\/easuring
o 10
otability

Rens Hijdra

\easuring up to
otability

Guidelines towards accurate energy
consumption measurement results of Rust
benchmarks

by

Rens Hidra

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday May 7, 2024 at 14:00.

Student number: 4592794

Project duration: November 16, 2022 — May 7, 2024

Thesis committee: Prof. dr. A. van Deursen, TU Delft, supervisor
Dr. L. Miranda da Cruz, TU Delft, daily supervisor
Dr. C. Laaber, Simula.no, daily co-supervisor
Dr. M. Weinmann, TU Delft, external member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

This research was done to obtain a Masters degree, but also to help further the progress towards a
greener future. This research is a small step towards improving energy benchmarking but has been a
leap for me. This project has at times tested my patience, but | have enjoyed the process.

| want to thank Luis Cruz and Christoph Laaber for their weekly support and feedback meetings.
| want to thank my Thesis Committee, Prof. dr. Arie van Deursen, Dr. Luis Cruz and Dr. Michael
Weinmann.

| want to thank Lana for her (mental) support and guidance and for carrying me through the thesis;
my parents for supporting me throughout the thesis; Thomas for helping me figure out Maths and
Statistics and acting as a sanity check; and Jeroen for being a study-buddy and source of suggestions.
At last | want to thank everyone who has supported me and wished me luck at some point along the
way.

In this thesis | lay out the path | have taken during this adventure into academic research. Firstly |
introduce the topic and the research questions. In the second chapter | explain relevant academic work,
as well as a technical background of the technologies used in the research. The third chapter details
the experimental setup and process of collecting and using the data. The results of the experimental
investigations can be found in chapter four, and the answers to the research questions are discussed
in chapter five along with suggestions for future work. Finally chapter six concludes this thesis.

Thank you for reading my thesis. | hope my contribution to the field of Sustainable Software En-
gineering inspires further research and in the contributes to a lower energy consumption some place,
some time.

Rens Hijdra
Delft, May 2024

1

Contents

Introduction 1
1.1 ResearchQuestions L 2
1.1.1 Stable Software. 2
1.1.2 What are (likely) characteristics of unstable software? 3
Background 5
21 Relatedworks e 5
21.1 Temperature and energy consumption 5
2.1.2 Harrell-Davismedian. 5
21.3 Languagefeatures L 5
21.4 Measuring of energy consumption. oL oL 5
2.1.5 Randomised Multiple Interleaved Trials 6
2.2 Technical Background e 7
221 Rust. . . . 7
2.2.2 Benchmarking and regression detection 7
2.2.3 Model SpecificRegisters. 7
Methodology 9
3.1 Environment 9
3.2 Criterion Benchmarking Framework 9
3.3 Projectselection 11
3.4 Experimentcontrol 1"
3.4.1 Listingbenchmarks. L 12
3.4.2 Compilingbenchmarks. 12
3.4.3 Runningbenchmarks. L 12
3.5 Reducingnoise. e 12
3.5.1 Randomized Multiple Interleaved Trials 12
3.5.2 Fixedfrequency. 12
3.5.3 Limitingusedcores. 13
3.6 Measurementmethods. 14
3.6.1 perf . . . e 14
3.6.2 Criterion Measurementplugin 15
3.7 Collectingcodefeatures 16
3.7.1 LLVM Source-based Code Coverage 16
3.7.2 Standard Library Coverage 16
3.7.3 Source Code Feature Extraction. 17
3.7.4 Counting Instructions. 17
3.8 Baseline. e 18
3.9 Dataprocessing 19
3.9.1 Calculating energy perexecution o 19
3.9.2 Sampleselection. 19
3.9.3 Calculating relative variability o oo 20
3.10 Random ForestModels 20
Results 21
4.1 RQ 1.1 - Is software energy consumption generally stable? 22
4.2 RQ 1.2 - How long should you measure fora stableresult? 22
4.3 RQ 1.3 - What part of instability can be attributed tonoise? 26
4.4 RQ 2.1 - Does powersaving mode affect energy stability?. 27
4.5 RQ 2.2 - Does the number of instructions correlate with stability?. 28

\"

Vi Contents

4.6 RQ 2.3 - What code features could make software unstable? 30

4.6.1 Manualinvestigation L 30

4.6.2 Featureimportance. e 34

5 Discussion 37
5.1 RQ 1.1 — Is energy consumption stable between two random independent measure-

MeNtS? L 37

5.2 RQ 1.2 - How long should you measure for a stableresult?. 37

5.3 RQ 1.3 — What part of instability can be attributed tonoise?. 38

5.4 RQ 2.1 — Does powersaving mode affect energy stability?. 39

5.5 RQ 2.2 - Does the number of instructions correlate with stability?. 39

5.6 RQ 2.3 - What code features could make software unstable? 40

5.7 Threats 40

5.7.1 Benchmark randomisationorder. L L. 40

572 Samplingmode. 40

5.7.3 Measuring acCcuracy o it e e 40

5.7.4 Experimental setup vs. code in production 41

575 Security Threats 41

6 Conclusion 43

A Project List 45

B Code Snippets 47

B.1 rdmsrperformancetests. 47

B.2 Setting MSR read permissions. 47

B.3 Baselinebenchmarks 47

C Full plots 49

Introduction

Measure twice, cut once: a golden rule in carpentry; for software energy consumption there is no such
rule. For software developers there is no clear-cut guidelines on how often they should measure the
energy consumption of their code to be sure they have an accurate measurement. In this thesis we
aim to provide an answer to this and other questions regarding the stability of energy consumption in
software benchmarking.

In 2022 the estimated energy consumption of data centres world wide is estimated to be around 1
percent of the global demand, with an equal fraction in energy related global greenhouse gas emissions
(Rozite, V., 2023); half that of the global aviation industries greenhouse gas emissions (Kim, H. and
Teter, J., 2023). The energy consumption of datacenters is growing by 20-40% annually and is pro-
jected to reach up to 30% of some countries national energy consumption by 2030 (Rozite, V., 2023).
Greenhouse gasses are the "main driver for global warming,” which is "associated with serious nega-
tive impacts on to the natural environment and human health and well-being” (European Commission,
2023).

There are two ways the IT industry can decrease its energy consumption: through hardware, or
through software. The hardware route is for is being tackled by manufacturers and academia . The
software route part of the "Sustainable software engineering” movement; which is on the rise as con-
cerns for developers and scientists world-wide grow for the impact global warming will have (Green
Software Foundation, 2023, IEEE, 2024, ClimateAction.Tech, 2023). One of the aims of this (emerg-
ing) field is to lessen the environmental impact of software (Helmes, 2023) by decreasing its energy
consumption.

Before one could focus on decreasing energy consumption, it is important to know the stability of
your measurements. Developers need stability in their measurements for a variety of reasons. First of
all, it can lead to a misrepresentation of the actual power consumption of the code. Unstable results
lead to inconsistencies when comparing results against another, e.g. when comparing two versions of
an algorithm. Without stable results, one cannot make sound conclusions.

It would be great if all software always consumed the same amount of energy. One could run the
code once and you would know the exact energy consumption. This would enable developers to quickly
iterate on changes when working on decreasing the energy consumption of their code. Since the per-
formance of software is not entirely stable (Laaber et al., 2021), we might expect energy consumption
to not be stable either. In this research question we investigate whether energy benchmarks produce
stable results.

Interviews with developers by Ournani et al., 2020 have found there is a need for:

1. ”[investigation into effectiveness] of static code analysis for energy efficiency purposes.”

2. ’[simple tools that allow for] low-level diagnosis of the [energetic footprint of the] source code and
identify the exact problems and solutions.”

3. "[automation of analysis of and reporting on] the energy footprint along with other metrics like
code quality, performance, and tests reports.”

1

2 1. Introduction

We fill this research gap by creating a easy to use and automatable extension (tool) for gathering energy
consumption; investigating the inherent stability of benchmarking energy consumption, and relations
between source code and the stability of its energy consumption; and provide research into ensuring
that the tool provides sound conclusions.

In this thesis we provide insight and guidelines towards the stability of energy measurements.

The first step towards stability is deciding on the measurement method, for which there are several
available options: external hardware, or built-in APIs. To Keep It Simple; we provide a low effort method
for developers and deliver accurate and timely feedback. We avoid the requirement of additional hard-
ware by providing a drop-in software solution for collecting on-device consumption. This means using
model-specific registers (MSRs) that are common on all recent Intel and AMD CPUs. By extending
an existing benchmarking framework Criterion-rs, we enable developers to get results with little effort.
This drop-in-place extension keep the threshold for getting started with sustainable software low and
achieves the goal of being able to start at any moment.

In this thesis we investigated the energy consumption stability of benchmarks from a large set of
open-source Rust projects that use the Criterion-rs benchmark framework, gathered from crates.io.

Just like in software testing, feedback should be timely and actionable. This report investigates
the number of samples necessary to accurately determine the stability of software. We suggest a
threshold for classifying stability and investigate commonalities between unstable software to provide
equip developers with bets practices in writing stable code.

Finally the collected consumption data is used to answer the research questions about whether
software can be deemed stable, and if not — what makes software unstable. We derive guidelines
for users of our tool, and creators of new other tools, on how to get a stable result on the energy
consumption. Furthermore we identify causes of instability in source code and measurement setups.

In this research we show the need for more than one sample of energy consumption due to instability
over time when benchmarking. We find that for our experimental setup and set of benchmarks 500
samples gives results that are likely stable at a 1% threshold in their Relative Confidence Interval Width.
Running benchmarks with a variable CPU clock-speed can lead to higher variability of measurements;
as well as initialising benchmarks with random data. Likewise we investigate the effect of the length of
benchmarks on their stability but we can not rule out that this is caused by the experiment setup. Lastly
we identify control flow statements and code related to memory accesses as potential large influences
of instability.

The code of the experimental setup, the study, and the Criterion-rs plugin have been released on
github:

Experiment setup https://github.com/RensHijdra/RustBenchmarkStability Thesis/
Study https://github.com/RensHijdra/RustBenchmarkStability ThesisLab

Criterion-rs Plugin https://github.com/RensHijdra/criterion-energy

1.1. Research Questions

1.1.1. Stable Software

In this group of research questions we investigate the stability of software in general. We determine
the stability of software, find a number of samples for developers to aim for and investigate the effect
of noise on energy consumption stability.

RQ 1.1 - Is energy consumption stable between two random independent measurements?
Performance benchmarks are not necessarily without variability and static source-code features can
have an impact in the performance stability of micro-benchmarks (Laaber et al., 2021), and speed-
optimised code is theorised to be most energy efficient(Yuki & Rajopadhye, 2014); the question arises
whether energy consumption benchmarks share these fluctuations. Is the energy consumption of
benchmarks stable across any two samples taken over time?

RQ 1.2 - How long should you measure for a stable result?
In a perfect world a developer Performance benchmarks require multiple measurements to give a sta-
ble results because of fluctuations. From the previous question we might conclude that one only needs

https://github.com/RensHijdra/RustBenchmarkStabilityThesis/
https://github.com/RensHijdra/RustBenchmarkStabilityThesisLab
https://github.com/RensHijdra/criterion-energy

1.1. Research Questions 3

two measurements to reach a stable average consumption; or the stability might follow along with an
increase in the number of measurements like performance benchmarks (Laaber et al., 2021). For
widespread use of energy measurement developers should be able to measure their energy consump-
tion within a reasonable amount of time.

How many samples are required to give a representative value for the stability measure RCIW, in
order to determine the stability of a benchmark.

RQ 1.3 - What part of instability can be attributed to noise?

The proposed measurement method is not perfect and tries to minimise the measurement overhead
and maximise the accuracy. We want to measure the instability in the overhead of the measurement
method and inherent CPU instability. How much measurement noise is present in our method and how
does it affect the stability in our measurements?

1.1.2. What are (likely) characteristics of unstable software?

After defining stable software in the previous research questions, we can now point our investigation to
the cause(s) of (un)stable software. We look at CPU frequency, number of instructions in the program
and source code features and practices.

RQ 2.1 - Does powersaving mode affect energy stability?
Using a powersave governor reduces the clock speed and power consumption, and results in less work
per time-unit. We investigate whether there is a relation between stability and a lower CPU clock-speed.

RQ 2.2 - Does the number of instructions correlate with stability?

Our implemented benchmark method deals with a varying number of benchmark-runs in a set time-
span. This has an influence on the number of runs that is sampled for gaining our data. In this RQ
we investigate whether an increase in benchmark program length has an influence in the measured
stability.

We use the number of instructions instead of runtime to capture possible effects of memory waits,
cache misses, etc. These actions would increase the duration and any possible extra energy con-
sumption could correlate more directly due to the simple physics of energy = power - time (Yuki &
Rajopadhye, 2014). By using the program execution path length we prevent the possible concealment
of the stability by the duration of an execution.

