with local optimal gain computation, we can now introduce a
distributed edge-based Kalman filter which we will call the joint edge-based Kalman
filter (J-Edge-KF). The adjective joint is used to indicate that agents jointly filter
their adjacent edge states. The local initialization, prediction and update equations of
the joint edge-based Kalman filter are now given for agent i.

J-Edge-KF initialization

x̂i0|0 = 0|Ni|D (5.19)

Σi
0|0 = B>i Bi ⊗P (5.20)

J-Edge-KF prediction step

x̂ik+1|k = x̂ik|k + ∆tB̃>i uk (5.21)

Σi
k+1|k = Σi

k|k + B̃>i QB̃i (5.22)

J-Edge-KF update step

Ki
k = Σi

k|k−1H
>
i

(
HiΣ

i
k|k−1H

>
i + Ri

)−1
(5.23)

x̂ik|k = x̂ik|k−1 + Ki
k

(
yik −Hix̂

i
k|k−1

)
(5.24)

Σi
k|k =

(
I|Ni|D −Ki

kHi

)
Σi
k|k−1 (5.25)

Pseudocode used for simulating a noisy system using J-Edge-KF is shown in Algo-
rithm 7. Note how, compared to the centralized filter in Algorithm 6, the prediction and
update equations are performed locally. The only non-constant non-local information
required for an agent to perform the algorithm is the control inputs of its neighbors,
which can be achieved using local one-hop communication.

As a last remark, note that the edge-based Kalman filter (Edge-KF) introduced in
Section 4.5 can be derived in a similar way to the joint edge-based filter. To do so,
we tighten the Kalman gain matrix structure constraints such that the Kalman gain is
block diagonal with 2M blocks of dimensions D × TD. This decouples the filter per
edge. The expected performance of the edge-based filter is lower than that of the joint
edge-based filter, since the latter allows agents to use information gathered from all its
edge state measurements jointly. The state space models of the edges are coupled via
the disturbance model. This suggests that joint estimation can lead to improvement.

5.4 Simulations

The performance of the joint edge-based Kalman filter (J-Edge-KF) are compared
against the MLE and Edge-KF filter in this section. The simulation setup is equivalent
to the setup described in Sections 3.6 and 4.2.3.
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Algorithm 7 Relative formation control using J-Edge-KF

1: Unknown global constants: N,µ

2: Known global constants: D,T,∆t,P,Q

3: Known local constants: lij ,Bi,Ri,Hi for i = 1, . . . , N , j ∈ Ni
4: Draw initial positions zi1 from N (µ,P) for i = 1, . . . , N

5: x̂i0|0 = 0|Ni|D for i = 1, . . . , N

6: Σi
0|0 = B>i Bi ⊗P for i = 1, . . . , N

7: u0 = 0DN

8: k = 1

9: while k ≤ kmax do

10: for i ∈ V do

11: x̂ik|k−1 = x̂ik−1|k−1 + ∆tB̃>i uk−1

12: Σk|k−1 = Σk−1|k−1 + B̃>QB̃

13: Draw observation noise vik from N (0|Ni|DT ,Ri)

14: yik = HiB
>
i zk + vik . Measurements

15: Ki
k = Σi

k|k−1H
>
i (HiΣ

i
k|k−1H

>
i + Ri)

−1

16: x̂ik|k = x̂ik|k−1 + Ki
k(y

i
k −Hix̂

i
k|k−1)

17: Σi
k|k = (I|Ni|D −Ki

kHi)Σ
i
k|k−1

18: uik = −
∑
j∈Ni

lijx̂
ij
k|k . Control law

19: end for

20: Draw process noise wk from N (0DN ,Q)

21: zk+1 = zk + ∆tuk + wk . Dynamics update

22: k = k + 1

23: end while

First, we consider the evolution of the trace of the posterior covariance matrix,
shown in Figure 5.1.

The posterior covariance of the MLE is constant as given by (4.17). The Kalman
filters initially have the same uncertainty, but over time the uncertainty decreases. As
expected, the joint filter has smaller steady-state uncertainty compared to the Edge-
KF, due to the coupling of the edge states via the disturbance correlation which is
exploited by the joint filter. The centralized Kalman filter has even lower steady-state
uncertainty, as is expected being the optimal filter for the global system.

The estimation errors show a similar story. In Figure 5.2 the norm of the difference
between the true edge states and the estimated edge states is plotted.

Again, we note that the joint approach delivers superior performance in the form
of a lower estimation error. Convergence happens at a similar time-scale compared to
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Figure 5.1: Trace of the posterior covariance matrix over time.

Figure 5.2: Estimation errors εk over time. The plot shows the mean estimation error for 50
runs of Algorithms 2, 3, 5, 6 and 7, and the ±1 standard deviation regions.

the posterior covariance.

Lastly, the Procrustes errors are compared in Figure 5.3. Differences between the
algorithms are less obvious although again the centralized Kalman filter seems to have
the smallest steady-state Procrustes error, followed by the joint Kalman filter, the edge
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Figure 5.3: Procrustes errors over time. The plot shows the mean Procrustes error for 50
runs of Algorithms 2, 3, 5, 6 and 7, and the ±1 standard deviation regions.

Kalman filter and the MLE respectively. Convergence speed is practically equal for all
algorithms, and is similar to the convergence speed in the noiseless case.
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Robust Communication-less
Edge State Filtering 6
The distributed Kalman filters proposed in the previous chapters are distributed in the
sense that the filters can be run locally. However, the filters can not be run completely
without inter-agent dependency, as seen from the dynamics of the edge (i, j) given by
(4.24) and repeated here:

zijk+1 = zijk + ∆t(uik − ujk) + wij
k , wij

k ∼N (0D,Qij) (6.1)

To make an unbiased prediction of the evolution of the edge state, the control inputs
of both adjacent nodes are needed. Therefore, agent i needs not only its own control
input uik, but also the control input ujk of its neighboring agent j to make an unbiased

prediction on the evolution of the edge state zijk . In multi-agent systems with robust
neighbor-to-neighbor data links, agents can communicate their computed control input
to neighbors and this allows the distributed Kalman filters to run as intended. However,
in this section two scenarios are explored where agents may not have direct access to
the control input of their neighbors.

