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Abstract

It is a well-known fact that the Moon is receding from the Earth due to tidal interactions between the
two bodies (if other Solar System bodies were to be neglected). What is less well-known, but just as
interesting, is the long-term evolution of planetary systems, especially for icy moons such as those
of Jupiter and Saturn. Future missions like JUICE and Europa Clipper will yield extremely accurate
radio-science measurements, resulting in possibly better orbit determination and physical parameter
estimation. This would however require more accurate dynamical models. To model the long-term
evolution of planetary systems properly, and get consistent estimates of related physical parameters
(e.g. tidal dissipation parameters) from spacecraft tracking data, it is imperative to ensure that the
modelling of the orbit, rotation and tidal deformation of tidally-locked satellites is entirely consistent.
Currently used models, however, cannot ensure this.

In order to analyse the effect of tides on a planetary system’s orbital evolution, this work propagates
the dynamics of the Earth-Moon system in two different ways. A first - simplified and ’uncoupled’ - man-
ner, and the current-day standard in the field of natural satellites’ dynamics, concurrently propagates
the translational and rotational dynamics, while modelling the influence of tidal effects as a tidal force.
This model works fine to model the dynamics of natural satellites, but fails when trying to model the full
dynamics of spacecrafts too, resulting in possible inconsistencies in the estimation of physical param-
eters. Hence, a second manner, introduced by Correia et al. (2014) and novel for the field of natural
satellites’ dynamics, is introduced. This ’coupled’ model offers a complete and consistent of a satellite’s
orbit, rotation and tidal deformation of its gravity field, automatically ensuring consistency between the
dynamics of natural satellites and spacecrafts. The first part of the results focuses on analysing the
difference between these two solutions in terms of position and Keplerian elements.

A second part of the results considers the evolution of gravity field coefficients and tidal parameters
of the body and the evolution of the semi-major axis a and eccentricity e of the orbit due to the influence
of tides. The results of both models are compared against each other and against approximations
found in literature. Notably, the coupled model performs well for the tides raised on the Moon by
itself, dissipating the right amount of orbital energy and predicting values for the evolution of a and e
in agreement with the simplified, uncoupled model, although tidal dissipation manifests itself differently.
This work finds that the time-variations in the gravity field coefficients cause tidal dissipation, whereas
the ’static’ part of the coefficients causes tidal dissipation in simplified, uncoupled approaches. This
demonstrates the suitability of the proposed coupled implementation for future missions, which has the
advantage of circumventing most of the practical and theoretical limitations of the uncoupled model.
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1
Introduction

Throughout developments in physics and astronomy, dynamical models have been developed to accu-
rately determine the positions of natural satellites, from Newton’s laws of motion in his Principia to the
current dynamical models used for ephemerides estimations by, for example, NASA’s Jet Propulsion
Laboratory (e.g., Park et al. 2021). Ephemerides are created by combining dynamical models with
observations from scientific instruments, such as instruments on-board of satellites and ground-based
tracking stations and telescopes (e.g., Fienga et al. (2019); Park et al. (2021); Fayolle et al. (2023)).
Accurate natural satellite ephemerides carry importance with it for scientific missions; knowing the po-
sitions of celestial bodies currently, and, more importantly, knowing where they will be at a later time,
is relevant for mission design (for example, for flyby’s) and orbit navigation of satellites. Furthermore,
ephemerides provide information about the formation and evolution of planetary systems (e.g., Dirkx
et al. (2016); Lainey et al. (2007); Lainey et al. (2012); Folkner et al. (2014)) by extracting key informa-
tion on the orbital evolution of planetary systems and the properties of the bodies in it, such as their
composition, interior structure and rheology. As technological improvements lead to more accurate ob-
servations and new methods for observations get developed, such as discussed in Dirkx et al. (2019),
the accuracy of these observations increase. Ideally, the dynamical model’s error will be well below the
error of the observations, resulting in improved statistical significance and consistency of ephemerides.
If the dynamical model’s error would be at the same level of the observations, it would be hard to val-
idate its statistical significance as there is no way to confidently state whether the error is caused by
the dynamical model or the observations.

Celestial bodies are not completely rigid. As a result, a body experiences deformations due to
differential gravitational forces from other bodies and centrifugal forces due to its own rotation. These
deformations cause small variations in the gravity field of the relevant bodies generating internal friction,
which results in dissipation of orbital and rotational energy; this is known as tidal dissipation, which
drives the orbital migration of natural satellites and also influences their rotation, and thus plays a
crucial role in planetary system evolution. The impact of tidal deformations on the orbital and rotational
dynamics are also referred to as the tidal dynamics of a system. They are parts of the dynamical
modelling of celestial bodies that can still be improved upon.

Up until now, various developments throughout history have seen the tidal dynamics be modelled in
various ways: Kant (1754) noted that tidal dissipation is a real effect that would slow the Earth’s rotation,
from which Darwin started modelling the dissipation and used a Fourier expansion for the tidal potential
(Darwin (1880)). Bodies do not instantly deform under this gravitational forcing; rather, it takes time for
them to deform due to their viscoelastic properties. This ’delay’, while varying throughout the orbit of
a satellite, can be approximated by a constant ’time lag’ depending on simplifying, and much disputed,
assumptions(e.g., Efroimsky et al. 2013). Kaula (1964) extended this to allow frequency dependence
of the tidal lag.

Current dynamical models often numerically integrate only the translational dynamics, while using
pre-defined models for the rotational dynamics and/or using simplified formulations for the tides; they
are uncoupled. For example, Dirkx et al. (2019) couples the translational and rotational part, but leaves
out the tides by assuming a rigid body. Another example is Lari (2018), where they only integrate the
translational part of the model and model the rotation with a kinematic solution a priori and the tides

1



1.1. Research questions 2

are included with a simplified formulation. These simplified approaches have been preferred so far,
because the errors of the underlying dynamical models remained well below the errors of observations.
They are however limited in their use. By using a simplified expression for the tides - which depends
on the rotation rate -, it and the rotation of a satellite are not consistently modelled. Any inconsistency
will break the conservation of angular momentum, generating a secular along-track drift. To circumvent
this issue, Murray et al. (1999) uses a simplified expression for the tides independent of the rotation
rate. While this has been a very useful strategy until now for natural satellites, it raises issues for future
missions. This model is applicable to natural satellites, but fails to properly model the dynamics acting
on a spacecraft by neglecting the tidal influence of the moon’s varying gravity field on the spacecraft.
In order to obtain good estimates of tidal dissipation parameters from these missions, it is vital to
consistently model the influence of the moon’s orbit as well as the moon’s varying gravity field on the
spacecraft; this is not possible with the current, simplified approaches, but calls for a coupled modelling
approach of the orbit, rotation and tidal deformation of the gravity field.

To this end, Correia et al. (2014) modelled the instantaneous change in the gravity field coefficients
using a differential equation, where the celestial bodies are assumed to have a certain rheology (i.e.
how the body responds to applied forces). Boué et al. (2016) extends this model to a more general
formulation to create a fully consistent model capable of concurrently integrating the translational and
rotational dynamics while accounting for tidal deformation of the gravity field. This model is a suitable
candidate for a more accurate, and general, dynamical model. Correia et al. (2014) and Boué et al.
(2016) only test this model for long-term evolution and outside the solar system. For planetary landers
andmissions, short-term evolutions of synchronous (tidally-locked) satellites aremuchmore interesting,
as it is these moons missions like JUICE and Europa Clipper will be sensitive to.

Hence, it is beneficial to apply the coupled model on a shorter timescale to systems closer to home.
In this work, the Earth-Moon system will be investigated using the coupled model. The tidal parameters
for the Moon are determined quite well (e.g., Lainey 2016) and thus serves as a good test case to vali-
date the coupled model, next to gaining additional insights from the coupled model. Furthermore, since
the coupled model does not have limiting underlying assumptions, the model can easily be extended to
other planetary systems regardless of the specifics of the orbit (ecccentricity and inclination of the orbit,
rotation rate of satellite, etc.), making the specifics of the planetary system considered less relevant
to a certain extent, and the general manifestation of tidal dissipation more so. Numerically integrating
the rotational equations of motion gives rise to rotational normal modes, which arise due to the internal
properties, but have long been damped for Solar System bodies. As a result, it is imperative to damp
these normal modes when using the coupled model to initialize a realistic initial state. Concluding, this
work provides an extensive analysis of the coupled model applied to the Earth-Moon system, with and
without perturbations, with the goal of determining to which extent it is a worthwhile improvement of
current dynamical models in light of future missions.

1.1. Research questions
Following the discussion raised in the introduction, the following main research question is set up:

• What is the effect of using a fully coupled model compared to current-day models in natural satel-
lites’ dynamics modelling in planetary systems?

In order to facilitate the research and provide structure to the work, the following subquestions have
been formulated:

• Can proper initialization reliably be achieved for the system(s) in question?
• What are the effects for an unperturbed and perturbed system of the tides raised on the primary
as predicted by the coupled model?

• What are the effects for an unperturbed and perturbed system of the tides raised on the secondary
as predicted by the coupled model?

1.2. Thesis outline
The thesis is structured in as follows: Chapter 2 will contain the literature study performed at the start of
the thesis, along with the thesis planning made at this point in time - unmodified and with a short discus-
sion comparing it to how the thesis actually went. Chapter 3 contains a stand-alone paper highlighting
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the main research and discussing the results. Lastly, Chapter 4 answers the research question(s) and
formulates recommendations based on the results obtained in this work. Complementary appendices
are included, discussing material that was not deemed suitable to be included in the main content.



2
Literature Study

2.1. Introduction
The goal of this literature study is not to answer the research question. Rather, it will serve as a basis
in order to dive into implementing the coupled model for (part of) the systems described before with the
eventual goal of creating more accurate dynamical models than what is available right now. To this end,
the literature study is structured as follows: Section 2.2.1 will describe the translational dynamics that
govern the translational motion of celestial bodies. Section 2.2.2 will discuss the rotational dynamics
that govern the rotation of celestial bodies. Section 2.3 will describe current-day methods and literature
approximations commonly used to to model the influence of tidal effects on the dynamics of planetary
systems. Section 2.4 will introduce the coupled model and will set up a full set of equations of motion
governing the translational, rotational and tidal dynamics of celestial bodies. Finally, Section 2.5 will
discuss methods of verification, validation and testing the coupled model by comparing it against liter-
ature approximations and current-day approximations such as in Section 2.3, as well as testing it for
unique edge cases. Lastly, Section 2.6 shows the thesis planning as was created at the end of the
literature study, and will also discuss how this played out in reality.

2.2. Dynamical model
In this chapter, a natural satellite’s translational and rotational dynamics are described using equations
of motions. Most natural satellites in the solar system are caught in synchronous rotational states (e.g.,
Murray et al. 1999). This allows for a-priori kinematic descriptions to be introduced, circumventing the
need to numerically integrate the orientation of a natural satellite using torques. Small deviations from
these states - referred to as librations - will also be discussed.

This chapter first introduces some nomenclature that will be used throughout the rest of this work,
proceeding with defining a two-dimensional formulation for the equations of motion applicable to a
planet and its moon. This will then be extended to a more general three-dimensional formulation allow-
ing for perturbations. Finally, the chapter concludes with an analysis of the kinematic description of the
rotation and librations.

2.2.1. Translational dynamics
Nomenclature
The motion of the Earth and the Moon will be described with respect to the other; if the Moon is prop-
agated, a quasi-inertial reference frame will be centered on the Earth and vice versa. The orientation
of this reference frame, known as J2000, is based on the Earth’s equator and equinox, with the x-axis
pointing along the vernal equinox, the z-axis pointing along the Earth’s rotation vector as it was at the
epoch of J2000 and the y-axis completing the frame. Each body is also assigned a body-fixed refer-
ence frame, with its origin at the center of mass and its axes aligned with the principal axes of inertia,
with the z-axis aligned with the axis of maximal inertia. In the remainder, vectors may be expressed in
any of these reference frames.

A vector x going from a body i to a body j in the body-fixed frame of i is expressed as xij . Similarly,

4



2.2. Dynamical model 5

a vector going from j to i in the body-fixed frame of j is expressed as xji. A subscript i in the gradient
∇i indicates that the gradient is taken with respect to coordinates associated with the body-fixed frame
of body i, thus requiring a rotation matrix RI/i to convert results to a common, inertial frame. Lastly, a
gradient in the inertial reference frame is written as ∇.

Gravity field modelling
Following Correia et al. (2014), a simplified Earth-Moon system is considered with no perturbations.
Consider a body-fixed reference frame (I, J , K) centered on body i, where K is the axis of maximum
inertia, the largest of the three principle axes of inertia of a rigid body. It is assumed that the rotation
rate Ω of the body is along K and that K is orthogonal to the orbital plane, implying zero obliquity (i.e.
the equatorial plane and the orbital plane coincide). The setting of this problem is displayed in Fig. 2.1
and discussed in Correia et al. (2014). Note that the inertial frame and body-fixed frame have the same
origin.

Figure 2.1: Schematic overview of the extended two-body problem with central body 0 and satellite i. The reference frames
FI = (i, j,k) and Fi = (I,J ,K) are introduced, where Fi is fixed to body i and rotating with angular velocity ωi. ri0 is the
position vector going from i to 0, ni is the mean motion of body 0 in the frame of body i and θ and γ are the rotation angle

between the reference frames and the angular direction of body 0 as seen from Fi respectively.

In the following equations, Uk is the gravitational potential of body k and is expressed using spherical
harmonic expansions. This gravitational potential Uk can, outside its smallest circumscribing sphere,
be expressed such that (e.g., Dirkx et al. 2019)

Uk(r) = Uk(r, ϑ, ϕ) =
µk

r

∞∑
l=0

l∑
m=0

(
Rk

r

)l

Pl,m sin(ϕ)(Ck
l,m cos(mϑ) + Sk

l,m sin(mϑ)). (2.1)

r, ϑ and ϕ are the distance to the origin, the body-fixed longitude and body-fixed latitude of the
position vector r. They express the position at which the potential is evaluated in a body-fixed frame
attached to body k in spherical coordinates. µk and Rk are the gravitational parameter and the refer-
ence radius of body k. Pl,m are the associated unnormalized Legendre polynomials of degree l and
orderm and Ck

l,m and Sk
l,m are the associated unnormalized cosine and sine coefficients. The spherical

harmonic expansion can also be written in terms of normalized coefficients. Then, Ck
l,m = C̄k

l,mN̄l,m,
Sk
l,m = S̄k

l,mN̄l,m and P̄l,m = Pl,mN̄l,m with (e.g., Dirkx et al. 2019)

N̄l,m =

√
(2− δ0,m)(2l + 1)(l −m)!

(l +m)!
, (2.2)
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where δ0,m is the Kronecker delta, equal to 1 if m = 0 and 0 otherwise. The m = 0 coefficients
Ck

l,0 (the Sk
l,0 coefficients do not exist as m = 0 gives sin(0) = 0) are sometimes expressed as zonal

coefficients:

Jk
l = −Ck

l,0 = −C̄k
l,0

√
2l + 1. (2.3)

The normalized coefficients C̄k
l,m and S̄k

l,m are related to the internal density distribution through
(e.g., Lambeck 1988):(

C̄k
l,m

S̄k
l,m

)
=

1

Mk(2l + 1)

∫
Vk

ρk(r, ϕ, ϑ)

(
r

Rk

)l

P̄l,m(sin(ϕ))
(
cos(mϑ)
sin(mϑ)

)
dV, (2.4)

where the integral is taken over the volume of the complete body and ρk(r, ϕ, ϑ) describes the
internal density at those coordinates.

It is common to truncate the spherical harmonic expansion to a degree lmax. For the problem at
hand, the chosen lmax is two, as for most natural satellites (such as the Galileanmoons) only the degree
2 gravity field coefficients are known. They furthermore also have the largest contribution aside from the
point mass contribution. Lastly, their effects are crucial to incorporate accurately when modelling tides,
as the S2,2 coefficient has a similar effect on orbital migration of natural satellites as tidal dissipation
(see section 2.4). For lmax = 2, the body is considered an oblate ellipsoid. The terms for l = 1 drop
off provided that the body-fixed reference frame is centered on the center of mass of the body, which
will be assumed to be the case (Murray et al. (1999)). The l = 1 terms describe the deviation of the
body’s mass distribution from the body-fixed center; if the reference frame is centered on the center
of mass, then by definition it is symmetrically distributed about this point and thus C1,m and S1,m are
equal to 0. Furthermore, S2,1 and C2,1 are equal to 0 when the body has a rotational symmetry about
its polar axis, which is assumed to be the case. Similarly, S2,2 is also equal to 0 when the equatorial
axes of the body-fixed reference frame align with the equatorial principal axes of inertia; it represents
asymmetry in the mass distribution relative to the equatorial plane. If there is no such asymmetry, it
is 0 by definition. However, due to S2,2 and tidal dissipation having very similar signatures in natural
satellites’ dynamics, this coefficient is still included. This will be elaborated upon in section 2.4.

For the simplified situation depicted in Fig. 2.1 and assuming the above assumptions, the following
simplified expression for the gravitational potential Ui(r) holds for a body i:

Ui(r) =
µi

r
− µiR

2
i J

i
2

r3
P2,0(sin(ϕ)) +

µiR
2
iP2,2(sin(ϕ))

r3
(Ci

2,2 cos(2ϑ) + Si
2,2 sin(2ϑ)). (2.5)

Assuming the body-fixed latitude at which the potential is evaluated is equal to 0 (i.e., natural satellite
with zero inclination), this can be further simplified to (e.g. Correia et al. (2013); Correia et al. (2014))

Ui(r) =
µi

r
+
µiR

2
i J

i
2

2r3
+

3µiR
2
i

r3
(Ci

2,2 cos(2ϑ) + Si
2,2 sin(2ϑ)). (2.6)

Note that this requires the secondary body (i.e., the body that exerts a force on the oblate ellipsoid)
to be a point mass. This is a reasonable simplification because the figure-figure interactions can be
considered sufficiently small for the purpose at hand; that is to create a dynamical model fulfilling the
accuracy requirements created by development of new measurement techniques (e.g., Lainey et al.
(2007), Dirkx et al. (2016)).

Translational equations of motion
Fundamentally, the acceleration exerted on body 0 by the gravitational potential of body i in a common
inertial frame can be described by Newton’s second law:

r̈i0 = RI/i∇iUi(ri0), (2.7)
where r̈i0 is the second time-derivative of ri0. Assuming the potential as defined in Eq. 2.5, r̈i0

then evaluates to (e.g., Correia et al. 2014)

r̈i0 = RI/i·(− µi

r2i0
r̂−3µiR

2
i

2r4i0
J i
2r̂−

9µiR
2
i

r4i0
(Ci

2,2 cos 2γ0−Si
2,2 sin 2γ0)r̂+

6µiR
2
i

r4i0
(Ci

2,2 sin 2γ0+Si
2,2 cos 2γ0)K×r̂),

(2.8)
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where the substitution ϑ = −γ has been performed, where µi = Gmi, r̂ is the radial unit vector and
γ̂ = K × r̂ is the tangential unit vector, both in the body-fixed frame.

The acceleration in Eq. 2.8 is the acceleration the extended body k exerts on the point mass j.
In practice, both bodies are extended, in which case the acceleration of an extended body j due to
gravitational interaction with an extended body k is given as (e.g., Lainey et al. 2004)

r̈kj = r̈kj + r̈k̂j + r̈kĵ + r̈k̂ĵ , (2.9)

where the bar and hat notations indicate the contributions of the center of mass and extended
gravitational potential terms of a body to the acceleration respectively. The first two terms thus describe
the acceleration of body k’s point mass and extended body on body j, while the third term accounts
for the acceleration due to interaction of point mass k with extended body j. The fourth term describes
the figure-figure interaction between both extended bodies. As mentioned before, they can be safely
neglected for this application and are generally left out in natural body dynamics (e.g., Lainey et al.
(2007), Dirkx et al. (2016), Magnanini et al. (2024)). Rewriting the third term using Newton’s third law
to r̈kĵ = − µj

µk
r̈ĵk then yields (e.g., Dirkx et al. 2016)

r̈kj = r̈kj + r̈k̂j −
µj

µk
r̈ĵk. (2.10)

Eq. 2.10 holds for an inertial origin and in general, body k is not an inertial origin. It thus also
experiences an acceleration that must be accounted for. In the case that body k exerts an acceleration
on body j with the reference frame centered in k, the acceleration is simply (r̈kj)k = r̈kj − r̈jk, where
the second term takes into account the fact that body j can also apply an acceleration on body k. The
resulting acceleration is then given as (e.g., Dirkx et al. 2014):

(r̈kj)k = (µk + µj)

(
− r̂

r2
+

r̈k̂j
µk

−
r̈ĵk
µj

)
. (2.11)

Consequently, Eq. 2.11 evaluates to Eq. 2.8 with µi replaced by µ = µi + µ0.
A second, more complex situation arises when the effect of perturbations on the Earth-Moon system

are included. This work includes the point mass accelerations exerted on the Earth-Moon system by
the Sun and Jupiter. Since the body-fixed latitude at which the potential is evaluated is now not equal to
0, Eq. 2.6 does not hold and Eq. 2.5 must be used to derive the mutual acceleration. It is worth noting
that the equations derived in this section are general and do not only hold for the introduced specific
case, until the gravitational potential is replaced by a simplified version, such as Eq. 2.6. Substituting
Eq. 2.5 into Eq. 2.11 leads to

r̈ =
−µR2

i

r2

((
1

R2
i

− 3J i
2

r2
P2,0(sin(ϕ0)) +

3P2,2(sin(ϕ0))
r2

(Ci
2,2 cos(2ϑ0) + Si

2,2 sin(2ϑ0))
)
r̂

+

(
3 sin(ϕ0) cos(ϕ0)J i

2

r2
+

6 sin(ϕ0) cos(ϕ0)
r2

(Ci
2,2 cos(2ϑ0) + Si

2,2 sin(2ϑ0))
)
ϕ̂

−
(
2P2,2(sin(ϕ0))
r2 cos(ϕ0)

(−Ci
2,2 sin(2ϑ0) + Si

2,2 cos(2ϑ0))
)
ϑ̂

)
. (2.12)

Third-body accelerations
Having discussed both mutual spherical harmonics and the possibility of having a non-inertial origin, it is
also possible that a non-inertial origin is situated on a body j: the acceleration (r̈i0)j = r̈i0− r̈ij , which
is the acceleration on body 0 due to body i with the frame origin at some other body j, which is now a
third-body pertubation. Up until now the Earth-Moon system has been treated as a two body problem.
Although a good approximation, more realistic orbits are obtained using more extensive dynamics of
the system, which will include third body perturbations. The expressions are easily obtained by switch-
ing the necessary subscripts in Eq. 2.11, which can yield the following expression for a third-body
pertubation:
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(r̈i0)j = −µi

((
r̂i0
r2i0

−
r̈î0
µi

+
r̈0̂i
µ0

)
−
(
r̂ij
r2ij

−
r̈îj
µi

+
r̈ĵi
µj

))
. (2.13)

Then, a full expression for the acceleration any body k experiences in a planetary system can be
given. Consider the case of a moon k orbiting a central body 0 along with other bodies j, the total
acceleration exerted on body k can then be given as

r̈k = RI/0

(
(r̈0k)0 +

j ̸=k,0∑
j

(r̈jk)0

)
, (2.14)

where a central body 0 exerts an acceleration on body k along with a number of third bodies j.
Putting everything together, the acceleration acting on the Moon including perturbations is given by

r̈ =
−µR2

i

r2

((
1

R2
i

− 3J i
2

r2
P2,0(sin(ϕ0)) +

3P2,2(sin(ϕ0))
r2

(Ci
2,2 cos(2ϑ0) + Si

2,2 sin(2ϑ0))
)
r̂

+

(
3 sin(ϕ0) cos(ϕ0)J i

2

r2
+

6 sin(ϕ0) cos(ϕ0)
r2

(Ci
2,2 cos(2ϑ0) + Si

2,2 sin(2ϑ0))
)
ϕ̂

−
(
2P2,2(sin(ϕ0))
r2 cos(ϕ0)

(−Ci
2,2 sin(2ϑ0) + Si

2,2 cos(2ϑ0))
)
ϑ̂

)
−
∑
j

µj

(
r̂ji
r2ji

− r̂j0
r2j0

)
(2.15)

The translational equations of motion can then be summarized as follows (e.g., Dirkx et al. 2019):

ẋt =

[
ṙk
v̇k

]
=

[
vk

r̈k

]
, (2.16)

with vk the velocity of body k and r̈k given by Eq. 2.8 or 2.15, depending on the case discussed.
Note that all the accelerations discussed depend on Uk(r) for each body k. Here, Uk only depends
on r. In reality, Uk can also be time-dependent. The formulation Uk(r) as given in Eq. 2.1 assumes
that the internal mass distribution is invariant over time, but this is generally not the case. Changes in
mass distribution can be due to various reasons, the biggest of which are rotation of the body (causing
flattening) and tidal deformations. These variations in mass distribution are expressed through time-
dependency via Ck

l,m and Sk
l,m. After all, they relate to the internal mass (and density) distribution

through Eq. 2.4. In order to understand where this time-dependency comes from, it is important to dive
into rotational and tidal dynamics, which Sections 2.2.2 and 2.3 will do.

2.2.2. Rotational dynamics
Inertia tensor
The inertia tensor I is a 3× 3 symmetric matrix that describes the internal mass distribution relative to
an axis of rotation. A convenient set of axes is given by the body-fixed frame, for which the off-diagonal
elements of I are 0. The axes of the body-fixed frame correspond to the principal axes of inertia, which
are defined by the internal mass distribution. They furthermore pass through the body’s center of mass
and are oriented such that angular momentum about one axis is not transferred to another. The inertia
tensor for an arbitrary mass distribution is defined as (e.g., Dehant et al. 2015):

Ik =

∫
Vk

ρk(r)((r · r)13×3 − r · rT )dV, (2.17)

where the integral is taken over the volume of the complete body k, ρk is the density distribution of
the body as a function of r and 13×3 is the 3 × 3 identity matrix. The separate components of I are
typically referred to as:

Ik =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (2.18)
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where the diagonal elements are the moments of inertia and the off-diagonal elements the products
of inertia. Since both the inertia and the gravity field coefficients depend on the internal mass distribution
per Eq. 2.4 and 2.17, a relationship exists between the inertia tensor components and the degree 2
gravity field coefficients (e.g., Lambeck 1980):

Ik = mkR
2
k


Ck

20

3 − 2Ck
22 −2Sk

22 −Ck
21

−2Sk
22

Ck
20

3 + 2Ck
22 −Sk

21

−Ck
21 −Sk

21 − 2Ck
20

3

+ Īk13x3, (2.19)

where Sk
2,1 = 0 and Ck

2,1 = 0 given that the inertia tensor is evaluated in the body-fixed frame,
in which it is defined to have a rotational symmetry about its polar axis (also see section 2.2.1), and
Īk is the normalized mean moment of inertia, which is equal to the average value of the diagonal of
Ik. Hence, knowing the degree 2 gravity field coefficients and the normalized mean moment of inertia
uniquely defines the inertia tensor of a body.

Gravitational torque
The main torque driving the rotational evolution of the satellite i is the gravitational torque exerted by
the central body 0 on the non-spherical shape of the satellite. For the general case of an extended
body k, the gravitational torque exerted by a point mass 0 can be described as

Γ̄
(k)
0k = −m0rk0 × (∇kUk (rk0)) , (2.20)

where Γ̄
(k)
0k is the gravitational torque exerted by the point mass body 0 on body k, in the reference

frame of body k. Note that if rk0 = 0, then so is Γ̄
(k)
0k , implying that forces acting on the center of mass

of a body do not induce torques. For the specific case of the Earth-Moon system with no perturbations
applied, ∇kUk (rk0) is given by Eq. 2.8. Under these assumptions, one can derive - and it is insightful
to do so - an explicit expression for Γ̄(k)

0k . Writing out ∇kUk (rk0) gives

Γ̄
(k)
0k = −m0rk0 ×

6µkR
2
k

r4k0
(Ck

2,2 sin 2γ + Sk
2,2 cos 2γ)K × r̂k0, (2.21)

where the terms pointing along r̂k0 are left out, as they would drop off due to the cross product
anyway. The cross product rk0 × (K × ˆrk0) simplifies with the vector triple product identity to (rk0 ·
r̂k0)K − (rk0 ·K)r̂k0, where the first dot product simply yields rk0, while the second dot product is 0,
as by definitionK will always be perpendicular to rk0 for this case. From this result, Eq. 2.21 simplifies
to (e.g., Correia et al. 2014)

Γ̄
(k)
0k = −6Gm0mkR

2
k

r3k0
(Ck

2,2 sin(2γ) + Sk
2,2 cos(2γ))K. (2.22)

As expected, Γ̄(k)
0k is perpendicular to the orbital plane and points along the rotation axis of body

k. In other words, if the potential is given by Eq. 2.8, which specifically only holds for the situation
described in Fig. 2.1, Γ̄(k)

0k is along the orbital angular momentum vector. Note furthermore that there
is no dependency on Ck

2,0, as this gravity coefficient describes the flattening of the body, which occurs
perpendicular to the orbital plane, and hence has no influence on the gravitational torque exerted; it
is independent of longitude and dependent on latitude, and since the problem is two-dimensional, the
latitude plays no role and hence due to symmetry about the rotation axis it induces no torque. The
gravitational torque Γ̄

(k)
0k can also be written as (e.g., Williams et al. 2001):

Γ̄
(k)
0k =

3µ0

r5k0
rk0 × (Ikrk0) , (2.23)

where the dependency on the internal mass distribution of body k is now expressed through Ik.
Here Īk drops off, because its dot product with rk0 will still point in the direction of r̂k0. Working out the
cross product in Eq. 2.23 with rk0 = rII + rJJ gives

Γ̄
(k)
0k =

3Gm0mkR
2
k

r5k0
(2Sk

2,2(r
2
J − r2I ) + 4Ck

2,2rIrJ)K, (2.24)
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where rI and rJ can be related to γ through the following relations derived from Fig. 2.1 (e.g.,
Correia et al. 2014):

cos 2γ = (I · r̂)2 − (J · r̂)2 and sin 2γ = −2(I · r̂)(J · r̂). (2.25)

Using these relations, one finds that sin 2γ = −2
rIrJ
r2

and cos 2γ =
r2I − r2J
r2

, and then, indeed, Eq.
2.22 and Eq. 2.23 are equal.

A second component of the external torque applied on body k is the gravitational torque exerted by
the oblateness of body 0. This torque is formally expressed as (e.g., Schutz (1981), Bois et al. (1992),
Rambaux et al. (2012)):

Γ
(k)
0k,J2 = −

∫
M ′

0

l0k ×∇kUk (rk0) dm
′
0, (2.26)

where M ′
0 represents the distribution of the mass inside body 0 and the integration is performed

over its volume and l0k is the distance between the mass element dm′
0 and the center of mass of body

k. Following Rambaux et al. (2012), this effect is exacerbated at short distances between bodies k
and 0 (for example Mars and Phobos), and as distance increases this effect decays quite rapidly. As
is visible in Table 7 of Rambaux et al. (2012), for the Mars-Phobos system the impact of the additional
source of torque on librations (see Section 3.3) is quite small and only has a significant effect once
degree 3 terms are being considered, which they are not in the models discussed in this work. Bois
et al. (1992) performed a similar analysis, concluding that the impact of the additional source of torque
on librations in the Earth-Moon system has a comparable magnitude to degree 5 terms, albeit with
different behaviour. This value is sufficiently small for the general case that the external torque applied
on a body k by body 0 can be simplified to Eq. 2.21, thus stating that Γ(k) ≈ Γ̄

(k)
0k .