RQ 2.3 - What code features could make software unstable? — i.e. what can developers do to fix

In this question we investigate whether the unstable benchmarks share similar traits. If there exist
source code features with a large impact on the stability of energy consumption, developers can use
this knowledge to . We look for precursors for instability that developers should bear in mind when
measuring energy consumption.

Background

2.1. Related works

This work is inspired by the paper "Predicting unstable software benchmarks using static source code
features” (Laaber et al., 2021), which found that static source code features provide some predictive
value with regards to the stability of performance benchmarks.

2.1.1. Temperature and energy consumption

Wang et al., 2023 found that CPU temperature is highly correlated with total server power usage
and thus changes in temperature can induce variation in power consumption. They also found that
a stable CPU temperature causes a stable total server power consumption. This is corroborated by
powertemp2019 who state that "when the performance increases, the temperature increases exponen-
tially” as well as "performance improves as the power consumption increases.” DeVogeleer et al., 2014
have shown "power/temperature relationship is indeed very likely exponential.” Furthermore, Mesa-
Martinez et al., 2008 have shown that an increase in temperature can lead to a higher power consump-
tion.

We aim to stabilise the energy consumption within a measurement cycle by running the bench-
mark first for a warm-up period of 5 seconds. During this time the CPU should increase due to the
applied load. This way it can "get used to” the load and the temperature starts to move away from the
temperature reached by the previous benchmark to this one’s.

2.1.2. Harrell-Davis median
These two robust measures allow us to compare variabilities for non-normal distributions of data. Within
these methods, we used the Marrel-Jarritz HD median to account for the multi-modality of our data.

2.1.3. Language features

Predicting benchmark stability should be based on a number of features. The features features consid-
ered in this thesis are based on the research done by Laaber et al. (2021). This entails programming
language elements and standard library calls that could have a variable performance. For starters we
consider file metadata such as lines of code (SLOC) which has been found to predict performance sta-
bility. Certain language elements and calls to methods and functions in The Rust Standard Library that
increase the complexity of the code are also taken into account. The features are listed in Table 2.1,
from which we can see memory manipulation is a large part of the collected features.

2.1.4. Measuring of energy consumption

There are multiple options to measure energy consumption, divided into internal and external solutions.
External measurements require additional hardware, which can be in the form of power-measuring
plugs (Rohou & Smith, 1999) or voltage-dividers and dedicated chips soldered onto bare components
or CPUs attached to multimeters (Mesa-Martinez et al., 2008). Power-plugs and similar solutions have
a low power- and temporal resolution and often require handwork to sample. Soldering electronics to a

5

6 2. Background
[Type | Domain | Feature [Type | Domain | Feature

abi core::pointer
unsafe core::reference
await core::str
async {core,alloc,std}::slice

Function Definitions closure_capture {core,std}::array
closure {core,alloc,std}::alloc
closure_async {core,alloc,std}::borrow
closure_const Memory Manipulation {core,std}::mem
closure_static {core,std}::ptr
match {core,std}::clone
match_arm_pat {core,alloc,std}::boxed
match_arm_guard std::box
loop_for {alloc,std}::vec
loop_while {core,alloc,std}::string
loop_inf {alloc,std}::rc

Control Flow nested_loop std::env

Language Features break Standard Library Calls Environment {core,alloc,std}::ffi

continue std::os
if core,std}::iter
else Control Flow Ecore,std%::result
try std::fs
try_block 1/0 operations std::net
assign std::io
let_expr std::u128
retyrn Arithmetic StdZZI-:I 28)
pointer core::num::f32
reference core::num::f64

Data & Variables reference_mutable {core,std}::future
tuple {core,alloc,std}::task
index Asynchronous {core,alloc.:',sltd}::sync
array {core,std}::pin
field std::process
struct std::thread

Table 2.1: Collected source code features

CPU gives great resolution and control, but requires in-depth hardware knowledge and is an involved
process. Both solutions also require physical access to the device-under-test, which is not possible in
large corporations renting cloud-based servers;

There are software solutions for determining power consumption on a process level (Bourdon et
al., 2013) and method level (Noureddine et al., 2012), but these depend on a model to estimate the
consumption. On their recent CPUs, Intel (Intel Corporation, 2016) and AMD (Advanced Micro Devices,
2019) provide access to a Running Average Power Limit (RAPL) interface. On AMD devices this
is based on the hardware-written model-specific register (MSR) The MSR special file reading is the
lowest level abstraction access we can get without kernel access, the only lower level access being
the rdmsr assembly instruction.

2.1.5. Randomised Multiple Interleaved Trials

The complete experiment runs for approximately two weeks and encounters possibly a changing envi-
ronment over this time. The order of execution of multiple trials of the same test "can systematically bias
experiment results” (Duplyakin et al., 2023). We use Randomized Multiple Interleaved Trials (RMIT) to
distribute changes in the environment over the different trials to form "a basis for the fair comparison”
(Abedi & Brecht, 2017) between different projects and benchmarks. It is used by Scheuner and Leitner
(2018) in performance benchmarking. The RMIT implementation is similar to an (incomplete) Ran-
domised Block Design “Randomized Block Design”, 2008, which is often used to eliminate systematic
error from an experiment. In RMIT a trial of all tests or measurements is repeated multiple times. For
each trial the order of execution of the tests is randomised. An example of such an RMIT instance
is shown in Figure 2.1, where 5 benchmarks (represented by 5 colors) are executed in a randomized
order three times for. During each execution 300 samples are collected, thus at the end of the example
experiment we end up with 900 energy consumption samples per benchmark.

2.2. Technical Background 7

0

1000 2000 3000 4000
Figure 2.1: Example of 5 benchmarks (colours) executing 3 iterations, each of 300 samples using randomised order.

Iteration
N

Total samples taken over time

2.2. Technical Background

2.2.1. Rust

Rust is a programming language aimed at "performance, reliability and productivity” (rustlang). It does
this "with no runtime or garbage collector”, "rich type system and ownership model [that] guarantee
memory-safety and thread-safety” and "top-notch tooling” among others. In this section we look at a
few of Rust’s features that have specifically been used in

Conditional Compilation

Rust has compile time feature gates: # [cfg (condition)]. These attributes act on the expression,
statement, method or even file that it precedes. The condition of the "configuration predicate” (The
Rust Project Developers, 2024b) is evaluated at compile-time and the annotated thing is either in- or
excluded based on result of the evaluation. This allows for example for building binaries for specific
platforms, or excluding unnecessary features for certain builds such as only including test code when
actually running the tests.

Traits

Traits are Rust’'s way of implementing what is called interfaces in some other languages. By imple-
menting a trait for a type, one gives the properties of that trait to the type and thus the type can be used
as if it was the trait.

2.2.2. Benchmarking and regression detection

Kalibera et al., 2005: confidence intervals are used for regression detection. For example, a regression
(change) in average (median) consumption is detected when the ClI of both tests do not overlap. When
software has large confidence intervals it makes it harder to detect such regressions. This argues
in favour of knowing why software becomes unstable, as well as for determining a static number of
samples to use.

2.2.3. Model Specific Registers
The custom measurement method makes use of the Model Specific Registers (MSR) Core Energy
Status and RAPL Power Unit, which have the hexadecimal values 0xC0010292 and 0xC0010299

8 2. Background

respectively (Advanced Micro Devices, 2019). The Core Energy Status register contains the number
of units of energy consumed, and the RAPL Power Unit contains the Energy Status Units (ESU): a 5 bit
unsigned integer used in calculating energy consumption in Joules. The energy is calculated according
to the formula Consumption = CES * 0.555VJoules. The RAPL Power Unit register and Core Energy
Status registers are both read only. The latter is updated approximately every 1ms by the hardware.

There are three ways of accessing the values within these registers, which will be discussed in
increasing order of duration below.

Assembly The first of way of accessing energy consumption is through the assembly instruction
rdmsr. This assembly instruction could be in-lined in the measurement library and would cause
the least amount of overhead. The instruction required kernel level privileges, which made its use
infeasible, unless the code would be redesigned as a kernel module, which is outside the scope
of this thesis.

Pseudo-file The second method of reading the register is by opening a file descriptor to a memory-
mapped region. This pseudo-file present at the path /dev/cpu/CPUNUM/msr, where CPUNUM is
an integer that represents the cpu number that will be measured '. The reading of this file takes
in the order of microseconds, which is a negligible overhead with regards to the 1ms minimum
update interval. Since this is a file, the permission structure of the linux file system applies. By
default the MSR pseudo-file has the octal permission bits set of 600 (or rw- --- ---), which
means only the owner —root— has read and write permission. To get around this a new user-
group is made, the current used is added, and the file is set to accept reading by the newly created
msr group. The commands to achieve this can be found in Appendix B.2

msr-tools The third method of reading the MSR is by using the command line utility rdmsr. This
binary is installed when installing the Ubuntu package msr-tools?. This binary reads the special
file as described above and adds other functionalities and permission checks. The run-time for
this program is higher than the Special File method, and would require extra hexadecimal string
parsing, which is already present when reading bytes from a file. This value to string conversion is
also part of the reason why this binary is slower than reading the file yourself, it creates a double
overhead. We tested the performance of the rdmsr command using the perf performance
analysis tool, the command and complete result are available in section B.1. We find an average
duration of 0.35 milliseconds per invocation, which is one third of a register update period, and
deem this too slow for our uses.

The Pseudo-file method for reading MSR values is chosen for its ease of use and its sufficient speed.
This method does require elevated permissions, but these can be set once by altering executable flags
after compilation. These flags are CAP_ADMIN . After setting the permissions using root access, the
program can run as any user and does not require additional privileges.

"https://man7.org/linux/man-pages/man4/msr.4.htm|
2https://manpages.ubuntu.com/manpages/jammy/man1/rdmsr.1.html

https://man7.org/linux/man-pages/man4/msr.4.html
https://manpages.ubuntu.com/manpages/jammy/man1/rdmsr.1.html

Methodology

In this chapter we discuss the implementation and technical details of the data collection and exper-
iment. We also show the methods used to collect and parse coverage of the benchmarks into the
source code features; and the collection of runtime code path length as number of CPU instructions.

The experiment started by collecting projects to test (section 3.3), all of whose benchmarks are
configured to use a custom measurement method (subsection 3.6.2). In the experiment execution the
projects are listed (subsection 3.4.1), compiled (subsection 3.4.2) and executed in a controlled manner
(subsection 3.4.3).

A schematic representation of the methodology can be found in figure 3.1

3.1. Environment

The benchmarks are run on a dedicated machine in a climate controlled datacenter to reduce effects
of external influences as much as possible. The machine has a AMD Ryzen™ 5 3600 core, with
64GB DDR4 RAM and two 512 GB NVMe SSDs in RAID-1 configuration. All experiments are run
on Ubuntu 22.04, with the 5.19.0-41 kernel. The experiment framework is built using a recent nightly
version of the Rust toolchain. All the individual projects are compiled using the toolchain nightly-
2023-04-15-x86_ 64-unknown-linux-gnu. The experimental results have been collected in a
consecutive timespan of three weeks. All commands were executed in a bash terminal running the
terminal multiplexer tmux' to allow unattended operation of the experiment.

3.2. Criterion Benchmarking Framework

At the time of this research, the benchmarking framework in the Rust language itself has not reached the
stable releases of the language. We find that there are not as many projects to be found on GitHub that
use the language’s own benchmarking framwork. for this reason we looked at external frameworks
and found Criterion-rs?, which is a ”statistics-driven micro-benchmarking tool” (Heisler, 2024). This
framework has since been forked and is actively maintained under the name criterion23. In this
research we have searched projects that used versions 0.3 and 0.4 of the original Criterion, which
were most actively used at that time.

Criterion is a benchmarking tool focused and built for performance benchmarking, i.e. determining
the duration of a piece of code. It gives developers the ability to create a benchmark by surrounding their
method-under-test with a setup and iteration function. The setup takes care of naming and grouping
benchmarks, as well as configuring the benchmark and initialising its data. Listing 3.1 shows and
example of a configured benchmark as it would appear in the utilised projects.

In the process of developing a method of collecting energy consumption the iteration function
turned out to be most interesting. The iteration function comes in two main flavours: iter and
iter batched. These are functions that accept a closure* as an argument and will execute that

"https://github.com/tmux/tmux/wiki
2https://github.com/bheisler/criterion.rs
3https://github.com/Boshen/criterion2.rs
“4https://doc.rust-lang.org/book/ch13-01-closures.html

https://github.com/tmux/tmux/wiki
https://github.com/bheisler/criterion.rs
https://github.com/Boshen/criterion2.rs
https://doc.rust-lang.org/book/ch13-01-closures.html

10 3. Methodology

Measurement Warmup ﬂ

)
i runwarmup and |
' measurement !