1. The first scenario is motivated by a desire for the formation control system to be
robust to intermittently failing communication links. We will assume that gen-
erally, communication links are available between neighboring agents. However,
at random time steps communication may be delayed or a communication link
is temporarily suspended. As a result, the control input ujk of agent j at time
step k is considered unknown to agent i. However, agent i has access to all past
control inputs of agent j, i.e., ujl , l = 1, . . . , k − 1. The problem to be solved is a

one-step prediction. The estimate ûjk can then be used in the prediction step of
the Kalman filter.

2. The second scenario is motivated by a desire to design a filter that functions
without any neighbor-to-neighbor communication. In fact, one of the main ad-
vantages of the control law for formation control proposed in [25] is the lack of
a inter-agent communication requirement. In many mobile multi-agent systems,
not requiring a communication module on every agent is a great advantage. As
such, an attempt will be made to estimate the control input ujk of agent j at time

step k based on local information known to agent i. The estimate ûjk can then be
used in the prediction step of the Kalman filter.

For both scenarios, the eventual goal is to compute an estimate ûjk and a posterior

covariance matrix Σij
u,k. We can then rewrite the prediction equations of the Kalman

filter as

ẑijk+1|k = ẑijk|k + ∆t(uik − ûjk) (6.2)

Σij
k+1|k = Σij

k|k + Qij + ∆t2Σij
u,k (6.3)
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Figure 6.1: One realization of the control input process for a single agent.

Note that by making this change, we are modelling the control input of the neighbor
as if it were a normally distributed random variable:

ujk ∼ N (ûjk,Σ
ij
u,k) (6.4)

In other words, we assume the true control input of agent j to be a random vector
normally distributed and centered around the estimated control input ûjk. The posterior

predictive covariance matrix Σij
u,k represents the uncertainty in the estimate ûjk.

6.1 Scenario 1: Random Communication Link Failure

Given the control inputs of agent j up until one time step back, the challenge for agent
i is to make a one-step ahead prediction which should result in an estimate ûjk. Note
that, unlike the state evolution of agents, there is no direct local model for the evolution
of control inputs over time. From the linear control law (3.2), we notice that the control
input of agent j depends on the states of neighbors of j in the network. These states are
again dependent on control inputs of neighbors of j which again depend on neighbors
of neighbors, etc. In the end, agent i lacks all the information necessary to model the
evolution of the control input of its neighbor j using the control law (3.2). Therefore,
a simpler local model is needed which models the evolution of ujk over time, and allows
agent i to extrapolate the past control inputs one step into the future.

A single realization of the control input of an agent is shown in Figure 6.1. Clearly,
the control input process shows some form of autocorrelation, i.e. samples show some
form of dependence on past values. One of the options to model the control inputs
over time is an autoregressive model of order p, denoted AR(p). This is a model of the

54



following form:

ujt =

p∑
l=1

al ◦ ujt−l + njt , njt ∼N (0D,Σn) (6.5)

where the vectors al, l = 1, . . . , p are the model coefficients, and njt is white noise which
is independent of the past control inputs ujl , l = 1, . . . , t− 1.

There are various methods of finding a suitable model order p and estimating the
model coefficients. One could fit the coefficients based on recorded training sequences,
using the Yule-Walker equations.
Note furthermore that by using the model (6.5), the evolution of the control input of
agent j is assumed to be a zero-mean wide sense stationary random process. In steady
state (i.e. agents are in formation) this assumption is generally good. For scenarios
where agents are initially in random positions, the control input process is generally
not first order stationary (see e.g. Figure 6.1) and additionally the mean is generally
not zero, which may limit the accuracy of the model. However, for AR processes of
small orders the stationarity assumption may be a good approximation.

Now, the problem to be solved is that of one-step prediction of ujk given that the
evolution of the control inputs of agent j is described by an AR(p) process of the form
of (6.5), and given the set of past observations ujl , l = k − p, . . . , k − 1.

We will attempt to make a linear prediction using the Wiener-Hopf equations. The
linear filter has the following form:

ûjk =

p∑
l=1

Wlu
j
k−l (6.6)

To derive the optimal filter coefficients Wl via the Wiener-Hopf equations, first we
need to introduce the autocorrelation matrix of the control input process. We define
the autocorrelation matrix at lag τ of the control input process as

Ru(τ) = E
(
ujtu

j>
t+τ

)
(6.7)

which, due to the assumption of wide sense stationarity, does not depend on the time
index t but only on the time difference τ . The Wiener-Hopf equations for the autore-
gressive process of order p are Ru(0) . . . Ru(p− 1)

...
. . .

...
Ru(p− 1) . . . Ru(0)

W1
...

Wp

 =

Ru(1)
...

Ru(p)


Ruu,pW = Ru,1

(6.8)

Solving for W gives us W = R−1
uu,pRu,1.

Let us see what the Wiener predictor looks like for an AR(1) process with model
coefficients a1. The autocorrelation matrix for this model is Ru(τ) = diag(a1)|τ |. The
Wiener-Hopf equations then become

Ru(0)W1 = Ru(1)

W1 = diag(a1)
(6.9)
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which means the prediction for the control input at time step k is given by ûjk = a1◦ujk−1,
which makes sense, considering the model (6.5) holds.