In the perturbed case, the torques induced by perturbing bodies will behave slightly differently than
accelerations. As mentioned before, from Eq. 2.20 it follows that forces acting on the center of mass
of a body do not induce torques. Hence, the perturbing bodies will only exert torques on the extended
body k, and not on 0’s point mass. Analogously to Eq. 2.20, the gravitational torque acting on an
extended body k exerted by a point mass 0 and N perturbations is given by

Γ̄
(k)
0k = −m0rk0 × (∇kUk (rk0))−

N∑
i

mirki × (∇kUk (rki)) (2.27)

Quaternions
Generally, extended bodies have an asymmetrical mass distribution, requiring a description of their
orientation to properly propagate the rotational equations of motion. Multiple methods are available to
do so. In this work, a quaternion q is used to express the orientation of a body because it is singularity-
free, whereas, for example, Euler angles do have singularities at the poles. Furthermore, Fukushima
(2008) has shown that using quaternions to propagate the rotational dynamics is an optimal choice in
terms of numerical error. Note that in this context, a quaternion does not refer to the mathematical
concept (e.g., Goldman 2011), but rather as a vector that describes the orientation of the body, where
the convention is followed as in Fukushima (2008). Quaternions have also been used before for similar
purposes in natural body dynamics (e.g., Dirkx et al. (2019)). The quaternion vector is given as q =
(q0, q1, q2, q3), where, following Altman (1972), qi are the Euler parameters. In order to ensure numerical
stability during integration, the Euler parameters adhere to the following normalization condition:

3∑
i=0

q2i = 1. (2.28)

Following Fukushima (2008), the time derivative of q is given as

q̇k = Q(qk)ωk, (2.29)
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Q(q) =
1

2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 . (2.30)

Rotational equations of motion
Fundamentally, the equation of motion that governs the rotation of a rigid body is given in the body-fixed
frame by the Euler-Liouville equation:

d

dt
(Ikωk) + ωk × (Ikωk) = Γk, (2.31)

where ωk is the rotation rate of a body k and Γk the sum of all external torques acting on it. Ikωk

defines the angular momentumLk of the body. The termωk×(Ikωk) arises from the transport theorem,
stating that a derivative taken in a rotating reference frame (which the body-fixed reference frame is)
must also account for the rotation of the reference frame itself (e.g., Rao 2006):

d

dt
f =

((
d

dt

)
r

+ ω×
)
f, (2.32)

where
(

d
dt

)
is the rate of change of f as observed in the body-fixed reference frame. Working out

the derivative, Eq. 2.31 evaluates to

İkωk + Ikω̇k + ωk × (Ikωk) = Γk. (2.33)

For a rigid body in rotation, İ evaluates to 0, because it will experience no mass deformations. In
practice, celestial bodies experience (small) mass deformations, which in turn result in small rate of
changes of I. While this simplification can still be made and justified, it will not be done in this work as
the bodies considered here will, in later sections, not be considered rigid anymore, at which point it will
be of interest to see how a body’s deformation influences İ and through it the rotation rate. Rewriting
Eq. 2.31 for ω̇i then gives (e.g., Dirkx et al. 2019)

ω̇i = I−1
i · (Γ̄(i)

0i − İiωi − ωi × (Iiωi)). (2.34)

The rotational equations of motion ẋr can then be set up:

ẋr =

[
q̇i

ω̇i

]
=

[
Q(qi)ωi

I−1
i · (Γ̄(i)

0i − İiωi − ωi × (Iiωi))

]
. (2.35)

2.2.3. Librations
Averaged over time, the Moon’s rotation rate, as that of many other large (natural) satellites, is syn-
chronous with its mean motion, implying that its rotational and orbital period are equal (e.g., Henrard
2006), also known as a spin-orbit resonance. Such an equilibrium, that is achieved over long timescales,
and which follows from the fact that a body’s rotation is governed by Eq. 2.35, is known as a Cassini
state (Peale (1969)). A perfectly circular orbit would imply that the body-fixed longitude of the central
body as seen from the satellite is always zero. However, orbital eccentricities, torques and accelera-
tions exerted by bodies and inclinations of the orbit prevent the satellite’s long axis (i.e., principal axis
of minimum inertia) from pointing towards the central body at all times; superimposed on the once-per-
orbit rotation around its spin axis, these effects cause the satellite to oscillate and wobble around its
three axes (e.g., Hoolst et al. 2020). These deviations are known as librations. It is reiterated here
that librations are an ’artificial’ concept required for a kinematic formulation of the synchronous rota-
tion of a satellite. Concurrently integrating the translational and rotational equations would omit the
need of such a formulation, since the underlying dynamics are then numerically integrated, whereas a
kinematic description observes the motion of a body and then describes it.

Librations can be discerned into two (body-fixed) components: longitudinal and latitudinal librations.
Longitudinal librations represent oscillations about the satellite’s rotation axis, describing ω’s oscillatory
deviations around the mean motion (e.g., Hoolst et al. 2020). As a result, the body-fixed longitude of
the central body as seen from the satellite is not always zero, but oscillates in the East-West direction in
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the satellite’s sky. Note that longitudinal libration and body-fixed longitude are thus equal in magnitude.
On the other hand, latitudinal librations represent oscillations of the satellite’s rotation axis about the
body’s x- and y-axis. Latitudinal librations are caused by the inclination of an orbit, and for most natural
satellites they are small and their effect on the satellite’s orbit limited, as it does not influence the rotation
rate in such a way that the longitudinal libration does.

As this work is interested in the orbital migration of a satellite over time, the latitudinal librations
are of lesser importance. Hence, longitudinal librations will be the focus of this section, following other
authors who have done the same (e.g., Rambaux et al. 2010). These librations can be further de-
composed into optical and physical librations. The former is caused due to the geometry of the orbit,
specifically the orbit’s eccentricity, while the latter can even occur for circular orbits as it is a result of
the internal properties of a satellite (e.g., Hurford et al. 2009). The total longitudinal libration λ can then
be expressed as

λ = ϕ+ γ (2.36)
with ϕ and γ the optical and physical librations respectively.

Figure 2.2: A schematic overview of longitudinal libration as displayed and discussed in Hoolst et al. (2020), with the hollow
circle the empty focus, the solid circle the central body, the solid lines the equilibrium orientation of the long axis of the satellite,
which corrects up to first order towards the empty focus (Murray et al. (1999)), the dashed lines the direction of the long axis of
the satellite body at two given mean anomalies and the solid lines indicating the direction of the translation and rotation of the
satellite. Note the dotted ellipse at a mean anomaly of 45◦, indicating the orientation of one of the periodic tidal bulges, which

will be discussed more in Chapter 4. Note that the tidal bulge as well as the librations are highly exaggarated.

Optical libration
Fig. 2.2 gives a schematic representation of how the longitudinal libration can be described by the
body’s long axis fluctuating around the empty focus (Hoolst et al. (2020)) in such a way that the long
axis is always pointing further away from the central body than the direction to the empty focus (e.g.,
Tiscareno et al. 2009). Assuming pure synchronous rotation and considering the geometrical effects
of the eccentricity, the satellite’s rotation angle δ can be related to the mean anomaly M through (see
Fig. 2.3)

δ =M − γ. (2.37)
In the absence of physical librations and pure synchronous rotation, the satellite’s long axis then

seemingly points towards the empty focus of the orbit. This is however only true up to O(e2) (e.g., Mur-
ray et al. 1999), which is one of the reasons this work chooses to concurrently integrate the equations
of motion. From Eq. 2.37 the optical libration angle ϕ can be expressed as (e.g., Lainey et al. 2019)
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ϕ = ν −M = 2e sin(M) +O(e3), (2.38)

with ν the satellite’s true anomaly. While offering a straightforward kinematic expression for the
observed behaviour of natural satellites, such approximations are too inaccurate for the accuracy re-
quirements laid out by future missions, and hence show the importance of concurrently integrating the
equations of motion for the dynamics of the Earth-Moon system.

Figure 2.3: A schematic overview of the effect of the physical libration on the pointing direction of the satellite towards the
central planet; the dashed lines indicate the inclusion (green) and exclusion (red) of the physical libration respectively. ν and M
represent the true and mean anomaly of the orbit, while δ represents the satellite’s rotation angle. ϕ and γ are the optical and

physical librations respectively.

Physical libration
Physical librations consists of a combination of free and forced librations (e.g., Hurford et al. 2009).
Forced librations are caused by external torques acting on the body, while free librations are caused
by an internal excitation mechanism, or they have been excited at some point in time but have never
been fully damped out. For small libration angles, the rotational equations of motion governing the
longitudinal libration can be approximated using a linearized differential equation, giving a first order
approximation for the longitudinal libration angle (e.g., Danby (1988); Williams et al. (2001)). The
linearized differential equation is given as (Rambaux et al. (2010)):

γ̈ + 3n2σγ = f, (2.39)

with the triaxiality parameter σ = (B − A)/C with A ≤ B ≤ C the principal moments of inertia
defined by Eq. 2.19 and reiterated here for convenience:

A = −2C2,2 −
1

3
J2 + Ī , (2.40)

B = 2C2,2 −
1

3
J2 + Ī , (2.41)

C =
2

3
J2 + Ī , (2.42)

and f the appropriate component of the torque (e.g. the z-component in this case), also called the
forcing. A satellite’s forced libration responds at the frequency of the forcing (e.g., Hurford et al. 2009).
For most satellites, this will likely be at the mean motion n, giving rise to the aforementioned dominant
once-per-orbit libration.

Note that in the case when no external torques are applied, e.g. f = 0, Eq. 2.39 will still have
a solution with frequency ω0, called the normal mode of the system. This is the frequency at which
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free librations occur if they have not yet been damped out. In this case, the body’s natural resonant
frequency ω0 can be defined as

√
3n2σ (e.g., Rambaux et al. 2010). The fact that ω0 is a function of the

mean motion and the triaxiality of the body means it says something about the properties of the body
itself, since no external forces are in play. Generally, f will not have a closed expression due to the
many perturbations acting on a satellite’s orbit, moving away from an idealized Keplerian orbit. Instead,
following Rambaux et al. (2010) it can be expanded as a Fourier series:

f =
∑
i

Hi sin(ωit+ αi), (2.43)

with Hi, ωi and αi the magnitude, frequency and phase of the oscillations respectively. Assuming
the normal modes to have been damped, the inhomogeneous part of the differential equation yields
the following solution (Rambaux et al. (2010)):

γ =
∑
i

ω2
0Hi

ω2
0 − ω2

i

sin(ωit+ αi), (2.44)

where the summation over i represent all periodic variations of the orbit over an infinite range of
frequencies. An important implication that follows from Eq. 2.44 is the edge case of ω0 ≈ ωi, note that
if there is such a system where there is a frequency component very close to the normal mode, the
solution will blow up. The solution will start to resonate and linearization assumptions may fail to hold.
While this is not relevant for the Earth-Moon system, it can be important for bodies if they, for example,
have a mean motion with a frequency close to their normal modes.

Up until now, bodies have been assumed to be completely rigid. In reality, this is often not the
case; bodies deform under (for example) differential gravitational forces and third body pertubations. A
point on a moon facing a planet will experience a slightly larger gravitational pull from the planet than
a point on the other side of the moon. This will cause the body to slightly deform, which is called a tidal
deformation. An important consequence is that it is vital that a body’s rotation (both orientation and
rotation rate) is determined accurately, as a slight deviation from the actual rotation rate or orientation
would have a similar effect on the moon’s orbit as tidal effects. Tidal forces and the time-variability of
the mass distribution of bodies will be discussed in depth in Section 2.3.

2.3. Tides
As discussed in last section, the translational and rotational equations provided assumed rigid bodies in
their derivations, thus neglecting tidal effects that have an influence on the time-variability of the gravity
field of an extended body. Tides drive long-term orbital evolution of natural satellites, and hence are
a key part of natural satellite dynamics in the context of future missions. To this end, this section will
introduce the concept of the tidal potential and tidal force. Furthermore, the shortcomings of the current
model and the effects thereof will be discussed, which will help in providing context for the introduction
of the coupled model and help validating it.

2.3.1. Time-variability of the mass distribution
As mentioned briefly at the end of section 2.2, gradients of gravitational potentials induce (slightly) dif-
ferent forces depending on the position in space with respect to this potential. As a result, an extended
body will deform slightly under this differential gravitational force. This is most commonly observed in
the tides of the oceans induced by the Moon. Similarly, solid bodies also experience tides. The mag-
nitude of the resulting deformation is dependent on the body’s properties, such as its rheology (see
Section 2.4). Tidal deformations express themselves in variations in the mass distribution, and thus
the gravity field, shape and rotation. They can induce a variation in the rotation due to the fact that
a changing mass distribution and shape will induce a different torque (which in itself is already highly
dependent on the rotation rate) which in turn results in a different rate of change of the rotation rate. It
is reiterated that this is why the rotation rate of a body must be determined precisely.

For the body i, the tidal deformations induced by the perturbing body j are determined by the tidal
potential UT

j (r) and the so-called tidal Love numbers kil,m of i - not to be confused with the Love
numbers hil,m and lil,m, which describe the body’s deformation under the effects of tides - where l and
m are the usual degree and order of the spherical harmonic expansion. Note that the tidal potential is
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explicitly different from the gravitational potential as given in Eq. 2.1. The gradient of the tidal potential
yields the tidal force, which dictates the relative motion between two points on body i, resulting in tides.
The Love numbers, without the subscripts, were first introduced by Love (1911). The subscripts were
added later (e.g., Petit et al. 2010). Love numbers translate the body’s deformation under tidal forcing
to gravity field variations, where the body’s deformation depends on a body’s interior properties, such
as size, temperature, forcing frequency and its rheology (e.g., Efroimsky 2012), and thus are integral
parameters to determine the body’s gravitational tidal deformation. It is common practice to simplify the
Love numbers to kl (e.g., Zhang (1992); Williams et al. (2015)), because variations of k in m for a set
l are typically small. Furthermore, in the general case Love numbers consist of a real and imaginary
part (e.g., Williams et al. 2015) which will be discussed in depth later.

Figure 2.4: Schematic decomposition of the gravitational force exerted by body B, where the difference between FPB̄ and
F ĀB̄ is responsible for the tidal force ∆F . R is the position vector pointing to point P and rAB is the vector connecting the

centers of A and B, and Ψ is the angle between R and rAB .

Approximating body j as a point mass allows the tidal potential of body j to be given as (See
Appendix A) (e.g., Kaula 1964):

UT
j (r) =

Gmj

rij

∞∑
l=2

(
|R|
rij

)l

Pl(cos(Ψ)), (2.45)

whereR is a position vector from the center of the body to a surface point andΨ is the angle beween
R and rij , see Fig. 2.4. Pl are the Legendre polynomials of degree l. Any angle Ψ can be expanded
into the body-fixed longitude and latitude, allowing Eq. 2.45 to be expanded to the following formulation
at |r| = |R| from the body center (Munk et al. (1975)):

UT
j (r) =

∞∑
l=2

l∑
m=0

UT
j,l,m(r), (2.46)

where UT
j (r) is expanded into UT

j,l,m(r). The deformations on body i are thus induced by the exter-
nal tidal potential of body j. The other source of deformation considered in this work is the centrifugal
potential of body i itself, caused by its own rotation (e.g., Boué et al. 2016). Any point P on the surface
of a rotating body (for simplicity, assume a spherical, rigid planet rotating at an angular rate ω = ωK),
experiences a centrifugal acceleration r̈cf in both the I- and J -direction with magnitudes ω2I and ω2J
respectively (Murray et al. (1999)). Therefore, any arbitrary point on the surface at position (I, J , K)
experiences an additional acceleration

r̈cf = ω2(II, JJ) (2.47)

in the body-fixed frame. Now, for simplicity consider a global ocean on the surface of body i (note:
this was also a core assumption in the derivation of the tide-generated perturbing potential expanded
as a Fourier series by Darwin (1880)). In equilibrium, this ocean must lie on an equipotential surface
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perpendicular to the net acceleration of body i, which consists of the centrifugal acceleration, among
others, resulting in flattening at the poles Murray et al. (1999). Realizing that acceleration is the gradient
of the potential then can result in an expression for the centrifugal potential of body i at a point (r, ϑ,
ϕ), (Murray et al. (1999), Correia et al. (2013)):

U cf
i (r) = −1

3
ω2r2P2(cos(ϕ)) = −1

3
ω2r2, (2.48)

where ϕ is now the angle between the radius vector and the rotation axis (e.g. different from previous
definitions). Note that U cf

i is independent of ϑ, indicating symmetry of the equipotential surface about
the rotation axis (Murray et al. (1999)). Note furthermore that since ϕ = 0, the Legendre polynomial
P2(cos(ϕ)) simplifies to 1. The induced gravitational potential on body i, δUi,l(r), and, when expanded,
δUi,l,m(r) then depends on both U cf

i (r) and UT
j (r):

δUi,l,m(r) =

(
|R|
|r|

)l+1

kil,mU
′

l,m(r) =

(
|R|
|r|

)l+1

kil,m(U cf
i,l,m(r) + UT

j,l,m(r)), (2.49)

where U ′

l,m denotes the total tide-inducing potential acting on body i, body j’s tidal potential and
body i’s centrifugal and induced gravitational potential now depend on the degree l and orderm. Notice
furthermore that kil,m quantifies the magnitude of body i’s induced gravitational potential by acting as
a proportionality constant. Eq. 2.1 and Eq. 2.46 substituted in Eq. 2.49, neglecting the centrifugal
potential, can be expanded into a series, yielding the time-variable spherical harmonic coefficients
(e.g., Petit et al. 2010):

∆C̄i
l,m − i∆S̄i

l,m =
kil,m
2l + 1

∑
j

µj

µi

(
Ri

rj

)l+1

P̄l,m(sinϕj)e−imϑj , (2.50)

where the summation runs over j bodies that raise a tide on body i, but can easily be simplified to
one body. Eq. 2.50 describes the evolution of the Ci

l,m(t) and Si
l,m(t) coefficients of a body i under the

tidal influence of j other bodies.
The time-variability of the mass distribution is expressed through the gravity field coefficients Ci

l,m(t)

and Si
l,m(t), where they are now both dependent on time. For (almost) synchronous bodies, the coef-

ficients consist of a large static component and a small varying component, where Ci
l,m(t) and Si

l,m(t)

can be decomposed as Ci
l,m(t) = Ci,0

l,m+∆Ci
l,m and Si

l,m(t) = Si,0
l,m+∆Si

l,m, giving rise to a large perma-
nent tide and a relatively small varying tide, since θ and ϕ are constant to first-order approximation. For
synchronously rotating bodies specifically, this effect is, as mentioned before, quite small; deviations
from the rotation rate due to librations result in the variations. Hence, measuring varying tides is more
difficult for synchronously rotating bodies than it is for non-synchronously rotating bodies.

2.3.2. Tidal force formulation
SinceUT

j (r) scales with R
rij

, withR the radius of body j, and generally rij >> R, (there exist exceptions,
such as the Mars-Phobos system), rapid convergence of the series is guaranteed. Furthermore, from
Eq. 2.1 it follows that degree 2 terms will have the largest contribution, as the potential scales with
1

rl
. Limiting the tidal force (which follows from the tidal potential) to degree 2 is common practice in

dynamical studies of natural satellites (e.g., Lainey et al. (2007), Lari (2018)), though it must be noted
that for the Moon k3 is observable (e.g., Konopliv et al. (2013), Lemoine et al. (2013)). Then, degree
two Love number k2 will represent the total variation of the degree two gravity field and by extension the
entire truncated gravity field (The gravity field is already limited to l = 2 in section 2.2). The resulting
deformation results in two tidal bulges, one pointing towards body j and one on the other side of body
i, see Fig. 2.5. Generally, this is a good approximation, but it is important to realize that spherical
asymmetries can cause variations in the degree two Love numbers (Bills et al. (2005)). Since these
variations are however small and difficult to track (e.g., Konopliv et al. 2011), it is common practice to
assume that k2,0 ≈ k2,1 ≈ k2,2 ≈ k2 and work with k2 instead.
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Figure 2.5: Left: Schematic overview of tide-generating body j and the tidal deformation of body i. Right: Time-lag between
pertubing potential and the raised tide on body i, quantified by a lag angle δ. This gives raise to an additional acceleration ∆ẍt

exerted on j by the induced gravitational potential of i. This figure has been adopted from Dirkx (2015).

The response to the perturbing potential as in Fig. 2.5 is the actual tidal deformation. This tidal
deformation generates an additional tidal potential as in Eq. 2.49, which again exerts an influence
on body j. In reality, body i’s response to this perturbing potential is not instantaneous, but rather, it
takes time for it to deform due to its viscosity; its response is visco-elastic. As a result, the tidal bulge
raised by the perturbing potential does not exactly point along the vector rij . Instead, there will be a
so called time-lag between the perturbing potential and the raised tide, which in turns gives raise to a
tidal geometric lag angle δ. An exaggerated depiction is shown in Fig. 2.5.

This effect is commonly expressed through a quality factor Q, which is defined as (e.g., Khan et al.
2004):

Qj
i =

|ki2|
Im(ki2)

, (2.51)

where Im(ki2) specifies the imaginary part of ki2. It was briefly mentioned before that Love numbers
consist of a real and imaginary part. The imaginary part quantifies the tidal lag δ, resulting in tidal
dissipation. Q is frequency-dependent and depends on the body’s rheology, and is used to signify what
a body’s tidal response may look like (e.g. it defines the amount of energy dissipated in the system)
(e.g., Efroimsky et al. 2007). Qj

i then denotes the quality factor of body i at the forcing frequency of the
tides raised by body j. For a full and consistent modelling of the tidal response, however, bodies would
have to be assigned rheologies to properly extract tidal parameters, especially given the frequency-
dependence of Q. This will be elaborated upon in Section 2.4. The time lag in raising the tidal bulge
due to the visco-elastic response is dependent on Q and given as (e.g., Lainey et al. 2007):

∆tji =
T j
i sin

−1(1/Qj
i )

2π
, (2.52)

where ∆tji is the time lag and T j
i refers to the period of the forcing. For the tides raised on the

central body 0 by the satellite i, T j
i depends on the satellite’s orbital and rotational period, T orb

i and
T rot
i respectively, where

T orb
i =

2π

ni
(2.53) T rot

i =
2π

ωi
, (2.54)

resulting in (e.g., Lainey et al. (2007), Efroimsky et al. (2007))

T i
0 =

T orb
i T rot

i

2|T rot
i − T orb

i |
=

2π

2|ωi − ni|
, (2.55)

which is the time that the satellite takes to pass from a point over the planet to its antipode (e.g.,
Lari 2018). For the tides raised on a synchronous satellite, the tidal forcing period is simply

T 0
i =

2π

ni
. (2.56)
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Due to this time lag, an additional torque is exerted on both bodies. Depending on whether body i’s
mean motion is smaller or greater than body 0’s rotation rate, the tidal bulge is raised in front or behind
the vector connecting both bodies, resulting in an along-track acceleration or deceleration respectively.
In turn, this additional torque results in body 0’s rotation rate decreasing or increasing, and finally, by
conservation of angular momentum, increasing or decreasing body i’s semi-major axis respectively.
This also explains why the Moon is slowly drifting away from the Earth (e.g., Krasinsky 2002).

A time lag also has a consequence for the induced gravitational potential on a body. As mentioned
before, Eq. 2.49 makes the implicit assumption that body i is ’elastic’, meaning that any stress applied
to it instantly deforms the body, indicating no time lag and an instantaneous response. Since there is
a time lag between the perturbing potential and the tide raised, past perturbations (more specifically,
deformations caused by past perturbations) must be taken into account to accurately determine the
induced gravitational potential at time t. Assuming that the body’s tidal response is linear (e.g. no
higher order terms are considered) and isotropic in its body-fixed frame (e.g., Boué et al. 2016) (more
details about how a body reponds to an applied stress are discussed in Section 2.4), one can state
that body i’s induced gravitational potential at time t, δUi(r, t) (note the explicit time-dependence now)
depends linearly on all past tidal pertubations with t′ ≤ t, U ′

0(r, t
′), giving raise to a convolution (e.g.,

Boué et al. 2016):

δUi(r, t) =

∞∑
l=2

δU0,l(r, t) (2.57)

=

∞∑
l=2

(
|R|
|r|

)l+1

kl(t) ∗ U
′

0,l(r, t) (2.58)

=

∞∑
l=2

(
|R|
|r|

)l+1 ∫ t

−∞
kl(t− t′)U

′

0,l(r, t
′)dt′, (2.59)

where the ratio
(
|R|
|r|

)l+1

comes from the Dirichlet theorem for external potential if |r| > |R|

(Souchay et al. (2013)), where r is the position vector from the center of body i to the point at which the
potential is calculated. Consequently, the external potential drops off very fast as a function of distance.
Comparing Eq. 2.58 to Eq. 2.49, it is apparent that Eq. 2.58 is a generalization that allows for a more
realistic representation of tidal responses. Note that Eq. 2.49 follows from Eq. 2.58 if one assumes
that for t′ < t, U ′

0(r, t
′) = 0. Note that if the potential is considered at the surface, |r| = |R| and the

ratio becomes equal to 1. Eq. 2.58 can be limited to degree 2:

δUi(r, t) =

(
|R|
r

)3 ∫ t

−∞
k2(t− t′)U

′

0,2(r, t
′)dt′, (2.60)

U
′

0,2(r, t
′) = U cf

i (r) + UT
0,2(r) = −1

3
ω2(t)r2 +

Gm0

ri0

(
|R|
r

)3( |R|
ri0

)2

P2(cos(Ψ)) (2.61)

where kl(t) is a Love distrbution as described by Efroimsky (2012) such that kl(t) = 0∀t > 0
(e.g. causality is ensured). Similar to Love numbers, the Love distribution is also a property of the
body through its dependence on the internal structure and composition (e.g., Boué et al. 2016). It is
essentially a distribution of proportionality constants that scale the perturbing potentials at times t′ < t
to the tidal potential at time t. Given that the perturbing potential is already determined in Eq. 2.45
and 2.48, only the Love distribution needs to be the determined in order to derive an expression for the
induced tidal potential.

The simplest model possible (apart from an instantaneous response) would be to consider a con-
stant time lag, meaning that the induced tidal potential at time t is generated by a perturbing potential
at t − ∆t, with ∆t the time lag (e.g., Efroimsky et al. 2013). The Love distribution is then given as
kl(t) = klδ(t − ∆t), with δ(t) the Dirac-Delta function. Current day ephemeris determination express
the tidal potential induced due to the tidal deformation through the direct tidal force F j

i , which, when
reduced to degree l = 2, as discussed before, is given as (see Appendix A) (e.g., Lainey et al. 2007):
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F 0
i = −3Gmik

0
2R

5
i

|ri0|8

(
r +∆ti0

(
ri0 × ω0 + vi +

2

|ri0|2
(ri0 · vi)ri0

))
(2.62)

for the tides raised on the central body 0 by the satellite i, where vi denotes the velocity vector of
body i. By Newton’s third law, the bulge raised on the satellite will also affect its own orbit, with the
magnitude of the force being same but the direction opposite of the force in Eq. 2.61:

F i
i = −3Gm0k

i
2R

5
i

|ri0|8

(
ri0 +∆t0i

(
ri0 × ωi + vi +

2

|ri0|2
(ri0 · vi)ri0

))
. (2.63)

While Eq. 2.63 can in principle be applied to model the tides raised on the satellite by its own
tidal bulge, there is a consideration to be taken into account. In order to rewrite Eq. 2.63 into a more
convenient form, it is assumed that ω = ωK. Note that this assumption breaks down in the case
perturbations are added. Under this assumption, vi can be decomposed into its radial and tangential
components such that (e.g., Hut 1981):

F i
i = −3Gm0k

i
2R

5
i

|ri0|7

((
1 + 3∆t0i

2

|ri0|2
(ri0 · vi)ri0

)
r̂ +∆t0i (θ̇i − ωi)ϕ̂

)
, (2.64)

where θ̇i is the angular velocity of the satellite. The benefit of rewriting the tidal force like this is
twofold: first of all, it decomposes the tidal force into a radial and tangential component, respectively
known as the radial and librational tides. Second, the dependency on the difference between θ̇i and ωi

is made explicit, which will be convenient when discussing the effect of tidal torques on the satellite’s
orbit. Note that Eq. 2.64 also makes it explicit that, if θ̇i = ωi, the tangential component of the tidal
force equals zero. Hence, satellites that are in a circular, synchronous orbit do not experience librational
tides.

Eq. 2.63 can be simplified by following Murray et al. (1999), who state that the librational tides
dissipate exactly 4/3 times as much energy as the radial tides. Then, in order to determine the tidal
force raised by the satellite, this detail is used to simplify the calculation (e.g., Lari 2018). The tidal
force due to the radial tides is retrieved by substituting ωi = ri0 × vi/|ri0|2 in Eq. 2.63

F i
i,rad = −3Gm0k

i
2R

5
i

|ri0|8

(
ri0 +∆t0i

(
3

|ri0|2
(ri0 · vi)ri0

))
, (2.65)

where this component is now considered to be the tidal force induced by the radial component of
the tides. Adding 4/3 times this force from the librational component results in

F i
i = −3Gm0k

i
2R

5
i

|ri0|8

(
ri0 +∆t0i

(
7

|ri0|2
(ri0 · vi)ri0

))
. (2.66)

The beauty in this simplification lies in that this formulation does not depend on the rotation rate of
the satellite anymore as it does in Eq. 2.63 and 2.64. Since the modelling of the tides raised on the
satellite due to itself is extremely sensitive to the rotation rate, as will follow from the discussion in the
remainder of this section, Eq. 2.66 is an attractive alternative to model the satellite’s natural dynamics
and is done so in both ephemeris and natural satellite dynamics studies (e.g., Lainey et al. (2007),
Lari (2018)). It is furthermore relatively straightforward to implement and computationally cheaper than
the alternative, which is using an appropriate rheology model. Since ephemeris studies usually have
shorter timescales, this model is, despite its simplifications, a suitable model to use for modelling tidal
responses.

However, for long-term dynamical modelling, this fails to hold. Since the orbit expands or shrieks
due to tidal dissipation, as mentioned earlier, the frequency of the tidal forcing, and thusQj

i , will change,
which is apparent from analyzing the expression in Eq. 2.52. As a result, the amount of tidal energy
the system will dissipate also changes over time. This, combined with the fact that Eq. 2.66 is already
a simplification itself, calls for the need of a more sophisticated model to properly model the frequency-
dependency of the tidal forcing, as well as the body’s response to this forcing, on longer timescales.
This will be discussed in more depth in Section 2.4.

The additional torque induced by the tidal bulge raised on the satellite influences the rotational
dynamics of the system (more specifically, it induces a transfer in energy and angular momentum
between the two bodies), and can be expressed as:
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Γi
i = ri0 × F i

i = −3Gmik
0
2R

5
i

|ri0|8
∆t((ri0 · ri0)ωi − ri0(ri0 · ωi)− vi|ri0|2 + ri0 × vi). (2.67)

This is the torque that is generated due to the lag angle previously mentioned. It gives rise to
a change in ωi while simultaneously also depending on ωi. This again reiterates the importance of
accurately modelling the rotation rate of the satellite for accurate propagation of the satellite’s dynamics.

These expressions will be useful in the process of verifying and validating the results of the coupled
model introduced in Section 2.4. To incorporate the effect of tides into the dynamics of the system,
the tidal acceleration following from Eq. 2.61 can simply be added to the translational equations of
motion derived in Section 2.2.1. Similarly, adding or subtracting this additional torque from the rotational
equations of motion described in Section 2.2.2 incorporates the tidal effect into the rotational dynamics.

With all this in mind, it is clear that the incorporation of tidal dynamics into the equations of motion is
important in order to accurately perform long-term propagations of natural satellites. Current state-of-
the-art methods used rely on severe simplifications (e.g., Efroimsky et al. 2013) and rely on consistently
modelling the rotation rate of the satellite and tides raised on the satellite, which proved to be difficult
to do for synchronously rotating bodies (see section 2.3.1). Furthermore, they are unable to properly
capture the body’s frequency-dependent response to tidal forcing, as well as how it evolves over time,
by implicitly assuming a static Qj

i . To this end, it may be beneficial to instead model the gravity field
coefficients as a differential equations, and introduce a fully coupled model between the translational,
rotational and tidal dynamics.

2.4. Coupled model
In the previous section, the direct tidal force is introduced, which approximates the effect of the tides
on the translational and rotational dynamics. In this section, a new way (’new’ for the field of natural
satellites’ dynamics) of incorporating the tides will be introduced; a differential equation that governs
the evolution of the gravity field coefficients is introduced, removing the need for a direct tidal force
expression. Through this differential equation the translational and rotational dynamics are influenced,
directly incorporating any influence tides would have on the dynamics of the relevant bodies. The
problems mentioned in last section, such as the extreme sensitivity of the tidal force expressions to
the rotation rate of the satellite, the approximations necessary to apply it to the satellite’s dynamics,
are circumvented using this method, while it also allows for a more complete modelling of the body’s
frequency-dependent response to tidal forcing over long timescales.

2.4.1. Rheology
A core assumption made in deriving the translational and rotational equations of motion in section 2.2.2.
is that all bodies were assumed to be rigid. Solar system bodies are of course not rigid and deform under
the presence of forces, which has been accounted for in section 2.3. by introducing tides, which allows
for the variation of the gravity field coefficients Ck

l,m(t) and Sk
l,m(t) through Eq. 2.50. As mentioned

repeatedly, using the tidal force to express tides is an approximation (e.g., Efroimsky et al. 2013) and
to properly model the response of a body to tidal forcing an adequate rheology model is necessary. A
rheology model is a way to model the body’s deformation and response to any stresses applied.