\

Q
=3
@
Q
9
7]
@
3
=
1]
)

Figure 3.1: Schematic representation of the experiment pipeline

fn some benchmark(criterion: &mut Criterion::<Energy>) {
let mut group criterion.benchmark group (”“benchmark group”);
group.sampling mode (criterion::SamplingMode::Flat);
group.bench function (”benchmark name”, |[benchmark]| {
let variable = setup();
benchmark.iter (|| {
calculation (&variable)

1)
1)

Listing 3.1: Example of a benchmark using the Criterion-rs framework

3.3. Project selection 11

closure to determine its performance. By default Criterion uses a warm-up period during which it de-
termines the approximate duration of the benchmark after which it will run the method-under-test k - N
times, where N is determined during the warm-up and k is is an incrementing integer starting at zero up
until some predefined time limit has been reached; this is called Linear Sampling. In our research we
opt to apply flat sampling to all benchmarks, that is: all samples have the same duration and, depending
on performance stability, have the same approximate amount of benchmark invocations. We choose
flat sampling for two reasons: linear sampling would start with a sample duration that is too short and
measurements would come out as zero due to the 1 millisecond update period of the Model-Specific
Register (MSR); and using flat sampling we average out the effects of benchmarks occurring during a
MSR update, which would be unpredictable in linear sampling.

The function iter has the least overhead: it simply runs the closure for an automatically deter-
mined number of times and records some measurement before and after. For methods that require
initialisation before each run there is iter batched, which initialises and runs in batches. The mea-
surement is started and stopped before and after each measurement and then added together. Firstly
we attempted to track iter invocations using kernel probes, as documented in subsection 3.6.1 In
subsection 3.6.2 we cover how we implemented our own measurement that works with energy instead
of time.

3.3. Project selection

To investigate source code, a dataset of code is needed. The main requirement for projects used in
this thesis is that they make use of the benchmarking library Criterion. To find projects a list of the
reverse dependencies of Criterion-rs have been scraped from the Rust library-repository crates.io
on 2022-11-05 using the library crates-io-api®.

These are sorted by the number of Stars on GitHub, retrieved using Octocrab®, which gives a sense
of popularity and usefulness of the library. The complete list of 30 projects along with the aforemen-
tioned metadata is available in Table A.1 of Appendix A. These projects thirty projects are good for
868 functioning benchmarks. From this list a number of projects is excluded for the reasons of: not
compiling, not actually using criterion-rs, or needing a unstable version of rust. For certain projects
micro-benchmarks have been left out that take longer than the sample period. For each project we
store the following data: project name, git URL, and the most recent release version tag that corre-
sponds to a branch (or master by default). Using this data we can provide consistent data by using the
identical versions of the benchmarks for replication of the experiment.

After cloning the projects from GitHub using git we add our plugin as a dependency to the Cargo. toml
manifest: criterion-energy = { path = ”../criterion-energy”} ora similarline. We go
through the benchmarks and add the following line to all criterion group! macro benchmark defi-
nitions: config = Criterion::default().with measurement (Energy) as well asimporting
our measurement: use criterion energy::msr::measurement::Energy. An example setup
can be found in our custom benchmarks as shown in Listing B.1.

3.4. Experiment control

To guide the experiment and ensure repeatability, all steps have been programmed into a Rust program
that can execute all necessary functions. In the following sections we walk through the steps needed
to execute the experiment, as well as some methods that have been tried but did not end up in the final
version. The schematic view of this process is shown in Figure 3.1.

The first step in executing the experiment is compiling the benchmark executables for all projects.
The list of benchmarks over all projects is collected and randomly shuffled (see RMIT 3.5). The shuffled
list is then sequentially executed. Such an execution is composed of a warm-up period of 5 seconds;
followed by a measurement period of 30 seconds, during which the energy measurements are divided
over 300 sample periods. This results in samples of 100 milliseconds, during which approximately
100 updates of the Core Energy Status MSR are expected to occur. The 100 millisecond sampling
window is a compromise between being long enough to capture a few (i.e. more than 1) execution of
each benchmark - and being short enough such that there is not yet a lot of averaging for the shorter

Shttps://crates.io/crates/crates_io_api
Bhttps://crates.io/crates/octocrab

https://crates.io/crates/crates_io_api
https://crates.io/crates/octocrab

12 3. Methodology

benchmarks. This trade-off is further discussed in Threats (5.7.3).

3.4.1. Listing benchmarks

The criterion benchmarking framework replaces the default Rust test-harness. This is something that
has already been done by the project maintainers, and the reason these projects have been picked. We
can programmatically extract all the benchmark names from the projects using the command cargo
bench -- --1ist; this invokes the criterion framework which then lists all available benchmarks.
The list of benchmarks is saved as a JSON file per project, along with information about which feature
flags (subsection 2.2.1) are required to compile and the source-file that contains the benchmarks.

3.4.2. Compiling benchmarks
For each iteration we recompile all benchmarks since Rust compilations are not completely determin-
istic by design, for example: the HashMap implementation inserts a random seed at compile-time
(The Rust Project Developers, 2024a). We start by removing the previous build artifacts with the
command cargo clean in each projects folder. To compile a projects we read the JSON file cre-
ated in the previous paragraph and use the required features to build a compilation command: cargo
bench --bench <benchmark name> --no-run --message-format=json [--features
optional, required, features]. This command is run in the project directory and outputs ma-
chine readable JSON messages from which we collect the name of the generated executable. This
executable is saved and used to create a command to run the benchmark in the next section.

Using Cargo’s bench subcommand with the —-no-run flag ensures the benchmarks are compiled
with the same configuration they would when running the benchmark suite with that subcommand.

3.4.3. Running benchmarks
After compiling the benchmarks and collecting the executable path in the previous section we explain
how to execute them here. To measure the consumption of a single benchmark we run each benchmar
independently, which means specifying the benchmark in the run command. Criterion selects bench-
marks based on a Regex, so we prepend a and append a $ to the benchmark name in the command.
Furthermore we set a warm-up period, the measurement duration and the number of samples to col-
lect during this time. We set a warm-up period of five seconds and a measurement duration of thirty
seconds; combined with the 300 samples this results in the desired sample period of 100 milliseconds.
This results in the following command: <executable path> --bench --measurement-time
30 --warm-up-time 5 --sample-size 300. In a later section (3.5.3) we discuss how this
benchmark execution gets highest priority on a core to do its work uninterrupted. The implementation
of actual energy measurements is discussed in subsection 3.6.2.

3.5. Reducing noise

We look at the methods we used to reduce noise and possible outside influences that could have an
effect on the measured values. We randomise te execution order to spread any possible changes
in environment over all benchmarks (subsection 3.5.1), we fix the frequency of the CPU to ensure a
steady number of executions during each sample (subsection 3.5.2); and limit the process to a single
core and limit access to that core for other processes (subsection 3.5.3).

3.5.1. Randomized Multiple Interleaved Trials

We employ the Randomized Multiple Interleaved Trials (RMIT) method for scheduling benchmark exe-
cution, which is previously explained in subsection 2.1.5. For each of the thirty iterations the first step
is to clean the compilation artefacts of the previous iteration and to recompile all projects sequentially.
The order for compilation is the same each iteration. After compiling all projects, a list of commands
to execute all the benchmarks is generated. This list is shuffled and the benchmarks are then sequen-
tially executed. The Rust ThreadRng used for the shuffling is "automatically seeded from [the OS] with
periodic reseeding” (The Rand Project Developers, 2024), ensuring a different order for each iteration.

3.5.2. Fixed frequency
The frequency with which a micro-benchmark is run is a variable that can be eliminated to create a
consistent environment for the experiment. On Ubuntu the CPU frequency governors powersave and

3.5. Reducing noise 13

performance will throttle the frequency based on demand and thermal performance. A CPU with chang-
ing frequency could affect our measurements in a way where the frequency is not equal throughout one
sample and thus could introduce variations in the energy consumption average of a single sample as
well as between samples. To eliminate noise between resamples that could occur by this variation we
enable the userspace governor and set the frequency of the core to a fixed value. The frequency of the
experiment core is fixed at 3.6GHz; which is the highest available non-boost frequency. The frequency
is set using the tool cpufrequtils’, with commands cpufreq-set -c 3 -g userspace® and
cpufreg-set -c 3 -f 3.6G. For RQ 2.1 (subsection 1.1.2) we also test the influence of the pow-
ersave frequency governor: cpufreg-set -g powersave -c 3. These commands are executed
once, before the experiment stats and will last until the settings are changed or possibly a reboot.

3.5.3. Limiting used cores

We want to reduce the effects of other processes on our process as much as possible, by preventing
the influence of scheduler interrupts as well as physical influences as much as possible. The AMD
architecture design for the Ryzen 5 3600 processor consists of two Core Complexes (CCX) on a single
Core Complex Die (CCD). Each CCX consists of a shared L3 cache and three physical cores with
individual L1+L2 caches; two virtual cores share one physical core. To minimise physical interference
in energy consumption we disable all but two virtual cores: core 0, which cannot be disabled and is
needed for system interrupts; and core 3, to run the experiment on. These cores will draw a steady
amount of current in their off state and will not heat up the rest of the CPU, as temperature is associated
with power consumption (see subsection 2.1.1). These cores are indicated as Processing Units (PU)
with Physical Index 0 and 3 in Figure 3.2 and correspond to cpuO and cpu3 in Ubuntu, respectively.
Virtual core 3 is the first core on the CCX that does not house core 0. Pinning the processes to a core
is achieved through the use of CPUsets, as will be explained in Figure 3.5.3, where this method is used
to assert priority on the selected core.

Machine (63GB total)

Package P#0
| NUMANode P#0 (63GB) |
L3 P#0 (16MB)		L3 P#1 (16MB)								
L2 P#0 (512KB)		L2 P#1 (512KB)		L2 P#2 (512KB)		L2 P#4 (512KB)		L2 P#5 (512KB)		L2 P#6 (512KB)
L1d P#0 (32KB)		L1d P#1 (32KB)		L1d P#2 (32KB)		L1d P#4 (32KB)		L1d P#5 (32KB)		L1d P#6 (32KB)
L1i P#0 (32KB)		L1i P#1 (32KB)		L1i P#2 (32KB)		L1i P#4 (32KB)		L1i P#5 (32KB)		L1i P#6 (32KB)
Core P#0 Core P#1 Core P#2 Core P#4 Core P#5 Core P#6										
PU P#0	PU P#6		PU P#1	PU P#7		PU P#2	PU P#8		PU P#3	PU P#9

Host: Ubuntu-2204-jammy-amd64-base
Indexes: physical
Date: Tue Sep 19 11:46:09 2023

Figure 3.2: AMD Ryzen 5 3600 Core Topology exported by Istopo (hwloc package®?)

nice & taskset The first explored method for giving a process priority on a core was using nice for
setting priority and taskset for pinning the process to a specific core. The command nice'? sets
the niceness (which can be seen as the priority for the scheduler) to -19, which is the highest priority.
taskset' is used to set the CPU affinity of a process to a (set of) cores. Affinity implies that the
schedular is likely to run the process on the specified core, but it is not guaranteed. We would chain
the commands in a method such as: nice -n19 -- taskset -c3 -- <benchmark command>

"https://packages.ubuntu.com/jammy/cpufrequitils
8https://linux.die.net/man/1/cpufreq-set
%https://www.open-mpi.org/projects/hwloc/
Ohttps://man7.org/linux/man-pages/man2/nice.2.html
"https://man7.org/linux/man-pages/man1/taskset.1.html

https://packages.ubuntu.com/jammy/cpufrequtils
https://linux.die.net/man/1/cpufreq-set
https://www.open-mpi.org/projects/hwloc/
https://man7.org/linux/man-pages/man2/nice.2.html
https://man7.org/linux/man-pages/man1/taskset.1.html

14 3. Methodology

Both of these builtin commands require the Linux capability’> CAP_SYS_NICE. Capabilities are a
permission control system to allow programs to have certain elevated permissions without being exe-
cuted as a different user, i.e. root. This capability would need to be given to the commands nice and
taskset by the experiment control executable. Capabilities on processes are not inherently inherita-
ble on Linux, thus simply giving the experiment executable the CAP_SYS_NICE capability would not
grant this to any child process. We could solve this by adding the capability to the Inheritable and Am-
bient set of the nice and taskset commands (i.e. the files /usr/bin/nice and /usr/bin/taskset
respectively) but this means altering built-in system commands and was deemed excessive.