The posterior predictive covariance Σij
u,k represents the uncertainty in the prediction

ûjk. When the past control inputs are known, the uncertainty in the prediction is only

caused by the process noise njk. The posterior predictive covariance is thus given by

Σij
u,k = Σn (6.10)

which is a parameter of the autoregressive model that can be estimated by performing
trial runs for the desired system.

The pseudocode for the simulations for Scenario 1 is presented in Algorithm 8.

6.2 Scenario 2: Full Communication-less Setting

For the second scenario, we consider a setting where inter-agent communication is not
available, due to e.g., environmental or hardware constraints. As a result, agent i lacks
not only the current control input of its neighbor j, but also all past control inputs of j.
For this reason, we split the problem of estimation of ujk into two sub-problems. First,

estimates ûjl , l = 1, . . . , k−1 are made based on all past measurements yijl , l = 1, . . . , k.

Then, a one-step predictor is designed which estimates the control input ujk based on

all past estimated control inputs ûjl , l = 1, . . . , k − 1.

At time step t, after obtaining the measurement yijt , the state estimate ẑijt|t is avail-

able. We will use these and the previous state estimate to get a model for the control
input ujt−1. We start again with the edge dynamics equation (6.1), but shifted back
one time step:

zijt = zijt−1 + ∆t(uit−1 − ujt−1) + wij
t−1 (6.11)

We now substitute the state estimates ẑijt|t and ẑijt−1|t−1, and rewrite such that all the

known terms are on the left-hand side:

1

∆t

(
ẑijt−1|t−1 − ẑijt|t

)
+ uit−1 = ujt−1 −

1

∆t
wij
t−1 (6.12)

Since the disturbance wij
t−1 is assumed to be zero-mean, the maximum likelihood esti-

mator for ujt−1 is given by

ûjt−1 =
1

∆t

(
ẑijt−1|t−1 − ẑijt|t

)
+ uit−1 (6.13)

Keeping in mind that the state estimates have posterior covariances Σij
t|t and Σij

t−1|t−1

respectively, we can write the posterior covariance of the estimate ûjt−1 as

Σij
û,t−1 =

1

∆t2

(
Qij + Σij

t|t + Σij
t−1|t−1

)
(6.14)

Note that for an increasing Kalman filter frequency (i.e. a decreasing ∆t), the
uncertainty in the estimate increases with inverse squared proportionality. Hence, for
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Algorithm 8 Relative formation control using Edge-KF with random link failures

1: Unknown global constants: N,µ, Pfail

2: Known global constants: D,T,∆t,H,P,a1,Σn

3: Known local constants: lij ,Rij ,Qij for i = 1, . . . , N , j ∈ Ni
4: R̃ij = IT ⊗Rij for i = 1, . . . , N , j ∈ Ni
5: Draw initial positions zi1 from N (µ,P)

6: ẑij0|0 = 0D for all i ∈ V, j ∈ Ni
7: Σij

0|0 = 2P for all i ∈ V, j ∈ Ni
8: ui0 = 0D for all i ∈ V
9: k = 1

10: while k ≤ kmax do

11: Draw process noise wk from N (0DN ,Q)

12: for i ∈ V do

13: for j ∈ Ni do

14: Draw random link failure variable pijk from U(0, 1)

15: if p < Pfail then . Link failure

16: ûjk−1 = a1 ◦ ujk−2 . One-step prediction

17: ẑijk|k−1 = ẑijk−1|k−1 + ∆tuik−1 −∆tûjk−1

18: Σij
k|k−1 = Σij

k−1|k−1 + Qij + Σn

19: else . No link failure

20: ẑijk|k−1 = ẑijk−1|k−1 + ∆tuik−1 −∆tujk−1

21: Σij
k|k−1 = Σij

k−1|k−1 + Qij

22: end if

23: Draw observation noise vijk from N (0DT , R̃ij)

24: yijk = H(zik − zjk) + vijk . Measurements

25: Kij
k = Σij

k|k−1H
>(HΣij

k|k−1H
> + R̃ij)

−1

26: ẑijk|k = ẑijk|k−1 + Kij
k (yijk −Hẑijk|k−1)

27: Σij
k|k = (ID −Kij

k H)Σij
k|k−1

28: end for

29: uik = −
∑
j∈Ni

lij ẑ
ij
k|k . Control law

30: zik+1 = zik + ∆tuik + wi
k . Dynamics update

31: end for

32: k = k + 1

33: end while
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systems with high Kalman filter frequency, it may be more advantageous to use some
sort of averaging filter for the estimation of ujt−1, with the underlying assumption that
the control inputs of agents do not change abruptly over time.

Given that the estimates ûjl , l = 1, . . . , k − 1 are all available for agent i, the next
step is to extrapolate this sequence to predict the control input at time index k. This
step is similar to the approach taken in the scenario with intermittent communication
link failures. However, the difference here is that the past observations of the random
process are corrupted by noise. We will write the observation at time t as the true
control input with additive white Gaussian noise with covariance Σij

û,t:

ûjt = ujt + mj
t , mj

t ∼N (0D,Σ
ij
û,t) (6.15)

Note that the covariance matrix Σij
û,t depends on the time index t. We can write the

autocorrelation matrix of the noisy process as

Rû(t, τ) = E
(
ûjt û

j>
t+τ

)
= E

(
(ujt + mj

t)(u
j
t+τ + mj

t+τ )
>)

= E
(
ujtu

j>
t+τ

)
+ E

(
ujtm

j>
t+τ

)
+ E

(
mj

tu
j>
t+τ

)
+ E

(
mj

tm
j>
t+τ

)
= Ru(τ) + δ(τ)Σij

û,t

(6.16)

where the delta function δ(τ) reflects the fact that the noise process is white, i.e.
samples of mj

t are uncorrelated. Note that since the covariance matrix Σij
û,t depends

on the time index t, the autocorrelation matrix will also change over time, and thus we
no longer consider the process to be second order stationary. For the AR(1) process,
the optimal Wiener filter for the prediction of the control input at time step k is then
given by

W1 = Rû(k − 1, 0)−1Ru(1)

= diag(a1)
(
ID + Σij

û,k−1

)−1 (6.17)

The posterior predictive covariance of the predictor with noisy past observations is
a function of both the uncertainty introduced in the evolution model (via the noise
njk), and the prior uncertainty in the past observations. We can write the posterior
predictive covariance as

Σij
u,k =

p∑
l=1

diag(al)
2Σij

û,k−l + Σn (6.18)

Algorithm 9 contains pseudocode for the simulations without inter-agent communi-
cation.