One way of doing this is by adopting a linear model where the phase lag is proportional to the tidal
frequency: a viscous model (e.g., Correia et al. 2014). The downside of adopting this model is that,
circling back to the discussion about the rotation rate in section 2.3, the ratio between the rotational
and orbital period will have an excess proportional to the eccentricity squared (e.g., Mignard (1979),
Fayolle (2025)), with the aforementioned pseudo-synchronous rotation as a result. From observations
of solar system satellites, it is however known that most are in a synchronous orbit, and as discussed
in section 2.3, one way to get to this realization is by assuming an additional torque due to a small shift
in the pointing vector of the moon (e.g., Colombo (1965), Goldreich et al. (1966), Fayolle (2025)).

With this in mind, a more realistic approach is laid down by Correia et al. (2014), where for natural
satellites in a spin-orbit resonance, such as the Moon and the Galilean moons, a viscoelastic model is
used to model their response to stress. Viscoelastic materials are materials that exhibit both viscous
and elastic properties when undergoing a deformation induced by a stress; the material resists defor-
mation linearly with time when a stress is applied (a viscous response), but it also immediately deforms
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under a stress and goes back to its original response when the stress is removed (an elastic response).
Whether the body responds as a viscous fluid or elastic solid then depends on the frequency of the
perturbation (e.g., Correia et al. 2014). Viscoelastic rheologies have been used before in the context
of natural satellites’ dynamics, since they are able to reproduce the main features of tidal dissipation,
providing a good basis for developing the coupled model (e.g., Correia et al. (2014), Boué et al. (2016),
Henning et al. (2009)). One of the simplest forms is to consider that the body behaves like a Maxwell
material (e.g., Correia et al. 2014), i.e., the material is represented by a purely viscous damper and a
purely elastic spring connected in series (e.g., Turcotte et al. 2002).

The Maxwell model relies on the assumption that the bodies are modelled as homogeneous. A
complete modelling of the tides would consider the variation in layers that bodies usually have, as
well as consider full three-dimensional stress and strain tensors to compute tides as a function of the
longitude and latitude (e.g., Peale et al. (1978), Segatz et al. (1988), Henning et al. (2009)). The
Maxwell model is, however, good enough to describe the main features of tidal evolution (e.g., Henning
et al. (2009), Correia et al. (2014)). With this in mind, it is reiterated that the Maxwell model is well suited
for bodies that are in spin-orbit resonance, such as the Moon.

An alternative to the Maxwell model is the Andrade model (Andrade (1910)). The Andrade model
can be thought of as the Maxwell model with an extra term describing the hereditary reaction of strain
to stress (Efroimsky (2012), Correia et al. (2014)). Efroimsky (2012) describes the rheology of a planet
using an empirical power scaling law for the phase lag consistent with accumulated geophysical, seis-
mological, and geodetic observational data (Mitchell (1995), Stachnik et al. (2004), Shito et al. (2004)),
where the results show that the best fitted laws are in conformity with the Andrade model. Despite
these results, the Andrade model is not used in this work, as it is extremely complex and the main fea-
tures of the tidal dissipation are similar to other viscoelastic models such as the Maxwell model (e.g.,
Correia et al. 2014), which makes the Maxwell model a good first choice for the rheology of a satellite
in spin-orbit resonance.

The Maxwell model has been used numerous times before to describe a planetary body’s structure
and its response to forces applied to it (e.g. Correia et al. (2014), Ferraz-Mello (2015), Boué et al.
(2016)), making it a relatively well known and established model. Following Turcotte et al. (2002), the
Maxwell model describes the body’s response by the following relation (e.g., Henning et al. 2009):

dϵ

dt
=

1

µ0

dσ

dt
+
σ

η
, (2.68)

which describes the body’s response by a purely viscous damper with viscosity η and a purely
elastic spring with modulus µ0 connected in series, with ϵ the strain and σ the stress applied to the
body. The body’s response is dependent on the frequency of the forcing, which can have a frequency
in either the fully elastic or viscous regimes, or the transient regime between these two (e.g., Bagheri
et al. 2022). So, if a stress with a frequency in the elastic regime is applied, the body instantly deforms
dependent on µ0. If this stress is removed, the body instantly returns to its equilibrium shape. On the
other hand, if the stress has a frequency in the viscous regime, the body will act like a viscous damper
and will ensure a linear deformation rate dependent on η. If this stress is removed, the deformation
is held in place and the body will over time return to its equilibrium shape. When these components
are connected in parallel instead of in series, the generalized model of a solid Kelvin-Voigt material
is generated (Christensen (1971)). The main difference between these models is that a Kelvin-Voigt
material will not instantly deform under applied stresses, making it rather unsuitable for modelling tidal
deformations. A more extensive discussion is provided in Henning et al. (2009).

2.4.2. Gravity field coefficients in a differential equation
This section will now look at deriving a differential equation for the tidal potential, from which a differ-
ential equation for the gravity field coefficients can be derived. The following derivations will follow the
methods laid out in Correia et al. (2014) and Boué et al. (2016). The convolution in Eq. 2.59 is very gen-
eral, only assuming that the body’s response is linear and isotropic in its body-fixed frame (e.g. Remus
et al. (2012), Boué et al. (2016)). When a body’s response is assumed to behave like a Maxwell model,
e.g. the planet is considered to be a homogeneous viscoelastic body with Maxwell rheology, one can
simplify the convolution by transforming the equation into the Fourier domain, yielding a point-wise
multiplication:



2.4. Coupled model 22

δUi(r, ν) = kl(ν)U
′

0,l(r, ν). (2.69)

Under these assumptions, the Love distribution kl(ν) with frequency ν is of the form (e.g., Henning
et al. (2009), Boué et al. (2016)):

kl(ν) = k0l
1 + iτeν

1 + iτlν
, (2.70)

where k0l is the fluid Love number of degree l. For a homogeneous incompressible viscous sphere
it holds that k0l = 3/2(l − 1), but in general k0l depends on the internal differentiation of the body and
can be obtained from the Darwin-Radau equation (e.g., Jeffreys (1976), Correia et al. (2014)), which
relies on several assumptions to derive its result:

k0l = 5

(
1 +

[
5

2
− 15C

4mR2

]2)−1

− 1, (2.71)

with m the mass of the body, R its equatorial radius and C = (2/3J2 + Ī)mR2 its principal moment
of inertia, which is the moment along the K-axis. τe = η/µ0 is the elastic or Maxwell relaxation time
and the global relaxation time τl is defined as (e.g., Boué et al. 2016)

τl = (1 +Al)τe (2.72)

with (e.g., Boué et al. 2016):

Alτe =
3
(
2l2 + 4l + 3

)
η

4πGρ2R2
(2.73)

the fluid relaxation time, with η the viscosity and ρ the density of the body. τe, τl and Al all say
something about time it takes for the body to respond to applied stresses. It then follows from Eq. 2.70
that, if τe = τl = 0, the body’s response is instantaneous (e.g., Correia et al. 2014). The obtained
potential under this condition is the so-called equilibrium potential. It also must be stressed that τl as
defined only holds for a homogeneous incompressible viscous sphere. In reality, many celestial bodies
are stratified and τl and τe become parameters that have to be fitted to reproduce the response of more
complex internal structures (e.g., Peltier (1974), Boué et al. (2016)).

Given the Fourier transform of kl(t) as in Eq. 2.70, the convolution in Eq. 2.59 can be transformed
into a first order differential equation (see Appendix A of Correia et al. (2014)). This results in a dif-
ferential equation for the l-th term of the induced gravitational potential as in Eq. 2.59 (Correia et al.
(2014)):

δUl + τlδU̇l = k0l (U
′

l + τeU̇
′

l ). (2.74)

Here the induced potential δU is again caused by the perturbing tidal potential U ′ , where U
′ is

as defined in Eq. 2.49. Eq. 2.74 shows that when τl = τe = 0, the raised potential reduces to an
equilibrium potential δUe

l - i.e. the response is instaneneous or there is a static perturbation - defined
as (e.g., Correia et al. 2014):

δUe
l = k0l U

′

l . (2.75)

Substituting Eq. 2.75 in Eq. 2.74 then expresses the instanteneous variation of the induced potential
as a function of the equilibrium potential:

δUl + τlδU̇l = δUe
l + τeδU̇

e
l . (2.76)

The relaxation times τl and τe can be related to k2 and Q as introduced in section 2.3 - for l = 2, so
it follows that τl simplifies to τ2 - and (Correia et al. (2014)):

k2 = k02

√
1 + τ2eχ

2

1 + τ22χ
2
, (2.77)
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tan
(
arcsin

(
1

Q

))
= tan δ = (τ2 − τe)χ

1 + τ2τeχ2
, (2.78)

k2
Q

= k02
(τ2 − τe)χ

1 + (τ2χ)2
. (2.79)

From Eq. 2.76, it follows that δ = 0 for χ = 0 and χ → ∞, while its maximum value is obtained for
χ =

√
τ2τe, implying that a perturbation with no frequency (e.g. no perturbation) or an infinite frequency

(e.g. a static perturbation) do not result in phase lags. Since τl = (1 + Al)τe, and Al > 0∀l, it follows
that τl > τe∀l, indicating that k2 is monochromatically decreasing per Eq. 2.77 (Correia et al. (2014).

The differential equation as defined in Eq. 2.76 governs the instantaneous change in the induced
gravitational potential that follows from any perturbing potential. Consequently, the change in the grav-
ity field coefficients is also governed by this equation since any variations in the induced gravitational
potential follow from these coefficients. Since these gravity field coefficients are decomposed in spher-
ical harmonics and the spherical harmonic functions form an orthogonal basis, the differential equation
as defined for the full induced potential must also hold for the gravity field coefficients, thus yielding
(e.g., Correia et al. 2014):

J2 + τlJ̇2 = Je
2 + τeJ̇

e
2 , (2.80)

C2,2 + τlĊ2,2 = Ce
2,2 + τeĊ

e
2,2, (2.81)

S2,2 + τlṠ2,2 = Se
2,2 + τeṠ

e
2,2. (2.82)

For convenience, these differential equations can also be noted down as one equation by introduc-
ing the notation (e.g., Correia et al. 2014):

Zl,m = Cl,m − iSl,m and Ze
l,m = Ce

l,m − iSe
l,m. (2.83)

Since the differential equation holds for Cl,m and Sl,m, it will also hold for any linear combination of
them, thus (e.g., Boué et al. 2016):

Zl,m + τlŻl,m = Ze
l,m + τeŻ

e
l,m, (2.84)

where Ze
l,m is the coefficient at equilibrium. Following Ferraz-Mello (2015) and Boué et al. (2016),

Eq. 2.84 can be conveniently reordered to

Zl,m =

(
1− τe

τl

)
Zν
l,m +

τe
τl
Ze
l,m, with Zν

l,m + τlŻ
ν
l,m = Ze

l,m, (2.85)

ensuring that there is no more dependency on Że
l,m. As will be shown shortly, Że

l,m can contain
parameters that are not straightforward to calculate and may rely on (numerical) approximations. Thus,
Eq. 2.84 and Eq. 2.85 are completely equal and both represent the instantaneous variation of the
gravity field coefficients, but Eq. 2.85 is somewhat easier to implement.

Note that this differential equation, inherently describing the induced tidal potential, only depends
on the body’s own rotation vector and the position of the perturbing body, meaning that Eq. 2.85
should hold for any trajectory (both 2-dimensional and 3-dimensional - the formulation of the perturbing
potential simply differs); whether it be chaotic, periodic or highly eccentric (Boué et al. (2016)), as long
as the initial conditions are valid (see section 2.4). Similarly to Eq. 2.76, the equilibrium coefficient Ze

l,m

is given for a static perturbation or instantaneous response, suggesting that the induced gravitational
potential simplifies to Eq. 2.60 and the equilibrium coefficients are then fully defined by Eq. 2.50, which
is reiterated here for the unnormalized gravity field coefficients:

∆C̄i
l,m − i∆S̄i

l,m =
kil,m
2l + 1

∑
j

µj

µi

(
Ri

rj

)l+1

P̄l,m(sinϕj)e−imϑj , (2.86)

For the J2, S2,2 and C2,2 coefficients, it then follows that their equilibrium values are given as (e.g.,
Correia et al. 2013):
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Je
2 = k02

[
ω2
iR

3
i

3µi
+

1

2

m0

mi

(
Ri

|ri0|

)3
]
, (2.87)

Ce
2,2 = k02

m0

4mi

(
Ri

|ri0|

)3

cos(2γ0), (2.88)

Se
2,2 = −k02

m0

4mi

(
Ri

|ri0|

)3

sin(2γ0), (2.89)

and for their time derivatives, respectively (e.g., Correia et al. 2014):

J̇e
2 = k02

[
2ω2

iR
3
i

3µi
ω̇i −

3

2

m0

mi

(
Ri

|ri0|

)3
ṙi0 · ri0
ri02

]
, (2.90)

Ċe
2,2 = −k02

m0

4mi

(
Ri

|ri0|

)3 [
3
ṙi0
ri0

cos(2γ0) + 2γ̇0 sin(2γ0)
]
, (2.91)

Ṡe
2,2 = k02

m0

4mi

(
Ri

|ri0|

)3 [
3
ṙi0
ri0

sin(2γ0)− 2γ̇0 cos(2γ0)
]
, (2.92)

with ω̇i and γ̇0 the derivatives of the rotation rate and body-fixed longitude respectively. Instead
of deriving expressions for these parameters or calculating them numerically, Eq. 2.85 is used to
circumvent the usage of Eq. 2.90-2.92 in calculating the instantaneous variation of the gravity field
coefficients. Furthermore, note that the expression for Je

2 has an additional term that explicitly does not
follow from Eq. 2.86. That is because Eq. 2.86 has been derived under the assumption that the only
perturbing potential acting on i the tidal potential of body j is, while, in reality, body i also experiences a
centrifugal acceleration induced due to its own centrifugal potential, which influences the J2 coefficient.
Again, note that, as mentioned in Section 2.3, it is possible to add the centrifugal potential’s contribution
to this equation by rewriting it in a form similar to the tidal potential, but about a different axis of symmetry
(Murray et al. (1999)).

2.4.3. Coupled equations of motion
Now that a differential equation has been created for the gravity field coefficients, the coupled equations
of motion can be set up. First, the general expressions will be provided, which are in principle applicable
to any system, as long as the assumptions under which the equations have been derived are met.
Specifically, in deriving the translational and rotational equations of motion all bodies are considered
rigid. In deriving the equations of motion for the gravity field coefficients, the body’s rheology is assumed
to follow the Maxwell model, i.e. the body is considered to be a homogeneous viscoelastic body with
Maxwell rheology. Note that this is a good rheology for satellites in spin-orbit resonance, but may cause
unexpected results for bodies that differ from this.

It is also useful to recall that the translational equation of motion will be expressed in the inertial
frame, while the rotational equation of motion and the differential equation for the gravity field coeffi-
cients will be expressed in the body-fixed reference frame. For the rotational equation of motion, this
choice has been made because it results in a convenient expression for the rotation rate of the body
(see section 2.2.2.). For the gravity field coefficients, this choice has been made in order to avoid the
need to work withWigner’s Dmatrix (e.g., Boué et al. 2016). In order to express the differential equation
for the gravity field coefficients in the inertial frame, the coefficients themselves have to be represented
in the inertial frame, which will require either propagating the gravitational potential in the body-fixed
frame (e.g., Boué et al. 2016) or converting the body-fixed gravity field coefficients to inertial gravity
field coefficients using Wigner’s D matrix. Both complicate the problem without any added benefit, thus
they are disregarded as options. This then leads to the following set of differential equations for a body
k undergoing forces from a body 0 and j additional bodies:

ẋt =

[
ṙk
v̇k

]
=

 vk

RI/0

(
(r̈0k)0 +

∑j ̸=k,0
j (r̈jk)0

) , (2.93)
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ẋr =

[
q̇k

ω̇k

]
=

[
Qk(qk)ωk

I−1
k · (Γ̄(0)

k − İkωk − ωk × (Ikωk))

]
, (2.94)

Zl,m =

(
1− τe

τl

)
Zν
l,m +

τe
τl
Ze
l,m, with Zν

l,m + τlŻ
ν
l,m = Ze

l,m. (2.95)

For the sake of completeness, the above equations will be written out for both the unperturbed and
perturbed Earth-Moon case, as well as any additional (to the assumptions in the previous paragraph)
assumptions that go into both of these cases. For both cases, the gravity field is limited to degree and or-
der 2. For the unperturbed Earth-Moon case, this work assumes that the extended body - whether it be
the satellite or the central body - has a rotation rate ω orthogonal to the orbital plane and along the axis
of maximum inertia, thus implying zero obliquity and essentially making the problem two-dimensional in
the orbital plane. For the perturbed Earth-Moon case, these assumptions do not hold and the problem
becomes three-dimensional.

For the unperturbed Earth-Moon system, the only non-zero acceleration is the component (r̈0k)0,
which is given by Eq. 2.8. The quaternion matrix Q(q) is given by Eq. 3.17 while its relation to the unit
axes of the body fixed frame is given in Eq. 24 of Fukushima (2008) and also reiterated in Appendix A.
The torque Γ̄

(k)
0k is defined by Eq. 2.22, while the inertia tensor Ik is defined by Eq. 2.19. The equations

of motion can be written out for the unperturbed Earth-Moon case with satellite i and central body 0
(Note that, while these equations will look at the force exerted by the central body on the satellite, it will
work equally well the other way around):

ẋt =

[
ṙi
v̇i

]
=


vi

RI/0

(
− µi

r2i0
r̂ − 3µiR

2
i

2r4i0
J i
2r̂ − 9µiR

2
i

r4i0
(Ci

2,2 cos 2γ0 − Si
2,2 sin 2γ0)r̂+

6µiR
2
i

r4i0
(Ci

2,2 sin 2γ0 + Si
2,2 cos 2γ0)K × r̂

)
 , (2.96)

ẋr =

[
q̇i

ω̇i

]
=

 Qi(qi)ωi

I−1
i · (−6Gm0miR

2
i

r3i0
(Ci

2,2 sin(2γ0) + Si
2,2 cos(2γ0))K − İiωi − ωi × (Iiωi))

 , (2.97)

Zl,m =

(
1− τe

τl

)
Zν
l,m +

τe
τl
Ze
l,m, with Zν

l,m + τlŻ
ν
l,m = Ze

l,m. (2.98)

For the perturbed Earth-Moon system, the acceleration is given by Eq. 2.15, while the gravitational
torque is described by Eq. 2.27. The remaining parameters are given by the same equations, resulting
in the following equations of motion:

ẋt =

[
ṙi
v̇i

]
=


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RI/0
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−µR2

i

r2

((
1

R2
i

− 3J i
2

r2
P2,0(sin(ϕ0)) +

3P2,2(sin(ϕ0))
r2

(Ci
2,2 cos(2ϑ0) + Si

2,2 sin(2ϑ0))
)
r̂

+

(
3 sin(ϕ0) cos(ϕ0)J i

2

r2
+

6 sin(ϕ0) cos(ϕ0)
r2

(Ci
2,2 cos(2ϑ0) + Si

2,2 sin(2ϑ0))
)
ϕ̂

−
(
2P2,2(sin(ϕ0))
r2 cos(ϕ0)

(−Ci
2,2 sin(2ϑ0) + Si

2,2 cos(2ϑ0))
)
ϑ̂

)
−
∑

j µj

(
r̂ji
r2ji

− r̂j0
r2j0

))


,

(2.99)

ẋr =

[
q̇i

ω̇i

]
=

 Qi(qi)ωi

I−1
i · (−m0ri0 × (∇iUi (ri0))−

∑N
j mjrij × (∇iUi (rij))

−İiωi − ωi × (Iiωi))

 , (2.100)

Zl,m =

(
1− τe

τl

)
Zν
l,m +

τe
τl
Ze
l,m, with Zν

l,m + τlŻ
ν
l,m = Ze

l,m. (2.101)
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In summary, the state vector of the problem as introduced in Section 2.1 is given as y = [r, v, ω,
q, ∆Jν

2 , ∆Sν
2,2, ∆Cν

2,2]. r and v denote the position and velocity of the perturbing body as seen from
the inertial reference frame set in the center of the tidal body (the body experiencing the tides). ω and
q denote the rotation rate and the orientation vector of the tidal body and the gravity field coefficients
are given by their relations as described in Eq. 2.95. Note that the Ze

l,m coefficients are not part of the
state vector, as their expressions are retrieved from Eq. 2.87-2.89.

Eq. 2.93-2.95 completely define the motion of an extended body with time-varying gravity field
coefficients. In this work, the three equations will be concurrently integrated, thus allowing for a time-
variable gravity field that influences the dynamics of the body and results in certain couplings. For the
translational dynamics, it is easy to see that varying gravity field coefficients will influence the acceler-
ation. For the rotational dynamics, the inertia tensor becomes time-variable due to its dependency on
the degree 2 gravity field coefficients per Eq. 2.19. Note that if more torques are considered than just
the gravitational torque, there may be an additional dependency on the inertia tensor. This work does
however not consider such torques, see section 2.2.2. for a justification.

Concurrently integrating Eq. 2.93-2.95, while ensuring full consistency between the translational
and rotational dynamics and tidal effects, comes with a price tag in the form of computational expense.
For this reason, it is traditionally not common to concurrently integrate these equations in natural satel-
lite dynamics (e.g., Lainey et al. (2007), Dirkx et al. (2016)). Usually, only the translational dynamics
are numerically propagated, while analytical approximations are used to model the body’s rotation
(e.g., Dirkx et al. (2016), Magnanini et al. (2024)). Generally, the tidal effects are approximated using
the direct tidal force as given in Eq. 2.62 and 2.66 (e.g., Lainey et al. (2007), Lari (2018), Magnanini
et al. (2024), Fayolle (2025)). This choice is generally justified based on the necessary accuracy re-
quirements, similar to how figure-figure interactions of the mutual gravitational potential are left out in
some natural satellite dynamics papers (e.g., Dirkx et al. 2016). In this field, concurrently integrating
the equations of motion is hence a relatively new concept; strengthening the rationale and novelty of
this approach, especially as future missions require preciser dynamical modelling of the accelerations
acting on bodies (e.g., Dirkx et al. (2016), Magnanini et al. (2024)).

2.4.4. Initialization of the coupled model
In order to propagate the coupled equations of motion, an initial state vector must be defined. Not
every state vector will lend itself to this purpose, for the reason that while mathematically any initial
state could be valid (e.g. set the full state vector equal to 0), they do not necessarily converge to a
physically realistic system. An important example are the librations discussed in section 2.2.3. The full
solution of the linearized differential equation as given in Eq. 2.39 for the angle of libration contains both
the normal mode and modes raised by external excitations. The normal modes have been assumed to
be damped out for the Solar System bodies over a long time scale. However, numerically integrating
the rotational equations of motion in the fully coupled model will give rise to these normal modes as no
damping has been performed.
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Figure 2.6: Frequency content of the longitudinal libration γ of the Moon using the fully coupled model. The dashed lines
represent the frequency of the average mean motion and its integer multiples (red) and the longitudinal normal mode (black).

This is illustrated in Fig. 2.6, where the frequency content of the longitudinal libration γ of the
Moon using the fully coupled model has been plotted, along with the frequency content of the mean
motion. As expected, the frequency content of γ has its largest peak at the average mean motion,
which is one of the reasons why the longitudinal libration is often approximated with a once-per-orbit
libration at the mean motion (e.g., Fayolle 2025). Next to this peak, multiple smaller peaks are visible at
integer multiples of the mean motion, immediately showing that concurrently integrating the rotational
equations of motion will likely result in the actual rotational behaviour of the satellite being capturedmore
accurately. Lastly, a peak in the frequency content of γ is also visible at the frequency of the longitudinal
normal mode, implying that the Moon’s internal excitation mechanism influences its orientation. So
unless a physically realistic initial state is used (e.g. a state where the normal modes have been
damped out), these normal modes will occur and need to be removed forcefully in order to gain a
realistic solution.

There are two steps to determining a physically realistic state for the coupled model. In order to
damp the normal modes, an algorithm as introduced by Rambaux et al. (2012) and implemented by
Martinez (2023) is used, which introduces a virtual torque into the equations of motion. Conceptually,
this additional torque induces a larger tidal dissipation ensuring a faster convergence of the propagation.
Mathematically, this virtual torque can be expressed as

Γd = − 1

τd
I(ω − ω0), (2.102)

with τd a given dissipation time, ω the rotation rate of the body expressed in its body-fixed frame
and ω0 its rotation rate in pure synchronous motion (i.e. the desired rotation rate), meaning it will only
have a non-zero component along the K-axis. In order to damp out the normal modes, the equations
of motion in Eq. 2.93-2.95 are propagated with this additional virtual torque. The resulting final state
is then propagated backwards in time without the virtual torque, resulting in an initial state that should
have damped normal modes. Naturally, this is an iterative process, and as Martinez (2023) points out,
it will likely take several iterations to obtain an initial state with a sufficiently damped out normal mode.
While this method worked well for Martinez (2023), it is important to realize they considered a fully
coupled translational-rotational set of equations of motion, i.e. the bodies analyzed were assumed rigid.
Since in this work tidal dissipation is also considered, it is important that the gravity field coefficients
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also converge to their true values. This makes it unclear whether this method will be applicable to the
problem at hand out of the box, or whether it requires some modification in order to incorporate the fact
that tidal dissipation occurs within the system.

To this end, a second step is added to aid in finding a physically realistic initial state, which in itself
consists of two steps for redundancy. Analogously to how a virtual torque is introduced to damp the
rotation, a similar equation can be used to damp the normal modes in the gravity field coefficients:

Żν
l,m = − 1

τl
(Zl,m − Ze

l,m), (2.103)

with Zl,m the current value of the gravity field coefficient. The goal of this equation is to aid the
process of the gravity field coefficients converging to stable values where the normal modes have been
damped out. Since this is a novel method, however, there is no guarantee of it working. To ensure that
a proper initial state is still achieved, the second method employed is quite straightforward. Since Eq.
2.102 is proven to work, it should find an initial state that has damped the normal modes significantly,
but perhaps not completely. In reality, such a virtual torque does not exist, and damping has taken
place due to tidal dissipation. Taking inspiration of how the damping of normal modes have occured
in the Solar System, a second method is to simply run the propagation for a long time (far past the
relaxation time of the body) and let the remaining normal modes be damped using tidal dissipation.
The downside of this method is that it is, beforehand, not clear for how long this propagation should be
ran. Instead, a trial-and-error method is employed.

There may be other possible solutions that will lead to the same result of a physically realistic initial
state. These are just two possibilities and further in the thesis other methods may be devised. It is
however important to be aware of the existence of this problem as it will likely be difficult to properly
initialize this model given its natural inclusion of the normal modes and tidal dissipation.

2.5. Verification & Validation
Once implemented, the coupled equations of motion in Eq. 2.93-2.95 can be compared to state-of-
the-art approximations for relevant parameters. The goal is to measure the accuracy of the coupled
model, but also to investigate possible deviations between the coupled model and the state-of-the-art
model, which could possibly indicate that some (coupled) effects are captured better by the coupled
model. This includes the orbital evolution for the semi-major axis a as well as the eccentricity e of the
satellite. Next to that, comparison of the gravity field coefficients are made in order to see whether the
model has properly converged. The inertia tensor’s evolution will be compared against the evolution
of the gravity field coefficients and the tidal lag and lag angle will also be compared against literature
approximations. Lastly, the effects of librations will be discussed. Comparing this work’smethod against
existing approximations is important to ensure that the method is working correctly and to identify where
current approximations do not properly capture coupled effects, making it a key component of the
research and an important section in the literature study.

2.5.1. Linear approximations for the semi-major axis and eccentricity evolution
The raised tidal torques by the planet and satellite tides as described in section 2.3.2 (Eq. 2.67) induce
secular variations in the satellite’s semi-major axis ai and eccentricity ei (Goldreich et al. (1966)). This
can imply either an increase or decrease of ai depending on whether the satellite’s mean motion is
greater than the central body’s rotation rate or not. For the tides raised by the satellite i on the planet
0, the evolution of the semi-major axis is commonly described as (e.g. Souchay et al. (2013), Boué
(2019)):

da0i
dt

= sign(ω0 − ni)3
k02mi

Qi
0m0

(
R0

ai

)5

niai, (2.104)

where all parameters are as defined in previous section. Note that the sign function specifies
whether the derivative of ai is positive or negative, allowing the possibility of the satellite’s orbit ex-
panding or shrieking, depending on whether or not it lies beyond the stationary orbit. The derivation of
Eq. 2.104 can be found in Souchay et al. (2013)’s section 5.3.2, where it follows from the conservation
of angular momentum in the two-body system in combination with several assumptions: the orbit is
assumed to be equatorial, prograde and circular, the time lag to be constant and independent of the
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tidal frequency (i.e. the constant time lag model is used), the moment of inertia of the central body to
be constant, the spin vector of the central body to be aligned with its polar axis and the mass of the
central body to be much larger than the mass of the satellite. This further highlights the flexibility of the
coupled model, which does not rely on any of these assumptions.

If ei ̸= 0, the tides raised by the satellite on the central body also incur a change in the eccentricity
of the satellite. This follows from expanding the tidal potential as a Fourier series (the same result can
be obtained from the conservation of angular momentum, see Fayolle (2025)), working out the orbital
element variations then yields the rate of change of ei as (e.g. Jeffreys (1976), Souchay et al. (2013)):

de0i
dt

= sign (3ω0 − 2ni)
57

8

k02mi

Qi
0m0

(
R0

ai

)5

niei, (2.105)

where the same assumptions hold except for a circular orbit. Notice that the expression that governs
the sign function is now more complex due to dependence of ei on different tidal parameters than ai
(Goldreich et al. (1966)).

Although the underlying physics for the planet and satellite tides as discussed in section 2.3. is the
same, the phenomenology is, as discussed in the same section, quite different. For the tides raised by
a satellite in spin-orbit resonance on itself, different expressions than Eq. 2.104 and Eq. 2.105 hold for
the evolution of ai and ei, where they are respectively given as (e.g., Boué 2019):

daii
dt

= −21
ki2m0

Q0
imi

(
Ri

ai

)5

niaie
2
i , (2.106)

deii
dt

= −21

2

ki2m0
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imi

(
Ri

ai

)5

niei. (2.107)

It is useful to note that another expression for the rate of change of ai exists in literature (e.g.,
Souchay et al. 2013):

daii
dt

= −57
ki2m0

Q0
imi

(
Ri

ai

)5

niaie
2
i , (2.108)

where Eq. 2.108 and Eq. 2.106 differ a factor 57/21. As explained by Fayolle (2025), Eq. 2.108
is consistent with a perfectly synchronous satellite, while Eq. 2.106 is consistent with a satellite in
pseudo-synchronous rotation. Here, an issue arises from many studies assuming that the average
tidal torque over one orbit is zero, while using Eq. 2.106 for the secular evolution of ai. As discussed
in Fayolle (2025)’s section 2.3.3, considering an averaged torque of 0 over one orbit implies a pseudo-
synchronous satellite for non-circular orbits. This appears to contradict Solar System observations,
fromwhich it is known that many satellites are in synchronous rotation (e.g., Efroimsky et al. 2013). This
observed synchronous rotation actually would result in a non-zero tidal torque over one orbit Fayolle
(2025). However, the non-zero tidal torque can be, as mentioned before, compensated for by a small
shift in the pointing direction of the long axis of the satellite (e.g., Yoder (1981), Souchay et al. (2013),
Fayolle (2025)). This corresponds to a non-zero Si

2,2(t) coefficient, which would affect the orbit of the
satellite similar to tidal dissipation (Fayolle (2025)).

In other words, following Fayolle (2025), Eq. 2.108 accurately models the effect of the satellite tides
on the evolution of the semi-major axis. However, the effective semi-major axis evolution follows from
the combined effect of tidal dissipation and a non-zero Si

2,2(t) coefficient, which cancels the non-zero
tidal torque and leads to Eq. 2.106. This once more highlights the sensitivity of the used models to
the rotation rate of the satellite. To conclude, Eq. 2.106 and Eq. 2.107 accurately model the evolution
of the satellite’s semi-major axis and eccentricity due to its own tides and will be used in this work to
compare the results from the coupled model.

