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Abstract—Autonomous vehicles (AV) are one of the greatest
technological advancements of this decade and a giant leap in
the transportation industry and mobile robotics. Autonomous
vehicles face several major challenges in achieving higher levels
of autonomy. One of these is to find a fast and reliable algorithm
to process the sensor data so that the simultaneous localization
and mapping (SLAM) algorithms run in real-time to achieve
autonomous navigation. The major limitation of the SLAM
algorithm, especially while building a map is to have static envi-
ronmental features, i.e. without any dynamic or moving objects.
To achieve this, our paper introduces a novel algorithm to remove
dynamic objects from point cloud data. The algorithm focuses
on identifying and removing dynamic objects from sensor data,
thereby creating a static scene suitable for traditional SLAM
algorithms. Simulations conducted on the benchmark dataset
demonstrate the algorithm’s efficacy in successfully eliminating
dynamic objects and reconstructing a stable static scene.

Index Terms—point clouds, autonomous vehicles, object re-
moval, reconstruction, SLAM, LiDAR, mobile robots.

I. INTRODUCTION

Autonomous Vehicle (AV) technology represents the
promising future of the transportation sector. Leveraging
cutting-edge technologies, AVs demonstrate the capacity to
make superior decisions compared to their human counter-
parts. However, there have been instances where autonomous
cars encountered failures, some of which resulted in tragic
accidents. For instance, in a recent incident involving an Uber
autonomous car, equipped with a safety driver, it failed to
engage the brakes when a cyclist suddenly appeared in its
path. This convergence of human and machine errors led to a
loss of life.

The inherent challenge with this technology lies in the
difficulty of pinpointing the precise causes of such failures
in specific cases. Consequently, finding effective solutions to
prevent such incidents in the future becomes a complex and
intricate task. Identifying dynamic obstacles in the vicinity
of an Autonomous Vehicle (AV) is of paramount importance
to ensure safe operations and prevent accidents, thereby safe-
guarding human lives. The ability to detect and respond to
dynamic elements such as pedestrians, cyclists, and other
vehicles in real time is crucial for maintaining public trust
in autonomous vehicle technology. Proactive obstacle identi-
fication not only enhances road safety but also contributes to

the harmonious integration of autonomous vehicles into our
daily lives, minimizing disruptions and potential hazards [1].

While the deployment of AVs at present would likely result
in a reduction in road accidents, the overarching goal of this
groundbreaking technology is to eventually eradicate road-
related fatalities, ensuring an entirely safe environment for
humans. The fundamental principle behind AV development
aligns with the vision that machines should never be the
cause of human harm, in line with Asimov’s laws of robotics.
Consequently, companies continue to refine and perfect AV
technology, refraining from premature deployment to ensure
it meets the highest safety standards and uphold this critical
objective for the future [2].

The cornerstone of an Autonomous Vehicle’s functionality
lies in Simultaneous Localization and Mapping (SLAM).
SLAM involves the vehicle’s endeavor to map its surrounding
environment and establish its precise location about various
reference points, subsequently informing its decision-making
process. Employing sensors, the vehicle scans and maps its
surroundings, designating stationary elements as landmarks
and determining its own position through distance calculations
relative to these landmarks. Subsequently, a trajectory is
formulated, where each point along the trajectory is defined
in relation to these established landmarks.

Dynamic objects have long impeded real-time SLAM reli-
ability. Multiple authors have proposed methods to segment
moving objects while preserving the static scene, but these
techniques invariably require a minimum of two separate
images or point clouds. Jizhou Yan et al. [3] introduced
sensor fusion, utilizing diverse car sensors. They detected
moving objects using RGB images at varying time intervals
and subsequently removed corresponding points in the sparse
3D Light Detection and Ranging (LiDAR) cloud based on the
spatial data of the moving objects. A dynamic object aware
LiDAR SLAM pipeline based on deep learned dynamic object
filtering step was discussed [4]. This generic method applies to
different dynamic objects, segmentation methods, and LiDAR
SLAM algorithms.

Yuxiang Sun et al. [5] employs a distinct approach by
transforming point clouds into RGB images and depth maps.
They create a dynamic object mask using RGB and depth
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images from two different time frames and subsequently
eliminate corresponding dynamic object points. For factory
environment monitoring, [6] utilizes a voxel-based approach
to LiDAR data. This algorithm employs a voxel grid data
structure and marks voxels as dynamic through ray intersection
tests, without necessitating ego-motion estimation, 3D object
recognition, or tracking.