Running the experiment control as root user is also not deemed feasible, since this would execute
benchmarks as root as well and this imposes a security risk, hence we look at an alternative method:
cpusets.

CPU sets

Cpusets are a method of pinning one or more processes to a set of cores, as well denying other pro-
cesses access to those cores'®. First we create a set containing only the experiment core using the
command cset set =--set=BENCH -c 3 --cpu exclusive. The flag --cpu exclusive
ensures that the selected core 3 will be exclusively used for processes assigned to the set BENCH.
Root permissions are needed to set up the cpuset, after which we can change the owner of the set by
changing the owner and permissions of the cpuset files: chmod --recursive g+rw /dev/cpuset-
s/BENCH; chgrp --recursive SUSER /dev/cpusets/BENCH; During experiment execution
instances of the benchmark framework van be started with the command cset proc --exec BENCH
-- <program to run>, where the benchmark program is that as defined in section 3.4.

3.6. Measurement methods

The implementation of measuring the power consumption has undergone several iterations. The initial
plan was to use perf stat. Due to issues with collecting the number of iterations for forty percent
of the functions, the next solution was using perf record. This required a probe on a variable to
capture the number of iterations. It was difficult to associate the probe name with the benchmark, which
led to the final solution of extending Criterion with a custom measurement.

3.6.1. perf

Perf is a collection of "Performance analysis tools for Linux” (“perf(1) - linux manual page”, 2022). The
performance analysis tools use a kernel-subsystem that exposes performance counters on a hardware
and software level. Using the RAPL API (subsection 2.1.4) perf provides a events related to energy
consumption. Other built-in events include the number of cpu cycles, branch executions or misses.

perf probe

The perf probe command-set provides events by creating dynamic tracepoints that count the number
of executions of a certain address in the target program. Such a tracepoint would be set on a recurring
point within the code, such as a jmp or cmp assembly instruction related to looping the specific number
of iterations. In code sample Listing 3.2, that would be at address 6037b where the loop happens based
on the number of benchmark invocations.

Another option is to place a argument probe that captures the variable containing the number of
iterations that is to be executed. An example of that would be capturing the value of register $rcx at
address 60378 in code of the code sample Listing 3.2.

Both of these options have been explored and have been found to work. However, since the bench-
mark executable contains the code for multiple micro-benchmarks that have been defined in the same
source file it has been found difficult to impossible to relate a probe-point to the respective benchmark.
The benchmark function is given the genericname of <criterion: :bencher: :Bencher<M>: :iter>
in the compiled binary and as contains no static information about the specific benchmark that is called.
Using a wildcard in the probe selector, and thus selecting the probes of all benchmarks corresponding
to the same executable file was not a working due to the way perf groups its event counters: only
the first probe in the list would trigger measurements and thus only one of the benchmarks would get

2See https://man7.org/linux/man-pages/man7/capabilities.7.html for information on capabilities.
Shttps://man7.org/linux/man-pages/man7/cpuset.7.html

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/cpuset.7.html

3.6. Measurement methods 15

0000000000060320 <criterion::bencher::Bencher<M>::iter>:

60320: 41 56 push $rld
60322: 53 push Srbx
60323: 48 83 ec 18 sub $0x18, %rsp
[...]

60370: 90 nop

60371: ff ce dec %esi
60373: 75 fb jne 60370
60375: 48 ff c2 inc Srdx
60378: 48 39 ca cmp $rcx, srdx
6037b: 75 e3 jne 60360
[...]

603a3: 5b pop srbx
603a4: 41 5e pop %rld
603a6: c3 ret

Listing 3.2: Excerpt of assembly displayed by objdump, generated by the rustc compiler and LLVM of the Criterion framework
benchmark iteration function.

measured. In the paragraph below we describe the methods that were tried in attempting to collect
energy data using perf.

perf stat and perf record

Initially we attempt to collect energy consumption over the execution of a benchmark executable using
perf stat. This command counts the number of events that have occurred during the execution of
the command. This is different from record, which saves samples at a default rate of 1000Hz so one
can analyze later on the performance of the program under test. Both commands work in the

3.6.2. Criterion Measurement plugin
We implement an extension for the Criterion framework to measure energy consumption instead of the
wall-time that is measured by default. The plugin is released and available on GitHub ™.

The crate criterion-rs supports custom Measurements'® by providing a public trait: criterion: :
measurement: :Measurement (see Section 2.2.1 about traits) that users can implement and provide
to the framework using generics. The custom measurement is implemented by opening a file-descriptor
to the pseudo-file /dev/cpu/{cpu id}/msr as described in Section 2.2.3 and reading the energy
value from it. The benchmarking framework Criterion calls the Measurement: : start () method be-
fore running the micro-benchmark; at which point a file descriptor pointing to the MSR-file is opened
and the Core Energy Status value is read, which is then stored. After the iterations have been com-
pleted the framework calls the method Measurement: :end (), in which our implementation reads
the Core Energy Status (CES) value again, together with bits 12-8 of the Energy Status Unit (ESU)
register, which is used to calculate the energy consumption in Joules: E = CES - 0.585U. The Crite-
rion framework collects these datapoints and stores them in a JSON file, together with the number of
times the method-under-test has been executed. This file is located within the build artifacts, namely
target/release/criterion/<benchmark>/new/sample.json, which is used when calculat-
ing the energy consumption per execution as detailed in section 3.9.

Fixing register overflows The Core Energy Status (CES) Model Specific Register (MSR) is a 64-bit
register, of which only the first 32-bits are used to store the value. This means the register resets to
0 after a a value of 232 — 1 in bits, or after 232 - 0.5 = 217 = 131072 Joules. Given the 65 Watts
thermal design power'® we can expect a single one of the six cores to draw about 11 Watts under full
load. Using the overflow value we calculate that the register is expected to overflow roughly every

"4 https://github.com/RensHijdra/criterion-energy/tree/b8f0131a66a8862fc7ea93963278b155efd72¢31
Shttps://bheisler.github.io/criterion.rs/book/user_guide/custom_measurements.html
https://www.amd.com/en/product/8456

https://github.com/RensHijdra/criterion-energy/tree/b8f0131a66a8862fc7ea93963278b155efd72c31
https://bheisler.github.io/criterion.rs/book/user_guide/custom_measurements.html
https://www.amd.com/en/product/8456

16 3. Methodology

131072J/11W = 11000s = 3.3 hours. Over the course of the two-week runtime, such an overflow is
bound to happen. When an overflow occurs during one sample period, we do a wrapping subtract and
the answer is right anyways

To fix the values where such an overflow has occurred within the measurement period we check
whether the value is greater than an unreasonable consumption for 100 milliseconds, e.g. 25W -
100ms = 2.5J. This value is then subtracted from 232 — 1 which is the actual consumption for the
period.

3.7. Collecting code features

In order to relate the stability of a benchmark back to source code, statistics about the benchmarks
need to be collected. We collect both language elements such as loops and if statements, as well
as method calls to the Rust standard library. To do this in the most accurate way we collect dynamic
coverage of the program.

To compile an executable for coverage collection we use the following command: cargo +nightly-
2023-04-15 bench --no-run --bench <benchmark name> --message-format=json -
Zbuild-std --target=x86_ 64-unknown-linux-gnu --features coverage.

We also supply the following environment variables:

* RUSTFLAGS ”-Csymbol-mangling-version=v0 -g -Cinstrument-coverage -Zno-
profiler-runtime”

« CARGO_PROFILE_BENCH_DEBUG true
+ CARGO_PROFILE_BENCH_LTO no
« CARGO_PROFILE_BENCH_OPT_LEVEL 0

We need the feature coverage from our plugin to enable and disable the collection of coverage
instead of reading the energy consumption at the start and end of each benchmark. We use -zbuild-
std and --target for compiling the standard library with coverage collection. We disable binary and
link-time optimisations to ensure consistent and expected debug results (GNU Compiler Collection,
2024). We enable the new symbol mangler to enable consistent and decodeable debug symbols (Rust
Language Team, n.d.).

3.7.1. LLVM Source-based Code Coverage

Rust supports collecting coverage of its compiled programs through the LLVM Source-based Code
Coverage . This method of coverage collection divides the AST into regions that are divided through
diverging code branches. For each region an LLVM instrumentation counter instruction is inserted into
the generated Mid-level Intermediate Representation (MIR) phase of the compiler. During compilation
a Coverage Map is generated, which will be used to relate the counters back to the respective source
code locations.

3.7.2. Standard Library Coverage

The Rust language is based upon three libraries: std, core, and alloc; which implement higher-
level abstractions, low-level bindings, and pointer and memory management respectively. To build the
standard library source with instrumentation counters we use the unstable feature flag -z build-std.
When building the standard library it is required to specify the target architecture; in this case that is
--target=x86_64-unknown-linux-gnu.

Rust’s profiler runtime The Rust language environment provides an implementation for this in the
form of the profiler_builtins module, which is part of the language core. When the -C instrument-
coverage configuration flag is passed to the rustc compiler, it will ensure this crate gets included as
a dependency and adds the instrumentation pass to the compilation phases. This flag also enables the
-fprofile-instr-generate flag to be passed to the LLVM compiler. The profiler_builtins module

7 https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html

https://rustc-dev-guide.rust-lang.org/llvm-coverage-instrumentation.html

3.7. Collecting code features 17

is marked as experimental and thus requires the use of a nightly version of rust, or a custom compiled
compiler with profiling enabled. For this thesis we have attempted to compile a custom compiler and
standard library. The configuration file needs to contain profiler=true, and the stage2'® compiler is
then compiled with the ”-C instrument-coverage flag. This method will not work, however, since
profiler_builtins is not a #[no_core] module it depends on the Core crate'®. But, since the instrument-
coverage flag is enabled, the compiler first tries to compile the profiler_builtins before the core crate,
since it needs it to add instrumentation into the core crate.

Minicov profiler Runtime To solve this chicken-or-the-egg dependency problem we add a precom-
piled profiler runtime to our dependecies. Minicov provides a "modified version of the LLVM profiling
runtime [...] from which all dependencies on libc have been removed” (d’Antras, 2024). This means it
does not depend on the core or std crates and can thus be used to profile those them. Furthermore, this
crate removes the need of compiling a custom compiler which simplifies the coverage collection pro-
cess. When using a custom profiler we need to specify the unstable flag -z no-profiler-runtime
to tell the compiler not to use the default profiler runtime.

3.7.3. Source Code Feature Extraction

Collecting LLVM coverage data enables us to filter out unused parts of the Abstract Syntax Tree while
parsing files for features. Using the coverage data we create two datasets for the dynamic features:
one counting the occurrences in the code and a second summing the number of executions of each
occurrence.

For this purpose we have a subcommand in the experiment program. This reads the LLVM profraw
file and executes the 11vm-profdata show command to generate the coverage data in JSON format
that we read in our Rust program. The generated data contains mappings of source files and code
blocks within. We use the syn?° library to walk the Abstract Syntax Tree (AST) and keep count of
the features the walk comes across. Since LLVM coverage data not only tracks whether a code block
has been visited, but also how often, we can also keep track of the total count of a feature occurring.
The coverage data contains multiple source files per benchmark, since any function that is called at
any point is tracked, through user libraries and standard libraries. The features that we keep track
of are detailed in Background subsection 2.1.3. The syn crate provides a framework for building an
Abstract Syntax Tree visitor which we implemented with a feature counter. All elements that are listed
in Table 2.1 have one or more associated visit * function we implement and increment a counter.
Since each benchmark has multiple sourcefiles reported by LLVM, we build an AST for each file and
combine the counted features for each file per benchmark after visiting each AST. One such visitor
function, £n visit expr reference is provided in Listing 3.3, counts the number of references
and also whether a reference is mutable. We serialize the HashMap that keeps track of the counts and
repeat this process for each benchmark.

We end up with a CSV that contains the benchmark name and the number of occurrences per
feature for that benchmark.