2.5.2. Gravity field coefficients
Next to the evolution of the orbital parameters, it will also be interesting to see how the gravity field
coefficients, calculated using Eq. 2.95, evolve due to the sudden stresses of the introduced bodies,
which will give insight into how, given certain relaxation times, a body deforms under stresses. Further-
more, it will be interesting to see how Si

2,2(t) evolves, especially given the discussion in the previous
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subsection. In order to compare the results from this equation, they can be compared to state-of-the-
art approximations for the coefficients, which uses a complex Love number to account for tidal lag,
assuming a constant phase lag (e.g., Petit et al. 2010):

J i
2 =

(
ω2
iR

3
i

3µi
+

1

2

mi

m0

(
Ri

|ri0|

)3)
Re(ki2), (2.109)
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, (2.110)
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Re(ki2) sin 2γ0 + Im(ki2) cos 2γ0

)
, (2.111)

where again the centrifugal potential’s effect on J i
2 is accounted for. Here Re(ki2) and Im(ki2) denote

the real and imaginary part of ki2, accounting for the ’amplitude’ and phase lag of the tidal bulge respec-
tively. The following relations can be derived for them assuming a small phase lag δ, also reiterating
Eq. 2.51, as it is useful to realize that Eq. 2.109-2.111 can be completely determined using parameters
from literature and the uncoupled model:

ki2 = |ki2| exp(−i · 2δi) = Re(ki2) + iIm(ki2), (2.112)

Re(ki2) = |ki2| cos 2δi ≈ |ki2|, (2.113)

Im(ki2) = −|ki2| sin 2δi = −|ki2|
Q0

i

. (2.114)

Here, the real part of the Love number is assumed equal to the literature value of the Love number.
Since the tidal coefficients completely dictate the gravitational shape of the body through the induced

gravitational potential, they can be used to calculate geometric lag angle δi by the following relations:

νi =
1

2
arctan 2

(
Si
2,2

Ci
2,2

)
, (2.115)

γi = (sign(êA · (r̂i0 × êC))) · arccos(êA · r̂) mod 2π, (2.116)

δi = (νi − γi) mod π. (2.117)

The first angle, νi, is the angle between the tidal bulge and the body-fixed I-axis, which is only
non-zero when Si

2,2 ̸= 0. Two implications follow from this: if Ci
2,2 ̸= 0 and Si

2,2 = 0, the satellite’s tidal
bulge (and thus long axis) is aligned with the body fixed I-axis, and thus the average evolution of ai,
d̄ai
dt

= 0. If Ci
2,2 ̸= 0 and Si

2,2 ̸= 0, d̄ai
dt

̸= 0.
The geometic lag angle retrieved from Eq. 2.117 can be compared to the constant lag angle re-

trieved from Eq. 2.51. Note that since it has been assumed constant, it will fail to capture intricate
details that the coupled model might be able to catch, next to being a worse approximation than the
constant time lag model (e.g., Efroimsky et al. 2013). Similarly, the time lag ∆t is assumed constant in
current models, but the coupled model can also capture variations in ∆t by realizing it follows from the
distance divided by velocity; in this case the distance between the bulge’s position and the perturber’s
position divided by the relative rotational velocity as seen from the body-fixed frame:

∆ti =
δi|ri0|

|ωi × ri0 − vi|
. (2.118)

Lastly, the values of the derivative of the inertia tensor may be compared against the values retrieved
for the gravity field coefficients as follows from Eq. 2.94 and 2.95 respectively. This should rather serve
as a sanity check; if the model is propagated correctly these values should agree with each other as the
inertia tensor is completely defined by the J2, S2,2 and C2,2 provided we limit the gravitational potential
to l = 2. Similarly, its derivative İ is completely defined by J̇2, Ṡ2,2 and Ċ2,2, see Eq. 2.19.
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2.5.3. Librations
Librations have been discussed extensively in Section 3.3, where it has been noted that librations are
not a real physical concept, but rather quantify the variations in the rotation angle of the satellite, where
the angles are defined as in Eq. 3.19. Important is to note that wrong initial conditions will add to the
variations of the rotation angle, which can then yield unphysical librations. Free librations, as discussed
before, should be damped out in the numerical simulations. Their main frequency is given by (Maistre
et al. (2013)):

νf = ni
B −A

C
, (2.119)

with A ≤ B ≤ C the principal moments of inertia in the body-fixed axes directions. For the forced
librations, generally the largest contribution is made by a once-per-orbit longitudinal libration, where the
amplitude can be given by two different approximations, following Willner et al. (2010) and Efroimsky
(2018), they respectively state that:

θτ =
2ei

1− C
3(B−A)

, (2.120)

θτ = −6ei
B −A

C
+O(e3i ), (2.121)

where Efroimsky (2018) uses a different approximation to get to the result. While Eq. 6.17 is more
commonly used in literature, it will be useful to compare against both approximations.

As said before, librations are simply a convenience term describing the variations in the rotation
angle. This rotation angle can then, looking at Fig. 2.1, be given as

θ = arctan2 (Iy/Ix) . (2.122)
The variation in the rotation angle can then be found by fitting a linear function to the rotation angle;

the differences between θ and this linear fit are the (physical) librations.
Efroimsky (2018) states that librations can also cause dissipations similar to tidal dissipations, be-

cause they affect tidal torques through the dependency of the rotation rate on librations (see Fayolle
(2025) for a more extensive discussion). Efroimsky (2018) gives a relation between this additional dis-
sipation due to librations with respect to the tidally induced powers as if there were no librations. The
coupled model should automatically incorporate this, so it will be interesting to see whether this effect
can be correctly predicted by the relation proposed by Efroimsky (2018), assuming a once-per-orbit
longitudinal libration:

⟨P ⟩(lib)tide

⟨P ⟩(main)
tide

= 1− 4θτ
7ei

+
θ2τ + θ2f
7e2i

, (2.123)

where θf is the amplitude of the free librations, which should be approximately equal to 0 for most
Solar System bodies, slightly simplifying the relation and the (lib) and (tide) superscripts indicate the
tidal power including librations and the tidal power as if there were no librations. This relation is derived
under several assumptions that should be met; it assumes a zero obliquity, θf < 12◦ and a near-
spherical satellite body described by a Maxwell rheology.

Since ai and ei are governed by the orbital Eorb and rotational energy Erot, their evolution is gov-
erned by the generated tidal energy dissipation (assuming that energy dissipation is completely due to
tidal dissipation):

Ė = −(Ėrot + Ėorb), (2.124)
Their relations to ȧ and ė are given as (e.g., Correia et al. 2014):
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2Ėorb
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, (2.125)
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)
, (2.126)
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where β is the reduced mass of the system. Since the orbital energy is generally much larger than
the rotational energy, Eq. 2.126 can, but need not, be simplified. Eq. 2.125 and Eq. 2.126 should in
theory result in the same values are will be derived from the coupled model and Eq. 2.105 and 2.106.
It will serve as a good verification method to compute the total energy that is dissipated by the coupled
model and verify the values for the evolution of ai and ei, giving extra confidence to the generated
results.

Lastly, since the librations result in extra energy dissipation as in Eq. 2.122, the equations 2.105
and 2.106 must account for this additional dissipation, as these equations, and most literature, assume
that librations do not induce additional dissipations (e.g., Efroimsky 2018). The approximations for the
evolution of ai and ei due the satellite tides is then given as

daii
dt

=
⟨P ⟩(lib)
⟨P ⟩(main)

daii
dt
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Literature

, (2.127)
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dt

∣∣∣∣
Literature

. (2.128)

2.6. Thesis Planning
In the previous sections, the theoretical framework has been laid out to understand current state-of-the-
art models and literature approximations, and the newer coupled model. Section 4 introduced the direct
tidal force that is used in literature, which can miss important interactions that influence the dynamics
of bodies. The thesis will aim to couple these effects and incorporate them. The rest of the chapter will
outline how this thesis plans to tackle that.

2.6.1. Problem statement
The aim of this thesis will be to implement the coupled model, which combines the translational, rota-
tional and tidal dynamics and propagates them concurrently, and apply it to Earth-Moon system and
possibly other systems, such as Jupiter and the Galilean moons. The Earth-Moon system is chosen be-
cause it is the most well-known system, compared to more complex systems such as Mars-Phobos or
Jupiter and the Galilean moons, allowing to build on existing knowledge (such as in Mol (2021)) to dive
deeper into the system. It will also serve as a good benchmark to ensure that the coupled model can
accurately produce values for the orbital migration rate of the satellite. Jupiter and the Galilean moons
are an interesting system, because this model has to date not yet been applied on it. The application
to this system may be of interest for data analysis from future missions headed to this system, such as
JUICE and the Europa Clipper. As such, it will be useful to compare the uncoupled and coupled model.
The following research question with sub-questions can be defined:

• What is the effect of using a fully coupled model compared to current-day models in natural satel-
lites’ dynamics modelling in planetary systems?

– Can proper initialization reliably be achieved for the system(s) in question?

* How can physically realistic initialization reliably be achieved for the uncoupled model,
where the initial state is given by yU = [r, v, ω, q] at t = 0?

* How can physically realistic initialization reliably be achieved for the uncoupled model,
where the initial state is given by yC = [r, v, ω, q, ∆Jν

2 , ∆Sν
2,2, ∆Cν

2,2] at t = 0?
– What is the effect of the coupled model for an unperturbed and perturbed system with tides

raised on the primary?

* What is the behaviour of the coupled model on the evolution of gravity field coefficients,
tidal lag angle and time lag?

* What is the behaviour of the coupled model on the evolution of the orbital elements a
and e?

– What is the effect of the coupled model for an unperturbed and perturbed system with tides
raised on the secondary?

* What is the behaviour of the coupled model on the evolution of gravity field coefficients?
* What is the behaviour of the coupled model on the evolution of the orbital elements a
and e and librations?
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– How can the coupled model be used to improve current and future data analysis from plan-
etary missions for the measured parameters?

* How can the coupled model improve current and future data analysis for a system with
tides on the primary?

* How can the coupled model improve current and future data analysis for a system with
tides on the secondary?

* Can the coupled model capture the correct behaviour for a system when analyzing both
tides on the primary and secondary simultaneously?

The first sub-question aims to tackle what might be the biggest challenge of the coupled model: a
(semi-)random initial state will likely lead to non-realistic systems due to existing normal modes in the
rotational dynamics. It is therefore crucial to be able to dampen these normal modes to find an initial
state that is physically realistic. Furthermore, the coupled model includes the time-variable gravity field
coefficients. It is crucial to have the right static and time-variable parts of these coefficients to ensure
no unintended behaviour, which adds another layer of complexity to the initialization problem. To this
end, the first sub-question will tackle whether it is possible to come up with a method to reliably find
an initial state for planetary systems. This will allow for the coupled model to generate the necessary
results and answer the second and third sub-questions.

The second sub-question looks into the effect of the coupled model for the tides on the primary. As
will be explained in Section 7.2.1, the tides can be analyzed separately on the primary and secondary
body, which is relevant as it is much easier to determine them on the primary than secondary body
due to the additional radial tides secondary bodies experience. The question looks into the behaviour
of the coupled model on several relevant parameters; the gravity field coefficients, the tidal lag angle,
the time lag and the orbital elements a and e. Determining the tides on the primary is expected to be
relatively straightforward compared to determining the tides on the secondary.

The third sub-question looks into the effect of the coupled model for the tides on the secondary by
looking into the behaviour of the coupled model for the relevant parameters; the gravity field coefficients,
the orbital elements a and e and the librations of the body. It is usually (much) harder to determine the
tides on the secondary due to the general presence of radial tides, shown by the current-day discussions
about correct approximations for the evolution of a, see Eq. 6.3 and Eq. 6.4. As discussed in Section
4.2, there exist some approximations but the combination of longitudinal and radial librations, as well
as their induced dissipation, are hard to determine.

The fourth sub-question acts as a follow up question dependent on all three previous sub-questions.
Once the coupled model has successfully been applied to the system(s) in question, the gathered
results can be analyzed and compared to the uncoupled model and literature estimations of the relevant
parameters. The aim is to determine whether the coupled model can be used for improving data
analysis of current and future planetary missions for tides on the primary, secondary and perhaps both
simultaneously.

Once, and if, the coupled model is validated for the Earth-Moon system, it can be applied to Jupiter
and its moons to find approximations for the given parameters of interest. For this system, there is both
less data available, and the system itself is also more complex due to containing multiple bodies as well
as having the effect of Laplace resonance, adding an extra layer of complexity. It will be interesting to
see whether the coupled model can be applied to such a system and whether it can produce reasonable
results when compared to the uncoupled model and existing literature approximations.

2.6.2. Thesis planning
In order to answer the research question and the associated sub questions, this section will outline the
planning of the thesis.

Tasks
In order to answer the sub-questions, twomodels will be created for each of the systems: a conventional
direct tidal force model, where the translational and rotational dynamics are coupled, but the tidal force
is added to both of these as given in Section 4.2, and a fully coupled model. This results in the following
set of models that must be set up:

• Model Ui: Uncoupled model for system i. This adds the direct tidal force and torque to the
translational and rotational dynamics of the system respectively.
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• Model Ci: The fully coupled model, which propagates the translational, rotational and tidal dy-
namics together.

Here, the Earth-Moon system is indicated withE and the Jupiter system is indicated with J , resulting
in four models: UE , CE , UJ , CJ . It will be useful to get a good idea of the parameters that will be
estimated for each model. For the uncoupled model, the state vector will consist of yU = [r, v, ω, q],
while the coupled model’s state vector is given by yC = [r, v, ω, q, ∆Jν

2 , ∆Sν
2,2, ∆Cν

2,2]. In the case of
a two-body system, such as the Earth-Moon system, there is the option of analyzing the tides on the
primary and secondary body seperately or together. It is useful to first analyze the tides on the bodies
seperately and then together, to see whether literature approximations of evolutions of the relevant
parameters can simply be added together to acquire the total evolution of the system, or whether more
complex coupled relations will appear. To this end, three additional models can be created:

• Model XP
i : Model with the primary body being an extended body and the secondary body being

a point mass, thus modelling the tides on the primary body.
• Model XS

i : Model with the secondary body being an extended body and the primary body being
a point mass, thus modelling the tides on the secondary body.

• Model Xi: Model with both bodies as extended bodies, thus modelling the tides on both bodies
at the same time.

This results in six models for each system. Note that for the uncoupled models, the above models
refer to adding the direct tidal force correction to the right body in question. The point-mass body will,
in both the uncoupled and coupled model, simply experience translational and rotational dynamics and
be modelled as a rigid body.

These models are used in answering the first sub-question during the set-up and verification &
validation of the models; they will only be functional once initialization is successful. Hence, the suc-
cessful development of the coupled models will be a direct indication of a successful method applied
for initialization of the models. As an initial attempt, the method laid out in Rambaux et al. (2012) and
implemented in Martinez (2023) will be used in order to provide a realistic initial state for both the uncou-
pled and coupled model, as both will propagate the translational and rotational dynamics in a coupled
manner. The process is described in Section 5.4. As mentioned there, additional care must be taken
in initialization of the coupled model, since it naturally will have some form of dissipation due to the
tides raised on the bodies. Seperating this from the additional ’virtual’ dissipation has never been done
before and thus may prove to be challenging. For the uncoupled model it will be easier since the rigid
bodies considered there will have no dissipation.

By propagating the initial state forward with this introduced virtual torque, and then backwards with-
out this virtual torque, and initial state may be obtained where the normal modes of the librations are
damped. Indirectly, this may also influence how the static and time-variable part of the gravity field
coefficients are ’distributed’. In the case that this only proves to dampen the normal modes, but does
not aid in initialization of the gravity field coefficients, an additional form of virtual dissipation must be
added, such as tidal dissipation. This may take several iterations until the retrieved initial state satisfies
a certain convergence criterium. This initial state is then used as the initial condition. In this work,
solutions between initial states where normal modes appear and initial states where they are damped
are not compared, since this is not within the scope of the thesis. Instead, focus will be put on finding
these initial states where normal modes have been damped out, starting with the Earth-Moon system.

The second and third sub-questions can be answered by retrieving the necessary data from the
respective models for the primary and secondary bodies. Once the models have been successfully set
up and validated and a successful propagation has been performed, the evolution of the parameters
mentioned in the sub-questions can be retrieved from yC with the proper equations; for the tides on the
primary, the tidal lag angle and the time lag can be caclulated using Eq. 6.14 and 6.15; for the tides on
the secondary, the librational amplitude can be calculated using Eq. 6.19; for both the primary and the
secondary, the gravity field coefficients follow from the state vector in combination with Eq. 5.22 and
the evolution of the orbital elements a and e can be calculated by converting the cartesian state in the
state vector to keplerian elements.

Finally, the fourth sub-question can be answered by comparing the results generated by the coupled
models with the uncoupled models and literature approximations. It will be interesting to see whether
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it can reproduce, or improve, state of the art results in the parameters of interest for the primary, sec-
ondary or both simultaneously. The evolution of the parameters mentions in the sub-questions can be
retrieved from yU and literature approximations with the following equations; for the tides on the primary,
the tidal lag angle and the time lag can be approximated using Eq. 4.9, the orbital elements a and e
can be approximated using Eq. 6.1 and 6.2; for the tides on the secondary, the librational amplitude
can be approximated using Eq. 6.17 and 6.18, the orbital elements a and e can be approximated using
Eq. 6.3-6.5 and Eq. 6.25-6.26; for both the primary and the secondary, the gravity field coefficients
can be approximating with Eq. 6.6-6.8.

Ultimately, it must be kept in mind that the scope of analysis may vary between different systems.
Since the coupled model has already been applied to the Earth-Moon system (Mol, 2021), it allows
for deeper and complexer analysis of this system. On the other hand, this has not been done for the
Jupiter system, warranting a more preliminary and global approach, especially considering the added
complexity the Jupiter system poses with its Galilean moons and Laplace resonance between these
moons. It is therefore not unthinkable that any of the following situations may occur: A deep dive in
the Earth-Moon system proves to warrant enough research on its own; a deep dive in the Earth-Moon
system and a preliminary analysis of the Jupiter system warrant enough research; and finally, time
allows for a deep-dive application of the coupled model to both systems, which would likely be the best
case scenario.

The plan
The tasks laid out can be summarized in the following work packages:

• Workpackage 1: Build and initialize the uncoupled models; retrieve values from propaga-
tions and do reporting. Expected duration: 2 month

– WP 1.1 - Build UP
i , U

S
i , Ui. Expected duration: 4 weeks

* WP 1.1.1 - Build coupled translational & rotational dynamics (Eq. 5.20, 5.21)
* WP 1.1.2 - Add direct tidal force correction to equations of motion (Eq. 4.15, 4.18)
* WP 1.1.3 - Reporting

– WP 1.2 - Initialization. Expected duration: 3 weeks
– WP 1.3 - Reporting. Expected duration: 1 week

• Workpackage 2: Build and initialize the coupledmodels; retrieve values frompropagations
and do reporting. Expected duration: 3 months

– WP 2.1 - Build CP
i , C

S
i , Ci. Expected duration: 1 month

* WP 2.1.1 - Incorporate coupled tidal dynamics (Eq. 5.22)
* WP 2.1.2 - Reporting

– WP 2.2 - Initialization. Expected duration: 2 months
– WP 2.3 - Reporting. Expected duration: 1 week

• Workpackage 3: Verification & Validation of the coupled model. Expected duration: 2
months

– WP 3.1 - Propagate uncoupled models. Expected duration: 2 weeks

* WP 3.1.1 - Retrieve data for tides on the primary
∙ WP 3.1.1.1 - Retrieve orbital elements a(t) and e(t) and their derivatives for a range
of settings varying the body parameters (k2, Q)

∙ WP 3.1.1.2 - Reporting
* WP 3.1.2 - Retrieve data for tides on the secondary

∙ WP 3.1.2.1 - Retrieve orbital elements a(t) and e(t) and their derivatives for a range
of settings varying the body parameters (k2, Q)

∙ WP 3.1.2.2 - Reporting
* WP 3.1.3 - Retrieve data for tides raised on both bodies

∙ WP 3.1.3.1 - Retrieve orbital elements a(t) and e(t) and their derivatives for a range
of settings varying the body parameters (k2, Q)

∙ WP 3.1.3.2 - Reporting
– WP 3.2 - Propagate coupled models. Expected duration: 5 weeks
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* WP 3.2.1 - Retrieve data for tides on the primary
∙ WP 3.2.1.1 - Retrieve tidal lag angle, time lag (Eq. 6.14, 6.15)
∙ WP 3.2.1.2 - Retrieve orbital elements a(t) and e(t) and their derivatives for a range
of settings varying the body parameters (τe, τ )

∙ WP 3.2.1.3 - Retrieve gravity field coefficients (Eq. 5.22)
∙ WP 3.2.1.4 - Validate WP 3.2.1.1-3.2.1.3 against literature approximations in WP
3.3.1

∙ WP 3.2.1.5 - Validate WP 3.2.1.2 against uncoupled model results in WP 3.1.1
∙ WP 3.2.1.6 - Reporting

* WP 3.2.2 - Retrieve data for tides on the secondary
∙ WP 3.2.2.1 - Retrieve librational amplitudes (Eq. 6.19)
∙ WP 3.2.2.2 - Retrieve orbital elements a(t) and e(t) and their derivatives for a range
of settings varying the body parameters (τe, τ )

∙ WP 3.2.2.3 - Retrieve gravity field coefficients (Eq. 5.22)
∙ WP 3.2.2.4 - Validate WP 3.2.2.1-3.2.2.3 against literature approximations in WP
3.3.2

∙ WP 3.2.2.5 - Validate WP 3.2.2.2 against uncoupled model results in WP 3.1.2
∙ WP 3.2.2.4 - Reporting

* WP 3.2.3 - Retrieve data for tides raised on both bodies
∙ WP 3.2.3.1 - Retrieve and validate data as in WP 3.2.1 and 3.2.2
∙ WP 3.2.3.2 - Reporting

– WP 3.3 - Literature approximations. Expected duration: 1 week

* WP 3.3.1 - Literature approximations for tides on the primary
∙ WP 3.3.1.1 - Calculate the tidal lag angle, time lag (Eq. 4.9)
∙ WP 3.3.1.2 - Calculate the orbital evolution of a(t) and e(t) for a range of settings
varying the body parameters (k2, Q) (Eq. 6.1, 6.2)

∙ WP 3.3.1.3 - Calculate the gravity field coefficients (Eq. 6.6-6.8)
∙ WP 3.3.1.4 - Reporting

* WP 3.3.2 - Literature approximations for tides on the secondary
∙ WP 3.3.2.1 - Calculate the librational amplitude (Eq. 6.17, 6.18)
∙ WP 3.3.2.2 - Calculate the orbital evolution of a(t) and e(t) for a range of settings
varying the body parameters (k2, Q) (Eq. 6.3-6.5, 6.25, 6.26)

∙ WP 3.3.2.3 - Calculate the gravity field coefficients (Eq. 6.6-6.8)
∙ WP. 3.3.3.4 - Reporting

– WP 3.4 - Reporting

• Workpackage 4: Analyse results of the uncoupled model. Expected duration: 2 weeks

– WP 4.1 - Analyse and compare results from WP 3.1
– WP 4.2 - Reporting

• Workpackage 5: Analyse results of the model model. Expected duration: 6 weeks

– WP 5.1 - Analyse & compare results from WP 3.2 and WP 3.3
– WP 5.2 - Reporting

Thework packages can be split in twomain parts: work packages 1 to 3, which consist of building the
necessary models and generating the required numbers for later analysis. This includes initialization of
the models, validating the models as well as retrieving results from the models, which implicitly answers
the first sub-question. The second part, work packages 4 and 5, consist of analyzing the retrieved data
and answering the three latter sub-questions, where work package 4 serves as analysis of data that
will act as validation for the coupled model, which really answers the three sub-questions.

The first half is expected to take the majority of the time, as it consists of building all the models as
well as the initialization of these models. It is expected that initiating code will probably take quite long,
but may be sped up due to code available from Martinez (2023) and Mol (2021). Including writing the
relevant part of the thesis, it will probably take around 6-7 months.

The second half is, once the data is generated, focused mainly on post-processing and generating
plots. It will also entail writing results, analyses and conclusions in the thesis, which can also prove to
be time consuming. An estimated 2-3 months is reserved for this.
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Note that there is no mention made of the specific system for which these work packages hold. The
core code and applied algorithms for initialization are not expected to differ greatly between the Earth-
Moon system and the Jupiter system, but may require some small tweaks or modifications. It is by this
reasoning that the expectation is that once the models have been built, they may readily be applied
to the Jupiter system and thus also generate results for this system. Then the analyses can be done
concurrently. Naturally, initialization may also prove to be far more complex due to the aforementioned
Laplace resonance. This is an unknown factor that is hard to determine, and hence no time-estimate
will be placed upon this, other than including a possible deviation in the time spent for the two parts.

The software development for this thesis will be done in Python, where code will be developed based
on previous code created by Martinez (2023) and Mol (2021). Both of their codes contain snippets that
may be useful for creation of the models at hand, and thus it makes sense to use these.

For the set up of the coupled translational and rotational dynamics simulator, it may be validated
against the TU Delft Astrodynamics Toolbox1 (Tudat), which is a C++ software package with a Python
wrapper readily available maintained by staff and students from TUDelft. It contains implementations of
integrators, propagators, translational and rotational dynamics simulators and more. It is a proven tool
and hence will be useful in validating the self-made coupled translational-rotational dynamics simulator
to ensure no bugs are present. Tudat unfortunately does not contain a tidal dynamics simulator, at least
not coupled with translational and rotational dynamics. Hence, the coupled model must be developed
without using Tudat. For the translational-rotational dynamics simulator, Tudat will be used to compute
the undamped initial state that will have no normal modes in its propagation, since it has a function that
allows to do so, see Section 5.4. It also has functionality regarding the damping of the normal modes
in rotational dynamics.

1Documentation: https://tudat-space.readthedocs.io. Source code: https://github.com/tudat-team/tudat-bundle.
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On the coupled modelling of the influence of tidal effects in natural satellites’
dynamics

Soufyan Roubiou1

1Delft university of Technology, Kluyverweg 1, Delft, 2629HS, The Netherlands

Context. Future missions like JUICE and Europa Clipper are set to increase the quality and quantity
of measurements through improved instruments and new estimation methods, resulting in improved
orbit determination and parameter estimation. To exploit the data to its fullest, the underlying
dynamical models must be improved. To obtain consistent estimates of physical parameters driving
long-term evolution of planetary systems from spacecraft data, a satellite’s orbit, rotation and
tidal deformation must be consistently modelled. While approximations exist to do so for natural
satellites, these very same approximations fail when applied to a spacecraft, hence possibly causing
inconsistent estimates from the spacecraft data and calling for a coupled modelling approach.
Aims. This works aims to develop a fully coupled model and compare it to simpler, uncoupled
implementations and leverage this comparison to analyse the effect of tides on a planetary system’s
orbital evolution.
Methods. A complete and consistent modelling of a satellite’s orbit, rotation and tidal deformation
of the gravity field, novel for the field of natural satellites’ dynamics, is introduced and applied to
the Earth-Moon system as a test case. It is a good candidate because it is a well-known system and
the coupled model does not rely on severe underlying assumptions, making it easily applicable to
other planetary systems.
Results. For the same initial state, the uncoupled and coupled trajectories show an along-track
position difference up to 20 m over 13 years and 8 months. Furthermore, for the tides raised on
the Moon by itself, the coupled model predicts values for the orbital evolution in agreement with
simplified, uncoupled models available in literature. It also helps shed light on a common discussion
between approximations for the evolution of the semi-major axis of a satellite. The orbital energy
dissipated Ėorb from the coupled model agrees well with theory, with the values being −14.89 GJ/s
and −14.44 GJ/s respectively, although tidal dissipation manifests itself differently in the coupled
model. The results in this work show that for the coupled model it is the periodic variations of the
degree two coefficients that are solely responsible for the orbital energy dissipated, with no ’constant
offset’ accompanying the tidal dissipation. The results in this work demonstrate the suitability of the
proposed coupled implementation for future missions and data analyses, which has the advantage
of circumventing most of the practical and theoretical limitations of current, uncoupled models.

I. INTRODUCTION

The determination of satellites’ ephemerides provide
information about the formation and evolution of plane-
tary systems by extracting key information on the prop-
erties of the bodies in the planetary system, such as their
composition, interior structure and rheology (e.g., Lainey
et al. (2007); Lainey et al. (2012); Folkner et al. (2014);
Dirkx et al. (2016)). A rheology model is a way to model
the body’s deformation and response to any stresses ap-
plied. Accurate natural satellite ephemerides carry im-
portance with it for scientific missions; knowing the posi-
tions of celestial bodies currently, and, more importantly,
knowing where they will be at a later time, is relevant
for mission design (for example, for flyby’s) and orbit
navigation of artificial satellites.

With the launch of satellites like Europa Clipper (Pap-
palardo et al. (2024)) and JUICE (Grasset et al. (2013),
Dirkx et al. (2017)) the accuracy of observational data for
certain bodies is set to increase beyond the level of accu-
racy of state-of-the-art dynamical models (e.g., Dirkx et
al. (2016), Fayolle et al. (2023), Magnanini et al. (2024))
due to development of new observation methods (e.g.,
Dirkx et al. (2019)) and better instruments (e.g., Dirkx
et al. 2017).

Ideally, the error arising from the mis-modelling in
the underlying dynamical models should be substantially
smaller than for the observations. As a result, dynamical
models need to be improved in two areas. Firstly, higher
fidelity models may be required to exploit the data qual-
ity to its fullest. Secondly, and maybe more importantly,
the modelling of tides is crucial, especially in the context
of these missions. They are imperative to investigate the
long-term evolution of a system: tides affect both the
spacecrafts and the orbits of natural satellites themselves.
The effects of tides on the satellites’ orbits are extremely
sensitive to the modelling of the satellite’s translational
and rotational motion, which calls for a coupled mod-
elling approach.

Traditionally, the most extensive dynamical models
concurrently propagate the translational and rotational
dynamics, while approximating the effect of tides using
a tidal force (e.g., Park et al. 2021) (i.e. the deforma-
tion of extended bodies’ gravity field due to gravita-
tional forcing); this model is only consistently used for
the calculation of the ephemeris of the Moon. Develop-
ments throughout history have seen the effect of tides on
a body’s dynamics be modeled in various ways. Kant
(1754) introduced the concept of tidal dissipation, an ef-
fect caused by the tides raised on Earth due to gravita-
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tional forcing of the Moon, that slows the Earth’s rota-
tion. The deformation of bodies due to a tide-generated
disturbing potential is not instantaneous, because bodies
are not perfectly elastic; rather, its behaviour can con-
veniently be approximated with a tidal time lag between
the time t at which a disturbing potential exerts a force
on the perturbed body, and the time t+∆t at which the
perturbed body actually experiences the force and de-
forms accordingly. In reality the deformation cannot be
modelled with a constant ∆t, as will be elaborated upon
in the next paragraphs.

Darwin (1880) modelled this tidal dissipation by as-
suming a homogeneous Earth consisting of an incom-
pressible fluid with constant viscosity (e.g., Correia et
al. 2014), from which he derived an expression for the
tide-generated disturbing potential raised on a body ex-
panded as a Fourier series. The work of Darwin laid
the foundation for the modelling of tidal dissipation, and
many authors have since improved upon this work, with
the most notable being the introduction of frequency de-
pendency in the expression for the disturbing potential
by Kaula (1964).

The tidal lag depends on a body’s interior’s rheological
properties, and hence, different bodies will have different
frequencies at which their tidal forcing is exerted on a
perturbed body. Kaula (1964) introduced frequency de-
pendency in the expression by allowing the time lag to be
frequency dependent. Many authors have tried to sim-
plify this model, with the most well known being the
constant phase lag and constant time lag models; these
models however rely on much disputed simplifying as-
sumptions (e.g., Efroimsky et al. 2013).

Crucially, the time lag of the tidal forcing of a body
is not constant, despite approximations of the time lag
using constant values (e.g., Lainey et al. (2007), Efroim-
sky et al. (2013), Lari (2018)). In some scenarios a con-
stant time lag can be a reasonable assumption, such as
for more massive central bodies and satellites in a (near-
)circular orbit. However, for eccentric satellites, and es-
pecially synchronous satellites in an eccentric orbit, it be-
comes crucial to account for the variability in ∆t. Non-
circularity leads to an infinitude of forcings. Further-
more, tidal dissipation is the driving factor behind orbital
migration of natural satellites (e.g., Lainey et al. (2009),
Dirkx et al. (2017)). As a result, when the semi-major
axis a of a satellite changes, the frequency of the tidal
forcing changes and hence the time lag will vary too; the
body’s viscoelastic response to tidal forcing is frequency
dependent. The influence of tidal effects on the grav-
ity field of synchronous satellites is not easily determined
with current expressions for the tidal force as they are ex-
tremely sensitive to the rotation rate of the satellite (e.g.,
Efroimsky (2012), Fayolle (2025)), making it absolutely
crucial that the modelling of tides and rotation is con-
sistent; any inconsistencies would result in an erroneous
residual tidal torque over one orbit. This breaks the con-
servation of angular momentum and generates a secular
along-track drift, which has a very similar signature as

tidal dissipation on the satellite’s orbit (e.g., Souchay et
al. (2013), Fayolle (2025)). A widely used trick used by
Murray et al. (1999) offers a way to circumvent this con-
sistency issue by creating a force formulation independent
of the rotation rate. While this has been a useful strategy
until now, it raises another problem for future missions
like JUICE and Europa Clipper. The spacecrafts are af-
fected by tides in two different ways: through the moon’s
orbit as well as through the time variations of the moon’s
gravity field. However, the force formulation introduced
by Murray et al. (1999) is specifically designed to model
the effects of satellite tides on its own orbit, and does
not model the effects of tides from the moon’s gravity
field. In order to obtain good estimates of tidal dissipa-
tion parameters from these missions, it is vital that both
effects are modelled consistently. This is something cur-
rent models fail to do, and calls for a coupled modelling
approach.