6.3 Simulations

For both scenarios simulation results are presented here. Simulation setup was generally
equivalent to earlier simulations as described in Section 3.6 and Section 4.2.3. For
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Algorithm 9 Relative formation control using Edge-KF without communication

1: Unknown global constants: N,µ

2: Known global constants: D,T,∆t,H,P,a1,Σn

3: Known local constants: lij ,Rij ,Qij for i = 1, . . . , N , j ∈ Ni
4: R̃ij = IT ⊗Rij for i = 1, . . . , N , j ∈ Ni
5: Draw initial positions zi1 from N (µ,P)

6: ẑij0|0 = 0D for all i ∈ V, j ∈ Ni
7: Σij

0|0 = 2P for all i ∈ V, j ∈ Ni
8: ui0 = 0D for all i ∈ V
9: k = 1

10: while k ≤ kmax do

11: Draw process noise wk from N (0DN ,Q)

12: for i ∈ V do

13: for j ∈ Ni do

14: ûjk−2 = 1
∆t

(
ẑijk−2|k−2 − ẑijk−1|k−1

)
+ uik−2 . Delayed estimate

15: Σij
û,k−2 = 1

∆t2

(
Qij + Σij

k−1|k−1 + Σij
k−2|k−2

)
. Post. cov. delayed estimate

16: W1 = diag(a1)
(
ID + Σij

û,k−2

)−1

17: ûjk−1 = W1û
j
k−2 . One-step prediction

18: ẑijk|k−1 = ẑijk−1|k−1 + ∆tuik−1 −∆tûjk−1

19: Σij
k|k−1 = Σij

k−1|k−1 + Qij + diag(a1)2Σij
û,k−2 + Σn

20: Draw observation noise vijk from N (0DT , R̃ij)

21: yijk = H(zik − zjk) + vijk . Measurements

22: Kij
k = Σij

k|k−1H
>(HΣij

k|k−1H
> + R̃ij)

−1

23: ẑijk|k = ẑijk|k−1 + Kij
k (yijk −Hẑijk|k−1)

24: Σij
k|k = (ID −Kij

k H)Σij
k|k−1

25: end for

26: uik = −
∑
j∈Ni

lij ẑ
ij
k|k . Control law

27: zik+1 = zik + ∆tuik + wi
k . Dynamics update

28: end for

29: k = k + 1

30: end while
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Figure 6.2: Estimation errors for randomly failing communication scenario with observation
and process noise. The plot shows the mean estimation error for 50 runs of Algorithm 8, and
the ±1 standard deviation regions.

the random failure model, we consider a constant scalar probability Pfail ∈ [0, 1] of
a communication link loss at time index k. The probability of failure of a link is
independent of the probability of failure of all other links. Past control inputs of
neighbors are assumed to be known for all l = 1, . . . , k−1. The control input evolution
model is taken to be an AR(1) process with a1 = 0.81D, chosen based on trial runs
of the simulation. For Pfail → 0, the simulation is equivalent to the earlier simulations
in Chapter 4. On the other hand, for Pfail → 1 we approximate a case where all
communication is delayed by one time step. As a benchmark, the case of an agent not
having the control input of its neighbor available and consequently not using it in its
edge filter prediction, is considered, i.e., ûjk = 0D.

The mean estimation errors for the Scenario 1 simulations are shown in Figure 6.2.
Estimation error convergence is generally slower as the probability of failure in-

creases, although for any probability of failure the steady state estimation error is near
equal. For the benchmark case (ûjk = 0D) however, both the convergence speed and
steady state error suffer, i.e., the estimation error is inconsistent due to the biased
predictions.

For the communication-less scenario, the Wiener predictor with past noisy mea-
surements was applied, the results of which are shown in Figure 6.3. It is clear from
the figure that the proposed solution initially experiences difficulties. The main reason
for this is that the uncertainty for the control estimates is initially high. This means
that the predictions similarly have a larger uncertainty. However, over time the esti-
mated past control inputs contribute to the faster convergence of the proposed solution
compared to the benchmark case (ûjk = 0D). Steady state estimation errors do not
converge to the clairvoyant (with communication) estimation error floor. Hence, it can
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Figure 6.3: Estimation errors for communication-less scenario with observation and process
noise. The plot shows the mean estimation error for 50 runs of Algorithm 9, and the ±1
standard deviation regions.

be concluded that there might still be some bias in the predictor leading to inconsistent
estimates. The source for this bias might lie in the imperfect assumptions, e.g., the AR
control input evolution model which may not be the best suited model for this problem.
More discussion on this can be found in the next and final chapter.
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Conclusion and Future Work 7
7.1 Summary

In this thesis an attempt has been made to apply distributed filtering techniques to
relative formation control systems, motivated by a desire to make these systems more
robust to uncertainty introduced in real-life applications. The main contributions of
the thesis can be summarized as follows:

• A statistical data model has been proposed with the purpose of modelling sources
of uncertainties in relative formation control systems. The model is motivated
using real-world formation control examples. A simulation environment has been
set up to test the effect of these noise sources on the formation control process.

• A local edge-based Kalman filter has been introduced, which is the optimal filter
for individual edge tracking. Since relative positions are tracked, this filter requires
no absolute anchor points or shared reference frame. Simulations have shown the
superior performance of this filter compared to e.g., the MLE.