3.7.4. Counting Instructions

We want to compare the RCIW to the number of instructions in a benchmark to determine whether
there is a correlation to be found. A profiler such as Callgrind can determine the exact number of
instructions being issued by simulating running the program. Callgrind supports the toggling of data
collection from within the program using the CALLGRIND {START, STOP} INSTRUMENTATION and
CALLGRIND TOGGLE COLLECT macros?'. We use these to isolate the benchmark and ignore the
Criterion framework overhead by utilising the callgrind partial crate?? that implements these
macros in Rust. We create another drop-in replacement Measurement for the Criterion framework
(subsection 3.6.2) and call the appropriate Callgrind macros in the Measurement: :start () and
Measurement: :stop () methods. This implementation is placed behind Rust’s conditional compi-
lation feature gates (subsection 2.2.1) so that we can reuse the configuration for the original energy

8"the truly current compiler” - see Rust Compiler Bootstrapping https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
19p|atform-agnostic, dependency free foundation of the Rust Standard Library. See: https://doc.rust-lang.org/core/
2Ohttps://crates.io/crates/syn

21https://gcc.gnu.org/onlinedocs/cpp/Macros.html

22nttps://crates.io/crates/partial-callgrind

https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://doc.rust-lang.org/core/
https://crates.io/crates/syn
https://gcc.gnu.org/onlinedocs/cpp/Macros.html
https://crates.io/crates/partial-callgrind

18 3. Methodology

fn visit expr reference (émut self, i: &'ast ExprReference) {
// Determine whether the AST node is actually visited
if !self.region.overlaps span(&i.span()) {
return;

}

// Count references
self.count ("reference”);

// Count 1f the reference 1s mutable
if i.mutability.is some () {
self.count ("reference mutable”);

}

// Recurse into any contained nodes with the default visitor implementation
visit expr reference(self, 1i);

Listing 3.3: Example AST visitor function visit_expr_reference which is called when a reference expression is parsed in the tree.

Measurement simply by adding the -features callgrind flag to the compilation command.

We add the functionality of collecting Callgrind information to a top-level subcommand of the project:
instructions. When this command is run, all projects are compiled just like before only using the
configuration meant for callgrind using the -—features criterion-energy/callgrind flag. All
benchmarks are run once through the callgrind profiler. An example of a full command is:

valgrind --tool=callgrind --fair-sched=yes --dump-instr=yes
o =--callgrind-out-file=/dev/null --collect-atstart=no --instr-atstart=no
o <full path>/chrono-b129a5080da883cf
o “bench get local time/bench get local time$

The valgrind commands standard output will contain lines like the following:

==120215== Events : Ir
==120215== Collected : 210237

The event Ir is the executed instruction count and the following line is the corresponding value; i.e.
210237. All results are collected in a CSV file which is saved for later use.

3.8. Baseline

We create our own project with benchmarks that execute the assembly instruction NOP many times,
the code is visible in section B.3. The loop will be compiled to the something similar as the code in
Listing 3.4:

60360: be e8 03 00 00 mov $0x3e8,%esi #0x3e8 == 1000
[...]

60370: 90 nop

60371: ff ce dec %esi

60373: 75 fb jne 60370

Listing 3.4: Assembly excerpt showing a decrementing counter.

For the benchmarks of the projects under investigation, the instruction NOP at address 60370 would
be replaced with the code-under-test; most often in-lined but occasionally behind a function call.

The size of the loop has been chosen in the range 102 up to 10°, increasing with a factor 10.
Using this maximum size we capture approximately 4.2GHz - 100ms/10%instructions/execution = 420

3.9. Data processing 19

=7 (300, 5)
(150, 8)
=1 (100, 15)

el dadadidadulsseesssee)

Mumber of iterations

eI e S e S e el S e m S e
'h°§°§°ﬁ°?;°ﬁ°ﬁ°;‘:°ﬁ’h a\wa;k&“
Wmﬁ'&ﬂﬂ?\

PR W o = 0 WO

0 50 100 150 200 250 300
Number of samples

Figure 3.3: Three examples of picking combinations of number of iterations and samples. Successive iterations are stacked
vertically and their samples are aligned.

benchmark executions in a single sample. These benchmarks are executed like any other benchmark
has been in this project; the only difference is that they were executed at a different time than the main
experiment.

3.9. Data processing

Research question 1.2 investigates the number of samples required to get a representative value of
stability. To do this we want to calculate the RCIW for different number of samples to compare across
and determine the best value.

3.9.1. Calculating energy per execution

Before we can answer our research questions we need to pre-process the data. Over the course of
three weeks the experiment has collected more than 8.1 million data points by running 904 benchmarks
thirty times; while taking three hundred samples during thirty seconds. These data points come in
three parts: the benchmark it belongs to; the number of executions of the benchmark during the 100
millisecond sample period; and the energy consumed by the processor core during this time. We
group the data by benchmark, and for each sample we calculate the energy consumed per execution:

energy consumed in sample .
- - = energy per execution.
executions in sample

3.9.2. Sample selection
After collecting the energy data for all projects we have 9000 samples per benchmark that are collected
as sets of 300 samples over thirty iterations. Since these iterations are executed at distinct moments
in time, we cannot simply concatenate them and take an increasing number of samples from the whole
lot; environmental noise could have had a different effect on the data at different moments in time.
Therefore we take an equal number of samples from each iteration when calculating the RCIW.
Figure 3.3 shows three such subsets of samples. On the vertical axis we see the number of iterations
taken into account and the horizontal axis shows the number of samples per iteration used in the
calculations. Subset (150, 8) represents a set of 1200 samples: taking the first 150 samples of the
first eight iterations, that were taken at different moments Both the subsets (300, 5) and (150, 10)
have a total of 1500 samples but reach that number using 300 and 150 samples per iteration and 5
and 10 iterations, respectively.

20 3. Methodology

3.9.3. Calculating relative variability

Using (subsets of) these 9000 “energy per execution” data-points we can calculate measures of sta-
bility for each benchmark. We look at the Relative Median Absolute Deviation (RMAD) and Relative
Confidence Interval Width (RCIW), which are robust measures of variability.

3.10. Random Forest Models

In the final research question we want to determine what source code features are important to keep in
mind when tackling instability in their code. We create a Random Forest Regressor?® that we initialise
with a random state of 566784. We feed the features as found in subsection 3.7.3 into this regressor
through a 30-fold Cross Validation step.

23nttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Results

In this chapter we present the results obtained using our methodology. We answer the research ques-
tions laid out in the introduction. In the first section we dive into the theme: what does it mean to
be stable. This includes calculating the stability of the tested projects and determining the number of
samples required to get a stable result. In the second question group we explore possible reasons for
instability.

Before answering any questions we take a quick look at the data we retrieved in general. Figure 4.1
shows Kernel Density Estimate of the Harrell-Davis median energy consumption over all 9000 collected
samples and number of executed assembly instructions of each benchmark. A glance at the figure
raises the suspicion of correlation between energy consumption and benchmark length (in number of
instructions) and a Spearman Rank Correlation test (for a < 0.05) confirms this: we retrieve a strong
positive correlation of p = 0.957.

025 Median (HD) energy consumption (mJ) density

0.20
0.15

Density

0.10
0.05
0.00

025 Benchmark length (# exec. instr.) density

0.20
0.15

Density

0.10
0.05
0.00

2 4 L] & 10

10 10 10 10 10
instructions

Figure 4.1: Distribution of energy consumption and number of instructions

21

22 4. Results

Normality We perform a normality’ test with significance at p < 0.05 on the datapoint grouped per
benchmark. We find that most (861 of 868) benchmarks’ measurements do not conform to a Normal
distribution, therefore we we use robust "distribution-less” statistics in answering the Research Ques-
tions.

4.1. RQ 1.1 - Is software energy consumption generally stable?

In the experiment we have collected energy consumption data over thirty iterations. For this research
question we only take into account the first sample of each iterations. These samples have been
taken at random intervals over a three week period and thus simulate developers running the test at
different moments. The interval between subsequent samples of the same benchmark lies between 0
and approximately 17 hours, with a theoretical mean of 8:40h. This means that the values could be
representative to measuring the energy consumption by a developer during a few weeks.

We take these thirty first samples and calculate the Relative Dufference between the minimum and
maximum per benchmark: maxmmui;”i;njﬁlmum. We use this Relative Difference to be able to compare
the spread between the minimum and maximum of consumption across different benchmarks without
being sensitive to the magnitude of this consumption. Figure 4.3a shows a histogram of the calculated
relative maximum differences with those above 50% left out and instead shown in Figure 4.3b. From this
histogram we can see there is a wide spread of relative change between the minimum and maximum
consumption of benchmarks. Two modes in this figure show that a majority (69%) of benchmarks
exhibits a first-sample maximum difference of at most 10 percent, which is considered an upper limit
on stability in some literature (Laaber et al., 2021); and a quarter of the benchmarks (26%) slightly
above this up to 25%. The remaining five percent of benchmarks have a relative change of up to
500%.

In Figure 4.4 we plot the 45 benchmarks that have at least a twenty-five percent relative change.
Each unit on the horizontal shows one iteration of the experiment, while the vertical axis shows the
power consumption of a single benchmark execution in millijoules. We can see that there is one bench-
mark with an order of magnitude difference between the minimum and maximum energy consumption.
Many benchmarks exhibit differences between samples that would not necessarily be ironed out by
taking a single sample or the mean of two samples. To expand on this we see in Figure 4.2 where all
iterations have been stiched together horizontally that the outliers are not merely a first-sample effect
but the difference in energy consumption stays throughout an iteration.

When used for regression detection, data collected from a single iteration would not be enough to
eliminate false positives. This indicates that, in order to accurately detect regressions, it would make
sense to collect more than one iteration of energy consumption.

While some benchmarks do show little variation (less than 10%) between the minimum and maxi-
mum of the first samples, energy consumption can vary significantly for other benchmarks where the
difference between two samples can be up to 5 times larger.

To conclude, we do not find the energy consumption of benchmarks of our investigated projects to
not be stable over time, despite our efforts to reduce environmental influences.

4.2. RQ 1.2 - How long should you measure for a stable result?

From the previous question we determine that we need to collect more samples over time to determine
an accurate median energy consumption. In this research question we find a guideline for users in
setting up their benchmarks: what is an appropriate amount of time and samples to measure for.

We calculate our metrics over the range iterations [1, 30] and samples [25, 300, step=25]. This
means we take into account all measured iterations and a selection of the possible combinations of
samples. By using a step-size of 25 for the samples we aim to find a middle ground between resolution
and calculation time for the RCIW in finding an answer to the research question. For each of these
values we take up to that number of iterations and samples into account; this is visualised in Figure 3.3.

In Figure 4.5 we see that comparing over an increasing number of samples, for all values of itera-
tions, there is a monotonic decrease in mean RCIW. When comparing for distinct values of samples,
an increasing range of iterations we see that the trend is not strictly monotonic. Therefore we plot for
a selection of 6 iterations values ([5, 10, 15, 20, 25, 30]), the RCIW for each tested benchmark over

"https://docs.scipy.org/doc/scipy-1.12.0/reference/generated/scipy.stats.normaltest.html (D’Agostino & Pearson, 1973)

https://docs.scipy.org/doc/scipy-1.12.0/reference/generated/scipy.stats.normaltest.html

4.2. RQ 1.2 - How long should you measure for a stable result? 23

10°
- | | !" i :

107 - . e — —
=
E
IR M= e I EEE IR "B 11 =1 1Y & T
B | ! | '
S| PR :-
m | " . . . T T - - o 1 B M ¥ “ £ 3 a4 L ' +] H
[-3 Lt iy - 1¥ ¥ I % 3 4 . f ! 1 1 4 1' 1§ . - 1 1 1°
E 1{] +—' —— W m:ff- Sl '.—Jl\-l.-l—l--h'-r.- I ey - 1.- e x P—— n.-lg_.g_. &
g - 1_91'_‘_ -
5 o
w 1p

107°

0 2000 4000 6000 8000
Total number of samples over time

Figure 4.2: Plot of the energy consumption per sample for benchmarks that have a Relative Maximum Difference of at least
50%. All iterations have been stiched together on the horizontal axis.

140
120
100
= 80
8
60
61.45 94.72 124.46
40 78.44 9488 132.35
80.43 99.34 149.21
2 81.86 113.52 178.49
L e 87.39 120.06 187.06
% 10 % 0 40 o 88.90 120.47 293.10
Relative maximum difference: (max-min)/min * 100 (%) 9422 123.78 5204.74
(a) Histogram (b) 50%+ values

Figure 4.3: Occurrence counts of the relative maximum difference between the first samples of iterations.

24 4. Results

=
E -
s H i
i= P e — | |
i
S 107 = —_—
=
e

10

10°

0 5 10 15 20 25 30
[teration

Figure 4.4: Energy consumption: first samples of 30 iterations for benchmarks with a at least a 30% difference between max.
and min.

the range of samples [25, 300]. This can be found in Figure 4.8 where For brevity we pick these six
iterations; all plots can be found in the Appendix: Figure C.1.

We do not consider any iterations under 4 to be relevant which is supported by Laaber et al. (2021).
When using less than five iterations, the opportunity arises for the data to get multiple modes that lie
further apart, resulting in a wide confidence interval. We can see this in Figure 4.5 where the median
of all RCIW generally tends to decrease as the number of iterations increases. This is not true for the
number of iterations below five, where I=2 and |=3 have a higher median RCIW than I=1, and 1=1 and
I=4 lie approximately at the same values.