In an attempt to create a complete and consistent dy-
namical model for a body including tidal deformations
of the gravity field, Correia et al. (2014) and Boué et
al. (2016) model the instantaneous deformation of the
gravity field due to a tide-raising body using a differen-
tial equation for the gravity field coefficients. This al-
lows for concurrent propagation of the translational and
rotational dynamics including tidal deformation of the
gravity field. The effects of tides are thus entirely mod-
elled through the variations of the body’s gravity field
that they induce, making for a model that is consistent
in modelling the orbit, rotation and tidal response of a
body. This model furthermore does not rely on an addi-
tional tidal force term acting on the orbit and the sim-
plifications necessary.

It hence becomes a good candidate for a more accu-
rate dynamical model - especially in the given context
of future missions - by, theoretically, having a decreased
mis-modelling with reality by providing a complete and
consistent modelling of the orbit, rotation and tidal de-
formation of the gravity field of a satellite. Since the
model does not require a tidal force acting on the orbit,
it also does not depend on any of the simplifying assump-
tions that have been made in the derivation of the tidal
force (e.g., Darwin 1880), making it very generally appli-
cable. It only requires the modelling of the rheology of a
body.

Correia et al. (2014) and Boué et al. (2016) test this
model for long-term propagations of exoplanets. Short-
term propagations have not yet been performed using this
model, but are of interest for future missions. The novel
use of this model in the field of natural satellite dynam-
ics will mostly lend itself to relatively short-term prop-
agations. As a result, while the coupled model ensures
consistent frequency dependence of the tidal response of
a body over time, it is not the primary benefit for fu-
ture missions. This work will apply this model to the
Earth-Moon system. Since the coupled model has no
significant underlying assumptions, the model can easily
be extended to other planetary systems regardless of the
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specifics of the orbit (eccentricity of the orbit, rotation
rates, etc.) making the specifics of the planetary system
considered less relevant to an extent, and the general
tidal behaviour more so. Furthermore, the Earth-Moon
system is a relatively stable and very well known system,
allowing for the results of the coupled model to be com-
pared to theoretical approximations and known litera-
ture. This work analyzes the effect of the introduced cou-
plings and investigates to what extent tidal dissipation is
properly emulated, with the goal of determining whether
implementing such a dynamical model is a worthwhile in-
vestment for the data analysis of future mission data. It
also offers more detailed insights into how tides affect the
orbit of a synchronous satellite, using a more complete
and consistent modelling approach.

Section 2 introduces the dynamical model used in this
work, along with formulations for the uncoupled and cou-
pled approaches. Subsequently, Section 3 introduces the-
oretical equations and definitions used in the validation
of the dynamical model. Section 4 will present the re-
sults. Lastly, Section 5 and Section 6 will discuss the
results and place it in context of future missions and fi-
nally conclude this work.

II. DYNAMICAL MODEL

This chapter describes the translational and rotational
dynamics of natural satellites using equations of motion.
It furthermore introduces the effect tides have on the dy-
namics of natural satellites. Lastly, this section will cover
both the uncoupled and coupled modelling approaches
by introducing decoupled and coupled sets of equations
of motion to model the dynamics of bodies.

A. Reference frame definitions

To start, for the sake of clarity some nomenclature and
reference frames that will be used throughout this work
are introduced.

The motion of the Earth and the Moon will be de-
scribed with respect to the other; if the Moon is prop-
agated, a quasi-inertial reference frame will be centered
on the Earth and vice versa. The orientation of this ref-
erence frame is inertial. Each body is also assigned a
body-fixed reference frame, with its origin at the cen-
ter of mass. The orientation of the axes of the reference
frame is not constrained.

A vector x going from a body i to a body j in the
body-fixed frame of i is expressed as xij . A subscript i
in the gradient ∇i indicates that the gradient is taken
with respect to coordinates associated with the body-
fixed frame of body i, requiring a rotation matrix RI/i

to convert results to a common, inertial frame. Lastly, a
gradient in the inertial reference frame is written as ∇.

B. Gravitational interactions

Following Correia et al. (2014), a simplified Earth-
Moon system is considered with no perturbations. Con-
sider a body-fixed reference frame (I, J , K) centered on
body i. It is assumed that the rotation rate Ω of the
body is along K and that K is orthogonal to the orbital
plane, implying zero obliquity (i.e. the equatorial plane
and the orbital plane coincide). The setting of this prob-
lem is displayed in Fig. 1 and discussed in Correia et al.
(2014). The inertial frame and body-fixed frame have the
same origin.

Figure 1: Schematic overview of the extended two-body
problem with central body 0 and perturbing body i. The

reference frames FI = (i, j,k) and Fi = (I,J ,K) are
introduced, where Fi is fixed to body i and rotating with
angular velocity ωi. ri0 is the position vector going from i

to 0, ni is the mean motion of body 0 in the frame of body i
and θ and γ are the rotation angle between the reference

frames and the angular direction of body 0 as seen from Fi

respectively.

In the following equations, Ui is the gravitational po-
tential of body i and is expressed using spherical har-
monic expansions. Ui can, outside its smallest circum-
scribing sphere, be expressed as (e.g., Dirkx et al. 2019)

Ui(r) = Ui(r, ϑ, ϕ) =
µi

r

∞∑
l=0

l∑
m=0

(
Ri

r

)l

×

Pl,m sin(ϕ)(Ci
l,m cos(mϑ) + Si

l,m sin(mϑ)). (1)

r, ϑ and ϕ are the distance to the origin, the body-
fixed longitude and body-fixed latitude of the position
vector r. They express the position at which the poten-
tial is evaluated in a body-fixed frame attached to body i
in spherical coordinates. µi and Ri are the gravitational
parameter and the reference radius of body i. Pl,m are
the associated unnormalized Legendre polynomials of de-
gree l and order m and Ci

l,m and Si
l,m are the associated

unnormalized cosine and sine coefficients.
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The spherical harmonic expansion is truncated to de-
gree 2 for this work, as for most natural satellites (such
as the Galilean moons) only the degree 2 gravity field
coefficients are known. The terms for l = 1 drop off if
the body-fixed reference frame is centered on the cen-
ter of mass of the body, a common assumption (Murray
et al. (1999)). Furthermore, S2,1 and C2,1 are equal to 0
when the body has a rotational symmetry about its polar
axis, which is assumed here. Through similar reasoning
S2,2 can be assumed equal to zero on average, but it will
still be included because tidal effects will be modelled
through gravity field variations which can be non-zero.
Furthermore, S2,2 and tidal dissipation have very similar
signatures in natural satellites’ dynamics, making it crit-
ical to include. This will be elaborated upon in Section
2.4.

Fundamentally, the acceleration exerted on body 0 by
the gravitational potential of body i in a common inertial
frame can be described by Newton’s second law:

r̈i0 = RI/i∇iUi(ri0), (2)

where r̈i0 is the second time-derivative of ri0. As-
suming the body-fixed latitude at which the potential is
evaluated equal to zero, the acceleration between central
body 0 and perturbing body i is given as (e.g., Correia
et al. 2014)

r̈i0 = RI/i · (− µ

r2i0
r̂ − 3µR2

i

2r4i0
J i
2r̂

− 9µR2
i

r4i0
(Ci

2,2 cos 2γ0 − Si
2,2 sin 2γ0)r̂

− 6µR2
i

r4i0
(Ci

2,2 sin 2γ0 + Si
2,2 cos 2γ0)ϑ̂), (3)

where r̂ and ϑ̂ correspond to the radial and tan-
gential unit vectors in the body-fixed frame and where
µ = G(mi +m0).

A second, more complex situation arises when the ef-
fect of perturbations on the Earth-Moon system are in-
cluded. Eq. 3 does not hold anymore since the latitude
varies now, so Eq. 1 is used to derive the complete poten-
tial for lmax = 2. Then, a full expression for the accelera-
tion any body i experiences in a planetary system can be
given. Consider the case of a moon i orbiting a central
body 0 along with other bodies j, the total acceleration
exerted on body i can then be given as

r̈i = RI/0

(
(r̈0i)0 +

j ̸=i,0∑
j

(r̈ji)0

)
, (4)

This work includes the point mass accelerations ex-
erted on the Earth-Moon system by the Sun and Jupiter.
The explicit expression of the acceleration acting on the
Moon is given in Appendix A.

Where accelerations govern the translational state,
torques dictate how the rotational state of the body
evolves. The gravitational torque driving the rotational
evolution of the satellite i is exerted by the central body
0 on the non-spherical shape of the satellite. For the gen-
eral case of an extended body i, the gravitational torque
exerted by N bodies in the frame of body i can be de-
scribed as

Γ̄
(i)
i = −

N∑
j

mjrij × (∇iUi (rij)) . (5)

where Γ̄
(i)
i is the gravitational torque exerted by N

bodies on body i, in the reference frame of body i.
In this work, a quaternion q is used to express the

orientation of a body. Following Fukushima (2008), the
time derivative of q is given as

q̇i = Q(qi)ωi, (6)

Q(q) =
1

2

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 , (7)

with ωi the rotation rate of body i. ωi is governed
by the Euler equation, which, for a non-rigid body in
rotation experiencing torques, is given as (e.g., Dirkx et
al. 2019)

ω̇i = I−1
i · (Γ̄(i)

i − İiωi − ωi × (Iiωi)). (8)

Here, Ii and İi are the inertia tensor and its derivative
of body i. When only degree 2 gravity field coefficients
are considered, the following relation exists between Ii
and these equations (e.g., Lambeck 1980):

Ii = miR
2
i


Ci

20

3 − 2Ci
22 −2Si

22 −Ci
21

−2Si
22

Ci
20

3 + 2Ci
22 −Si

21

−Ci
21 −Si

21 − 2Ci
20

3

+ Īi13x3,

(9)
with Si

2,1 = 0 and Ci
2,1 = 0 and for the given assump-

tions and Īi the normalized mean moment of inertia.

C. Tides

The equations derived in the last section assume rigid
bodies in their derivations - which is true of the grav-
ity field coefficients are constant - thus neglecting tidal
effects that have an influence on the time-variability of
the gravity field. However, tides play a crucial role in
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the long-term orbital evolution of natural satellites, and
hence are a key part of natural satellite dynamics in the
context of future missions. This section introduces the
concept of the tides and the tidal potential, which sets
up one way the effect of tides is approximated in current,
simplified models.

Tidal deformations express themselves in variations in
the mass distribution, and thus the gravity field, shape
and rotation. For the body i, the tidal deformations in-
duced by the perturbing body j are determined by the
tidal potential UT

j (r) and the tidal Love numbers kil,m
of i, where l and m are the degree and order of the
spherical harmonic expansion. The gradient of the tidal
potential yields the tidal force, which dictates the rela-
tive motion between two points on body i, resulting in
tides. kil,m describe the body’s response to tidal forc-
ing. They are frequency-dependent complex numbers;
the imaginary part defines the phase lag of the tidal re-
sponse. Approximating body j as a point mass allows
the tidal potential of body j to be given as (e.g., Kaula
1964):

UT
j (r) =

Gmj

rij

∞∑
l=2

(
|R|
rij

)l

Pl(cos(Ψ)), (10)

Figure 2: Schematic decomposition of the gravitational force
exerted by body B, where the difference between FPB̄ and
FĀB̄ is responsible for the tidal force ∆F . R is the position
vector pointing to point P and rAB is the vector connecting
the centers of A and B, and Ψ is the angle between R and

rAB .

where R is a position vector from the center of the
body to a surface point and Ψ is the angle between R
and rij , see Fig. 2. Pl are the Legendre polynomials of
degree l. Apart from deformations due to external forces,
body i also deforms under its own centrifugal potential
caused by its rotation (Murray et al. (1999), Correia et
al. (2013)). The induced gravitational potential on body
i, δUi,l(r), and, when expanded, δUi,l,m(r) then depends
on both the centrifugal potential U cf

i (r) and UT
j (r):

δUi,l,m(r) =

(
|R|
|r|

)l+1

kil,mU
′

l,m(r)

=

(
|R|
|r|

)l+1

kil,m(U cf
i,l,m(r) + UT

j,l,m(r)), (11)

Eq. 1 and Eq. 10 substituted in Eq. 11 can, when
neglecting the centrifugal potential -which is often done
- be expanded into a series, yielding the time-variable
spherical harmonic coefficients (e.g., Petit et al. 2010):

∆C̄i
l,m − i∆S̄i

l,m =
kil,m
2l + 1

×

×
∑
j

µj

µi

(
Ri

rj

)l+1

P̄l,m(sinϕj)e
−imϑj , (12)

where the summation runs over j bodies that raise a
tide on body i. Eq. 12 is a common representation, es-
pecially in the field of gravity field analyses, of the vari-
ations in the gravity field coefficients Ci

l,m(t) and Si
l,m(t)

of a body i under the tidal influence of j other bodies.
For (almost) synchronous bodies, the coefficients con-

sist of a large static component and a small varying com-
ponent, where Ci

l,m(t) = Ci,0
l,m + ∆Ci

l,m and Si
l,m(t) =

Si,0
l,m+∆Si

l,m, giving rise to a large permanent tide and a
relatively small varying tide, since θ and ϕ are constant to
first-order approximation, specifically for synchronously
rotating bodies. Hence, measuring varying tides is more
difficult for synchronously rotating bodies than it is for
non-synchronously rotating bodies as the static and time-
varying components must be separated.

Figure 3: Left: Schematic overview of tide-generating body
j and the tidal deformation of body i. Right: Time-lag

between perturbing potential and the raised tide on body i,
quantified by a lag angle δ. This gives raise to an additional
acceleration ∆ẍt exerted on j by the induced gravitational

potential of i. This figure has been adopted from Dirkx
(2015).

Eq. 11 implicitly assumes body i to be elastic and its
response instantaneous, which is generally not true. Fig.
3 displays how the response and induced tidal deforma-
tion might actually look. The tidal deformation caused
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by body j raises an additional tidal potential for body i
as in Eq. 11, which again exerts an influence on body j.
In reality, body i’s response to this perturbing potential
is not instantaneous, but rather, it takes time for it to
deform due to its viscosity; its response is viscoelastic.
As a result, there is a time lag between the perturbing
potential and the raised tide, which in turns gives raise to
a tidal geometric lag angle δ. An exaggerated depiction
is shown in Fig. 3.

This effect is commonly expressed through a quality
factor Q, which is defined as (e.g., Khan et al. 2004):

Qj
i =

|ki2|
Im(ki2)

, (13)

where Im(ki2) specifies the imaginary part of ki2 (See
Appendix B for an explanation how the imaginary part
of ki2 quantifies the tidal lag). It is common practice
to simplify the Love numbers to kl (e.g., Zhang (1992);
Williams et al. (2015)), as variations of k in m for a set l
caused by the body’s asphericity are typically small. The
imaginary part quantifies the tidal lag δ, resulting in tidal
dissipation. Q is frequency-dependent and depends on
the body’s rheology, and is used to signify what a body’s
tidal response may look like (e.g. it defines the amount
of energy dissipated in the system) (e.g., Efroimsky et al.
2007). Qj

i then denotes the quality factor of body i at
the forcing frequency of the tides raised by body j. The
time lag in raising the tidal bulge due to the viscoelastic
response is dependent on Q and given as (e.g., Lainey
et al. 2007):

∆tji =
T j
i sin−1(1/Qj

i )

2π
, (14)

where ∆tji is the time lag and T j
i refers to the pe-

riod of the forcing, for which the expressions are given
in Lainey et al. (2007). For a synchronous satellite, its
forcing period is - different from a central body - equal to
its rotational period, which is why the effect of tides on
satellites is different from central bodies, and results in
difficulties when trying to model tidally-locked satellites.

D. Decoupled model

Having introduced the concept of tides and the tidal
potential in the last section, this section introduces the
tidal force and gives the equations of motion for the de-
coupled model. Furthermore, the limitations of the cur-
rent model and the effects thereof will be discussed, pro-
viding context for the introduction of the coupled model.

Assuming that the body’s tidal response is linear (e.g.
no higher order terms are considered) and isotropic in
its body-fixed frame, an expression can be found for the
induced gravitational potential at time t (see Eq. 19).
From this expression an expression for the tidal force

can be derived by assuming a constant time lag, meaning
that the induced tidal potential at time t is generated by
a perturbing potential at t − ∆t, with ∆t the time lag
(e.g., Efroimsky et al. 2013). The tidal force F j

i , when
reduced to degree l = 2, can then be given as (e.g., Lainey
et al. 2007):

F i
i = −3Gm2

0k
i
2R

5
i

|ri0|8

(
ri0 +∆t0i×

×
(
ri0 × ωi + vi +

2

|ri0|2
(ri0 · vi)ri0

))
. (15)

for the tides raised on the satellite i by the itself, where
vi denotes the velocity vector of body i. By Newton’s
third law, the satellite will also raise tides on the central
body, with the magnitude of the force being same but the
direction opposite of the force in Eq. 15. This equation
is preferred over using Eq. 12 with Eq. 3 in the field of
natural satellites’ dynamics due to its relative simplicity
and low computational complexity.

Applying Eq. 15 to model the tides on a satellite is,
however, not straightforward due to the intricate depen-
dency between the tides and rotation. Since any mis-
modelling of the tides may result in a residual tidal torque
over one orbit, applying this expression may result in the
wrong amount of energy being dissipated, and thus re-
sult in a non-physical contribution to the orbital migra-
tion of the satellite. To circumvent this, Murray et al.
(1999) states that the librational tides dissipate exactly
4/3 times as much energy as the radial tides. Following
Lari (2018), the tidal force due to the radial tides is re-
trieved by substituting ωi = ri0 × vi/|ri0|2 in Eq. 15.
Adding 4/3 times this force from the librational compo-
nent results in

F i
i = −3Gm2

0k
i
2R

5
i

|ri0|8

(
ri0 +∆t0i×

×
(

7

|ri0|2
(ri0 · vi)ri0

))
. (16)

This circumvents the need to use the rotation rate to
calculate the tidal force and results in, after averaging,
the right amount of energy dissipated over one orbit. Due
to the previous discussion, Eq. 16 is an attractive way
to model the satellite’s natural dynamics and is done so
in both ephemeris and natural satellite dynamics studies
(e.g., Lainey et al. (2007), Lari (2018), Fayolle (2025)).

However, while this expression works to model the ef-
fect on the satellite’s orbit of the tides raised on the
it by itself, it fails for spacecrafts like JUICE and Eu-
ropa Clipper. Since it cannot model the effect of the
time-varying gravitational potential as measured by the
spacecraft, an inconsistency arises between the models
applied. As mentioned before, this may result in erro-
neous residual torques which may influence the measure-
ments aboard the spacecrafts; it is especially a big issue
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for radio-science analyses. Furthermore, albeit less rele-
vant for this work, it also poses a problem for long-term
dynamical modelling. Since the orbit expands or shrinks
due to tidal dissipation, the frequency of the tidal forc-
ing, and thus Qj

i , will change, as follows from Eq. 13.
As a result, the amount of tidal energy the system will
dissipate also changes over time. These issues call for the
need of a more sophisticated coupled modelling approach
to ensure full consistency between the orbit, rotation and
tides of both the satellites and spacecrafts.

The additional torque induced by the tidal bulge raised
on the satellite influences the rotational dynamics of the
system (more specifically, it induces a transfer in energy
and angular momentum between the two bodies), and
can be expressed as:

Γi
i = ri0 × F 0

i = −3Gm2
i k

0
2R

5
i

|ri0|8
∆t×

× ((ri0 · ri0)ωi − ri0(ri0 · ωi)− vi|ri0|2 + ri0 × vi).
(17)

This torque gives rise to a change in ωi while simul-
taneously also depending on ωi. This again reiterates
the importance of accurately modelling the rotation rate
of the satellite for accurate propagation of the satellite’s
dynamics. To this end, it may be beneficial to instead
model the gravity field coefficients as a differential equa-
tion, and introduce a fully coupled model between the
translational, rotational and tidal dynamics.

E. Coupled model

In this section, a differential equation -based on the
work of Correia et al. (2014) and Boué et al. (2016) -
that governs the evolution of the gravity field coefficients
is introduced, removing the need for a direct tidal force
expression. Through this differential equation a body’s
dynamics are influenced, directly incorporating any in-
fluence tides would have on its dynamics. The problems
mentioned in last section, such as the extreme sensitivity
of the tidal force expressions to the rotation rate of the
satellite and the resulting approximations necessary to
apply it to the satellite’s dynamics are circumvented us-
ing this method, while it also allows for a more complete
modelling of the body’s frequency-dependent response to
tidal forcing.

1. Rheology

As mentioned repeatedly, using the tidal force to ex-
press tides as in Eq. 15 is an approximation (e.g., Efroim-
sky et al. 2013) and to properly model the response of a
body to tidal forcing an adequate rheology model is nec-
essary. For natural satellites in a spin-orbit resonance,
a viscoelastic model is used to model their response to

stress. Whether the body responds as a viscous fluid or
elastic solid then depends on the frequency of the per-
turbation. One of the simplest forms is to consider that
the body behaves like a Maxwell material. The Maxwell
model has been used numerous times before to describe a
planetary body’s structure and its response to forces ap-
plied to it (e.g. Correia et al. (2014), Ferraz-Mello (2015),
Boué et al. (2016)), making it a relatively well known
model. Following Turcotte et al. (2002), the Maxwell
model describes the body’s response by the following re-
lation (e.g., Henning et al. 2009):

dϵ

dt
=

1

µ0

dσ

dt
+

σ

η
, (18)

which describes the body’s response by a purely viscous
damper with viscosity η and a purely elastic spring with
modulus µ0 connected in series, with ϵ the strain and σ
the stress applied to the body.

2. Gravity field coefficients in a differential equation

Eq. 11 assumes a body deforms instantaneously un-
der applied stress, but since bodies are visco-elastic in
reality the expression becomes a convolution. Assuming
that the body’s tidal response is linear (e.g. no higher or-
der terms are considered) and isotropic in its body-fixed
frame, a body i’s induced gravitational potential at time
t, δUi(r, t) (note the explicit time-dependence now) de-
pends linearly on all past tidal perturbations with t′ ≤ t,
U

′

0(r, t
′), giving raise to a convolution (e.g., Boué et al.

2016):

δUi(r, t) =
∞∑
l=2

δU0,l(r, t) (19)

=
∞∑
l=2

(
|R|
|r|

)l+1

kl(t) ∗ U
′

0,l(r, t) (20)

=
∞∑
l=2

(
|R|
|r|

)l+1 ∫ t

−∞
kl(t− t′)U

′

0,l(r, t
′)dt′, (21)

When a body’s response is assumed to behave like
a Maxwell model, one can simplify the convolution by
transforming the equation into the Fourier domain, yield-
ing a point-wise multiplication. By following the steps
performed by Correia et al. (2014) in his work, this even-
tually results in a differential equation for the l-th term
of the induced gravitational potential:

δUl + τlδU̇l = k0l (U
′

l + τeU̇
′

l ), (22)

with τl and τe the global and Maxwell relaxation times
and k0l the fluid Love number. They are properties of a
body and express how it responds to an applied stress.
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The induced potential δU is again caused by the per-
turbing tidal potential U

′
. Eq. 22 shows that when

τl = τe = 0, the raised potential reduces to an equi-
librium potential δUe

l - i.e. the response is instantaneous
or there is a static perturbation as in Eq. 11 - defined as:

δUe
l = k0l U

′

l . (23)

Substituting Eq. 23 in Eq. 22 then expresses the in-
stantaneous variation of the induced potential as a func-
tion of the equilibrium potential:

δUl + τlδU̇l = δUe
l + τeδU̇

e
l . (24)

The relaxation times τl and τe can be related to k2 and
Q as introduced in Section 2.3 - for l = 2, so it follows
that τl simplifies to τ2 - and:

k2 = k02

√
1 + τ2eχ

2

1 + τ22χ
2
, (25)

tan

(
arcsin

(
1

Q

))
= tan δ =

(τ2 − τe)χ

1 + τ2τeχ2
, (26)

k2
Q

= k02
(τ2 − τe)χ

1 + (τ2χ)2
. (27)

The differential equation as defined in Eq. 24 governs
the instantaneous change in the induced gravitational po-
tential, described by the gravity field coefficients, that fol-
lows from any perturbing potential. Since these gravity
field coefficients are decomposed in spherical harmonics
and the spherical harmonic functions form an orthogonal
basis, the differential equation as defined for the induced
gravitational potential must also hold for the gravity field
coefficients (e.g., Correia et al. 2014). For convenience,
these differential equations can also be noted down as one
equation by introducing the notation:

Zl,m = Cl,m − iSl,m and Ze
l,m = Ce

l,m − iSe
l,m. (28)

Since Eq. 24 holds for Cl,m and Sl,m, it will also hold
for any linear combination of them, thus (e.g., Boué et al.
2016):

Zl,m + τlŻl,m = Ze
l,m + τeŻ

e
l,m, (29)

where Ze
l,m is the coefficient at equilibrium. Following

Ferraz-Mello (2015) and Boué et al. (2016), Eq. 29 can
be conveniently reordered to

Zl,m =

(
1− τe

τl

)
Zν
l,m +

τe
τl
Ze
l,m,

with Zν
l,m + τlŻ

ν
l,m = Ze

l,m, (30)

ensuring that there is no more dependency on Że
l,m and

reducing the equation to a first order differential equa-
tion. Note that this differential equation, inherently de-
scribing the induced tidal potential, only depends on the
body’s own rotation vector and the position of the per-
turbing body through the equilibrium coefficients, mean-
ing that Eq. 30 should hold for any trajectory (both
2-dimensional and 3-dimensional - the formulation of the
perturbing potential simply differs), as long as the ini-
tial conditions are valid (see Section 2.4). Similarly to
Eq. 24, the equilibrium coefficient Ze

l,m is given for a
static perturbation or instantaneous response; the love
number k2 then simplifies to k02 for their expressions as
the centrifugal potential also results in a static response.
For the J2, S2,2 and C2,2 coefficients, it follows that their
equilibrium values are given as (e.g., Correia et al. 2013):

Je
2 (ω, r) = k02

[
ω2
iR

3
i

3µi
+

1

2

m0

mi

(
Ri

|ri0|

)3
]
, (31)

Ce
2,2(ω, r) = k02

m0

4mi

(
Ri

|ri0|

)3

cos(2γ0), (32)

Se
2,2(ω, r) = −k02

m0

4mi

(
Ri

|ri0|

)3

sin(2γ0). (33)

3. Coupled equations of motion

Having derived a differential equation for the gravity
field coefficients, the coupled equations of motion for the
unperturbed and perturbed case can be set up. The most
general equations are given instead, applicable to any
system. Consider a body k undergoing forces from a body
0 and j additional bodies, its dynamics are described by
(e.g., Correia et al. (2014), Dirkx et al. (2019)):

ẋt =

[
ṙi
v̇i

]
=

 vi

RI/0(q)

(∑j ̸=i
j (r̈ji)0

) , (34)

ẋr =

[
q̇i
ω̇i

]
=

[
Qi(q)ωi

I−1
i · (Γ̄(i)

i − İiωi − ωi × (Iiωi))

]
, (35)

Zl,m =

(
1− τe

τl

)
Zν
l,m+

τe
τl
Ze
l,mfor l = 2 and m ∈ {0, 2},

with Zν
l,m + τlŻ

ν
l,m = Ze

l,m, (36)

with ẋt and ẋr the translational and rotational state
vectors respectively. In summary, the state vector of the
problem as introduced in Section 2.1 is given as y = [r,



9

v, ω, q, ∆Jν
2 , ∆Sν

2,2, ∆Cν
2,2]. r and v denote the po-

sition and velocity of the perturbing body as seen from
the inertial reference frame set in the center of the tidal
body (the body experiencing the tides). ω and q denote
the rotation rate and the orientation vector of the tidal
body and the gravity field coefficients are given by their
relations as described in Eq. 36. Note that the Ze

l,m
coefficients are not part of the state vector, as their ex-
pressions are retrieved from Eq. 31-33. For this work,
these equations have been numerically integrated using
a DOP853 integrator working in a fixed-step regime of
160 minutes, resulting in a sub-millimeter accuracy over
a propagation period of 500 days.

4. Initialization of the coupled model

In order to propagate the coupled equations of mo-
tion, an initial state vector must be defined. Not every
state vector will lend itself to this purpose. Numerically
integrating the rotational equations of motion starting
from an arbitrary, undamped initial state will give rise
to rotational normal modes; they are non-physical oscil-
lations that occur at the forcing frequency of a body’s
normal mode, which depends on its interior properties.
These normal modes have been assumed to be damped
out for the Solar System bodies over a long time scale.
In order to damp them in the coupled model, an al-
gorithm as introduced by Rambaux et al. (2012) and
implemented by Martinez (2023) is used, which intro-
duces a virtual torque into the equations of motion. This
torque is designed to preserve rotation about the z-axis
of the body, while damping rotations about the other
axes. This torque has however only been applied to a
system consisting of rigid bodies, and has been untested
for bodies that deform under tidal forces.

Hence, a second step is added to aid in finding a phys-
ically realistic initial state. Analogously to how a virtual
torque is introduced to damp the rotation, a similar equa-
tion should be used to damp the normal modes in the
gravity field coefficients, to ensure that the initial values
of the rotational state and gravity field coefficients to-
gether describe a damped state. The details and results
of the algorithm can be found in Appendix D.

III. VALIDATION

Once implemented, the coupled equations of motion
Eq. 34-36 can be compared to approximations derived
from the simplified, uncoupled tidal force approach for
relevant parameters. The goal is to ensure the results
of the coupled model are consistent with that of simpler
formulations, but also to investigate possible deviations
between the coupled and uncoupled model, which could
possibly indicate that some (coupled) effects are captured
better by the coupled model. This includes the evolution
of the semi-major axis a and the eccentricity e of the

satellite. Next to that, comparison of the gravity field
coefficients with theoretical approximations from Eq. 12
are made in order to evaluate their behaviour under the
influence of tidal effects. The tidal lag and lag angle
will be compared against approximations. Lastly, the
influence of physical librations on the orbital migration
of the satellite will be discussed.

A. Linear approximations for the semi-major axis
and eccentricity evolution

The resulting tidal torques raised by the planet and
satellite tides and the tides themselves induce secular
variations in the satellite’s semi-major axis ai and eccen-
tricity ei (Goldreich et al. (1966)). For the tides raised by
the satellite i on the planet 0, the evolution of the semi-
major axis and eccentricity are commonly described as
(e.g. Souchay et al. (2013), Boué (2019)):

de0i
dt

= sign (3ω0 − 2ni)
57

8

k02mi

Qi
0m0

(
R0

ai

)5

niei, (37)

da0i
dt

= sign(ω0 − ni)3
k02mi

Qi
0m0

(
R0

ai

)5

niai, (38)

where all parameters are as defined in previous Sec-
tion. The derivation of these equations can be found in
Souchay et al. (2013)’s Section 5.3.2 and requires the fol-
lowing assumptions: the orbit to be equatorial, prograde
and circular, the time lag to be constant and independent
of the tidal frequency (i.e. the constant time lag model
is used), the moment of inertia of the central body to be
constant, the spin vector of the central body to be aligned
with its polar axis and the mass of the central body to
be much larger than the mass of the satellite. This fur-
ther highlights the flexibility of the coupled model, which
does not rely on any of these assumptions. Note that for
Eq. 37 the circularity assumption is dropped.