• As an extension of the local edge-based Kalman filter, a joint filter is proposed
via a global filter design approach. It is shown that the joint filter is superior to
the single-edge filter when the edge state space models are coupled when environ-
mental disturbances are spatially correlated.

• Finally, a Wiener predictor has been proposed for systems where inter-agent com-
munication links are (partially) unavailable. Simulations have been performed to
show the robustness of the filter to failing communication links.

Part of the contributions of this thesis have been included in a paper submitted to
IEEE Control Systems Letters (L-CSS), where it is currently in review.

7.2 Discussion and Future Work

Contrasting the contributions of this thesis, naturally there are also some loose ends
and open discussion points, which are reflected upon in this section.

Firstly, let us consider the scope of the contributions of this thesis. The formation
control method considered in [25] is limited to agents governed by single-integrator
dynamics. Most real-life applications have dynamics which, while often decently ap-
proached via the single-integrator model, are more complicated. Dynamics are often
nonholonomic or nonlinear. Similarly, the input to be controlled is often an accelera-
tion rather than a velocity, making double-integrator dynamical models better suited.
Much work has been done to extend relative formation control schemes to more general
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dynamical models [27], [44]. It should be noted that the distributed Kalman filters
proposed in this thesis are by themselves in no ways limited to single-integrator dy-
namics, and are easily extendable to any linear state-space model. The requirement of
observations being a linear function of the relative state of the two agents still remains,
e.g., observations could include measurements of the relative velocity of agents.

The data model for environmental disturbances in relative formation control systems
is chosen to reflect real-life disturbances such as wind, radiation pressure or oceanic
currents. As indicated in Section 4.1, such disturbances are generally correlated not
only spatially but also temporally. In this thesis, the temporal correlation of process
noise has not been considered in the design of the proposed filters. An example of
spatiotemporal models of statistical disturbances can be seen e.g., in [51]. It should
be noted that the Kalman filter is optimal for statistically independent noise processes
only. In situations with temporally correlated noise, other filters may be superior.
Specifically, one may look at kriged Kalman filters [54], which are rooted in Gaussian
process regression.

Another important point to consider for the spatial disturbance model is that in
this thesis, the process noise covariance matrix Q indicating covariances of process
noise between agents, is known and constant. As indicated in Section 4.2, in formation
control systems we deal with mobile agents. Therefore, if we assume the environmental
disturbances acting on agent i and j to be spatially correlated via some kernel function
f(‖zi−zj‖), then the covariance matrix Qk is really time-varying (hence the subscript k)
and unknown. Fortunately, agents can locally estimate the locally relevant covariances
using their edge state estimates and the known kernel function. This extension of the
data model has not been included in the simulations and the effect on the performance
of the filters would be an interesting direction to explore.

The joint edge-based filter has been proposed in Chapter 5 as the optimal dis-
tributed filter for the given data model, and generally an improvement over the local
edge-based Kalman filter proposed in Chapter 4. However, it should be noted that
improvement is a direct result of the coupling of the dynamics of edges via the corre-
lation of environmental disturbances acting on the agents. The joint filter utilizes the
prior knowledge of the distribution of these disturbances to improve its estimate. If the
correlation of external disturbances between agents is very weak or not present, then
the joint filter shows no estimation improvement and, through the larger dimension of
the joint tracked state, only adds a larger computational complexity for agents.

Lastly, consider the model for control input evolution in Chapter 6. An autoregres-
sive model has been chosen in this thesis. However, looking at the true control input
processes, a more extensive model may yield better results. Particularly, the process
model should include some mean that is changing over time. The autoregressive model
assumes a constant mean of zero. However, an autoregressive integrated moving aver-
age (ARIMA) model to include the non-stationarity of the mean of the process. See
e.g., [55] for an example of forecasting for ARIMA models.
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M. Tamura, E. Thiébaut, F. Westall, and G. J. White, “Darwin - A mission to detect
and search for life on extrasolar planets,” Astrobiology, vol. 9, no. 1, pp. 1–22, Mar.
2009, issn: 15311074. doi: 10.1089/ast.2007.0227.

[6] C. P. Escoubet and R. Schmidt, “Cluster II: Plasma measurements in three dimensions,”
Advances in Space Research, vol. 25, no. 7-8, pp. 1305–1314, Jan. 2000, issn: 02731177.
doi: 10.1016/S0273-1177(99)00639-0.

[7] S. A. Fuselier, W. S. Lewis, C. Schiff, R. Ergun, J. L. Burch, S. M. Petrinec, and K. J.
Trattner, Magnetospheric Multiscale Science Mission Profile and Operations, Mar. 2016.
doi: 10.1007/s11214-014-0087-x.

[8] L. Plice, A. D. Perez, and S. West, “Helioswarm: Swarm Mission Design in High Altitude
Orbit for Heliophysics,” in Astrodynamics Specialist Conference, Aug. 2019.

[9] E. Canuto, L. Massotti, A. Molano-Jimenez, and C. Perez, “Long-distance, drag-free,
low-thrust, low-Earth-orbit formation control,” in IFAC Proceedings Volumes (IFAC-
PapersOnline), vol. 18, IFAC Secretariat, Jan. 2010, pp. 297–302, isbn: 9783902661968.
doi: 10.3182/20100906-5-jp-2022.00051.