Jian Tang et al. [7] introduced the Likelihood Grid Voting
(LGV) method for dynamic object removal, involving voting
on grid occupancy. Grids with fewer votes are identified as
dynamic objects and subsequently removed. They validated
the algorithm in real-time on a UGV developed by them.
An innovative approach using synthesized optical flow was
introduced in [8]. They leverage Stereo Odometry to estimate
camera motion and pixel disparity, enabling the calculation of
synthesized optical flow over the same pixel space. By utilizing
depth and image intensity, they eliminate regions of inconsis-
tency, corresponding to dynamic objects. Krystof Litomisky
et al. [9] use correspondences to compute the displacement
matrix, with which the points of moving objects are identified.
The points are then removed to create a static scene. Moreover,
a robust method for removing dynamic objects was presented
by using the occupancy octree map to create a clean point
cloud, but not scalable for large-scale outdoor maps [10].

A straightforward dynamic object removal method, pre-
sented in [11], involves the use of two RGB-D images. This
approach employs image differencing along with ego-motion
compensation to detect changes. Subsequently, object tracking
is performed using a particle filter, and vector quantization
is applied for dynamic object removal. Tanwei Zhang et al.
[12] introduce the Mean Axis Descriptor for moving object
characterization. This descriptor, in combination with sensor
data, facilitates the identification of dynamic objects. An
additional benefit of this algorithm is its capability to rectify
distortion caused by object motion. A method for efficiently
eliminating moving objects from point clouds in autonomous
driving scenarios was introduced [13]. The authors in [13]
use the SemanticKITTI dataset and follow a similar idea to
the Octomap 3D occupancy grid mapping approach to filter
the moving objects.

Canbe Yin et al. [14] utilize two RGB-D images from
depth cameras to perform image differencing, followed by a
thresholding operation to detect dynamic objects. They remove
dynamic objects by establishing a correspondence between
candidate pixels and the point cloud cluster. In contrast,
Yuxiang Sun et al. [15] presented a method that detects moving
objects through dense pixel matching. Initially, they remove
the plane, then, after identifying moving objects, create a mask
to eliminate them. Importantly, this approach does not rely on
prior information about the visual appearance of the objects.

Johannes Schauer et al. [16] introduce a method that
involves traversing the point cloud into a voxel grid and
explicitly determining the volumetric grid occupancy to detect
dynamic objects. Their work also introduces the concept of
point shadows. Krystof Litomisky et al. [9] also present a
similar algorithm that shares the segmentation step before

motion detection. Their approach employs correspondences
to calculate a displacement matrix, allowing the identification
and removal of points belonging to moving objects, ultimately
creating a static scene.

Each of the outlined approaches is meticulously tailored
to serve distinct application domains, spanning UAVs, factory
monitoring systems, indoor mapping platforms, and robotic
contexts. In a parallel vein, the algorithm delineated in this
research paper has been intricately designed with an acute
focus on its application within the sphere of AVs.

The primary contributions of this research paper encom-
pass the following key aspects: 1) Implementation of a k-
nearest neighbors method for point cloud outlier identification
and removal. 2) Utilization of Random Sample Consensus
(RANSAC) and Euclidean cluster extraction approaches for
preprocessing the point cloud, for plane removal and object
segmentation respectively. 3) Dynamic object detection in 3D
point clouds using Octrees and the reconstruction of a static
scene from the input point cloud data.

The subsequent sections of the paper are structured as fol-
lows: In Section II, we provide a brief overview of autonomous
vehicle navigation concepts, challenges in autonomous vehi-
cle (AV) operations, the role of LiDARs in AV navigation,
and the concept of simultaneous localization and mapping
(SLAM). Section III outlines the proposed algorithm for
dynamic obstacle removal and static scene reconstruction from
3D point cloud data. Section IV offers detailed insights into
simulation results and a performance comparison between
the proposed algorithm and an existing technique. Finally,
Section V presents conclusive remarks and outlines potential
directions for future research.

II. AUTONOMOUS NAVIGATION & MAJOR CHALLENGES

Autonomous vehicle has been a prominent buzzword for
over a decade, poised to usher in a revolution not just in the
automotive sector but also in the field of robotics. The AV
market is estimated to be worth trillions of dollars, with the
potential to disrupt both public transportation and personal
mobility. This significant market potential has drawn the
attention of major players in the automotive industry, who are
engaged in fierce competition, channeling substantial funds
into research and development to transform this technology
into a tangible reality.