For the tides raised by a satellite in spin-orbit reso-
nance on itself, the evolution of ai and ei are respectively
given as (e.g., Lainey et al. (2009), Lari (2018)):

daii
dt

= −21
ki2m0

Q0
imi

(
Ri

ai

)5

niaie
2
i , (39)

deii
dt

= −21

2

ki2m0

Q0
imi

(
Ri

ai

)5

niei. (40)

It is useful to note that another expression for the rate
of change of ai exists in literature (e.g., Souchay et al.
(2013), Boué (2019)):

daii
dt

= −57
ki2m0

Q0
imi

(
Ri

ai

)5

niaie
2
i , (41)
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Where Eq. 41 and Eq. 39 differ by a factor 57/21. As
explained by Fayolle (2025), this difference follows from
the fact that angular momentum over one orbit is not
conserved as the averaged tidal torque over one orbit is
not exactly equal to zero. This non-zero tidal torque can
be compensated for by a small shift in the pointing direc-
tion of the long axis of the satellite (e.g., Yoder (1981),
Souchay et al. (2013)). This corresponds to a non-zero
Si
2,2(t) coefficient, which would affect the orbit of the

satellite similar to tidal dissipation.
In other words, following Fayolle (2025), Eq. 41 ac-

curately models the effect of the satellite tides on the
evolution of the semi-major axis. However, the effective
semi-major axis evolution follows from the combined ef-
fect of tidal dissipation and a non-zero Si

2,2(t) coefficient,
which cancels the non-zero tidal torque and leads to Eq.
39. This once more highlights the sensitivity of the used
models to the rotation rate of the satellite and also again
shows the advantage of the coupled model, from which
this effect should follow automatically. To conclude, Eq.
39 and Eq. 40 accurately model the evolution of the satel-
lite’s semi-major axis and eccentricity due to its own tides
and will be used in this work to compare the results from
the coupled model. The coupled model can, on the other
hand, also provide insight on which of the two equations
provides a more accurate description of the effective or-
bital migration of a satellite.

Since ai and ei are governed by the orbital Eorb and
rotational energy Erot, their evolution is governed by the
amount of energy dissipated (assuming that energy dissi-
pation is completely caused by tidal effects) (e.g., Correia
et al. 2014):

Ė = −(Ėrot + Ėorb) ≈ −∆Erot +∆Eorb

∆t

=

∫ tf
t0

(
F · v − ω · (r × F )

)
dt

∆t
, (42)

with ∆Erot and ∆Eorb the rotational and orbital en-
ergy dissipated over the period ∆t, F the full force ex-
erted by the perturber on the perturbed body (see Eq.
3), and t0 and tf the initial and final integration times.
This equation can be used as validation to ensure that
the system dissipates the expected amount of energy.

B. Gravity field coefficients

Next to the evolution of the orbital parameters, it will
also be interesting to see how the gravity field coefficients
of a body, calculated using Eq. 36, evolve due to the sud-
den stresses of the introduced bodies. Furthermore, it
will be interesting to see how Si

2,2(t) evolves, especially
given the discussion in the previous subsection. Cur-
rently, state-of-the-art approximations for the coefficients
use a complex Love number to account for tidal lag, as-

suming a constant phase lag. They are given by (e.g.,
Petit et al. 2010):

J i
2 =

(
ω2
iR

3
i

3µi
+

1

2

mi

m0

(
Ri

|ri0|

)3)
Re(ki2), (43)

Ci
2,2 =

1

4

mi

m0

(
Ri

|ri0|

)3

×

×
(

Re(ki2) cos 2γ0 − Im(ki2) sin 2γ0

)
, (44)

Si
2,2 = −1

4

mi

m0

(
Ri

|ri0|

)3

×

×
(

Re(ki2) sin 2γ0 + Im(ki2) cos 2γ0

)
. (45)

Here Re(ki2) and Im(ki2) denote the real and imaginary
part of ki2, accounting for the ’amplitude’ and phase lag
of the tidal bulge respectively. The following relations
hold assuming a small phase lag δ:

ki2 = |ki2| exp(−i · 2δi) = Re(ki2) + iIm(ki2), (46)

Re(ki2) = |ki2| cos 2δi ≈ |ki2|, (47)

Im(ki2) = −|ki2| sin 2δi = −|ki2|
Q0

i

. (48)

Here, the real part of the Love number is assumed equal
to the literature value of the Love number.

Since the tidal coefficients completely dictate the grav-
itational shape of the body through the induced gravita-
tional potential, they can be used to calculate geometric
lag angle δi by the following relations:

νi =
1

2
arctan 2

(
Si
2,2

Ci
2,2

)
, (49)

γi = (sign(êA · (r̂i0 × êC))) · arccos(êA · r̂) mod 2π,
(50)

δi = (νi − γi) mod π. (51)

The first angle, νi, is the angle between the tidal bulge
and the body-fixed I-axis.

The time lag ∆t is assumed constant in current models,
but the coupled model can also capture variations in ∆t:
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∆ti =
δi|ri0|

|ωi × ri0 − vi|
. (52)

The tidal time lag retrieved from Eq. 52 can be com-
pared to the constant time lag retrieved from Eq. 14.
Note that since it has been assumed constant, it will fail
to capture intricate details that the coupled model might
be able to desccribe, next to being a worse approxima-
tion. The constant time lag model is, however, a better
approximation than the constant lag angle model, be-
cause the latter does not hold for eccentric orbits (e.g.,
Efroimsky et al. 2013).

C. Librations

Averaged over time, the Moon’s rotation rate, as that
of many other large (natural) satellites, is synchronous
with its mean motion, implying that its rotational and or-
bital period are equal (e.g., Henrard 2006), also known as
a spin-orbit resonance. A perfectly circular orbit would
imply that the body-fixed longitude of the central body
as seen from the satellite is always zero. However, per-
turbations prevent the satellite’s long axis (i.e., princi-
pal axis of minimum inertia) from pointing towards the
central body at all times; superimposed on the once-per-
orbit rotation around its spin axis, these effects cause
the satellite to oscillate and wobble around its three axes
(e.g., Hoolst et al. 2020). These deviations are known as
librations. In this work, only longitudinal librations will
be considered, as latitudinal librations are small for most
natural satellites and their effect on its orbit is limited.

Longitudinal librations can be decomposed into optical
and physical librations. The former is caused due to the
geometry of the orbit, while the latter can even occur for
circular orbits as it is a result of the internal properties of
a satellite (e.g., Hurford et al. 2009), which is of interest
in this work. Important is to note that wrong initial con-
ditions can add to the variations of the rotation angle,
which can then yield unphysical librations (see Section
2.4 and 2.5). Efroimsky (2018) states that physical libra-
tions also contribute towards tidal dissipation, because
they affect tidal torques through the dependency of the
rotation rate on librations (see Fayolle (2025) for a more
extensive discussion). Efroimsky (2018) gives a relation
between this additional dissipation due to librations with
respect to the tidally induced powers as if there were no
librations. The coupled model should automatically in-
corporate this, so it will be interesting to see whether this
effect can be correctly predicted by the relation proposed
by Efroimsky (2018), assuming a once-per-orbit longitu-
dinal libration:

⟨P ⟩(lib)
tide

⟨P ⟩(main)
tide

= 1− 4θτ
7ei

+
θ2τ + θ2f
7e2i

, (53)

where θf is the amplitude of the free librations, which
should be approximately equal to 0 for most Solar System
bodies and the (lib) and (tide) superscripts indicate the
tidal power including librations and the tidal power as if
there were no librations.

IV. RESULTS

This section will discuss the results gathered in this
work. The results for the Earth and the Moon will be
discussed separately. Secular rates of evolution for a and
e will be analyzed and compared against theory. From
the coupled model, some tidal parameters will be com-
puted and compared against theory, and the behaviour of
the system will be analyzed for varying tidal parameters.
Furthermore, the evolution, and any discrepancy in, the
gravity field coefficients will be analyzed. The perturbed
and unperturbed cases will be compared to each other.

A. Earth

As a first step to propagate the Earth’s dynamics (i.e.
the tides raised by the Moon on the Earth), a damped ini-
tial state must be found. Unlike the case of propagating
a satellite’s dynamics, a central body such as the Earth
will not experience librations. As a result, rotational nor-
mal modes are practically non-existent and need not be
damped. Hence, the rotational state can be retrieved
from existing data (see Appendix A for more information
regarding the initial states used), while the translational
state is retrieved from the damping performed from the
Moon’s initial state (see Appendix D for the damping
algorithm). Subsequently, the uncoupled and coupled
model have been propagated for 5000 days (around 13
years and 8 months). Table I denotes the exact propaga-
tions performed for the results gathered in this section.

1. State propagation

To get a first impression of how the uncoupled and
coupled model differ, Fig. 4a displays the norm of the
position difference between the uncoupled and coupled
model, growing up to ∼20 m over the propagation pe-
riod with a quadratic trend. The tidal parameters used
in the uncoupled model have been derived from the tidal
parameters of the coupled model using Eq. 25-27, ensur-
ing consistency in the used parameters.

Fig. 4b shows the position-components, projected in
the RSW frame. For a given trajectory, a point can
be defined by the right-handed triad {r̂, ŝ, ŵ}, with the
unit vector r̂ along the position vector, ŵ along the an-
gular momentum vector and ŝ completing the reference
frame. It is apparent that the along-track direction shows
a secular quadratic trend (the coupled trajectory’s along-
track position gets ahead of the uncoupled one) growing
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Table I: Specific propagation settings used and propagations performed for the results gathered in this section.

Propagation period Equations of motion Integrator settings
Coupled model 5000 days Eq. 34, 35, 15 DOP583, 160 minute step size

Uncoupled model 5000 days Eq. 34-36 DOP583, 160 minute step size

up to ∼20 m superimposed by oscillations of increasing
amplitude. Although there are oscillations in the order
of centimeters present for the radial and perpendicular
components, their mean values remain the same between
the two models. The frequency decomposition of the dif-
ferences is displayed in Fig. 4c. They oscillate at the fre-
quency of n - with some smaller peaks at its integer mul-
tiples - and thus the two models differ at this frequency,
resulting in the oscillations with increasing amplitude in
the time domain. This is expected, as the introduction of
varying gravity field coefficients (see the next subsection)
results in additional oscillations in the position through
their influence on the dynamics in Eq. 34-36. The secu-
lar trend is in line with the expectations laid out in the
introduction and Section 2.4; the inconsistent modelling
of rotation and tides in the decoupled model results in a
secular along-track drift, and is indeed shown in Fig. 4b.

Fig. 4d shows that there is a secular trend in the differ-
ence of the semi-major axis superimposed by oscillations
of constant amplitude growing up to ∼ 1 cm over the
propagation period, meaning that both models dissipate
a different amount of orbital energy. Note that this differ-
ence is small compared to the evolution rates of the semi-
major axis according to both models, see Table V. The
oscillations occur at the orbital frequency of n suggesting
that they are possibly a result of the periodic variation
of the gravity field coefficients. The uncoupled model as-
sumes constant gravity field coefficients and uses a tidal
force expression, while the coupled model captures time-
variations in these coefficients; they result in changing
dynamics that contribute towards a change in position.

2. Gravity field coefficients and tidal parameters

The frequency content of the converged gravity field
coefficients of the damped propagation for the coupled
model is displayed in Fig. 5. All three coefficients have
converged around a certain equilibrium value superim-
posed by oscillations of constant amplitude at the orbital
frequency of the mean motion n for J2, and the period
of the tidal forcing for C22 and S22. The coefficients
presented here are as determined in Eq. 30, i.e. the vari-
ation in gravity field coefficients from their initial static
value upon introduction of tidal forcings. J2 converges
to a non-zero value, while C22 and S22 oscillate around
zero. As a result, the comparison with the theoretical ap-
proximation of the coefficients (Eq. 43-45) is not really
relevant for J2 but can be done for C22 and S22, shown
in the Table II. The values displayed are the mean val-
ues of the coefficients over time over an integer number

of orbits to ensure consistency. Fig. 6 shows the gravity
field coefficients as a function of the mean anomaly of the
Moon’s orbit. As expected, J2 has a once-per-orbit oscil-
lation, while the behaviour for C22 and S22 is distinctly
different from J2, since they oscillate at the frequency of
the tidal forcing period. Furthermore, C22 and S22 are
close to being in-phase, having mean values over time of
2.574 ·10−11 and 2.752 ·10−11 respectively at M = 0 rad.
The time variations in C22 and S22 coefficients are also
in good accordance with the results from Eq. 44 and
45; the mean amplitude of the time variations for the
gravity field coefficients is displayed in Table III. The
behaviour of C22 and S22 is thus in good accordance be-
tween the coupled model and approximations from Eq.
44 and 45. For J2, the time variations are larger for the
coupled model, possibly due to the inclusion of the cen-
trifugal potential, whereas Eq. 43 does not include the
centrifugal potential contribution towards J2.

Table II: Mean values of the gravity field coefficients for the
coupled model and the approximations (Eq. 44, 45) over the

specified propagation period.

C2,0 C2,2 S2,2

Approximations N/A −3.324 · 10−14 2.302 · 10−14

Coupled model −1.075 · 10−3 −3.927 · 10−14 1.858 · 10−14

Table III: Mean amplitudes of the gravity field coefficients
for the coupled model and the approximations (Eq. 43-45)

over the specified propagation period.

C2,0 C2,2 S2,2

Approximations 1.66 · 10−9 5.285 · 10−9 5.285 · 10−9

Coupled model 4.701 · 10−9 5.273 · 10−9 5.269 · 10−9

As introduced in Section 2.3, the viscoelastic nature
of bodies results in a measurable tidal time lag (and lag
angle), providing valuable information about the rate of
energy dissipation in a body. For the coupled model, the
tidal time lag is determined through Eq. 52 and com-
pared to Eq. 14. The resulting mean tidal time lag and
lag angle for both are given in Table IV, while the time-
dependent behaviour of the time lag and lag angle is seen
in Fig. 7. The mean values coincide well between Eq. 52
and Eq. 14, with the difference in the tidal time lag
being less than 0.5%. Note that, as expected, the the-
oretical approximation shows no time-dependency, while
the coupled model captures time-variations in the tidal
time lag. The variations in the tidal time lag are in line
with the variations of the gravity field coefficients, with
both having their largest oscillations occur at the orbital
frequency of the mean motion.
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(a) Norm of the difference in the propagated position vector
between the uncoupled and coupled model.

(b) Difference in the propagated position vector between the
uncoupled and coupled model.

(c) Frequency decomposition of the position difference between the
uncoupled and coupled model.

(d) Difference in semi-major axis between the uncoupled and
coupled model.

Figure 4: Comparison of the uncoupled model and the coupled model over the specified propagation period in the following
ways: norm of the difference in position (top left), components (top right), frequency spectrum of the component (bottom

left) and the difference in semi-major axis (bottom right).

(a) Frequency content of J2. (b) Frequency content of C22. (c) Frequency content of S22.

Figure 5: Frequency spectra of the gravity field coefficients of the Earth. Note the distinct difference in frequency of the peaks
between J2, and C22 and S22.
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(a) J2 over the mean anomaly. (b) C22 over the mean anomaly. (c) S22 over the mean anomaly.

Figure 6: The gravity field coefficients of the Earth over the mean anomaly of the orbit. Notice that the difference in J2 is out
of phase with respect to the mean anomaly, while C22 and S22 are not.

Table IV: Mean values of δ and ∆t for the coupled model
and the theoretical approximations (Eq. 14).

δ [deg] ∆t [s]
Coupled model 2.39 596.1

Theory 2.40 599.0

Figure 7: Tidal time lag from Eq. 14 and the coupled
model. Note the explicit time-dependence that follows from
the coupled model, which is not reproduced by Eq. 14. Part

of the propagation is displayed for clarity.

3. Semi-major axis and eccentricity evolution

The semi-major axis and eccentricity evolution due to
tides is compared by retrieving the values from the cou-
pled model, the uncoupled model and the approximations
in Eq. 37 and Eq. 38. For the coupled and uncoupled
model, the rates of change of a and e are retrieved from
the state history of both propagations using a linear fit.
The results are gathered in Table V. The mean values
are taken over time over an integer number of orbits to
ensure consistency.

Table V: Mean values of
da
dt

and
de
dt

for the coupled model,
uncoupled model and the theoretical approximations (Eq.

37 and Eq. 38).

da
dt

[nm/s]
de
dt

[-/y]

Uncoupled model 1.311 1.805 · 10−11

Coupled model 1.284 −5.738 · 10−12

Eq. 37, 38 1.248 1.545 · 10−11

The results show that the evolution of the semi-major
axis is generally in good accordance between the theory,
uncoupled model and coupled model. The difference may
(partly) stem from the fact that the theoretical approx-
imation assumes a circular orbit, while the Moon’s orbit
is relatively eccentric. The difference between the cou-
pled model and the approximations in Eq. 37 and 38 is
less than 3%. It is also interesting to note that the cou-
pled model seems in better agreement with these equa-
tions than the uncoupled model. The difference between
the coupled model and uncoupled model is in accordance
with the difference seen in Fig. 5d, and may be attributed
to the effect of couplings on the orbit.

Interestingly, however, the rate of change for eccen-
tricity does not show similar accordance. The uncou-
pled model and theoretical approximation are relatively
close, differing by 16.8%. However, for a shorter propa-
gation time of 500 days, the difference between the two
is much larger; indicating that this difference is coinci-

dentally small. Similarly, the coupled model’s
de
dt

is also
quite off. Both values are well above the integrator error,
with the error being in the order of 10−11 m and 10−14

respectively for a and e over a propagation period of 500

days. It is thus likely that the signature of
de
dt

is too small
to properly detect compared to the relatively large once-
per-orbit variation of the eccentricity, especially because
the uncoupled model also fails to produce the correct rate
of change. The secular change in eccentricity is in the or-
der of 10−11 [-/y], while the once-per-orbit variations are
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in the order of 10−6, 5 orders of magnitude larger. In
other words, the signature is impossible to extract from
the period trend.

4. Varying relaxation times

The results that have been gathered until now have
used set constants for the tidal parameters of the Earth
and Moon, which are collected in Appendix A. It is of
interest to see whether the coupled model can robustly
handle a large variation of tidal parameters, partly be-
cause tidal parameters are not well known for many plan-
ets and satellites in the solar system (This is one of the
goals for JUICE: to constrain the dissipation in Jupiter at
the frequency of the Galilean moons (e.g., Magnanini et
al. 2024)). This furthermore gives insight into how tidal
energy is dissipated as the relaxation times - the tidal
parameters of the coupled model - vary. The classical
tidal parameters, k2 and Q, are related to them through
Eq. 25-27. By varying τ2, the ratio k2/Q is varied, which
results in a different phase lag and thus, presumably, a
different rate of energy dissipation. A range of values are

taken around the true τ2, and subsequently
da
dt

and
de
dt

are determined for every propagation, after which they
are plotted against the ratio k2/Q in Fig. 8.

Fig. 8 shows similar results to the single run results
in Table V, where the evolution of the semi-major axis is
in good accordance with theory for a range of relaxation
times, but the evolution of the eccentricity remains off
for all tested values. For the case of τ2/τe = 0, at which
point there should be no dissipation, which is what is
visible in Fig. 8a, the eccentricity has a non-zero rate of
change in Fig. 8b. The system correctly dissipates the
most orbital energy for the largest value of k2/Q, as the
phase lag is then maximal. However, it becomes clear
that, for the tides raised by the Moon on the Earth, the
method used to extract the evolution of the eccentricity
fails to do so correctly. Note that Fig. 8b does show
a trend as a function of k2/Q, it is however not clear
what exactly this trend can be attributed to, and why
the values of the evolution of e differ for the same values
of k2/Q ≈ 0.025.

5. Tidal effect of third-body perturbations

This section aims to quantify and investigate how the
coupled model captures the influence of additional per-
turbations when investigating the effect of tides raised by
the Earth on the Moon’s orbit. For this system, now in-
cluding the perturbations of the Sun and Jupiter, is prop-
agated and damped once more. With the final damped
initial state, a propagation of 5000 days is performed.

In order to ’isolate’ the effect of tides raised by per-
turbations (i.e. the Sun and Jupiter) on the Earth, the
equations of motion in Eq. 34-36 are propagated in two

different ways. In both propagations the perturbations
are included in the translational and rotational dynamics
(i.e. Eq. 34 and 35). In the first propagation (PC1), the
perturbations are also included in calculating the equilib-
rium gravity field coefficients as in Eq. 36. In the second
propagation (PC2), the perturbations are included, but
the contribution of the Moon towards the tides raised on
the Earth is left out. The exact models used for these
propagations are displayed in Table VI.

Table VI: Details of terms included in Eq. 36 used to isolate
the influence of perturbations (i.e. the Sun and Jupiter) on

the orbital evolution of the Earth-Moon system. Both
models include the perturbations in the translational and

rotational dynamics in Eq. 34 and 35

identifier Moon Jupiter Sun
PC1 Yes Yes Yes
PC2 No Yes Yes

Then, taking the difference between these two prop-
agations should give a good idea of what the effect of
perturbations are on the tides raised on the Earth. The
resulting difference in a between these two propagations
is displayed in Fig. 9. Over the propagation period, the
difference grows up to ∼7 m. Note that there is a small
secular trend in the semi-major axis difference, superim-
posed by oscillations of ever-increasing amplitude. It is
this secular change, which is approximately ∼1 m, that
may be attributed to tidal effects from the perturbations,
but cannot be concluded.

A caveat in using this method is that the same ini-
tial state is used for both propagations. However, for
one of the two propagations, the initial state used is not
perfectly damped, as the dynamics have changed slightly
by leaving out the Moon’s contribution in Eq. 31-33.
Hence, the results may not truly isolate the effect of per-
turbations, but part of the effect seen may also be at-
tributed to the model converging to a new damped state,
resulting in changing dynamics and incorrectly attribut-
ing changes in the semi-major axis to tidal effects. If this
is the case, this should be visible in Fig. 10. While it
is not, this may be due to the relatively short propaga-
tion period not allowing all terms ’time’ to show up on
the frequency spectrum. The frequency decomposition
of the tidal forcing of the two propagations displayed in
Fig. 10. The frequency content of the tidal forcing of
the two propagations is quite similar, with no apparent
new peaks introduced. This may suggest that there are
no larger periodic variations that should be taken into
account, but the propagation period may be too short
to conclude this. However, when moving to more com-
plex systems, such as the Galileans moons, where the
moons have a much larger influence on each other due
to the Laplace resonance, it is a certainty that perturba-
tions must be included in modelling the tides and that
the coupled model is a suitable candidate to do so. It
remains, however, a topic for further research on what
the best way is to extract the secular evolution rates of
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(a)
da
dt

as a function of k2/Q (b)
de
dt

as a function of k2/Q

Figure 8: The evolution of the orbital parameters as a function of k2/Q. Note that the behaviour agrees well with the
theoretical approximation for the semi-major axis evolution, but breaks down for the eccentricity evolution.

Figure 9: Difference in a between a propagation with and
without the Moon’s influence on the tides raised on the

Earth.

the semi-major axis and eccentricity from such results.

B. Moon

As a first step to propagate the Moon’s dynamics (i.e.
tides raised on the Moon by itself), a damped initial state
has been found using the damping algorithm described
in Appendix D. Since the satellite’s internal properties
result in significant rotational normal modes, it is imper-
ative they are sufficiently damped, and if not completely
possible, taken into account during the discussion of the
results. Appendix D quantifies how well the rotational

Figure 10: Frequency decomposition of the tidal forcing of
the unperturbed and perturbed propagations respectively.

normal modes have been damped for the investigated
case. Subsequently, the uncoupled and coupled model are
propagated for 5000 days (approximately 13 years and 8
months) each with the same initial state. The specifics of
the propagations performed are displayed in Table VII.

Before discussing results, it is important to ensure that
the results from the coupled model is in the same refer-
ence frame as the equations it will be compared to assume
in their derivations. Specifically, all results are rotated
to a body-fixed frame with the Moon’s x-axis pointing
towards the Earth at M = 0, and the z-axis along the an-
gular momentum vector. The y-axis completes the right
handed triad. See Appendix C for the verification of this
rotation.
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Table VII: Specific propagation settings used and propagations performed for the results gathered in this section.

Propagation period Equations of motion Integrator settings
Coupled model 5000 days Eq. 34, 35, 16, 17 DOP583, 160 minute step size

Uncoupled model 5000 days Eq. 34-36 DOP583, 160 minute step size

1. State propagation

Figure 11a shows that the frequency composition of
differences between the uncoupled and coupled model for
the tides raised by the Moon on itself also occur at the
orbital frequency - and integer multiples - of the mean
motion n, in line with the results of the previous section.

However, the difference in semi-major axis shows that,
on top of the secular trend that is expected based on
theory and the results in the previous section, there is a
larger oscillatory trend as well; these oscillations occur at
the frequency of the rotational normal modes. For satel-
lites, rotational normal modes arise quickly even if the
dynamics or initial state is slightly modified. As a result,
the damped initial state used in the coupled model is not
a damped initial state for the uncoupled model, giving
rise to the rotational normal modes displayed. Further-
more, note that there is a secular change in the difference
in semi-major axis between the two models, which grows
up to 10 cm. This difference is about 10 times larger
than the difference in semi-major axis between the two
models for the tides raised by the Earth on the Moon,
displayed in Fig. 4. This might indicate, as discussed in
Chapter 2, that the uncoupled model has more difficulty
modelling natural satellites than it does for central bod-
ies. Furthermore, it is important to place these numbers
in context with respect to the evolution rate of the semi-
major axis, displayed in Table X, which shows that that
is much smaller, making the difference in semi-major axis
between the uncoupled and coupled model even more sig-
nificant.

2. Tidal parameters

The frequency content of the converged tidal coeffi-
cients of the damped propagation for the coupled model
is displayed in Fig. 12. Note that again all three coeffi-
cients have converged to a certain equilibrium value su-
perimposed by oscillations with a constant amplitude at
the orbital frequency of the mean motion n and its integer
multiples. Different than for the Earth’s tides raised by
the Moon, J2 and C22 converge to non-zero values, while
S22 seems to oscillate around zero. Thus the comparison
to the approximations in Eq. 43-45 is only interesting
for S22. The relevant values are displayed in Table VIII.
Fig. 13 shows the gravity coefficients as a function of the
Mean anomaly. Note the large amplitude of the variation
in S22 compared to its mean value. The time variations
are in very good accordance with the results from Eq.
43-45, with the mean amplitudes of the time variations

displayed in Table IX.
Remarkably, the difference between the mean value

over time over integer orbits of S22 from Eq. 45 and the
coupled model is significant, with Eq. 45 yielding a S22

equal to 1.972 ·10−08 and S22 from the coupled model be-
ing −3.778 ·10−13, effectively equal to 0. Circling back to
the discussion in Section 3, this indicates that during the
propagation of the Moon’s dynamics, a very small shift
in the pointing direction of the long axis of the satellite
occurs, but on average appears to be much smaller than
Eq. 45 predicts, and is practically equal to zero. Since
this shift has an influence on the amount of energy dis-
sipated due to tides, it becomes interesting whether the
coupled model can still correctly predict the semi-major
axis and eccentricity evolution.

Table VIII: Mean values of the gravity field coefficients for
the coupled model and the approximations (Eq. 45) over the

specified propagation period.

C2,0 C2,2 S2,2

Approximations N/A N/A 1.972 · 10−08

Coupled model 9.238 · 10−06 2.720 · 10−06 −3.778 · 10−13

Table IX: Mean amplitudes of the gravity field coefficients
for the coupled model and the approximations (Eq. 43-45)

over the specified propagation period.

C2,0 C2,2 S2,2

Approximations 5.274 · 10−7 2.639 · 10−7 3.512 · 10−7

Coupled model 5.274 · 10−7 2.639 · 10−7 3.512 · 10−7

3. Semi-major axis and eccentricity evolution

Similar to when analyzing the secular changes in a and
e due to the tides raised by the Moon on the Earth, the
tides raised on the Moon by itself also give rise to secular
rates of change in a and e. The values are gathered in
Table X.

Table X: Mean values of
da
dt

and
de
dt

for the coupled model,
uncoupled model and the theoretical approximations (Eq.

39 and Eq. 40).

da
dt

[nm/s]
de
dt

[-/y]

Coupled model −0.149 −9.330 · 10−11

Theory −0.142 −9.294 · 10−11
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(a) Frequency decomposition of the position difference between the
uncoupled and coupled model.

(b) Difference in semi-major axis between the uncoupled and
coupled model.

Figure 11: Comparison of the uncoupled model and the coupled model in the following ways: frequency spectrum of the
difference in position components (left) and the difference in semi-major axis (right).

(a) Frequency content of J2. (b) Frequency content of C22. (c) Frequency content of S22.

Figure 12: Frequency spectra of the gravity field coefficients of the Moon. The red dashed lines are the mean motion n and
integer multiples in rad/day.

(a) J2 over the mean anomaly. (b) C22 over the mean anomaly. (c) S22 over the mean anomaly.

Figure 13: The gravity field coefficients of the Earth over the mean anomaly of the orbit. Notice that the difference in J2 is
out of phase with respect to the mean anomaly, while C22 and S22 are not.
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The evolution of the eccentricity agrees very well be-
tween the coupled model and Eq. 40, whereas it did not
for the case of tides raised on the Earth, despite both
rates of change being similar in magnitude. The time
variations in the eccentricity due to the Moon’s gravity
field coefficients is two orders of magnitude smaller than
due to the gravity coefficients of the Earth, and hence the
signature is relatively larger in this case, making it easier
to detect in this situation. Hence, this adds confidence in
that the coupled model functions correctly in both cases,
but the signature was simply too small to detect for the
tides raised on the Earth by the Moon.

Despite the large disparity between S22 from Eq. 45
and the coupled model in Table VIII, the coupled model

produces the correct values for
da
dt

and
de
dt

compared to
Eq. 39 and Eq. 40, demonstrating that the model still
dissipates the right amount of energy due to tides. The
coupled model hence confirms the discussion in Section 3,
stating that Eq. 39 and not Eq. 41 models the effective
semi-major axis evolution. Furthermore, the additional
dissipation due to physical librations as given in Eq. 53
is included when using Eq. 39. The coupled model thus
correctly and automatically includes this effect, making
it even more attractive to use.

In order to verify that the correct amount of orbital
energy is dissipated, Eq. 42 is used to calculate the rate
of change of orbital energy dissipated due to tides and is
compared to a linear fit of the orbital energy calculated
from the semi-major axis output by the coupled model.
From the linear fit, the rate of change of the orbital en-
ergy is Ėorb = -14.89 GJ/s. The results from using Eq.
42 are gathered in Table XI. Two separate cases are an-
alyzed. First, the calculation is performed with the full
state history of C22(t) and S22(t), i.e. the periodic vari-
ations are taken into account. Second, the same calcu-
lation is performed with the mean values over time over
integer orbits of C22(t) and S22(t), C̄22 and S̄22, denoted
in Table VIII. For both cases, the separate contributions
of C22(t) and S22(t) towards the tidal dissipation are also
denoted.

Table XI: Ėorb in GJ/s calculated using Eq. 42 for various
cases.

C22(t) and S22(t) C̄22 and S̄22

Total effect −14.44 −0.0006
C22 contribution −5.36 0.00004
S22 contribution −9.08 −0.00064
Coupled model −14.89

Two interesting conclusions can be drawn from these
results. First of all, C22(t)’s influence on the tides has
a significant contribution towards Ėorb, and thus the
change in Eorb (and thus a) is not completely caused by
S22, which is a common assumption when working with
the mean values of these gravity field coefficients (e.g.,
Fayolle 2025). Apparently, this does not hold for time-
variable gravity field coefficients. Secondly, and maybe

even more remarkable, using C̄22 and S̄22 as input in
Eq. 42 results in almost no tidal dissipation compared
to the first case, with Ėorb being almost 5 orders of mag-
nitude smaller than Ėorb from the first case. This result
suggests that it is the time variation in C22(t) and S22(t)
that is solely responsible for this behaviour, and that this
behaviour cannot be reproduced by working with their
respective mean values.

4. Varying relaxation times

Similar to when investigating the tides raised by the
Moon on the Earth, the tidal parameters can again be
varied for the tides raised by the Moon on itself. Again,
a broad range of values are taken around the true τ2, and

subsequently
da
dt

and
de
dt

are determined for every prop-
agation, after which they are plotted against the ratio
k2/Q in Fig. 14.

From the figure it follows that the rates of change ob-
tained from the coupled model are in line with the theory
for all investigated values of the relaxation times. This
confirms that the coupled model correctly and robustly
dissipates the correct energy due to tides raised on the
Moon by itself.

Similar to how
da
dt

changes as a function of k2/Q, it also

becomes interesting to see how S̄22 behaves as a function
of k2/Q. The results are gathered in Fig. 15. Interest-
ingly, there seems to be no significant relation between
the Moon’s S̄22 and k2/Q. Rather, the values of S̄22 ac-
tually have decreased by at least an order of magnitude
and, within the accuracy of the averaging computation,
is likely statistically consistent with 0. This might hint
at the following hypothesis: S̄22 is actually equal to zero
over one orbit regardless of the value of k2/Q, and it is
the time-variation and magnitude of the periodic oscilla-
tions in S22 (and C22) that change and give rise to tidal
dissipation. Further study is required in this direction.

V. CONCLUSION

This paper has investigated how couplings between
translational, rotational and tidal dynamics influences
the orbital migration of natural satellites for a given ini-
tial state. The results were compared to a simplified, ’un-
coupled’ model, where the translational and rotational
dynamics are propagated concurrently, but the influence
of tides on the dynamics is modelled using a tidal force.
The difference between these two trajectories was largest
in the along track direction, growing up to 20 m after
13 years and 8 months. There was no secular evolution
present in the radial and tangential direction, and all
three components experienced oscillations at the orbital
frequency of the mean motion.