[10] Y. Xu, Z. Lin, and S. Zhao, “Distributed Affine Formation Tracking Control of Mul-
tiple Fixed-Wing UAVs,” in Chinese Control Conference, CCC, vol. 2020-July, IEEE
Computer Society, Jul. 2020, pp. 4712–4717, isbn: 9789881563903. doi: 10.23919/

CCC50068.2020.9188925.
[11] F. Liao, R. Teo, J. L. Wang, X. Dong, F. Lin, and K. Peng, “Distributed Formation

and Reconfiguration Control of VTOL UAVs,” IEEE Transactions on Control Systems

65

https://doi.org/10.1117/12.457192
https://doi.org/10.1016/j.asr.2019.06.022
https://doi.org/10.1016/j.asr.2007.05.025
https://doi.org/10.1016/j.asr.2007.05.025
https://doi.org/10.1089/ast.2007.0227
https://doi.org/10.1016/S0273-1177(99)00639-0
https://doi.org/10.1007/s11214-014-0087-x
https://doi.org/10.3182/20100906-5-jp-2022.00051
https://doi.org/10.23919/CCC50068.2020.9188925
https://doi.org/10.23919/CCC50068.2020.9188925


Technology, vol. 25, no. 1, pp. 270–277, Jan. 2017, issn: 10636536. doi: 10.1109/TCST.
2016.2547952.

[12] X. Peng, K. Guo, and Z. Geng, “Full State Tracking and Formation Control for Under-
Actuated VTOL UAVs,” IEEE Access, vol. 7, pp. 3755–3766, 2019, issn: 21693536. doi:
10.1109/ACCESS.2018.2889370.

[13] Y. Zou, Z. Zhou, X. Dong, and Z. Meng, “Distributed Formation Control for Multiple
Vertical Takeoff and Landing UAVs with Switching Topologies,” IEEE/ASME Trans-
actions on Mechatronics, vol. 23, no. 4, pp. 1750–1761, Aug. 2018, issn: 10834435. doi:
10.1109/TMECH.2018.2844306.

[14] I. Sarras and H. Siguerdidjane, “On the guidance of a UAV under unknown wind distur-
bances,” 2014 IEEE Conference on Control Applications, CCA 2014, Jan. 2014. doi:
10.1109/CCA.2014.6981442.

[15] A. J. Healey, “Application of formation control for multi-vehicle robotic minesweeping,”
in Proceedings of the IEEE Conference on Decision and Control, vol. 2, 2001, pp. 1497–
1502. doi: 10.1109/cdc.2001.981106.

[16] T. Curtin, J. Bellingham, J. Catipovic, and D. Webb, “Autonomous Oceanographic
Sampling Networks,” Oceanography, vol. 6, no. 3, pp. 86–94, 1993, issn: 10428275. doi:
10.5670/oceanog.1993.03.

[17] A. Laux, L. Mullen, P. Perez, and E. Zege, “Underwater laser range finder,” in Ocean
Sensing and Monitoring IV, vol. 8372, SPIE, Jun. 2012, 83721B, isbn: 9780819490506.
doi: 10.1117/12.919280.

[18] T. J. Tarn, G. A. Shoults, and S. P. Yang, “A dynamic model of an underwater vehicle
with a robotic manipulator using Kane’s method,” Autonomous Robots, vol. 3, no. 2-3,
pp. 269–283, 1996, issn: 09295593. doi: 10.1007/BF00141159.

[19] K. Ehlers, B. Meyer, and E. Maehle, “Full Holonomic Control of the Omni-directional
AUV SMART-E - VDE Conference Publication,” in ISR/Robotik 2014; 41st Interna-
tional Symposium on Robotics, VDE, Jun. 2014, isbn: 978-3-8007-3601-0.

[20] K. K. Oh, M. C. Park, and H. S. Ahn, “A survey of multi-agent formation control,” Auto-
matica, vol. 53, pp. 424–440, Mar. 2015, issn: 00051098. doi: 10.1016/j.automatica.
2014.10.022.

[21] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1520–1533, Sep. 2004, issn: 00189286. doi: 10.1109/TAC.2004.834113.

[22] W. Ren, R. W. Beard, and T. W. McLain, “Coordination Variables and Consensus
Building in Multiple Vehicle Systems,” Lecture Notes in Control and Information Sci-
ences, vol. 309, pp. 171–188, 2005, issn: 01708643. doi: 10.1007/978-3-540-31595-
7{\_}10.

[23] Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control of multi-agent
systems using complex laplacian,” IEEE Transactions on Automatic Control, vol. 59,
no. 7, pp. 1765–1777, 2014, issn: 00189286. doi: 10.1109/TAC.2014.2309031.

[24] Z. M. Han, Z. Y. Lin, M. Y. Fu, and Z. Y. Chen, Distributed coordination in multi-agent
systems: a graph Laplacian perspective, Jun. 2015. doi: 10.1631/FITEE.1500118.

[25] Z. Lin, L. Wang, Z. Chen, M. Fu, and Z. Han, “Necessary and sufficient graphical con-
ditions for affine formation control,” IEEE Transactions on Automatic Control, vol. 61,
no. 10, pp. 2877–2891, 2016, issn: 00189286. doi: 10.1109/TAC.2015.2504265.

[26] L. Wang, Z. Han, Z. Lin, and M. Fu, “A linear approach to formation control under
directed and switching topologies,” in Proceedings - IEEE International Conference on

66

https://doi.org/10.1109/TCST.2016.2547952
https://doi.org/10.1109/TCST.2016.2547952
https://doi.org/10.1109/ACCESS.2018.2889370
https://doi.org/10.1109/TMECH.2018.2844306
https://doi.org/10.1109/CCA.2014.6981442
https://doi.org/10.1109/cdc.2001.981106
https://doi.org/10.5670/oceanog.1993.03
https://doi.org/10.1117/12.919280
https://doi.org/10.1007/BF00141159
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1109/TAC.2004.834113
https://doi.org/10.1007/978-3-540-31595-7{\_}10
https://doi.org/10.1007/978-3-540-31595-7{\_}10
https://doi.org/10.1109/TAC.2014.2309031
https://doi.org/10.1631/FITEE.1500118
https://doi.org/10.1109/TAC.2015.2504265


Robotics and Automation, Institute of Electrical and Electronics Engineers Inc., Sep.
2014, pp. 3595–3600. doi: 10.1109/ICRA.2014.6907378.