In Figure 4.8 we can see that most benchmarks follow the trend where a larger number of samples
results in a smaller RCIW. Since the Relative Confidence Interval Width is based on the variance we
expect this behaviour: variance generally inversely proportional to the number of samples, which is
also the case for the confidence interval by Maritz and Jarrett (1978).

The few benchmarks that do not follow this trend can be characterised, which is done in section 4.6.

We can see in Figure 4.5 that the median of all RCIW tends to decrease as the number of iterations
increases. This is not true for the number of iterations below five, where |=2 and I=3 have a higher
median RCIW than I=1, and I1=1 and =4 lie approximately at the same values.

We can take a look at the trend of the medians with regards to both the number of iterations and
the number of samples taken into account (Figure 4.5). For both lines we see the values start with
a steeper decrease moving to a shallower one. For Figure 4.5 (a), the decrease along the horizontal
axis (number of samples) is monotonic, but for (b) it is not (number of iterations). This occurs because
adding an extra iterations into the dataset since this new iteration might have a different mean than the
ones added earlier.

We see the same median trends of Figure 4.5 in Figure 4.6, where we plot 1, 2 and 3 iterations as
well as 5, 15 and 30 iterations, with additional dispersion data in the form of boxplots. At the top of
each boxplot we have indicated its number of outliers, this will be used later in this research question.

We plot the first three iterations to show how a low number of iterations influences the stability,
i.e. alarger spread. The second row of iterations shows the trend when increasing the number of
iterations more significantly. We can see from the outliers and the approximate shape of the plots
that the distribution does not greatly change across iterations, apart from some sporadically acting

4.2. RQ 1.2 - How long should you measure for a stable result? 25

0.8 iterations
5
0.7 — 10
— 15
0.6 — 20
— 25
— 30
< 05
=
=
O 04
o
0.3
0.2
0.1
50 100 150 200 250 300
(a) Samples taken per iteration
0.8 samples
50
0.7 — 100
— 150
0.6 — 200
— 250
— 300
< 0.5
S
=
O 04
o
0.3
0.2
0.1
0 5 10 15 20 25 30

(b) Number of iterations used

Figure 4.5: Median RCIW over all benchmarks. Plotted for (a) a selection of iterations across all sample values and for (b) a
selection of sample values for all values of iterations.

26 4. Results

1 iterations 2 iterations 3 iterations
20.0 71 68 73 78 73 78 81 79 80 85 79 88 1.08114 119 126 127 130 135 135 135 138 139 133 64 55 57 61 60 63 65 65 66 65 65 69
17.5 o
15.0 ' 3
< 12.5 < ‘ § :
= 10.0 = ‘ ¢ f —1 ; = t
O O ' O ‘
€ 75 ¢ L 1 4 i @ t
i : ' | IR i ! 2 '
5.0 : t Ve ; t 3 i 1 i i - 1
i § [' ¢ Pyl
il"“ | LI é
0o L Liiill ééél;;;;;;;
’ Samples per iteration Samples per iteration Samples per iteration
5 iterations 15 iterations 30 iterations
20.0 78 62 66 69 70 63 56 55 53 50 49 52 66 70 67 65 68 68 67 66 66 69 68 70 77 71 66 61 62 65 66 68 67 71 69 66
17.5
15.0
< 12.5 = =
X X X
Z 10.0 2 2
O O (8}
X 75 o o
5.0 vt 1 I
2'5£i;'.7,£;,‘ "li:". fi':*,,,,',,
0o 1iiiiiilll iallailibiid Lliadddddaii
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Samples per iteration Samples per iteration Samples per iteration

Figure 4.6: Boxplots of RCIW per benchmark, for a selection of iterations and all samples.

benchmarks. This is corroborated by the medians we saw in Figure 4.5 and by the three-dimensional
plot in Figure 4.7. This last plot shows the relation of RCIW to the total number of samples as indicated
by the colourbar from which we learn that picking either number of samples per iteration or number
iterations are viable options in reducing the confidence interval width.

In statistics outliers are defined as lying outside of 1.5 times the Inter Quartile Range (1.5IRQ). We
adopt this method in finding an appropriate number of steps to reach a valid answer. We calculate the
IRQ and outlier limit on the RCIW values per number of samples and iterations, which are show in in
Figure 4.10a. In Figure 4.10b we can see that the number of outliers (defined by being outside 1.5IRQ)
is in the range [52, 78], except for iterations 1 and 2.

The colours for the outlier limit value in Figure 4.10a has been configured to be divergent around
the one percent mark, which we have chosen as the RCIW threshold for stability. Additional testing has
shown that, while the limit per iteration appears to be 80 "unstable” benchmarks, there are up to 120
unique "unstable” benchmark per iteration value when checking all sample values. This corresponds
with the findings of Figure 4.8 where we see the per-benchmark RCIW converging but not acting mono-
tonically. That is: there is some amount of benchmarks that is converging but fluctuating around RCIW
1% and their boolean classification of stability” might switch multiple times when calculating RCIW
over different numbers of samples.

The points where 1.5IRQ + Q3 reaches below 1% can be considered a pareto-front, with no true best
value. This pareto-front is approximated by the total number of samples as can be seen in Figure 4.9.

4.3. RQ 1.3 - What part of instability can be attributed to noise?

To figure out what part of the stability could be attributed to the different benchmarks and not to noise
that happened during the sampling, we run benchmarks on code that runs empty loops. This creates
a predictable pattern for the CPU with a stable load, that should inform us of the measurement stability
when no actual code is run; this is further detailed in section 3.8.

In Figure 4.11 we can see the stability of the baselines over a the same range of values as in the
previous research question: iterations [1,30] and samples [25, 300, step=25] . At five iterations we see

4.4. RQ 2.1 - Does powersaving mode affect energy stability? 27

- 9000

- 8000

RCIW (%)

- 7000
08 | 6000 2
6000 é
06 o
} - 5000 o
04 o
| - 4000 E
02 3
™
0.0 -3000 5

0 - 2000

- 1000

-0

Figure 4.7: Median energy consumption plotted as the vertical axis across the two horizontal axes number of iterations and
number of samples.

the RCIW for two of the benchmarks (100 and 1,000,000 iterations) start relatively high with regards
to the other three benchmarks and approaching the other benchmarks when coming to 300 samples.
For the other five samples we see all benchmarks exhibiting a shallow downward slope, always below
0.2% and often below 0.1% RCIW. In comparison: for the tested benchmarks the median only reaches
this value for a high number of samples as we see in Figure 4.8.

The baseline RCIW corresponds approximately to the minimum RCIW values attained by the ex-
periment benchmarks, below 0.05%. The median RCIW for the experiments starts at a maximum of
0.8% for very low number of total samples and approaches 0.5% for the maximum number of samples
in this thesis, 9000.

From this we can conclude that the measurement and environmental noise in energy consumption
follows the same trend in stability as the energy consumption. Building on RQ1.1 — values below 1%
RCIW can be considered stable — together with the measurement noise being below this threshold at
all number of samples we conclude noise is not a contributing factor in the instability of measurements
of benchmarks.

4.4. RQ 2.1 - Does powersaving mode affect energy stability?

The userspace governor is set at a fixed frequency of 4.2GHz during the entire experiment. The pow-
ersave governor differs in two main ways: the frequency is not fixed and differs over time which results
in a longer time-span and less executions per iteration; and the frequency is likely to change based on
demand. Both of these differences could produce an decrease in stability.

We plot the RCIW for both the userspace (at fixed 4.2GHz) and powersave governor. Figure 4.12
shows the RCIW for the five different benchmark sizes for both frequency governors.

We perform a Wilcoxon signed-rank test to determine the difference between the two governors.
We perform the tests at a 95% confidence level, i.e. reject the null hypothesis if the p value is below
0.05.

Firstly to determine whether the data is coming from the same distributions, we perform a two-sided
test with the null-hypothesis Hy : RCIW yserspace = RCIW pyrersave @nd an alternative hypothesis of
Hy : RCIWpowersave # RCIWygerspace- We retrieve a p = 2.09 - 10757 and reject the null-hypothesis,

28 4. Results

5 iterations 10 iterations 15 iterations

20

15

10

RCIW (%)

20 20 iterations 25 iterations 30 iterations

15

10

RCIW (%)

100 200 300 100 200 300 100 200 300
Samples per iteration Samples per iteration Samples per iteration

Figure 4.8: All benchmarks plotted across a variable number of samples. A selection of number of iterations has been chosen.

and conclude the data is not from the same distribution; this suggests there is a difference between the
stabilities achieved under the two frequency governors.

To test whether our intuition is right, we perform another Wilcoxon test, with Null-hypothesis Hj :
RCIW yserspace = RCIW poersave @nd alternative hypothesis H, : RCIW ygerspace < RCIW poyersave:-
This test results in p = 1.05 - 10757, thus we conclude that the powersave frequency governor does
increase the instability of energy benchmarks.

We perform a Vargha — DelaneyA,, (Vargha & Delaney, 2000) test to determine the effect size of
the difference between powersave and userspace governors. The calculated effect size is small. This
means there is small decrease in stability when using the powersave governor over the fixed frequency
userspace governor; and thus we recommend the latter when doing energy performance benchmarking
for more accurate results.

4.5. RQ 2.2 - Does the number of instructions correlate with stabil-
ity?

Since our experiment uses fixed periods for measurements, the number of executions of different
benchmark functions differs. A longer codepath results in less executions per sample; when the calcu-
lated mean energy consumption is based on less executions a variation in the number of executions
can be a cause of perceived instability itself. If this is a large influence we would expect a negative
correlation between number of instructions and stability. The method of determining mean energy
consumption and its possible effects are further detailed in subsection 5.7.3.

We want to find out whether there is a relation between the execution length of a benchmark and
its stability. We use the data collected using Callgrind (subsection 3.7.4) and plot the Kernel Density
Estimate of the number of instructions in Figure 4.13. In this graph we see the majority of benchmarks
fall in the 103 to 10° instruction range. From the raw data we determine the extremes to be 230 and

4.5. RQ 2.2 - Does the number of instructions correlate with stability? 29

40

lterations

0.0

25 50 75 100 125 150 175 200 225 250 275 300
Samples

Figure 4.9: Calculated outlier limit Q3 + 1.5IRQ with total number of sample contours overlaid.

30 4. Results

-40

a5 - 130

- 120
- 30
- 25

-20

fterations
iterations

- 05

3

BADBDBNANWYAATBIABIN T 5 I
s @
T HBBN19TBHBN T 5 I

- 00
25 50 75 100 125 150 175 200 225 250 275 300 25 50 75 100 125 150 175 200 225 250 275 300
samples samples

(a) Outlier threshold: Q3 + 1.5 - IRQ (RCIW %) (b) Number of outliers

Figure 4.10: Outlier classification of benchmarks w.r.t RCIW per sample/iteration combination

1.4 - 101, with a median of 3.0 - 10°.

In the Introduction to this chapter 4 we have seen a strong but not perfect correlation between the
energy consumption and benchmark length.

To test for a relation between the number of executed assembly instructions and RCIW, we calcu-
late the Spearman Rank-Order Correlation coefficient p for all combinations of experiment iterations
and samples with significance @ = 0.05. Since the Spearman test investigates the monoticity of data
(de Winter et al., 2016), so we plot the RCIW against the number of instructions on a log-log plot in
Figure 4.14 to investigate this for our data. For each subplot we have chosen a single value for the
number of iterations, the same way as in the previous Research Questions. Per subplot all values of
samples (i.e. 25 through 300, steps of 25) are plotted for the specified iteration. With the exception of
the outliers at approximately 103 instructions the plots follow a generally monotonic trend and thus we
can continue with determining Spearman’s p.

The results are in the range [—0.288; —0.151] with a median of —0.232, and can be found in Fig-
ure 4.15. This heatmap shows the spearman coeficient statistic for these calculated combinations on
the range [-1, 1]; the possible range of the Spearman test.

All results achieve a p < 0.05 and we can reject the Null Hypthesis and determine that stability and
instructions are not independent. From the magnitude of the Spearman p we determine there is a weak
negative correlation between the stability and number of executed instructions; that is to say that when
the length of a benchmark increases it is more likely to produce stable results in this experiment.

4.6. RQ 2.3 - What code features could make software unstable?

For a developer it could be useful to increase the stability of their benchmark in order to be more
sure about the average consumption as well as making the measurement more accurate in regression
detection. In research question 1.2 we have used the boxplot 1.5 - IRQ rule to determine outliers and
set a guideline for a number of samples. To determine the reasons for instability we need a dataset
of unstable benchmarks. First of all, we take a look at the set of benchmarks that falls above the
1.5 - IRQ + Q value for every iteration-sample combination in our experiments. This leaves us with 19
benchmarks that we will investigate, both manually and using the source code features collected as
described in section 3.7. When taking benchmarks that classify as an outlier at some iteration-value
combination, we note 181 benchmarks. This difference indicates that our method is not perfect, and
that benchmarks can reclassify as either stable or unstable as the number of samples changes.