The concept of autonomous cars began to solidify and gain
traction when Google entered the arena, creating significant
ripples within the tech community. Google’s reputation for
investing in groundbreaking technologies lent added credibility
to the autonomous vehicle field. Fig.1 depicts the AnnieWAY
autonomous car used by KITTI [18]. Consequently, numerous
major players in the automotive industry, along with startups,
have committed substantial resources to the research and
development of autonomous technology. Their collective goal
is to attain full vehicle autonomy, often referred to as Level
5 automation in driving, with some companies like Tesla
even pushing the envelope by introducing semi-autonomous
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features in their vehicles and deploying them in real-world
road conditions.

Fig. 1. The AnnieWAY Autonomous System Platform used by KITTI [18].

Challenges in autonomous navigation encompass sensor
reliability, real-time data processing, mapping and localization,
dynamic object detection, path planning, cybersecurity, legal
complexities, human-AV interaction, urban navigation, and
public acceptance. These challenges involve ensuring sensor
accuracy, managing data efficiently, mapping and localiza-
tion, detecting dynamic objects, path planning, addressing
cybersecurity risks, dealing with legal and regulatory issues,
optimizing human-autonomous vehicle interaction, navigating
complex urban environments, and gaining public trust.

A. Autonomous Vehicle: Sensors

To operate effectively, an AV must have a comprehensive
view of its environment, capturing all relevant information
from its surroundings. To achieve this, AVs employ a diverse
array of sensors. Autonomous vehicles are equipped with a
variety of sensors for environment perception. These include
LiDAR for 3D mapping, radar for object detection, cameras
for visual data, ultrasonic sensors for proximity detection,
IMUs for motion tracking, GPS for accurate positioning, wheel
encoders for speed estimation, thermal sensors for night vision,
and microphones for auditory cues [20]. The combined data
from these sensors is crucial for AVs to navigate safely and
make real-time decisions on the road.

Among these sensors, LiDAR holds significant importance,
as it provides a detailed 3D point cloud of the surrounding
environment for autonomous navigation. LiDAR is the instru-
ment of choice for capturing point clouds due to its exceptional
accuracy, compact form factor, and suitability for robotics and
autonomous vehicles, surpassing other options. LiDAR sys-
tems typically include a scanning laser that emits laser pulses
at regular intervals, and a photo-detector records the time it
takes for these pulses to bounce back after hitting objects. This
data forms a point cloud, representing the environment with
precise depth information. LiDAR technology is a fundamental

component of autonomous vehicles, playing a pivotal role
in their safe and accurate navigation. Fig.2 depicts a typical
LiDAR sensor.

Fig. 2. A Typical LiDAR System - Velodyne Scanner [19].

B. Point Clouds

Point clouds are collections of points in a spatial coordinate
system, with commonly used systems including spherical,
cylindrical, and Cartesian coordinates. However, Cartesian
coordinates, utilizing three axes (x, y, and z), are the prevalent
choice for representing point clouds. These point clouds serve
as a spatial representation, akin to images and graphs, and
are typically generated using instruments like stereo cameras,
LiDAR, and 3D scanners.

To enhance the information captured, additional channels
may be incorporated, such as RGB color data in depth cameras
like the Microsoft Kinect, resulting in a six-channel repre-
sentation (XYZRGB) for each point in space. The selection
of the number of channels and coordinate system relies on
specific application requirements. Point cloud representations
find diverse applications in fields like robotics, geography,
construction monitoring, and Computer-Aided Design (CAD),
among others. Fig.3 illustrates a 3D point cloud obtained by
a Velodyne LiDAR mounted on the roof of an autonomous
vehicle.

For decades, images served as the primary means to rep-
resent spatial data, but the challenge of obtaining depth
information persisted. This need for combined position and
depth details led to the development of point clouds, which
offer a more accurate and noise-resistant representation of 3D
information. Unlike images, point clouds are scattered in a 3D
space, providing multiple viewpoints of a scene and enabling
different observations to reconstruct the same object. Various
processing techniques for point clouds are available through
open-source libraries, making them an efficient solution for
spatial data representation.

SLAM is a fundamental component in AVs and mobile
robots, serving as a critical prerequisite for enabling au-
tonomous behavior and intelligence for navigation. The fol-
lowing section provides a concise overview of SLAM con-
cepts.
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Fig. 3. An example of Point Cloud obtained from LiDAR [19].