The results of the orbital evolution of the semi-major
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(a)
da
dt

as a function of k2/Q (b)
de
dt

as a function of k2/Q

Figure 14: The evolution of the orbital parameters as a function of k2/Q. The behaviour agrees well for the orbital evolution
of both parameters for all values investigated.

Figure 15: S̄22 in the corrected reference frame, where
γ0(M = 0) = 0. Note that now there seems to be no relation

with k2/Q.

axis for the tides raised on the Earth by the Moon and
the tides raised on the Moon by itself match well between
the uncoupled model, coupled model and Eq. 37 and Eq.
39; the evolution of the eccentricity matches for the tides
raised on the Moon by itself only with Eq. 40. Due to
the large once-per-orbit variation of the eccentricity, the

signature of
de
dt

is too small to detect for the tides raised
on the Earth. For a wide range of tidal input parameters
τ2 and τe (compared to the classical tidal parameters k2
and Q) this behaviour is reproduced, showing the robust-
ness of the coupled model and demonstrating its valid-
ity. Furthermore, while modelling perturbations showed

to be of limited importance in this work, it is almost a
certainty that they will be much more relevant in more
complex systems such as the Galilean moons, and that
the coupled model will be a good candidate to do so.

The coupled model manifests the tidal dissipation dif-
ferently from simplified, uncoupled approaches and ap-
proximations in literature. The Moon’s mean S22(t) over
time over an integer number of orbits from the coupled
model is equal to zero, while literature approximations
result in a mean S22(t) of 1.972·10−8. The orbital energy
dissipated by the coupled model matches the theoretical
orbital energy dissipation rate as in Eq. 42, with the
values being -14.89 GJ/s and -14.44 GJ/s respectively.
This makes sense, as the orbital evolution parameters
match the literature approximations. Hence, it is con-
cluded that the time variations in the gravity field coef-
ficients play a crucial role in tidal dissipation in the cou-
pled model. Interestingly, when calculating the orbital
energy dissipation rate via Eq. 42 using the mean value
for C22(t) and S22(t), almost no energy is dissipated, sup-
porting the fact that it is indeed the time variations in
the gravity field coefficients that are solely responsible
for the tidal dissipation. Further study is required in
this direction.
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Appendix A: Simulation definition

This appendix covers relevant information for the sim-
ulations performed, including constants used and the
damped initial states for both the Earth and the Moon.

1. Translational equations of motion

For reproducibility purposes, Eq. A1 and Eq. A2 de-
note the specific equations used for the translational dy-
namics of the bodies in question, with and without per-
turbations respectively. Here, P2,0(x) and P2,2(x) define
the associated Legendre polynomials for an input x.

r̈i0 = RI/i · (− µi

r2i0
r̂ − 3µiR

2
i

2r4i0
J i
2r̂

− 9µiR
2
i

r4i0
(Ci

2,2 cos 2γ0 − Si
2,2 sin 2γ0)r̂

+
6µiR

2
i

r4i0
(Ci

2,2 sin 2γ0 + Si
2,2 cos 2γ0)K × r̂), (A1)

r̈i0 =
−µiR
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i
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((
1

R2
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− 3J i
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3P2,2(sin(ϕ0))
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2,2 cos(2ϑ0) + Si
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+
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3 sin(ϕ0) cos(ϕ0)J
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2,2 cos(2ϑ0) + Si
2,2 sin(2ϑ0))
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ϕ̂

−
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−
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(
r̂ji
r2ji

− r̂j0
r2j0

)
. (A2)

In order to evaluate these equations, the positions of
all bodies are required, as well as physical parameters of

the propagated body, such as its radius and the gravity
field coefficients. The rest of this section will define these
values where necessary.

2. Earth

This section will denote the constants used for the
Earth during the propagations.

• Gravity field: GOCO05c developed by Fecher et al.
(2017). The Earth’s reference radius is 6378.1km
and its gravitational parameter µ0 = 398600.4415
km3/s2. The degree 2 coefficients have been in-
cluded.

• Tidal parameters: The Maxwell relaxation time τe
and global relaxation time τ2 for the Earth from
Correia et al. (2014).

• Inertia tensor: Calculated from the degree 2 gravity
field coefficients using Eq. 9, where Īk=0.3307007
is the mean moment of inertia, which is taken from
Williams (1994).

• Rotation model: The orientation of the Earth is
retrieved as it was at J2000 from the IAU (Inter-
national Astronomical Union) Earth frame Kaplan
(2006).

3. Moon

This section will denote the constants used for the
Moon during the propagations.

• Gravity field: gggrx_1200b from GRAIL data
Goossens et al. (2020). The Moon’s reference ra-
dius is 1737.4km and its gravitational parameter
µi = 4902.8001218468 km3/s2. The degree 2 coef-
ficients have been included.

• Tidal parameters: The degree 2 Love number
k2=0.024059 and quality factor Q=37.5 of the
Moon are taken from Lainey (2016), from which τ2
and τe are calculated using Eq. 44-46 of Section 4.
It follows that τ2= 12794424s and τe = 830598914s.

• Inertia tensor: Calculated from the degree 2 grav-
ity field coefficients using Eq. 9, where Īk=0.3929,
which is taken from Williams et al. (1996).

4. Third bodies

This section will denote the constants used for the third
bodies during the propagations.
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• Sun: The mass of this body (and the Moon and
Earth) is taken from the INPOP19a ephemerides
product Fienga et al. (2019). Its location is deter-
mined from the same source in combination with
the DE440 ephemerides Park et al. (2021).

• Jupiter: The mass of Jupiter and its position with
respect to the Jovian barycenter is taken from the
NOE-5-2021 ephemerides Fayolle et al. (2023). The
INPOP19a ephemerides (Fienga et al. (2019)) are
then used to compute its position with respect to
the correct body-fixed frame.

5. Numerical integration

The equations of motion have been numerically inte-
grated using custom software created by the author and
validated with Tudat (TU Delft Astrodynamics Tool-
box). In this work, all simulations have been performed
using a DOP583 integrator with a fixed step-size of 80
minutes, which integrates the equations of motion in Eq.
34-36. For reproducibility purposes, some of the used
initial states will be provided in this section. Eq. A3
denotes the nominal translational and rotational initial
state as well as the initial value for the gravity field coef-
ficients Zν

l,m for the Earth. Similarly, Eq. A4 the initial
state used for the nominal propagation of the Moon.

x =



−359680329.2763155
−82373776.21032083
−1633942.954798689
278.35337268506817
−953.4813336331438
−379.1941059087945
0.43537911071282687
0.11317597257132578
−0.1421998113314148
0.881711655133172

5.482513268821296 · 10−20

1.3585528455022242 · 10−19

7.262116762072311 · 10−05

0.0010729669706076347
−6.088364113441088 · 10−10

−4.730759190004066 · 10−10



(A3)
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

−382196934.10039043
−89516988.5691146
−2479200.1476683454
159.61840391207076
−919.9155330758256
−357.0089660106524
−0.9816184698077

−0.17958200435736416
−0.027926528328146343
−0.05827171233733275

2.5755725738338057 · 10−15

−4.552044969265712 · 10−17

2.6919105511554092 · 10−06

9.237956217201704 · 10−06

2.720599025660953 · 10−06

1.7398952470744585 · 10−10



(A4)

There are several more initial states used during this
work. In determining the behaviour of the coupled model
for a range of relaxation times, each one of these scenarios
has its own damped initial state associated with it. Since
this would make the appendix quite lengthy, they are not
included here and the interested user is referred to the
linked code repository.

Appendix B: Quality factor and love numbers

This section aims to explain how Eq. 13 and Eq. 12 of
the main paper body are consistent with each other. In
other words, it aims to show how a complex Love number
can be interpreted as a tidal lag. For comfort, Eq. 12
and Eq. 13 are repeated below in Eq. B1 and Eq. B2:

∆C̄i
l,m − i∆S̄i

l,m =
kil

2l + 1
×

×
∑
j

µj

µi

(
Ri

rj

)l+1

P̄l,m(sinϕj)e
−imϑj , (B1)

Qj
i =

|ki2|
Im(ki2)

. (B2)

Here, Eq. B1 contains kil instead of kil,m because, as
discussed in the main body of the paper, variations in
m for a given l are small for the Love numbers. In its
most general form, and assuming a constant kli for the
remainder of this section, kil can contain both a real and
complex part:

kil = Re(kil) + iIm(kil), (B3)

with i the complex number. Splitting Eq. B1 in its real
and imaginary part results in the following two equations:
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∆C̄i
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Re(kil)
2l + 1

×

×
∑
j

µj

µi
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P̄l,m(sinϕj) cosmϑj , (B4)

∆S̄i
l,m =

Im(kil)

2l + 1
×

×
∑
j

µj

µi

(
Ri

rj

)l+1

P̄l,m(sinϕj) sinmϑj . (B5)

Thus, the tidal variations of Ci
22 depend on the real

part of kil , while the tidal variations of Si
22 depend on

its imaginary part. As was shortly discussed in section
2.4 and section 3.1, variations in Si

22 lead to tidal dissi-
pation. Hence, Eq. B5 demonstrates a direct correlation
between the magnitude of Im(kil) and the magnitude of
the variations in Si

22 and hence the magnitude of the tidal
dissipation and tidal lag. As a result, it follows that for
a constant kil , the magnitude of its complex part has a
direct correlation with the tidal lag, which is expressed
through the quality factor Q as given in Eq. B2.

Appendix C: Reference frame Moon

Before the results for the tides raised on the Moon by
itself can be compared to approximations from literature,
it is important for them to be in a common reference
frame. Generally, the choice of reference frame is such
that the body-fixed x-axis of the Moon coincides with
the moon-to-planet line at M = 0. This has been ensured
for the cases investigated (i.e. the various k2/Q values
investigated), with all mean values over time over integer
normal modes of the longitude of the Earth as seen from
the Moon γ at M = 0 equal to zero.

The whole propagation period (5000 days) contains al-
most 200 orbits, and hence it is worthwile to investigate
several individual orbits, so see whether γ(M = 0) is
not too much influenced by normal modes to influence
the results. To this end, Fig. 16a and Fig. 16b show
γ(M = 0) over a propagation period before and after ro-
tating the reference frame as specified. As can be seen,
the rotational modes are still present and actively be-
ing damped over the propagation period, but are sub-
stantially smaller than the static offset in the longitude.
As a result, they are deemed to not influence the re-
sults significantly, and after rotating the reference frame
such that the mean γ(M = 0) over the propagated pe-
riod, this reference frame is used to compare the results
of the coupled model to the approximations from litera-
ture. Note that, ideally, these rotational normal modes
are completely damped out, but that is very difficult to
achieve.

Appendix D: Damping algorithm

The damping algorithm used in this work is derived
from Rambaux et al. (2012). This algorithm is designed
to find an initial state of a satellite in spin-orbit reso-
nance where the normal modes have been damped, while
preserving rotation around the z-axis. This is done by in-
troducing a virtual torque into the equations of motion.
Conceptually, this virtual torque Γd counteracts the ro-
tation of a body around it’s body fixed x- and y-axis, and
is mathematically defined as

Γd = − 1

τd
I(ω − ω0), (D1)

with τd a given dissipation time, ω the rotation rate
of the body expressed in its body-fixed frame and ω0 its
rotation rate in pure synchronous motion (i.e. the de-
sired rotation rate), meaning it will only have a non-zero
component along the z-axis. The equations of motion
in Eq. 34-36 are then propagated with this additional
virtual torque. Subsequently, the resulting final state is
propagated backwards in time without the virtual torque,
resulting in an initial state that should not give rise to
normal modes when propagated. This does not work
perfectly and thus it becomes an iterative process, and
as Martinez (2023) points out, it will likely take several
iterations to obtain an initial state with a sufficiently
damped out normal mode.

This algorithm was initially designed by Rambaux et
al. (2012) for damping rotational normal modes in rigid
bodies. This algorithm is however ineffective for damp-
ing the normal modes in the gravity field coefficients,
and specifically for S22, which suffered the most from
this. Hence, for this work the algorithm has been mod-
ified slightly to account for this. Analogously to how a
virtual torque is introduced to damp the rotation, a sim-
ilar equation can be used to damp the normal modes in
the gravity field coefficients:

Żν
l,m = − 1

τl
(Zl,m − Ze

l,m), (D2)

with Zl,m the current value of the gravity field coeffi-
cient. The goal of this equation is to aid the process of
the gravity field coefficients converging to stable values
where the normal modes have been damped out. Com-
bined with natural tidal dissipation occurring during the
propagation, this should result in the normal modes be-
ing damped out in the gravity field coefficients.

The results of the damping algorithm have partly al-
ready been implicitly shown in the main body of this
work, and will be supplemented in this appendix to add
confidence to the results. Fig. 12 shows the frequency
content of the gravity field coefficients of the Moon, show-
ing peaks at the mean motion and integer multiples, but
no peak at the rotational normal mode, indicating that
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(a) γ(M = 0) over a number of orbits before rotating the reference
frame.

(b) γ(M = 0) over a number of orbits after rotating the reference
frame.

Figure 16: Quantification of the reference frame offset of the Moon’s body fixed reference frame.

the effect of normal modes has been successfully damped
in the gravity field coefficients.

In Fig. 16a and Fig. 16b, the Moon-fixed angular co-
ordinates of the Earth are plotted in a longitude-latitude
map before and after damping respectively, with the (0,0)
coordinate being the moon-planet line. These figures
show the effect of the damping algorithm on the rota-
tion of the Moon, ensuring it is tidally-locked as it is in
reality. Before the algorithm is applied, the Moon’s body
fixed x-axis is seen to deviate from the moon-planet line
by about 15◦ in latitude and 30◦ in longitude as a re-
sult of librations and the rotational normal modes. The
damping algorithm removes all oscillations occuring at
the frequency of the normal mode and isolates the effect
of librations due to forcings. Note that the deviation in
latitude essentially becomes 0◦ as expected, considering
the dynamics of the problem.

The difference in the frequency spectrum between the
undamped and damped longitudinal librational motion
of the Moon is displayed in Fig. 17, with Fig. 17a de-
scribing the undamped scenario and Fig. 17b describing

the damped scenario. It is worth noting that the peak at
the frequency of the normal mode is damped from ∼10
to ∼0.1 degrees after the damping algorithm is applied.
These results add confidence in the fact that the tidal lock
is conserved after applying the damping algorithm when
propagating the Earth-Moon system using the coupled
model. Furthermore, since the behaviour of S22 directly
influences the evolution of the semi-major axis, any nor-
mal modes not damped will manifest themselves in the
semi-major axis as oscillations at the frequency of the
normal mode, which could influence the results for the
rates of change of the semi-major axis. Fig. 18 and Fig.
19 display the semi-major axis of the Moon’s orbit before
and after the damping algorithm has been applied respec-
tively. Before damping, it is clear that there is a periodic
oscillation in the semi-major axis which can heavily in-
fluence the results depending on the interval over which
the derivative is calculated. However, after the normal
modes have been damped using the algorithm, the sec-
ular trend in the semi-major axis caused by tidal effects
becomes clear, and it can reliably be extracted from the
state history of the results.
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(a) Earth’s coordinates in the Moon’s sky before damping. (b) Earth’s coordinates in the Moon’s sky after damping.

Figure 17: Quantification of the influence of the damping algorithm on the orientation of the Earth in the Moon’s sky in a
latitude-longitude map.

(a) Frequency spectrum of the longitudinal libration before damping. (b) Frequency spectrum of the longitudinal libration after damping.

Figure 18: Influence of the damping algorithm quantified in the frequency spectra of the longitudinal libration. Note the
damping of the longitudinal normal mode by approximately two orders of magnitude.
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(a) Influence of the rotational normal modes on the semi-major axis
for an arbitrary case.

(b) Evolution of the semi-major axis after the rotational normal
modes have been damped for an arbitrary case.

Figure 19: Influence of the damping algorithm quantified in the evolution of the semi-major axis. This figure demonstrates
why the damping algorithm is such a crucial part of the coupled model, as its influence is far too large to detect any secular

changes due to tidal effects. Note that these propagations have slightly different constants, but this does not change the
message it conveys.



4
Conclusions and recommendations

This section will answer the research questions posed at the start of the thesis. Furthermore, recom-
mendations for future research will be formulated based on the results obtained in this work.

4.1. Conclusions
This section will answer the research questions posed, starting with the sub-questions and working up
to the main research question.

• How can physically realistic initialization reliably be achieved for the system(s) in ques-
tion?
In this work, it was found that a physically realistic initial state can be found by using a modified
version of the algorithm proposed by Rambaux et al. (2012), with the goal of damping the rota-
tional normal modes. Since the algorithm is designed for rigid bodies, it has been modified for this
work to mimic tidal dissipation and ensure that the gravity field coefficients also become free of
normal modes. Nevertheless, it must be noted that the normal modes, despite being significantly
damped, still were present in the results, but were insignificant enough to not play a significant
role in the results.

• What is the effect of the coupled model for an unperturbed and perturbed system with
tides raised on the primary?
In studying the position differences between the uncoupled and coupled trajectories, it was found
that the coupled trajectory got ahead of the uncoupled trajectory by 20 m after 13 years and 8
months. In the radial and out-of-plane direction, small oscillations with an amplitude of several
centimeters were detected. The difference in semi-major axis grew up to 1.2 cm over the same
period.
The investigated parameters are in good accordance with the equations they have been com-
pared to. Specifically, the gravity field coefficients C22 and S22 from the coupled model showed
mean values over time over an integer number of orbits of −3.927 · 10−14 and 1.858 · 10−14 re-
spectively; these are compared to approximations for C22 and S22 from Eq. 44 and 45 of the
stand-alone paper, which yield mean values of −3.324 · 10−14 and 2.302 · 10−14. Their time vari-
ations are also in good accordance, with C22 and S22 from the coupled model having a mean
amplitude of 5.273 · 10−9 and 5.269 · 10−9 respectively. From Eq. 44 and 45, both C22 and S22

show a mean amplitude of 5.285 · 10−9. This demonstrates that the coupled model can capture
the time variations in gravity field coefficients well compared to simplified approaches used in
literature.
The evolution of the semi-major axis and eccentricity are compared to approximations used in
literature, denoted as Eq. 37 and Eq. 38 in the stand-alone paper. The evolution of the semi-
major axis shows good accordance with the uncoupled model and Eq. 37 for a range of tested
relaxation times. Furthermore, its results are in closer accordance with Eq. 37 than the uncoupled
model, and remaining differences are attributed to the assumptiosn that are made in deriving Eq.
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37, which the coupled model does not need. For the eccentricity evolution, both the uncoupled
and coupled model fail to capture the rate of change as projected by Eq. 38. This is not a failure of
the coupled model, but rather, the secular signature in the evolution of the eccentricity is too small
to detect compared to its large time variations. Lastly, when including perturbations their effect
on the tidal response was limited as expected, and could be left out for the Earth-Moon system.
However, more complex systems such as the Galilean moons would require the modelling of
perturbations.

• What is the effect of the coupled model for an unperturbed and perturbed system with
tides raised on the secondary?
In studying the position differences between the uncoupled and coupled trajectories for tides
raised on the Moon by itself, it was found that the difference in semi-major axis grew up to 10
cm over the propagation period of 13 years and 8 months, almost 10x as large as the difference
was for tides raised on the Earth by the Moon. This indicates that the uncoupled model has much
more difficulty accurately modelling the tides raised on the Moon by itself, and likely in general
will have trouble to do so for any synchronous satellite.
The evolution of the semi-major axis and eccentricity both showed good accordance with the
approximations in Eq. 39 and Eq. 40 for a wide range of k2/Q values for the tides raised on the
Moon by itself, meaning the coupled model produces results in accordance with approximations
used in literature regardless of the k2/Q value that is considered. Interestingly, this also confirms
that the effective evolution of the semi-major axis is modelled more accurately with Eq. 39 and
not Eq. 41. Furthermore, Eq. 39 is multiplied with Eq. 53 to take into account the effect of
physical librations on tidal dissipation, resulting in a closer approximation with the coupled model.
Since the coupled model automatically includes this, this again confirms the idea that the coupled
model provides an elegant manner to achieve the same results as simplified approximations do.
Interestingly, while the orbital evolution rates matches what theory would dictate, the tidal dissi-
pation manifests itself differently. The mean value S̄22 from the approximation in Eq. 45 and the
coupled model are equal to 1.972 · 10−8 and −3.778 · 10−13 respectively, differing by 5 orders of
magnitude and with S̄22 of the coupled model effectively equal to zero. Despite this, the orbital
energy dissipated Ėorb due to tidal effects matches the theoretical orbital energy dissipation rate
well, which is calculated using Eq. 42 of the stand-alone paper. The values from the coupled
model and Eq. 42 are equal to -14.89 GJ/s and -14.44 GJ/s respectively. This is expected, as
the orbital evolution rates match very well between the coupled model and Eq. 39 and 40. Cu-
riously, calculating this same number using C̄22 and S̄22 displayed in Table 7 of the stand-alone
paper (i.e., the mean values over time over an integer number of orbits of C22 and S22) results in
almost no energy being dissipated (−6.0 · 10−4 GJ/s). This gives rise to the following preliminary
hypothesis: S̄22 is actually equal to zero over one orbit regardless of the value of k2/Q, and it
is the time-variation and magnitude of the periodic oscillations in S22 (and C22) that change and
give rise to tidal dissipation. For the uncoupled model, the static offset from zero of S22 (i.e. a
non-zero mean) causes tidal dissipation. Thus, in the coupled model tidal dissipation manifests
itself differently through the time-variations of the gravity field coefficients, and not their mean
values.

What is the effect of using a fully coupled model compared to current-day models in natural
satellites’ dynamics modelling in planetary systems?

After having answered the individual sub-questions, the main research question will now be an-
swered in the following paragraphs.

This work has considered the usage of a coupled modelling approach that concurrently models
the orbit, rotation and tidal deformation of the gravity field of a natural satellite and applies it to the
Earth-Moon system. This model has been compared against simplified, uncoupled models and ap-
proximations used in literature, and has leveraged this comparison to draw conclusions regarding the
orbital evolution of satellites and how tidal dissipation contributes towards this. This coupled model
requires a coupled initial state, which, when undamped, contains rotational normal modes that heavily
influence the rotation and tidal deformation of a natural satellites’ gravity field. Hence, an algorithm has
successfully been designed to reliably find damped initial states for specific dynamical environments.
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When analysing the tides raised on the Earth by the Moon, it was found that, when comparing the
uncoupled and coupled model, couplings induce along-track position differences growing up to 20 m.
Furthermore, the evolution of the gravity field coefficients and orbital evolution parameter semi-major
axis amatches well independently of the value of k2/Q investigated between the results of the coupled
model and approximations retrieved from literature (Eq. 37, 38, 43-45 of the stand-alone paper). The
signature of the evolution of the eccentricity e was too small to detect.

Similarly, when analysing the tides raised on the Moon by itself, the orbital evolution parameters a
and e agree well between the results of the coupled model and approximations retrieved from literature
(Eq. 39, 40), although the tidal dissipation manifests itself differently compared to the uncoupled model
and approximations (Eq. 45). For the coupled model, the mean value of S22 is equal to zero and it
is the time variations of the coefficient (and of C22) that cause tidal dissipation, whereas for simplified,
uncoupled approaches it is the non-zero mean of the gravity field coefficients that is responsible for tidal
dissipation. Note that despite this difference, the orbital energy dissipated matches theory (Eq. 42),
which makes sense as the orbital evolution parameters are in line with approximations from literature.
Lastly, note that the evolution of the semi-major axis is in line with Eq. 39 and not Eq. 41, and includes
the tidal dissipation caused by physical librations, giving insights into what theoretical approximations
are closer to reality and showing that the coupled model automatically includes them. This gives rise
to the following preliminary hypothesis: S̄22 is actually equal to zero over one orbit regardless of the
value of k2/Q, and it is the time-variation and magnitude of the periodic oscillations in S22 (and C22)
that change and give rise to tidal dissipation.

4.2. Recommendations
This section will propose several further steps that could be taken based on this work.

• This thesis has shown that the behaviour of the Moon’s S22(t) coefficient in the coupled model
differs quite significantly from the approximation in Eq. 45 of the stand-alone paper, yet produces
correct values for the orbital migration rates of the satellite. To gain a deeper understanding
of this behaviour, it is worthwhile to perform a deeper analysis of the time variations of these
coefficients, as well as applying this model to another satellite to see whether the same behaviour
is reproduced. Interesting candidates could be the Jovian moons, or a moon of Saturn, as they
have future relevance too with missions making their way there.

• In this thesis, the normal modes have been damped using the algorithm described in Appendix
D of the research paper in Chapter 3. However, to completely damp the normal modes, the
algorithm needs to be ran for an exceedingly long time. This algorithm has a lot of room for
improvement, both in terms of computational speed and efficiency, and hence is an interesting
candidate in speeding up computations using the coupled model. Furthermore, it is possible that
the current algorithm itself can be refined by introducing a more efficient way of damping the
rotational normal modes.

• The coupled model, having been verified for the perturbed Earth-Moon system, can now be ap-
plied to more difficult systems, with an interesting candidate being the Jovian system in light of
future missions headed for this system. It will be interesting to see how it fares in such a system,
especially when the full state of all moons are propagated concurrently.

• As a simple first test case, the algorithm proposed was applied to the Jovian system. It produced
a damped initial state for Ganymede, but failed to converge to physically realistic initial states for
Io and Europa, resulting in negative rotation rates for both. Before applying the coupled model
to the Jovian system, it will be interesting to see whether it can be uncovered why the algorithm
fails for these particular moons. This may in part be caused by the complexities of the Laplace
resonance.

• For this work, a simple Maxwell model has been used as rheology, neglecting the fact that satel-
lites generally consist of multiple layers and have a much more complex interior. Despite this
not being the most relevant step for the coupled model, it is interesting to see how changing the
rheology models results in physically different behaviour.

• In this work, perturbations were of limited influence on the results. However, it has become
apparent that when perturbations are included, it becomes extremely difficult to reliably extract
secular evolution rates for the semi-major axis and eccentricity caused by tidal effects. It hence
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becomes a point of interest to try and develop a method that can do so, or move to different
parameters to quantify the effect of tidal dissipation.



References

Altman (1972). “A unified state model of orbital trajectory and attitude dynamics”. In: Celestial Mechan-
ics 6, p. 425.

Andrade (1910). “On the viscous flow in metals, and allied phenomena”. In: Proceedings of the Royal
Society of London. Series A 84, pp. 1–12.

Bagheri et al. (2022). “Chapter Five - Tidal insights into rocky and icy bodies: an introduction and
overview”. In: Geophysical Exploration of the Solar System. Vol. 63, pp. 231–320.

Bills et al. (2005). “Improved estimate of tidal dissipation within Mars from MOLA observations of the
shadow of Phobos”. In: Journal of Geophysical Research (Planets) 110, p. 7004.

Bois, I. Wytrzyszczak, and A. Journet (1992). “Planetary and figure-figure effects on the moon’s rota-
tional motion”. In: Celestial Mechanics and Dynamical Astronomy 53, pp. 185–201.

Boué (2019). “Tidal evolution of the Keplerian elements”. In: Celestial Mechanics and Dynamical As-
tronomy 131.7.

Boué, Correia, and Laskar (2016). “Complete spin and orbital evolution of close-in bodies using a
Maxwell viscoelastic rheology”. In: Celestial Mechanics and Dynamical Astronomy 126, pp. 31–60.

Christensen (1971). Theory of Viscoelasticity. London, W1X6BA: Academic Press, pp. 16–20. ISBN:
9780121742508.

Colombo (1965). “Rotational Period of the Planet Mercury”. In: Nature 208, p. 575.
Correia and Rodríguez (Apr. 2013). “On the equilibrium figure of close-in planets and satellites”. In: The

Astrophysical Journal 767.2, p. 128.
Correia et al. (Nov. 2014). “Deformation and tidal evolution of close-in planets and satellites using a

Maxwell viscoelastic rheology”. In: Astronomy & Astrophysics 571, A50.
Danby (1988). Fundamentals of Celestial Mechanics. 2nd ed. Virginia: Willmann-Bell, Inc.
Darwin (1880). “On the Secular Changes in the Elements of the Orbit of a Satellite Revolving about

a Tidally Distorted Planet”. In: Philosophical Transactions of the Royal Society of London Series I
171, pp. 713–891.

Dehant andMathews (May 2015).Precession, Nutation andWobble of the Earth. ISBN: 9781107092549.
Dirkx (2015). “Interplanetary laser ranging: Analysis for implementation in planetary science missions”.

PhD thesis. Delft University of Technology.
Dirkx, Mooij, and Root (Feb. 2019). “Propagation and Estimation of the Dynamical Behaviour of Gravi-

tationally Interacting Rigid Bodies”. In: Astrophysics and Space Science 364.2, p. 37.
Dirkx et al. (Sept. 1, 2014). “Phobos laser ranging: Numerical Geodesy experiments for Martian system

science”. In: Planetary and Space Science 99, pp. 84–102.
Dirkx et al. (2016). “Dynamical modelling of the Galilean moons for the JUICE mission”. In: Planetary

and Space Science 134, pp. 82–95. ISSN: 0032-0633.
Efroimsky (2012). “Bodily tides near spin-orbit resonances”. In: Celestial Mechanics Dynamical Astron-

omy 112.3, pp. 283–330.
— (2018). “Dissipation in a tidally perturbed body librating in longitude”. In: Icarus 306, pp. 328–354.
Efroimsky and Lainey (2007). “Physics of bodily tides in terrestrial planets and the appropriate scales

of dynamical evolution”. In: Journal of Geophysical Research 112.E12.
Efroimsky and Makarov (Jan. 2013). “Tidal friction and tidal lagging. Applicability limitations of a popular

formula for the tidal torque”. In: The Astrophysical Journal 764.1, p. 26.
Fayolle (2025). “T.B.D.” To be defended January 24th 2025. PhD thesis. Delft University of Technology.
Fayolle et al. (2023). “Combining astrometry and JUICE – Europa Clipper radio science to improve the

ephemerides of the Galilean moons”. In: Astronomy & Astrophysics 677, A42.
Ferraz-Mello (2015). “The small and large lags of the elastic and anelastic tides: the virtual identity of

two rheophysical theories”. In: Astronomy & Astrophysics 579.
Fienga et al. (2019). INPOP19a planetary ephemerides. Research Report. IMCCE.
Folkner et al. (2014). “The Planetary and Lunar Ephemerides DE430 and DE431”. In: Interplanetary

Network Progress Report 196.

70



References 71

Fukushima (2008). “Simple, regular, and efficient numerical integration of rotational motion”. In: Astro-
nomical Journal 135.6, pp. 2298–2322.

Goldman (2011). “Understanding quaternions”. In: Graphical Models 73, pp. 21–49.
Goldreich and Soter (1966). “Q in the solar system”. In: Icarus 5.4, p. 375.
Henning, O’Connell, and Sasselov (2009). “Tidally Heated Terrestrial Exoplanets: Viscoelastic Re-

sponse Models”. In: Astrophysical Journal 707.2, pp. 1000–1015.
Henrard (2006). “The Synchronous Rotation of the Moon”. In: ed. by J. Souchay. Vol. 682, pp. 261–276.
Hoolst, Van et al. (2020). “The librations, tides, and interior structure of Io”. In: Journal of Geophysical

Research: Planets 125.
Hurford et al. (2009). “Geological implications of a physical libration on Enceladus”. In: Icarus 203.2,

pp. 541–552.
Hut (June 1981). “Tidal evolution in close binary systems.” In: 99, pp. 126–140.
Jeffreys (1976). The Earth: Its Origin, History, and Physical Constitution. 6th ed. Cambridge University

Press.
Kant (1754). Kant’s Cosmogony: as in his Essay on the Retardation of the Rotation of the Earth and

his Natural History and Theory of the Heavens.
Kaula (1964). “Tidal dissipation by solid friction and the resulting orbital evolution”. In: Reviews of Geo-

physics 2.4, pp. 661–685.
Khan et al. (2004). “Does the Moon possess amolten core? Probing the deep lunar interior using results

from LLR and Lunar Prospector”. In: Journal of Geophysical Research (Planets) 109, p. 9007.
Konopliv et al. (2011). “Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other

dynamical parameters”. In: Icarus 211, pp. 401–428.
Konopliv et al. (2013). “The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL

Primary Mission”. In: Journal of Geophysical Research: Planets 118.7, pp. 1415–1434.
Krasinsky (2002). “Dynamical History of the Earth–Moon System”. In: Celestial Mechanics and Dynam-

ical Astronomy 84, pp. 27–55.
Lainey (2016). “Quantification of tidal parameters from Solar System data”. In: Celestial Mechanics and

Dynamical Astronomy 126.1-3, pp. 145–156.
Lainey, Dehant, and Pätzold (2007). “First numerical ephemerides of themartianmoons”. In: Astronomy

& Astrophysics 465.3, pp. 1075–1084.
Lainey, Duriez, and Vienne (2004). “New accurate ephemerides for the Galilean satellites of Jupiter.