4.6.1. Manual investigation
For the nineteen benchmarks that display constant high RCIW we inspect the source code of the
setup and code-under-test. The projects and names of these benchmarks are listed in Table 4.1.

4.6. RQ 2.3 - What code features could make software unstable? 31

5 iterations 10 iterations 15 iterations
0.6
~ 04
X
=
O
@ 0.2
N~ — | —= %
0 ————— —1
20 iterations 25 iterations 30 iterations
0.6
id
— nops/100
< 0.4 nops/1000
< —— nops/10000
% —— nops/100000
@ 0.2 —— nops/1000000
0 k % g
100 200 300 100 200 300 100 200 300
Samples per iteration Samples per iteration Samples per iteration

Figure 4.11: RCIW of the baseline benchmarks over values of iterations and samples.

The first thing that stands out is the project aHash, which is responsible for 17 out of 19 outlier
benchmarks. aHash is a library that provides alternative hashing algorithms solely for in-memory
HashMaps, and tests these hashing functions against other libraries in their benchmarks. When in-
specting these benchmarks we find one thing in common: the setup of the benchmark makes use
of randomisation. The unsigned integers that are to be hashed are generated by the rand? library:
rand: :rng () .gen: :<u8> (); where u8 represents any unsigned integer between u8 and u128.
This random number generator is not seeded, i.e. the random numbers it generates are truly pseudo-
random and not the same numbers every iteration as would be the case when a "seed” is supplied to the
generator. Furthermore, aHash makes use of the iter batched function of the Criterion framework;
with the setup of each batch operating on a different random number and thus different initialisation per
sample occur.

The second project that has an outlier benchmark is rust-base64, which provides utilities for handling
Base64 encoding and decoding. The encoding method that is benchmarked in this outlier is one that is,
similarly to aHash, initialised with random data. Before iterating over the encoding function, the setup
code creates a vector of unsigned 8-bit values (u8) and fills this with "weak” random data "to not be
completely friendly to the branch predictor” (rust_base64). Once again similarly to aHash this random
initialisation shows differences in energy consumption between iterations.

The final project is rust-prometheus, an interface for the metrics interface software Prometheus.
The offending code is the threaded utilisation of a histogram counting implementation. Threads, as
opposed to processes, always operate on the same core as their parent process; the four threads this
benchmark spawns do not act truly concurrently but share the available processing power. Where all
other benchmarks act in a single thread and can complete their task in an uninterrupted fashion this
is not the case for this benchmark where the context switching comes into play. The CPU scheduler

2https://github.com/rust-random/rand

https://github.com/rust-random/rand

32 4. Results

05 5 iterations 10 iterations 15 iterations
0.4
03
S
202
0.1
0.0
05 20 iterations 25 iterations 30 iterations
frequency governor
—— userspace (4.2GHz)
0.4 — powersave
03
S
202

°’1g & &

0.0
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

Samples per iteration Samples per iteration Samples per iteration

Figure 4.12: RCIW for several iteration sample combinations for the userspace and powersave governor.

0.175 4

0.150 4

0.125 4

0.100 4

Density

0.075 A

0.050 A

0.025 A

0. 0 00 T T T T T T
102 10* 108 108 1010 1012
instructions

Figure 4.13: Kernel Density Estimate plot of the number of instructions in all benchmarks

4.6. RQ 2.3 - What code features could make software unstable? 33

5 iterations 10 iterations 15 iterations
10°
S 10
=
= -1
o 10
10°
20 iterations 25 iterations 30 iterations
10°
= 10 2
=
Qg
o 10
107
10t 100 10 10t 10° 10 0t 10" 10°
Instructions Instructions Instructions

Figure 4.14: Number of instructions vs RCIW on a log-log plot, for six values of iterations, all samples.

-1.00
. 075
050
K - 025
é 15 -0.00
[
B 0 ——
- 050
“ 075
% - _1.00

25 50 75 100 125 150 175 200 225 250 275 300
Samples per iteration

Figure 4.15: Spearman [Icorrelation coefficient between number of assembly instructions and RCIW for values of iterations and
samples. ([min -0.288; med: -0.232; max: -0.151], highlighted in colorbar)

34 4. Results

Project Group Benchmark \ Project Group Benchmark
u8 fx uc4
u16 u128
fallbackhash u32 u16
uc4 ahash sea uc4
ahash u128 u128
u8 u16
fnv u16 sip uec4
u32 u128
u8 rust-base64 encode_small_input encode_string_stream/100
fx
u32 rust-prometheus concurrent concurrent_observe_and_collect

Table 4.1: Benchmarks that are outlier at any iteration-sample combination.

determines when a thread is allowed to run; when the current thread is pre-empted and the following
resumes, a context switch occurs. Context switches can take from microseconds up to milliseconds
depending on the amount of data that needs to be switched and are also not comepletely stable (Li
et al., 2007), so it stands to reason these context switches have an adverse effect on the stability of
the entire benchmark.

4.6.2. Feature importance

We use the collected source code features in combination with the calculated RCIW values to determine
the influence of the features on the stability of the code. We do this by creating a Random Forest
Regression on which we apply a 30-fold cross-validation. We achieve a best coefficient of determination
of only R? = 53%, but we use the feature importances as determined by this regressor, the results
of which are displayed in Figure 4.16. The labels of the features classes have been explained in
subsection 2.1.3. Features with a share of less than one percent have been grouped under the "other”
label. The features with most correlation to RCIW are language features references (memory) and
nested loops (control flow), and standard library calls to core: :slice and core: :mem which are
both modules that mainly handle memory manipulation. Together with the number of instructions, which
has been handled in Research Question 1.2, these features make up half of the predicted influence
on the RCIW. Looking at the rest of the features we see many that fall in the Control Flow and Data
or Memory domains. The final domains that are present are Environment through std: :env and
core: : £fi; and Input/Output through the filesystem calls of std: : £s. The likely main features that
make benchmarks unstable are memory accesses and unpredictable control flows.

4.6. RQ 2.3 - What code features could make software unstable?

35

Figure 4.16: Feature importances as determined by Random Forest regressor

Discussion

In this chapter we reflect on the research questions and the results we achieved for them. We analyse
and give context to the results obtained through our experiments. We look at the implications of our
results and the way they how they further the field of sustainable software engineering. We also discuss
the implications of the results and compare them against relevant literature.

Furthermore, we discuss the possible underlying reasons and influences that could have led to the
observed results. Moreover review the threats and limitations of our study and their possible implica-
tions for the validity. We provide suggestions for future work, and

5.1. RQ 1.1 — Is energy consumption stable between two random

independent measurements?

Ouir first research question seeks to answer the question "Is energy consumption stable between two
random independent measurements?” The data shows that this is not necessarily the case: the worst
case difference between two samples that have been taken at different moments in time has been
between zero and up to 5000% in our experiments. The values in this research question are the largest
differences measured in the first samples of each iteration run; they are however, not the first execution
of the benchmark in those iteration runs since each measurement period is preceded by a warm-up
period of five seconds. The argument that it is not just a matter of first-sample instability is further
supported by Figure 4.2 which shows that the average energy consumption differs between iterations
as well. Research questions 1.3 and beyond investigate the possible reasons for this deviation in
energy consumptions.

The Relative Maximum Deviation as used in this question is, however, not a good metric for measur-
ing stability since adding more samples can only make the value higher. Because of this we introduce
a new metric in the following sections: the Relative Confidence Interval Width. While there are more
metrics available to measure stability, such as Relative Median Absolute Deviation we opted for the
Maritz Jarrel version of RCIW because of its multi-modal capabilities and its scaling properties when
changing the number of samples. We invite researchers to suggest and investigate different metrics in
their research to energy stability if they are deemed better predictors or more effective.

5.2. RQ 1.2 — How long should you measure for a stable result?

How long should you measure for a stable result? — or in other words: How many samples should one
take for their energy measurements.

First of all, there is no agreed upon definition of stability. In this paper we focus on developers that
want to improve the energy consumption of their program and by extension know the magnitude of
that consumption. For this question we plot our dependent metric, RCIW, against our two independent
variables, iterations and number of samples per iteration, in several ways. The first takeaway from all
plots in section 4.2 that on average the RCIW decreases with an increasing number of samples.

There are counter-examples to this: Figure 4.5 shows an increase of RCIW when taking two itera-
tions into account instead of one; and Figure 4.8 shows individual benchmarks with respect to iterations

37

38 5. Discussion

and samples per iteration. The first counter-example follows from RQ 1.1; since there could be large
differences in the median consumption between iterations adding the second iteration could shift the
median to somewhere in-between the medians of the two iterations. When the median lies in the mid-
dle, all samples are further away than when the median lies withing the samples; hence the higher
spread and thus higher RCIW. Further inclusions of iterations to the dataset since they either lie closer
to the median or move the median closer to either of the existing iterations’ medians, which does not
cause a higher spread. The second counter-example, the irregular an non-monotonic lines of Figure 4.8
show that not all benchmarks increase the stability with an increasing number of samples. These sam-
ples are classified as unstable outliers by the guidelines determined in this research question. They
are simply unstable because of the way they are programmed as was found in RQ 2.4 — What makes
benchmarks unstable?

Apart from no definite measure for stability, there is also no predetermined threshold for stability.
What can be classified as stable differs per developer or per use-case, as well as per metric one uses.
Laaber et al. (2021) for example, suggests thresholds for an RCIW metric between 1 and 15% based
on other literature. In RQ 1.2, we have found that the median RCIW and along with it many individual
benchmarks reach below the one percent mark.

Furthermore, in this research question we determine that 500 samples could be a reasonable limit to
set for developers when benchmarking for energy consumption. Here arises another trade-off: the total
of 500 samples can be composed of Samples per iteration * Iterations in many variations. Figure 4.5
and Figure 4.10a show respectively that venturing below 4 iterations might not give a significant change
relative to just one iteration; or going below 50 samples might reintroduce the unwanted instability into
the results therefore we recommend picking values above the aforementioned. While it seems that the
choice is arbitrary with regard to the duration of the benchmark, this is not true because of the warm-up
period that happens before each iteration. A sample as defined in this research takes 100 milliseconds,
thus 500 samples will take 50 seconds to complete. Add to this five times the number of iterations and
one needs between 65 and 100 per benchmark. Whether these durations are acceptable is a decision
that needs to be made by the performing developer.

These findings are limited by the facts that they come from a limited set of benchmarks, written in
the Rust language with a single version of Rust and measured on one machine. These benchmarks
have been executed under strictly defined circumstances:

» 5 second warm-up period

Benchmarks running on a dedicated core

» Other cores on the machine disabled

100 millisecond sample duration

Fixed CPU clock frequency

Iterations spread over three weeks

Future work needs to be done to find whether the findings of this research extend to other bench-
marks, other programming languages, other Rust versions, other hardware platforms and running under
less stringent circumstances. Another interesting question could be whether the linear sampling mode
as originally suggested by the Criterion framework also shares these results, or perhaps even better
ones.

While we suggest 500 samples as a reasonable number to determine stability, and a threshold of
one percent that classifies this stability, one should keep in mind the non-monaticity of the RCIW values
with regards to the number of samples on a per-benchmark basis.

5.3. RQ 1.3 — What part of instability can be attributed to noise?

To verify that our measurements are actually measuring variations brought by the benchmarks and
that they do not inherently exist as fluctuations in the base energy consumption of a processor, we
performed "baseline” benchmarks. These benchmarks aim to measure the energy consumption of a
processor where nothing is happening.

5.4. RQ 2.1 — Does powersaving mode affect energy stability? 39

One might argue that a loop of no-operations is still work for the processor, as it needs to increment
the loop counter and check the jump condition. We can check that there is at least no additional
overhead caused by the loop using the perf tool, which shows that the overhead in number of cpu
cycles does not grow with loop size, and neither does the number of branch-misses. In our interpretation
this means that our benchmarks might be using more energy than an absolutely vacant core might do,
but the stability of the consumption is not influenced. Additionally, creating a single executable that
has up to one million nop will either get folded into a loop by the compiler, or even at a single byte per
instruction not fit in program memory — which causes loads from memory as instabilities. There might
be a golden middle way in which the benchmarks loop over a long list of nop assembly instructions
that barely fits in program memory; which could be investigated in future research. Depending on the
implementation on the CPU, a sleep command could act as an appropriate alternative as well.