[27] T. Han, Z. Lin, W. Xu, and M. Fu, “Three-dimensional formation merging control
of second-order agents under directed and switching topologies,” in IEEE International
Conference on Control and Automation, ICCA, IEEE Computer Society, 2014, pp. 225–
230, isbn: 9781479928378. doi: 10.1109/ICCA.2014.6870924.

[28] Y. Xu, D. Luo, D. Li, Y. You, and H. Duan, “Affine formation control for heterogeneous
multi-agent systems with directed interaction networks,” Neurocomputing, vol. 330,
pp. 104–115, Feb. 2019, issn: 18728286. doi: 10.1016/j.neucom.2018.11.023.

[29] Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups of mobile
autonomous agents,” IEEE Transactions on Automatic Control, vol. 49, no. 4, pp. 622–
629, Apr. 2004, issn: 00189286. doi: 10.1109/TAC.2004.825639.

[30] K. K. Oh and H. S. Ahn, “Formation control and network localization via orientation
alignment,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 540–545, 2014,
issn: 00189286. doi: 10.1109/TAC.2013.2272972.

[31] D. V. Dimarogonas and K. H. Johansson, “On the stability of distance-based forma-
tion control,” in Proceedings of the IEEE Conference on Decision and Control, 2008,
pp. 1200–1205, isbn: 9781424431243. doi: 10.1109/CDC.2008.4739215.

[32] M. C. Park, Z. Sun, B. D. Anderson, and H. S. Ahn, “Distance-based control of Kn
formations in general space with almost global convergence,” IEEE Transactions on
Automatic Control, vol. 63, no. 8, pp. 2678–2685, Aug. 2018, issn: 00189286. doi: 10.
1109/TAC.2017.2776524.

[33] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of Fluids Engineering, Transactions of the ASME, vol. 82, no. 1, pp. 35–45, Mar. 1960,
issn: 1528901X. doi: 10.1115/1.3662552.

[34] A. Simonetto and G. Leus, “Distributed maximum likelihood sensor network localiza-
tion,” IEEE Transactions on Signal Processing, vol. 62, no. 6, pp. 1424–1437, Mar. 2014,
issn: 1053587X. doi: 10.1109/TSP.2014.2302746.

[35] U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed Sensor Localization in Random
Environments using Minimal Number of Anchor Nodes,” IEEE Transactions on Signal
Processing, vol. 57, no. 5, pp. 2000–2016, Feb. 2008. doi: 10.1109/TSP.2009.2014812.

[36] D. Marelli, M. Zamani, M. Fu, and B. Ninness, “Distributed Kalman filter in a network
of linear systems,” Systems and Control Letters, vol. 116, pp. 71–77, Jun. 2018, issn:
01676911. doi: 10.1016/j.sysconle.2018.04.005.

[37] D. Viegas, P. Batista, P. Oliveira, and C. Silvestre, “Discrete-time distributed Kalman
filter design for formations of autonomous vehicles,” Control Engineering Practice,
vol. 75, pp. 55–68, Jun. 2018, issn: 09670661. doi: 10.1016/j.conengprac.2018.
03.014.

[38] S. Lu, C. Lin, Z. Lin, R. Zheng, and G. Yan, “Distributed Kalman filter for relative
sensing networks,” in Chinese Control Conference, CCC, vol. 2015-September, IEEE
Computer Society, Sep. 2015, pp. 7541–7546, isbn: 9789881563897. doi: 10.1109/

ChiCC.2015.7260835.
[39] A. Y. Alfakih, “On bar frameworks, stress matrices and semidefinite programming,”

Mathematical Programming, vol. 129, no. 1, pp. 113–128, Sep. 2011, issn: 00255610.
doi: 10.1007/s10107-010-0389-z.

67

https://doi.org/10.1109/ICRA.2014.6907378
https://doi.org/10.1109/ICCA.2014.6870924
https://doi.org/10.1016/j.neucom.2018.11.023
https://doi.org/10.1109/TAC.2004.825639
https://doi.org/10.1109/TAC.2013.2272972
https://doi.org/10.1109/CDC.2008.4739215
https://doi.org/10.1109/TAC.2017.2776524
https://doi.org/10.1109/TAC.2017.2776524
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/TSP.2014.2302746
https://doi.org/10.1109/TSP.2009.2014812
https://doi.org/10.1016/j.sysconle.2018.04.005
https://doi.org/10.1016/j.conengprac.2018.03.014
https://doi.org/10.1016/j.conengprac.2018.03.014
https://doi.org/10.1109/ChiCC.2015.7260835
https://doi.org/10.1109/ChiCC.2015.7260835
https://doi.org/10.1007/s10107-010-0389-z


[40] S. J. Gortler, A. D. Healy, and D. P. Thurston, “Characterizing Generic Global Rigid-
ity,” Ad Hoc Networks, vol. 10, no. 3, pp. 623–634, Oct. 2007. doi: 10.1016/j.adhoc.
2011.06.016.

[41] R. Connelly, “Generic global rigidity,” Discrete and Computational Geometry, vol. 33,
no. 4, pp. 549–563, Oct. 2005, issn: 01795376. doi: 10.1007/s00454-004-1124-4.

[42] T. Eren, D. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. Anderson, and
P. N. Belhumeur, “Rigidity, computation, and randomization in network localization,”
in Proceedings - IEEE INFOCOM, vol. 4, 2004, pp. 2673–2684, isbn: 0780383559. doi:
10.1109/INFCOM.2004.1354686.