I. Numerical integration of elaborated equations of motion”. In: Astronomy & Astrophysics 420.3,
pp. 1171–1183.

Lainey et al. (2012). “Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from
astrometry”. In: Astrophysical Journal 752.1.

Lainey et al. (2019). “Interior properties of the inner saturnian moons from space astrometry data”. In:
Icarus 326, pp. 48–62.

Lambeck (1980). The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge
University Press.

— (1988). Geophysical Geodesy: The Slow Deformations of the Earth. Oxford Science Publications.
Lari (2018). “A semi-analytical model of the Galilean satellites’ dynamics”. In: Celestial Mechanics and

Dynamical Astronomy 130.8.
Lemoine et al. (2013). “High�degree gravity models from GRAIL primary mission data”. In: Journal of

Geophysical Research: Planets 118.8, pp. 1676–1698.
Love (1911). Some Problems of Geodynamics. University Press.
Magnanini et al. (2024). “Joint analysis of JUICE and Europa Clipper tracking data to study the Jovian

system ephemerides and dissipative parameters”. In: AA 687, A132.
Maistre, Le et al. (2013). “Phobos interior from librations determination using doppler and star tracker

measurements”. In: Planetary and Space Science 85, pp. 106–122.
Martinez (2023). “Translational-rotational couplings in the dynamics of Phobos”. Master’s thesis. Delft

University of Technology.
Mignard (1979). “Evolution of the lunar orbit revisited I”. In: Moon and the Planets 20.3, pp. 301–315.
— (1980). “The evolution of the lunar orbit revisited II”. In: Moon and the Planets 23.2, pp. 185–201.
Mitchell (1995). “Anelastic structure and evolution of the continental crust and upper mantle from seis-

mic surface wave attenuation”. In: Reviews of Geophysics 33.4, pp. 441–462.



References 72

Mol (2021). “A Coupled 2DTranslational-Rotational-Tidal model on Solar system bodies using aMaxwell
viscoelastic rheology”. Master’s thesis. Delft University of Technology.

Munk and MacDonald (1975). The Rotation of the Earth: A Geophysical Discussion. revised.
Murray and Dermott (1999). Solar system dynamics.
Park et al. (2021). “The JPL Planetary and Lunar Ephemerides DE440 and DE441”. In: The Astronom-

ical Journal 161.3, p. 105.
Peale (Apr. 1969). “Generalized Cassini’s Laws”. In: 74, p. 483.
Peale and Cassen (1978). “Contribution of tidal dissipation to lunar thermal history”. In: Icarus 36.2,

pp. 245–269.
Peltier (1974). “The impulse response of a Maxwell Earth”. In: Rev. Geophys. Space Phys. 12, pp. 649–

669.
Petit et al. (2010). IERS Conventions (2010). Technical Note. IERS.
Rambaux et al. (2010). “Librational response of Enceladus”. In:Geophysical Research Letters 37.L04202.
Rambaux et al. (2012). “Rotational motion of Phobos”. In: Astronomy & Astrophysics 548, A14.
Rao (2006). Dynamics of Particles and Rigid Bodies: A Systematic Approach. Equation (2–128). New

York: Cambridge University Press, p. 47. ISBN: 978-0-511-34840-2.
Remus et al. (2012). “Anelastic tidal dissipation in multi-layer planets”. In: Astronomy & Astrophysics

54.
Schutz (1981). “The mutual potential and gravitational torques of two bodies to fourth order”. In: Celes-

tial Mechanics 24, pp. 173–181.
Segatz et al. (1988). “Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io”. In:

Icarus 75.2, pp. 187–206.
Shito, Karato, and Park (2004). “Frequency dependence of Q in Earth’s upper mantle inferred from

continuous spectra of body waves”. In: Geophysical Research Letters 31.12.
Souchay, Mathis, and Tokieda (2013). Tides in Astronomy and Astrophysics. Lecture Notes in Physics.

Springer.
Stachnik, Abers, and Christensen (2004). “Seismic attenuation and mantle wedge temperatures in the

Alaska subduction zone”. In: Journal of Geophysical Research: Solid Earth 109.B10.
Tiscareno, Thomas, and Burns (2009). “TheRotation of Janus and Epimetheus”. In: Icarus 204, pp. 254–

261.
Turcotte and Schubert (2002). Geodynamics. 2nd. Vol. 139. Cambridge University Press, pp. xv + 456.
Williams and Boggs (2015). “Tides on the Moon: Theory and determination of dissipation”. In: Journal

of Geophysical Research: Planets 120.4, pp. 689–724.
Williams et al. (2001). “Lunar rotational dissipation in solid body and molten core”. In: Journal of Geo-

physical Research 106, pp. 27933–27968.
Willner et al. (2010). “Phobos control point network, rotation, and shape”. In: Earth and Planetary Sci-

ence Letters 294.3, pp. 541–546.
Yoder (1981). “The free librations of a dissipative Moon”. In: Philosophical Transactions of the Royal

Society of London. Series A, Mathematical and Physical Sciences 303.1477, pp. 327–338.
Zhang (1992). “Love numbers of the moon and of the terrestrial planets”. In: Earth, Moon, and Planets

56, pp. 193–207.



A
Tidal modelling

This appendix contains derivations for the tidal potential, tidal force and a general equation for the in-
stantaneous deformation of gravity field coefficients. The derivation of these quantities boast relevance
for the work at hand since it is insightful to see how they are related, and which approximations are
applied to derive the tidal potential and tidal force that are not used in the derivation of the differential
equation for the gravity field coefficients. Due to the length of these derivations, they are placed in the
appendix of the thesis. Furthermore, these derivations are not novel in literature, but are not collected
in one place as is done here, especially the derivation in A.3.

A.1. Tidal Potential
To derive the tide-generating potential as given in Eq. 4.1, consider again Fig. 2.4, reiterated here:

Figure A.1: Schematic decomposition of the gravitational force exerted by body B, where the difference between FPB̄ and
F ĀB̄ is responsible for the tidal force ∆F . R is the position vector pointing to point P and rAB is the vector connecting the

centers of A and B, and Ψ is the angle between R and rAB .

To derive U ′

B(r), assume body B to be a point mass. Its potential is then given as

UB(r) =
µB

r
, (A.1)

with r = |r| =
√
x21 + x22 + x23. Taking the derivative of the gradient with respect to each component

gives

∂UB

∂xi
= −µB

r3
xi, i = 1, . . . , 3, (A.2)
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from which it is easy to see that the components of the Hessian matrix of this function is given by

∂2UB

∂xi∂xj
= −3

µB

r5
xixj − δij

µ

r3
, (A.3)

where δij is the Kronecker delta. Since UB originates in B, ∆F can be obtained by performing a
Taylor expansion of UB(r) at the center of A, which can be found by linearizing at x1 = r, x2 = x3 = 0,
which is the most straightforward way of doing so. Linearization gives

∂2U

∂xi∂xj

∣∣∣∣
r=(r,0,0)T

=
µB

r3

2 0 0
0 −1 0
0 0 −1

 , (A.4)

such that a first-order approximation of ∆F is ∇U |r=(r,0,0)T :

∆F = ∇U |(r,0,0)T =
∂2U

∂xi∂xj

∣∣∣∣
(r,0,0)T

∆x =
µ

r3

2 0 0
0 −1 0
0 0 −1

∆x1
∆x2
∆x3

 , (A.5)

where ∆x is a small displacement at the linearization point A. In order to find out the work
Since the force ∆F can exert a force on each infinitesimal part ds along a direction n̄, the required

work provided by this force can be found. This work integral then yields the potential energy difference
per mass, or the potential difference, which is exactly what is required in order to quantify the magnitude
of the tidal potential at any point ds on A. To this end, it is logical then that

U
′

B(r) =

∫ R

s=0

(∆F , n̄)ds, (A.6)

where the implicit assumption is made that U ′

B(r) is evaluated on a sphere with radius R = |R|. n̄
dictates the direction taken, and based on Fig. A.1 it makes sense to keep n̄ two-dimensional and use
the angle Ψ to split n̄ into its components:

n̄ =

cosψ
sinψ
0

 (A.7)

and ∆x1
∆x2
∆x3

 =

s cosψs sinψ
0

 (A.8)

with s a small displacement so that (∆F , n̄) becomes

(∆f, n̄) =
µB

r3AB

2s cosψ
−s sinψ

0

 ·

cosψ
sinψ
0


=
sµB

r3AB

{
2 cos2 ψ − sin2 ψ

}
=
sµB

r3AB

{
3 cos2 ψ − 1

}
. (A.9)

The integral in Eq. A.6 then works out to be

U
′

B(r) =

∫ R

s=0

sµB

r3AB

{
3 cos2 ψ − 1

}
ds

=
µBR

2

r3AB

{
3

2
cos2 ψ − 1

2

}
=
µBR

2

r3AB

P2(cosψ), (A.10)
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whereP2 is the Legendre polynomial of degree 2. This is the first term of the Taylor series in question,
it can be similarly shown that for degree 3 a relation exists too, for example:

∆F i =
∂3UB

∂xi∂xj∂xk

∆xj∆xk
3!

, (A.9)

where following the same method, Eq. 14.6 yields

U
′

B,l=3(r) =
µBR

3

r4AB

P3(cosψ). (A.10)

By induction it follows that:

U
′

B(r) =
µB

rAB

∞∑
l=2

(
R

rAB

)l

Pl(cosψ), (A.11)

which is indeed the tidal potential of body B as given by Eq. 4.1.

A.2. Direct Tidal Force
Consider the tidal potential as introduced in Eq. 4.10, where, when the centrifugal force is left out, it
reduces to

δUA(r, t) =

∞∑
l=2

(
|R|
|r|

)l+1

kl(t) ∗ UT
B,l(r, t). (A.12)

The direct tidal force is assumed by assuming the tidal lag to be a constant ∆t, resulting in a Love
distribution kl(t) = klδ(t−∆t), which simplifies to

δUA(r, t) =

∞∑
l=2

(
|R|
|r|

)l+1

klU
T
B,l(r, t−∆t), (A.13)

where the induced gravitational potential at time t is now caused by the perturbing potential of body
B at time t−∆t. For clarity, it will be useful to indicate how exactly the time-dependence is related in
both potentials (Mignard (1979)):

δUA(r, rAB(t−∆t)) =

∞∑
l=2

(
|R|
|r|

)l+1

klU
T
B,l(r, rAB(t−∆t)), (A.14)

with rAB(t−∆t) the position of the perturbing body at time t−∆t, specifically denoted by rB instead
of r. Generally, ∆t can be considered sufficiently small (Mignard (1980)) such that Eq. A.14 can be
linearized around rs(t−∆t), resulting in

rAB(t−∆t) = rAB(t)− vAB(t)∆t+ ωA∆t× rAB(t), (A.15)

where ωA is the angular velocity of the perturbed body, accounting for the fact that the body-fixed
reference frame is rotating with angular velocity ωA. Applying this linearization to the tidal potential in
A.14 yields

δUA(r, rAB(t−∆t)) = δUA(r, rAB(t))+ (A.16)

∇rAB
δUA(r, rAB(t)) · (rAB(t−∆t)− rAB(t)) =

∞∑
l=2

(
R

|r|

)l+1

klWl(R, rAB(t))+ (A.17)

∇rAB

[ ∞∑
l=2

(
R

|r|

)l+1

klWl(R, rAB(t))

]
· [(ωA × rAB(t)− vAB)∆t] . (A.18)

The gradient is worked out to be
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∇rAB
δUA(r, rAB(t)) = ∇rAB

∞∑
l=2

(
R

|r|

)l+1

klWl(R, rAB(t)) (A.19)

= −GmB∇rAB

∞∑
l=2

klR
2l+1

|r|l+1|rAB(t)|l+1
Pl

(
r · rAB(t)

|r||rAB(t)|

)
(A.20)

= −GmB

∞∑
l=2

klR
2l+1

|r|l+1|rAB |l+1

[
− (l + 1)rABPl(x)

|rAB |2
(A.21)

+
dPl

dx

∣∣∣∣x ·
(

r

|r||rAB |
− (r · rAB)rAB

|r||rAB |3

)]
, (A.22)

where for simplicity x =
r · rAB

|r||rAB |
, it then follows that the tidal potential is given as

VT (r, rAB(t−∆t)) = VT (r, rAB(t))−GmB

∞∑
l=2

kl
R2l+1

|r|l+2|rAB |l+1
∆t (A.23)

·
[
(l + 1)

(
rAB · vAB

|rAB |2

)
|r|Pl(x) +

dPl

dx

∣∣∣∣x (A.24)

·
(
r · (ωA × rAB)

|rAB |
− r · vAB

|rAB |
+

(r · rAB)(rAB · vAB)

|rAB |3

)]
, (A.25)

where for simplicity time dependencies have also been removed. Finally, to find the force and
consequently the torque, the gradient with respect to r, and not rAB , has to be taken, resulting in

∇rVT (r, rAB(t−∆t)) = ∇rVT (r, rAB(t))−GmB

∞∑
l=2

(
− (l + 2)klR

2l+1r

|r|l+4|rAB |l+1
∆t (A.26)

·
[
(l + 1)

(
rAB · vAB

|rAB |2

)
Pl(x)|r|+

dPl

dx

∣∣∣∣x ·
(
r · (ωA × rAB)

|rAB |
− r · vAB

|rAB |
(A.27)

+
(r · rAB)(rAB · vAB)

|rAB |3

)]
+

klR
2l+1
E

|r|l+2|rAB |l+1
∆t (A.28)

·
[
(l + 1)

(
rAB · vAB

|r||rAB |2

)
Pl(x) + (l + 1)

(
rAB · vAB

|rAB |2

)
|r|dPl

dx

∣∣∣∣x (A.29)

·
(

rAB

|r||rAB |
− (r · rAB)r

|r|3|rAB |

)
+
d2Pl

dx2

∣∣∣∣x (A.30)

·
(

rAB

|r||rAB |
− (r · rAB)r

|r|3|rAB |

)
·
(
r · (ωA × rAB

|rAB |
− r · vAB

|rAB |
+

(r · rAB)(rAB · vAB)

|rAB |3

)
(A.31)

+
dP x

l

dx
·
(
ωA × rAB

|rAB |
− vAB

|rAB |
+

rAB(rAB · vAB)

|rAB |3

)])
. (A.32)

Note that, as discussed in Section 4.2, the force is evaluated at r = rAB , implying that x = 1 and

thus Pl(1) = 1, which follows as a standardization condition, furthermore dPl

dx

∣∣∣∣1 =
l(l + 1)

2
. Under these

conditions, the force results into
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FT = −mB∇rδU(r, rAB(t−∆t))

= G(mB)
2

∞∑
l=2

kl(R)
2l+1

|r|2l+4
·
(
−(l + 1)r +

l(l + 1)

2
(r − r)

)
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2

∞∑
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(l + 1)

2
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+
l(l + 1)

2
·
(
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|r|
+

r · v
|r|

)]}
+
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(l + 1)(r · v)r
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2
·
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)
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2
·
(
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)
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2
∞∑
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2
∞∑
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(
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(
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)
− kl(R)

2l+1
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[
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+
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·
(
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2
∞∑
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(
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2
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= −G(mB)
2

∞∑
l=2

[
(l + 1)

kl(R)
2l+1

|r|2l+4

(
r +∆t

(
l

2
(r × ωc + v) +

l + 2

2

(r · v)r
|r|2

))]
,

which agrees with literature (Mignard (1980)). As mentioned before in Section 4.2, it is common to
truncate to degree l = 2 (e.g., Lari 2018), which then yields

F T = −3GmAk
B
2 R

5
E

|rAB |8

(
r +∆t

(
rAB × ωB + vA +

2

|rAB |2
(rAB · vA)rAB

))
. (A.33)

A.3. Gravity field coefficients' instantaneous deformation
Correia et al. (2014) and Boué et al. (2016) mention that the differential equation for the gravity field
coefficients as given by Eq. 5.14 can be written in a convolution such that

δUA(r, t) = k(t) ∗ UT
B (r, t), (A.34)

where the function is assumed to be evaluated at the surface and the centrifugal potential is left out.
Transforming into the Fourier domain yields a point-wise multiplication:

δUA(r, ω) = k(ω) · UT
B (r, ω), (A.35)

with ω the frequency. Note on the other hand that Correia et al. (2014) derives a relation between
the induced gravitational potential and a perturbing potential:

UT
l + τlU̇

T
l = UT,e

l + τeU̇
T,e
l , (A.36)

where this equation holds for each of the gravity field coefficients. Using the substitution in Eq. 5.13
it then follows that

Zl,m + τlŻl,m = Ze
l,m + τeŻ

e
l,m. (A.37)

Where the ∆ is left out and the degree l and orderm will be left out for convenience. Note also that
both Z and Ze depend on time, but for convenience that will be left out at times. The homogeneous
part solves to be Z(t) = Z(0) exp−t/τ . The particular solution can be found as
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et/τ (Z + τlŻ) = et/τ (Ze + τeŻ
e) (A.38)

=>
d

dt
(et/τZ(t)) = et/τ (Ze + τeŻ

e). (A.39)

Integrating this expression from 0 to t then yields

∫ t

0

d

dt′
(et

′/τZ(t′))dt′ =

∫ t

0

et
′/τ (Ze + τeŻ

e)dt′ (A.40)

=> et/τZ(t) = Z(0) +
1

τ

∫ t

0

et
′/τZe(t′)dt′ +

τe
τ

∫ t

0

et
′/τ Żedt′. (A.41)

The second integral can be partially integrated:

τe
τ

∫ t

0

et
′/τ Żedt′ =

τe
τ

[ [
et

′/τZe(t′)
]t
0
− 1

τ

∫ t

0

et
′/τZe(t′)dt′

]
, (A.42)

filling this back in to Eq. A.41 gives

et/τZ(t) = Z(0) +
1

τ

∫ t

0

et
′/τZe(t′)dt′ +

τe
τ
et/τZe(t)− τe

τ
Ze(0)− τe

τ

1

τ

∫ t

0

et
′/τZe(t′)dt′ (A.43)

=> Z(t) =
(
Z(0)− τe

τ
Ze(0)

)
e−t/τ +

τe
τ
Ze(t) +

1

τ

(
1− τe

τ

)∫ t

0

e(t
′−t)/τZe(t′)dt′, (A.44)

where Z(0)− τe
τ
Ze(0) will be called C (Correia et al. (2014)):

Z(t) = Ce−t/τ +
τe
τ
Ze(t) +

1

τ

(
1− τe

τ

)∫ t

0

e(t
′−t)/τZe(t′)dt′. (A.45)

The first term is the so-called transient mode and rapidly decays to zero with time. In a converged
state this value can be neglected. In order to find a solution to Eq. A.45, an eigenfunction expansion
of Ze(t) can be used, a method commonly used to solve differential equations. Generally, this involves
assuming that the solution of Ze(t) is of the form

∑
k βkfk(t). For gravity field coefficients, it may be

a reasonable assumption to assume that the equilibrium solutions will have a periodic-like behaviour
(Correia et al. (2014)), from which it then follows that the solution can be specified more: Ze(t) =∑

k βke
iωkt, with ωk a numerable set of frequencies. Plugging this into Eq. A.45 gives

Z(t) = Ce−t/τ +
τe
τ

∑
k

βke
iωkt +

1

τ

(
1− τe

τ

)∫ t

0

e(t
′−t)/τ

∑
k

βke
iωkt

′
dt′

(A.46)

=> Z(t) = Ce−t/τ +
τe
τ

∑
k

βke
iωkt +

1

τ

(
1− τe

τ

)∑
k

βke
−t/τ

[
1

iωk + 1/τ
e(iωk+1/τ)t − 1

iωk + 1/τ

]
,

(A.47)

where the third term can be simplified as

1

τ

(
1− τe

τ

)∑
k

βke
−t/τ

[
1

iωk + 1/τ
e(iωk+1/τ)t − 1

iωk + 1/τ

]
(A.48)

=
∑
k

βke
−t/τ

[(
τ − τe

τ + iωkτ2

)
e(iωk+1/τ)t +

τ − τe
τ + iωkτ2

]
(A.49)

and thus
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Z(t) =
∑
k

βk

[
τe
τ
eiωkt + e−t/τ

[(
τ − τe

τ + iωkτ2

)
e(iωk+1/τ)t +

τ − τe
τ + iωkτ2

] ]
+ Ce−t/τ (A.50)

=> Z(t) =
∑
k

βk

[(
τe
τ

+

(
τ − τe

τ + iωkτ2

)
eiωkt

)]
+

(∑
k

βk
τ − τe

τ + iωkτ2
+ C

)
e−t/τ (A.51)

=> Z(t) =
∑
k

βk
1 + iτeωk

1 + iτωk
eiωkt + Ce−t/τ . (A.52)

Note here that the pre-factor 1 + iτeωk

1 + iτωk
is synonymous to the Fourier transform of the Love distribu-

tion in case of a Maxwell rheology (e.g., Henning et al. 2009):

kl(ν) = k0l
1 + iτeν

1 + iτlν
, (A.53)

where this expression is now similar to Eq. A.35 but not entirely identical, since this expression still
holds in the time-domain. It is at this point where Correia et al. (2014) and Boué et al. (2016) make
use of the ’correspondence principle’ for viscoelastic bodies as described by for example Efroimsky
(2012), stating that the expression for the external gravitational potential when not static (e.g. induced
variations due to gravity field deformations), Eq. A.34 can be tranformed into Eq. A.35 even for a
point-wise multiplication in the time-domain. In that case, it is likely that similar reasoning is applied to
Eq. A.52, since the variations in the gravitational potential can be decomposed into variations in the
gravity field coefficients. Boué et al. (2016) seems to this line of reasoning to transform the convolution
in his Eq. 4 into a differential equation as in Eq. 6, also by taking into account that Ce−t/τ will rapidly
decay, but an exact reproduction has unfortunately not be made.



B
Integrator selection

To achieve the goals laid out in this work, choosing a suitable integrator is imperative. From literature,
it is clear that the effects of tides are extremely small, and the coupling effects will be even smaller, and
thus integrator restrictions are tight on this problem. In order to get an idea of what the order of integrator
error must be, the magnitude of the smallest effect that must be measured should be quantified first,
which is the coupling between a body’s tidal, rotational and translational equations of motion. This has
been done in the following way.

The uncoupled and coupled model have both been propagated for 5000 days for the tides raised
on the Earth by the Moon with the exact same initial state, which has been obtained after applying the
damping algorithm described in Appendix D of the research paper. The difference in position between
these two models is subsequently taken and the norm of this difference is projected in Fig. C.5a.

Over the roughly 13 years and 8 months of propagation, the position difference accumulates up
to ∼ 20 m which, by all accounts, is a tight constraint. Note that the semi-major axis of the Moon is
roughly 384000 km, about 8 orders of magnitude larger. A suitable integrator will have an error 3-4
orders below this error, so roughly in the order of 10−2− 10−1 m over the same period. A more realistic
period is shown in Fig. C.5b, with the error growing to around 100 m, and hence the integrator error
requirements being in the order of 10−4 − 10−3 m over this period.

(a) Coupling effects over 13 years and 8 months. (b) Coupling effects over 1 year and 5 months.

Figure B.1: Coupling effects.

Tudat, and similar astrodynamics packages, are commonly used within the field of propagation.
However, since no models exist that can concurrently integrate the translational, rotational and tidal
dynamics, this has been built from scratch for this work. The integrator could similarly be built from
scratch to enable a wide range of choices, but since this is a time-consuming task prone to mistakes,
the choice has been made to make use of existing integrators available in the SciPy package. SciPy

80



81

primarily provides the following relevant integrators applicable to the problem at hand: RK23, RK45
and DOP853. Based on previous experience, RK23 and RK45 are disregarded for the task at hand, as
their accuracy is generally not sufficient for the requirements laid out for the task at hand. DOP853 is an
explicit Runge-Kutta integrator of order 8 and hence its error will be lower than for the other two integra-
tors. A downside is that this method is computationally more expensive. For the DOP853 integrator,
a range of step sizes are compared to a nominal propagation using Tudat, with settings mentioned
before. A fixed step-size is preferred over variable step-size to ensure consistent and uniform output
of results. The results are displayed in Fig. B.2.

Figure B.2: Integrator error as a function of time for various step-sizes.

For an 8th order integrator, the general expected behaviour of the error would be that as the step-size
doubles, the error increases with 28, or roughly two orders of magnitude. Surprisingly, this behaviour
is not observed, and it is unclear why this is the case. Rather, the errors seem to increase almost
identically, with the exception of the step size ∆t = 4800 s. Based on this figure, the other 3 step sizes
fulfill the integrator accuracy requirement. When they are equal, another constraint is placed: the step
size is preferred to not be too large, simply in order to avoid the need of interpolating too much data
during the data analysis of the obtained data. To this end, the step size ∆t = 9600 s is chosen as
integrator for this thesis.



C
Verification

This section will explain how the software developed for this work has been verified. The verification
of the software can be divided into three parts: the translational dynamics, the rotational dynamics and
the tidal dynamics. All three of these components will be compared with the existing software of Tudat.
All Tudat features - translational and rotational propagation - are assumed to work correctly, as the
software is developed by a professional community, and has been extensively tested and extensively
used.

This work has made use of two models: an uncoupled model and a coupled model, where both
models concurrently propagate the translational and rotational dynamics, but the uncoupled model
expresses the influence of tides through the tidal force while the coupled model also concurrently prop-
agates a differential equation for the gravity field coefficients. Both models have been implemented.
Specifically, the uncoupled model is implemented using Eq. 34, 35, 15, 16, 17. The coupled model
is implemented using Eq. 34-36. Since these equations have been implemented by the author from
scratch, including the propagator, they are prone to mistakes and thus need to be tested against test
cases to verify their implementation. The focus of this appendix lies in the comparison between the
uncoupled model and Tudat, which has not been done yet. Note that the coupled model cannot be
directly verified against a similar coupled implementation in Tudat, as that does not exist yet. For prop-
agations of the uncoupled model, a DOP583 integrator is used with a fixed step-size of 80 minutes.
For propagations with Tudat, a fixed RKF8 integrator (i.e. an RKF7(8) integrator with an eight order
coefficient set) is used with a fixed step size of 20 minutes.

A large part of the verification and validation of the tides in the coupled model has been performed in
the stand-alone research paper by analysing related parameters, such as the orbital evolution parame-
ters and the gravity field coefficients in Chapter 4. The results displayed there are in good accordance
with the uncoupled model and simplified approximations found in literature, adding confidence in that
the coupled model has been implemented correctly. For a truly comprehensive test, the coupled model
would be verified against a similar coupled implementation, but that is currently not yet available. De-
spite the tests not being comprehensive, the results in the main body of the stand-alone paper are a
good indicator of the correct working of the model.

In this section, the translational dynamics of the uncoupled model will be verified in section C.1, the
rotational dynamics of the uncoupled model will be verified in section C.2 and the effect of tides in the
uncoupled model will be verified in section C.3.

C.1. Translational dynamics
The propagation of the translational dynamics will be compared to Tudat’s implementation, where both
will be propagated with an identical initial state. This will initially be done for the Earth and Moon both
modelled as a point mass, and subsequently for the Moon extended to a degree and order 2/2 gravity
field. The comparisons will be made in the cartesian state and the keplerian state.

The results for the point mass propagation are displayed in Fig. C.1a-d, where the difference be-
tween the uncoupled model’s results and Tudat’s results are displayed over a propagation period of
one day. The differences in position components - Fig. C.1a - are in the order of numerical error, as the
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position vector between the Earth and the Moon is in the order of 108 m. Similarly, the remaining Keple-
rian elements also are in the order of numerical error, with all of them being differences approximately
14 order of magnitude smaller than their nominal values. This verifies that the implemented equation
of motion, along with the integrator used to integrate the equations of motion, behave as expected (i.e.
the results are in agreement with Tudat up to numerical errors).

Secondly, the extended gravitational acceleration can now be verified. Extending the gravity field up
to D/O 2/2 results in additional accelerations as described in Eq. 2.6 of the Literature Study in chapter
2. Implementing a D/O 2/2 gravity field and comparing the difference with Tudat’s implementation of a
D/O 2/2 gravity field results in the differences in FIg. C.1e-f. Note that similar to the previous scenario,
differences between the uncoupled model and Tudat remain at the numerical level for the investigated
quantities and does not substantially increase upon introduction of an extended gravity field. This
verifies the translational equations of motion.

A second step to verifying a correct implementation of the translational equations of motion is to
verify it also results in a physically scenario and does not result in the orbit blowing up. It will be useful
to plot the evolution of the orbit and Kepler elements over time. The goal of this analysis is to verify
that the Moon approximately follows a realistic orbit (i.e., Kepler elements close to its nominal values).

The top and side view of the orbit are displayed in Fig. C.2. At a first view, the orbit indeed has a
relatively low eccentricity and inclination. A more detailed insight is gained from the Kepler elements
displayed in Fig. C.3, which shows the orbit’s semi-major axis and eccentricity oscillating around nom-
inal values of a = 381874 km and e = 0.06314. Offsets still exist, as these plots are created with a very
specific dynamical model with a limited gravity field and no perturbations considered, hence values for
these quantities in literature may vary somewhat.

This work also considers third-body perturbations. Naturally, this piece of the software must also
be validated and will be compared against Tudat. Similar to Fig. C.1, the position and Kepler elements
will be used to measure the differene between the uncoupled model’s results and Tudat’s results. For
the implementation of third body perturbations, the third bodies are assumed to be point masses acting
only on the point mass of the propagated body as mentioned in the stand-alone paper in Chapter 3.
Fig. C.4 shows that when perturbations are included, the error in all investigated quantities remains in
the order of numerical errors, similar to Fig. C.1, hence verifying that perturbations have been added
correctly to the translational equations of motion.

C.2. Rotational dynamics
In order to verify the rotational dynamics of the system, the translational and rotational states are con-
currently integrated. Similar to the previous section, the Kepler elements can be analyzed to verify
the software. Just like for the translational dynamics, the difference between Tudat and the uncoupled
model is in the order of numerical errors. In addition, the angular velocity and quaternion vector can
be analyzed, of which the results are displayed in Fig. C.2. The difference in the angular velocity is in
the order of numerical error, while the same seems to hold for the quaternion vector. For the quater-
nion vector, there might be small differences due to different normalization conditions applied to the
quaternion between Tudat and the uncoupled model. For convenience, the normalization conditions
are gathered below in Eq. C.1 as a reminder:

3∑
i=0

q2i = 1, (C.1)

with qi the Euler parameters as introduced in section 2.2.2. of the Literature Study included in
chapter 2.

This verifies the proper functioning of the coupled translational-rotational system. Note that this
strictly verifies the underlying physics of the system, but does not necessarily verify that the system at
hand is a realistic system (i.e. the orbit does not blow up, the normal modes are damped). In order
to gain more confidence that it is, it is useful to visualize the orbit and orientation of the Moon through
analyzing the Earth’s position in the Moon’s sky.
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Figure C.1: Verification of the point mass and extended body dynamics by comparing the software created in this work with
Tudat. Figures C.1a-C.1d show the verification for a point mass acceleration, while Figures C.1e-C.1h show the same for the

accelerations exerted by a body with a gravity field extended to D/O 2/2.
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(a) Top view of the orbit (b) Side view of the orbit

Figure C.2: Orbit visualization. This does not give quantitative information, but does qualitatively confirm that nothing weird
happens with the orbit, and the physics generally behave as expected.

(a) Semi-major axis over time (b) Eccentricity over time

Figure C.3: Keplerian elements over time. Once-per-orbit variations are presented due to the gravity field coefficients of
degree 2.

C.3. Tidal dynamics
The validation and verification of the influence of tides on the dynamics of planetary systems has been
performed mainly in the research paper in Chapter 3. The uncoupled and coupled model both produce
good estimates of the secular evolution of the semi-major axis and eccentricity of the Moon compared
to approximations from literature, implying that the influence of tidal effects likely has been incorporated
correctly into the dynamics.
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Figure C.4: Verification of the translational dynamics including perturbations by comparing the software created in this work
with Tudat. The differences in the investigated quantities remain in the order of numerical errors.

(a) Difference in the angular velocity vector. (b) Difference in the quaternion vector.

Figure C.5: Difference between the created software and Tudat for a coupled translational-rotational propagation. The
rotational state vector is compared and the differences remain at the order of numerical errors, validating the software.
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