C. Simultaneous Localization And Mapping (SLAM)

Simultaneous Localization And Mapping (SLAM) is a pro-
cess where a robot or autonomous vehicle creates a map of
its environment while simultaneously determining its position
on that map. It encompasses both mapping and localization
operations carried out concurrently. A straightforward way to
comprehend SLAM is by considering the questions a robot
seeks to answer during its operation: 1) what’s around me?,
2) where am I?, 3) what should I do next? These operations
can be succinctly referred to as mapping, localization, and
trajectory planning, respectively.

1) Mapping: Using LiDAR and cameras, the robot maps
its environment by generating precise point clouds for
depth information and capturing color and spatial data,
either through sensor fusion or individual sensors.

2) Localisation: Within the map, the SLAM algorithm
identifies stationary landmarks with low noise data
and calculates the robot’s position in relation to these
landmarks. Examples of landmarks include lamp posts,
medians, and traffic poles.

3) Trajectory Planning: The robot plans its trajectory,
defining each point with respect to landmarks in terms
of distance. It subsequently moves to these points at
specific intervals, following the desired path when it
accurately identifies and tracks the landmarks.

Problem in SLAM: Traditionally, SLAM algorithms pre-
sume stationary landmarks, but in real scenarios with dynamic
objects, they can encounter challenges. The presence of mov-
ing entities, like people and pets, challenges the accuracy of
generated maps. Accurate identification of stationary objects
as landmarks is crucial for successful SLAM operation, as any
misclassification of moving objects can lead to critical errors.

Distinguishing between moving and stationary objects is a
complex task, often requiring higher-level intelligence. Even
when identified, removing only moving objects while preserv-
ing stationary ones presents a challenge. To address this, a
proposed algorithm aims to enable the use of conventional

Fig. 4. An example of SLAM in three-wheeled mobile robot [20].

SLAM algorithms, reducing the need for human intervention
when deploying mobile robots in real-time scenarios.

LiDAR Point Clouds for SLAM: SLAM can utilize point
clouds for mapping, with LiDAR creating a point cloud
representation of the environment. Objects within the point
cloud serve as landmarks, enabling the robot to determine
its position. In modern AV approaches, complete city maps,
including landmarks, are pre-captured using 360-degree cam-
eras and LiDAR for advanced navigation. In this approach,
real-time point clouds from autonomous cars are compared
with initial data for self-localization, demanding high-speed
communication. However, on-board point cloud processing is
preferred. To resolve the widespread challenge of distinguish-
ing and eliminating moving objects from a point cloud while
restoring a static scene, a novel algorithm is introduced.

III. ALGORITHM FOR DYNAMIC OBJECT REMOVAL

Dynamic objects can disrupt a robot’s trajectory, rendering
the resulting SLAM unreliable. In applications demanding
precise trajectory tracing, the removal of dynamic objects
is essential for enhancing SLAM reliability. The proposed
algorithm effectively removes dynamic objects and is imple-
mented through the Point Cloud Library (PCL). The proposed
approach differs from existing methods by performing seg-
mentation before dynamic object detection, resulting in faster
algorithmic execution.

In the proposed method, two point clouds from different
time frames are compared to identify moving objects and
subsequently remove them. Unlike other techniques that rely
on frame differencing, which only provides surface points
of displaced objects, this method aims to capture all points
within the object. This is achieved by segmenting all objects
in both frames and comparing point clusters representing
single objects. If the number of displaced points surpasses
a threshold, the object is considered to have moved, and the
entire cluster is discarded.

The algorithm is divided into two parts: the first part covers
pre-processing and segmentation methods, while the second
part details the techniques for moving object detection and
the reconstruction of a stationary scene from the input point
cloud. These operations utilize the Point Cloud Library and
are implemented in C++. The process involves obtaining two
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point clouds, Cloud A and Cloud B, sampled from LiDAR
data at different time instants (t1 and t2), which are then used
to reconstruct the static scene.

Fig.5 illustrates the flow chart of the initial phase of the
proposed algorithm, encompassing the removal of outliers and
planes, followed by object segmentation.

Fig. 5. Flow chart describing noise removal and plane removal operations.

Fig.6 illustrates the flow chart of the second phase of the
proposed algorithm, explaining the methodology for detecting
moving objects using Octrees and reconstructing a static scene.

The functional details of noise removal using the k-nearest
neighbors approach, plane elimination using RANSAC, object
segmentation employing Euclidean cluster extraction, and spa-
tial change detection through Octrees are elaborated upon in
the following sections.