[43] P. H. Schönemann, “A generalized solution of the orthogonal procrustes problem,”
Psychometrika, vol. 31, no. 1, pp. 1–10, Mar. 1966, issn: 00333123. doi: 10.1007/

BF02289451.
[44] Y. Xu, D. Luo, Y. You, and H. Duan, “Distributed adaptive affine formation control for

heterogeneous linear networked systems,” IEEE Access, vol. 7, pp. 23 354–23 364, 2019,
issn: 21693536. doi: 10.1109/ACCESS.2019.2898974.

[45] C. Fischer, K. Muthukrishnan, and M. Hazas, SLAM for Pedestrians and Ultrasonic
Landmarks in Emergency Response Scenarios. Elsevier, Jan. 2011, vol. 81, pp. 103–160.
doi: 10.1016/B978-0-12-385514-5.00003-3.

[46] C. Soares, F. Valdeira, and J. Gomes, “Range and Bearing Data Fusion for Precise
Convex Network Localization,” IEEE Signal Processing Letters, vol. 27, pp. 670–674,
2020, issn: 15582361. doi: 10.1109/LSP.2020.2988178.

[47] M. C. Deans and M. Hebert, “Bearings-Only Localization and Mapping,” Ph.D. disser-
tation, USA, 2005, isbn: 0542292831.

[48] M. Coppola, Relative Localization for Collision Avoidance in Micro Air Vehicle teams
Using on-board processing and sensors in indoor environments (MSc thesis). Delft, Jun.
2016.

[49] Q. Zhu, J. Chen, D. Shi, L. Zhu, X. Bai, X. Duan, and Y. Liu, “Learning Temporal
and Spatial Correlations Jointly: A Unified Framework for Wind Speed Prediction,”
IEEE Transactions on Sustainable Energy, vol. 11, no. 1, pp. 509–523, Jan. 2020, issn:
19493037. doi: 10.1109/TSTE.2019.2897136.

[50] A. K. Sinha and M. M. Zaheer, “Modelling of force and torque due to solar radiation
pressure acting on interplanetary spacecraft,” in Advances in Intelligent Systems and
Computing, vol. 714, Springer Verlag, 2019, pp. 525–535. doi: 10.1007/978-981-13-
0224-4{\_}47.

[51] V. Roy, A. Simonetto, and G. Leus, “Spatio-temporal field estimation using kriged
kalman filter (KKF) with sparsity-enforcing sensor placement,” Sensors (Switzerland),
vol. 18, no. 6, Jun. 2018, issn: 14248220. doi: 10.3390/s18061778.

[52] J. Mercer, “XVI. Functions of positive and negative type, and their connection the
theory of integral equations,” Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character, vol. 209, no. 441-
458, pp. 415–446, Jan. 1909, issn: 0264-3952. doi: 10.1098/rsta.1909.0016.

[53] S. M. Kay, Fundamentals of statistical signal processing. Englewood Cliffs, N.J.: Prentice
Hall PTR, 1993, isbn: 9780133457117.

[54] K. V. Mardia, C. Goodall, E. J. Redfern, and F. J. Alonso, “The Kriged Kalman Filter,”
Test, vol. 7, no. 2, pp. 217–282, 1998, issn: 11330686. doi: 10.1007/bf02565111.

[55] C. Li and J. W. Hu, “A new ARIMA-based neuro-fuzzy approach and swarm intelligence
for time series forecasting,” Engineering Applications of Artificial Intelligence, vol. 25,

68

https://doi.org/10.1016/j.adhoc.2011.06.016
https://doi.org/10.1016/j.adhoc.2011.06.016
https://doi.org/10.1007/s00454-004-1124-4
https://doi.org/10.1109/INFCOM.2004.1354686
https://doi.org/10.1007/BF02289451
https://doi.org/10.1007/BF02289451
https://doi.org/10.1109/ACCESS.2019.2898974
https://doi.org/10.1016/B978-0-12-385514-5.00003-3
https://doi.org/10.1109/LSP.2020.2988178
https://doi.org/10.1109/TSTE.2019.2897136
https://doi.org/10.1007/978-981-13-0224-4{\_}47
https://doi.org/10.1007/978-981-13-0224-4{\_}47
https://doi.org/10.3390/s18061778
https://doi.org/10.1098/rsta.1909.0016
https://doi.org/10.1007/bf02565111


no. 2, pp. 295–308, Mar. 2012, issn: 09521976. doi: 10.1016/j.engappai.2011.10.
005.

69

https://doi.org/10.1016/j.engappai.2011.10.005
https://doi.org/10.1016/j.engappai.2011.10.005

	Abstract
	Acknowledgments
	Introduction
	Background
	Application Areas of Formation Control
	Satellite Interferometry
	UAV Formation Flight
	Underwater Sensing Formations

	State of the Art
	Relative Formation Control
	Distributed Kalman Filtering

	Goals and Outline

	Preliminaries
	Notation
	Graph Theory
	Configurations and Frameworks
	Rigidity
	Affine and Rigid Formations
	Procrustes Error

	Relative Formation Control
	Agent Dynamics and Control Law
	Problem Formulation
	Conditions for Realizability and Stabilizability
	Laplacian Weight Design
	Extension to Rigid Formations
	Simulations

	Local Approach to Edge State Filtering
	Motivation for Statistical Noise Modelling
	Motivation for Measurement Noise Modelling
	Motivation for Process Noise Modelling

	Data model
	Measurement Model
	Process Model
	Data Model for Simulations

	Maximum likelihood estimator
	Minimum Mean Square Error Estimator
	Edge-based Kalman Filter

	Global Approach to Edge State Filtering
	Global State-Space Model
	Centralized Edge Kalman Filter
	Joint Edge Kalman Filter
	Simulations

	Robust Communication-less Edge State Filtering
	Scenario 1: Random Communication Link Failure
	Scenario 2: Full Communication-less Setting
	Simulations

	Conclusion and Future Work
	Summary
	Discussion and Future Work