A. Noise Removal

The point cloud obtained from the LiDAR contains too
much noise which we refer to as outliers. Moreover, sparse
points are also considered outliers. The sources of noise may
be due to various reasons. It may arise from the photo-detector
or the electronic circuitry in the processing system such as shot
noise and thermal noise. The environment may also contain
noise sources that may interfere with the wavelengths in which
the laser beams operate. The presence of noise affects the

Fig. 6. Flow chart detailing dynamic object detection and reconstruction of
a static scene.

operations done on the point clouds giving error-prone results
and also the noise itself does not contain any information.
Thus presence of noise is a waste of computational resources
and removing it will yield efficient results.

The outlier removal in PCL is based on the Euclidean dis-
tance from the point to its neighbors. The K-nearest neighbor
approach is used here. For every point in the input cloud, its
distance to the nearest k neighbors is calculated. If the points
are scattered and less dense the distance to the neighbours is
high. Also, noise points are not in an orderly fashion with
neighbors and hence their mean distances are also high. After
performing the computation for all the points, a thresholding
operation is performed in which the points whose mean
distances are beyond a certain value are removed. As a result,
the output cloud is noise-free and points are dense enough to
process.

B. Plane Removal

In SLAM we aim to identify the static objects in the scene
as a landmark and then try to plot a trajectory with the
landmark as a reference and the landmark is not a plane. So
removing all the points that represent a plane in the point
cloud will significantly reduce the number of points and as
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a result, the processing requires less computation. The plane
is identified and removed from the point clouds using the
RANSAC segmentation process.

In PCL for the plane removal, the subset of points in the
input cloud that closely resembles a plane are identified and
then created as a separate cloud in the first iteration. Over
the iterative process, all the points that are on a plane in the
input cloud are added to the above cloud. As a result after
the plane removal operation two clouds are created, one is the
plane-removed input cloud and the other is the plane itself.

C. Object Segmentation

The object segmentation algorithm segments the input point
cloud into individual objects which are nothing but individual
smaller point clouds with high density. The algorithm starts
with random points and starts to spread. Over time all the
points are processed and the objects are segmented. The
Euclidean Clustering works by first diving the unorganized
point cloud into smaller parts or more specifically into octrees.

D. Spatial Change Detection

Spatial changes in the point cloud can be detected using
octree representation. This is the most important operation in
the algorithm and is the heart of the proposed algorithm in
detecting dynamic objects. The octree-based spatial change
detection is a more efficient way to detect the change com-
pared to processing all of the points individually. This spatial
change detection using octrees is done in a looping fashion
in the proposed algorithm to detect the dynamic objects in
LiDAR point clouds.

E. Motion Compensation

The aforementioned four essential operations collectively
constitute the algorithm, leading to the removal of dynamic
objects and the reconstruction of a static scene from an
input point cloud. Nonetheless, a significant challenge remains
unaddressed: orientation distortion in the point cloud resulting
from the car’s motion. When the car is stationary, it’s relatively
straightforward to identify and remove dynamic objects from
the acquired point clouds. However, when the car is in motion,
whether on a straight road or navigating a curve, all objects in
the point clouds will exhibit apparent displacement between
the two different time frames.

To counteract this displacement in point clouds caused by
the car’s motion, a motion compensation operation is executed.
Utilizing data collected from the Inertial Measurement Unit
(IMU) installed in the AV, the system calculates the displace-
ment or rotation due to the vehicle’s movement. These values
are then used to create a homogeneous transformation matrix,
which is employed to compensate for the car’s motion within
the point clouds.

While the proposed approach has several merits, it also
comes with certain operational limitations. The following
section outlines the strengths and operational constraints of
this algorithm.

F. Merits & Limitations of the Proposed Algorithm

Merits: The advantages of the proposed algorithm are:
1) Faster Execution: It simplifies architecture by using a
segmentation-first approach, eliminating complex mask gen-
eration. 2) Faster Processing: With reduced computational de-
mands, it ensures faster processing, vital for resource-efficient
systems like Autonomous Vehicles (AVs, where it serves as a
pre-processing stage for SLAM.

Limitations: The algorithm excels in a pre-processing role
but has limitations: 1) Closer Time Intervals: It falters with
larger time gaps between samplings, potentially misidentifying
objects due to significant displacements. 2) High Frequency
of Operations: Optimal performance requires frequent data
sampling, with cluttered, fast-paced environments benefiting
more from complex methods operating at a lower rate.

The following section presents the simulation results ob-
tained by applying the proposed algorithm to a benchmark
dataset.

IV. SIMULATION RESULTS

The proposed algorithm is implemented using the Point
Cloud Library (PCL) in C++ on a computer running a Linux
operating system. Given the relatively low computational
requirements of this operation, it can be executed on a standard
personal computer. The KITTI dataset [17] has established
itself as the gold standard for autonomous vehicle (AV)
research, serving as a benchmark for testing systems and as-
sessing research progress within AV communities. To evaluate
the performance of the proposed algorithm, it was tested using
the KITTI benchmark dataset [17], which features real-time
LiDAR data collected from autonomous cars navigating the
streets of Karlsruhe, Germany. Furthermore, the algorithm’s
performance is benchmarked against a previously established
dynamic object removal technique as outlined in [9] from the
literature.

The accuracy calculation was specifically performed for
objects with denser point distributions and excluded sparse
points. This choice was made because in the LiDAR point
cloud data, as the distance from the sensor increases, the
points become increasingly scattered, and their resolution
is insufficient for effective algorithm processing, ultimately
leading to failure. Furthermore, in the context of SLAM,
our primary focus is on nearby objects, which may serve
as potential landmarks, and objects situated at a considerable
distance are typically not of interest.

Tables I and II present the algorithm’s performance with
two distinct datasets, as illustrated in Fig.7, showcasing the
point clouds of these datasets. The tables are divided into
two sections. The Near Distance section pertains to objects
with dense, closely located points near the autonomous car,
featuring high point resolution and being more effective for
processing. On the other hand, the Far Distance section
pertains to objects represented by points located farther away
from the car. Ground Truth represents the objects in the
original point cloud, while Processed Cloud represents the
objects after undergoing post-processing by the algorithm.
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TABLE I
GROUND TRUTH AND PROCESSED CLOUD DATA FOR DATASET 1

Distance Point Cloud
Density Object

Ground Truth Processed Cloud Data

Stationary Dynamic Stationary Dynamic
Slow Moving Fast Moving Slow Moving Fast Moving

Near
Distance

High
(Dense)

Car 5 1 2 5 1 0
Truck 1 – – 1 – –
Lamp Post 10 – – 8 – –

Far
Distance

Low
(Sparse)

Buildings 4 – – 1 – –
Trees/Bushes 2 – – 1 – –
The rest of the points are too dispersed to be categorized as distinct objects.

TABLE II
GROUND TRUTH AND PROCESSED CLOUD DATA FOR DATASET 2

Distance Point Cloud
Density Object

Ground Truth Processed Cloud Data

Stationary Dynamic Stationary Dynamic
Slow Moving Fast Moving Slow Moving Fast Moving

Near
Distance

High
(Dense)

Car 1 – – 1 – –
Truck 1 – – 1 – –
People 3 1 – 3 1 –

Far
Distance

Low
(Sparse)

Wall 4 – – 2 – –
Trees/Bushes 8 – – 7 – –
The rest of the points are too dispersed to be categorized as distinct objects.

Fig. 7. Point clouds of two distinct KITTI datasets [17].

In Table I, the accuracy for dense points is 88.23%, whereas
in Table II, it is 83.33%. Overall, the algorithm achieved
an accuracy of 85.78%, while the authors of [9] attained an
average accuracy of 85%. Although the difference in accuracy

may not be notably high, the proposed approach attains
quicker processing speeds in comparison to other methods.
The decreased computational demands constitute a notable
advantage in the context of SLAM computation.

V. CONCLUSIONS

Autonomous vehicular technology is considered to be one of
the greatest technological advancements that humankind has
achieved in the past decade. In autonomous navigation, Li-
DARs are commonly considered a crucial sensory component
for a wide range of tasks. In this scenario, the proposed algo-
rithm addresses dynamic object removal in 3D point clouds,
offering particular applicability in the domains of robotics
and smart urban mobility where LiDAR assumes a crucial
role amid limited computational resources. The algorithm
employs the k-nearest neighbors approach for noise removal
in the point cloud data, plane elimination using RANSAC,
object segmentation employing Euclidean cluster extraction,
and spatial change detection through Octrees.

The algorithm attains an overall accuracy of 85.78%,
signifying the successful retention of 85.78% of stationary
points through a comparison of point clouds at two dis-
tinct time frames. While the algorithm showcases superior
performance, its universal robustness is acknowledged to
be context-dependent. Additionally, incorporating VoxelNet,
a deep learning-based approach for point clouds, expands
the research scope by enhancing 3D object recognition and
presenting potential applications in dynamic object removal
for future autonomous vehicles.
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