The data in this experiment shows significantly lower values than that in the previous research
question, leading us to the conclusion that the baseline energy consumption of the core itself is stable
enough not to influence the measurements for actual benchmarks. We also notice in Figure 4.11 that the
Relative Confidence Interval Width does not scale with the size of the benchmark loop, i.e. apart from 5
iterations there is no discernible difference between the different benchmark sizes. This could mean that
the absolute Confidence Interval Width is growing with a longer benchmark. This growth gets cancelled
out by the increase in energy consumption that follows from the formula Energy = Power - Time. We
hypothesise the cause for this possible increase in absolute CIW lies within our experiment setup:
because of our fixed sample period longer benchmarks have less executions within a sample frame,
which could lead to less of an averaging effect within a sample.

5.4. RQ 2.1 — Does powersaving mode affect energy stability?

One of the requirements of the experimental setup is the fixed clock frequency of the core that the
experiment is running on. In this research question we investigated whether is a necessary one. We
find that allowing a lower, possibly variable frequency lowers the stability by a small' amount. A pos-
sible cause of this, similarly to the previous research question, is less executions of the benchmark
per sample period. Once again this might decrease the averaging effect that the sample period has
on the benchmarks, causing a higher variability. A more conspicuous cause for higher instability lies
in the fact that the frequency of the powersave mode is not fixed; which causes the number of bench-
mark executions not be consistent across all samples. For this reason we recommend doing energy
benchmarking on a fixed frequency, especially when benchmarking for regression.

A limitation in our answer of this research question is only investigating the baseline benchmarks.
Due to time restrictions we did not run the entire suite of 868 benchmarks again with a different fre-
quency governor, but opted to do so only for the baseline benchmarks. The result we achieve from this
can be used as an indication but we recommend this research question to be investigated further with
a larger number of benchmarks, that actually perform some operations.

5.5. RQ 2.2 - Does the number of instructions correlate with stabil-
ity?
One feature of benchmarks that could influence its stability. As seen in the previous two research
questions, benchmark length could be an explanation for the occurring phenomena . For this question
we number of executed instructions as reported by the Callgrind tool. We come to the conclusion that
for our set of benchmarks there is a small negative correlation between the number of instructions
and the RCIW of a benchmark, i.e. a longer benchmark is more stable. This conclusion actually
opposes the findings of the previous two questions, where we suggested an increase in benchmark
length correlates with a lower stability. This is additional reasons to repeat the larger benchmark suite

with a different frequency governor, as well as reasons to investigate the effects of different sample
periods in combination with difference in benchmark length.

"Small as defined by Vargha and Delaney (2000)

40 5. Discussion

5.6. RQ 2.3 - What code features could make software unstable?

Finally, as the last research question we look into the possible causes of instability within the source
code of the benchmarks.

Using the thresholds determined in RQ 1.2 we single out a group of benchmarks that classify as
unstable for any number of samples. A manual investigation of these benchmarks shows that the
leading cause of instability in energy measurements is initialising the benchmarks with random data.
These benchmarks come from the aHash project, but are not the only benchmarks that get loaded with
random data within aHash or all projects for that matter. Since there are more benchmarks with random
data that seem more stable, there must be confounding factors.

We also perform a Random Forest regression from which we learn that operations involving memory
and control flow statements are most likely to predict RCIW. Since a Random Forest gives us the
importance of a feature in its prediction, we use this to argue the reason for their relevance. The
number of instructions is fifth on the list of importances, which we discussed previously in section 5.5

Furthermore, a general cause of difference between the different medians that have been observed
between iterations at different moments in time could be related to the temperature of the environment
and processor, which is known to influence power consumption (Mesa-Martinez et al., 2008). Temper-
ature was not measured or taken into consideration in this thesis, but since it can have an effect on
energy consumption, its effect on stability should be investigated as well.

5.7. Threats

5.7.1. Benchmark randomisation order
This research has shown that despite efforts to mitigate changes in environment, it is possible for
benchmarks to significantly change in median consumption when running at different moments in time.

In this project we have considered the benchmarks from all projects as one large list. This was
done because there was a higher expectation of instability, and thus more need for generalised data-
points to use in the prediction models. The shifted focus to the research question How long should you
measure for a stable result? arose after it became clear the differences between benchmarks were
not as stark as expected. Running the experiment in a more authentic developer-like scenario, i.e.
grouping benchmarks from the same project together, and running the iterations for the same project
consecutively, might give different conclusions.

We suggest investigating both batching projects together as well as the possible reason for the
change in energy consumption over time. Research suggests that the temperature of the core is the
reason for differences in energy consumption, but it could also be the reason for instability;.

We suggest finding a relation between the instability of benchmarks and the performance stability.
This could be done by adding a timing measurement to the code of this project, or creating a new
dataset and study.

It is recommended to run an entire benchmark suite instead of a single benchmark. That way a
suite can be randomised and iterations can be spread to take into account changing environmental
influences.

5.7.2. Sampling mode

We have used a flat sampling method, where each sample contains the same number of iterations of
the tested benchmark. This was deemed necessary because of the experiment setup and the focus on
finding sources of instability. Allowing a changing amount of benchmark executions per sample would
mean that we no longer have control over the number of MSR energy status updates that occur per
sample. When this happens it becomes more and more likely that a benchmark invocation is ongoing
when an MSR update happens. Since this benchmark is now half and half in two energy measurements,
it is possible that we sample the data and get incorrect energy consumption measurements. With our
setup this is still occurring, but the static sample duration averages these effects over the entire iteration:
each sample is influenced as much or as little as the next.

5.7.3. Measuring accuracy
For measuring energy, a Model-Specific Register (MSR) is read, which contains the amount of energy
consumed by the CPU. This register is updated approximately every one millisecond. Criterion decides

5.7. Threats 41

the number of iterations to execute within each sample period by exponentially increasing the number
of iterations in the first sample, until exceeding the period. This number of iterations is then used for the
remaining samples. Since the starts of sample periods are not synchronised with the updating of the
MSR and a instability in performance of the benchmarks might exist, it is possible for a measurement
period of 10ms to contain eight to twelve MSR updates. This is why 100ms is a better value.

5.7.4. Experimental setup vs. code in production

In this thesis we constrained the environment of the experiment significantly to be able to correlate
specific source code features to instabilities without other possible sources of noise disturbing the
relations. We find there is some correlation between certain source-code features such as memory
manipulation and control flow statements. Additional research needs to be performed to see whether
these effects are still present in a more conventional setting, i.e. an active server or a developers PC.

5.7.5. Security Threats

Reading from Model Specific Registers (MSRs) by using the assembly requires privilege level 0, also
known as kernel level privileges. This is most commonly the root user on Linux based systems. Any
user that can exercise this privilege level has unlimited access to everything on the device.

Previous work has shown that "software-based power side-channel attacks” are possible on Apple
hardware (Chawla et al., 2023), and on Intel the "unprivileged access to the Running Average Power
Limit (RAPL) interface” (Lipp et al., 2021) has formed a side-channel attack that is able to leak crypto-
graphic keys.

In this research we have opted for a lower level approach to collecting energy consumption than the
RAPL described above, which could be used for more sophisticated attacks. Therefore care should
be taken when giving unknown code access to the power consumption APIs of ones devices; also
when this code has a legitimate reason to access this, such as a energy benchmarking framework.
Inadvertently running code provided by a bad actor could result in leaked private keys and loss of
access to critical data or infrastructure.

Conclusion

In this thesis we did research into the stability and cause of instability. To do this we found thirty projects
with a total of 868 benchmarks. Each of these benchmarks has been run for thirty iterations of thirty
samples, during which a total of 9000 samples of average energy have been collected. To capture the
energy data we have created an extension for the Criterion-rs benchmarking framework that reads the
Model-Specific Register (MSR) for energy consumption that is available on some recent CPUs on a
per-core basis. Apart from the energy samples we also collected data on the source-code features of
the tested benchmarks such as control flow statements and memory manipulation calls. Because of the
non-normality of the data we used the robust Maritz-Jarrell version of the Relative Confidence Interval
Width as our measure of stability. We find that there is a correlation between RCIW and the number
of samples taken and suggest that in light of this experiment, 500 samples of 100ms is a reasonable
amount to determine stability The stability at this point can be classified with a threshold of one percent.
With these values, one should keep in mind they have experimentally been found under strict conditions
set forth in this thesis for a limited selection of benchmarks.

For samples taken at different moments in time we find that significant differences are possible
between their energy consumption, but generally — for benchmarks that one would classify as stable —
the Relative Confidence Interval Width decreases with more and more samples.

We find that running benchmarks with a variable CPU clock-speed can lead to higher variability
of measurements. Another clear influence on instability is initialising benchmarks with random data,
although this is not always a cause for high instability and not necessarily the only cause for instability
when present. Likewise we investigate the effect of the length of benchmarks (as the number of ex-
ecuted instructions) on their stability and find there is a small negative correlation. We can, however,
not rule out that this is a consequence of our experiment setup, in which longer benchmarks have less
invocations per sample than shorter benchmarks because of the fixed period samples.

Looking further at source-code features we identify control flow statements and code related to
memory accesses as potential large influences of instability. Control flow statements can throw off the
branch predictor and memory accesses often require waiting for the memory to load, both of which will
introduce variations in energy consumption.

At the end of this thesis we provide a guideline in the number of samples to take under certain
experimental setup and identify likely causes of instability. We suggest further research needs to be
done into the generalisability of this guideline and under different conditions investigations isolating
different possible causes of instability.

43

Project List

(See next page for Table A.1)

45

GitHub Crates.io
Crate Name Repository URL Forks Stars Watchers Subscribers | Last edit Total Downloads Reverse Dependency Count
ahash https://github.com/tkaitchuck/ahash 50 636 636 16 | 2022-11-10 22:52:27 UTC 43633036 273
async-io https://github.com/smol-rs/async-io 47 276 276 11 | 2022-11-11 01:57:21 UTC 11723126 129
base64 https://github.com/marshallpierce/rust-base64 81 395 395 9 | 2022-10-21 15:27:19 UTC 105474640 2618
bumpalo https://github.com/fitzgen/bumpalo 78 863 863 16 | 2022-11-14 02:35:13 UTC 27892991 60
bytecount https://github.com/llogig/bytecount 21 177 177 8 | 2022-11-05 09:57:01 UTC 6909773 64
chrono https://github.com/chronotope/chrono 387 2399 2399 28 | 2022-11-25 15:57:02 UTC 68672528 6058
combine https://github.com/Marwes/combine 87 1109 1109 14 | 2022-09-17 12:41:55 UTC 14455293 70
curve25519-dalek https://github.com/dalek-cryptography/curve25519-dalek 238 602 602 33 | 2022-11-25 17:45:43 UTC 14120291 165
handlebars https://github.com/sunng87/handlebars-rust 109 899 899 13 | 2022-11-25 13:12:42 UTC 9324798 320
hex https://github.com/KokaKiwi/rust-hex 39 136 136 3 | 2022-11-24 04:33:08 UTC 50082687 2340
httparse https://github.com/seanmonstar/httparse 89 414 414 9 | 2022-11-25 15:37:35 UTC 57182357 189
image https://github.com/image-rs/image 487 3396 3396 77 | 2022-11-25 15:50:25 UTC 9890146 1326
itertools https://github.com/rust-itertools/itertools 237 1888 1888 20 | 2022-10-28 20:06:44 UTC 73768389 3315
plotters https://github.com/plotters-rs/plotters 188 2582 2582 34 | 2022-11-18 17:57:06 UTC 14144567 116
png https://github.com/image-rs/image-png.git 117 242 242 47 | 2022-11-25 15:14:53 UTC 10804922 203
prometheus https://github.com/tikv/rust-prometheus 162 882 882 64 | 2022-11-15 10:49:12 UTC 10965940 167
prost https://github.com/tokio-rs/prost 335 2427 2427 34 | 2022-11-25 09:52:57 UTC 22370303 634
pulldown-cmark https://github.com/raphlinus/pulldown-cmark 194 1472 1472 25 | 2022-11-19 06:29:16 UTC 10721042 311
pyo3 https://github.com/pyo3/pyo3 469 6936 6936 70 | 2022-11-24 09:40:52 UTC 9348410 266
quick-xml https://github.com/tafia/quick-xml 163 786 786 15 | 2022-11-18 19:18:59 UTC 9782501 291
rustls https://github.com/rustls/rustls 413 3910 3910 70 | 2022-11-25 08:47:57 UTC 34467233 377
thread_local https://github.com/Amanieu/thread_local-rs 29 192 192 6 | 2022-11-18 16:47:37 UTC 62671949 59
tracing https://github.com/tokio-rs/tracing 459 3197 3197 43 | 2022-11-25 01:04:22 UTC 56756600 2389
tracing-log https://github.com/tokio-rs/tracing 459 3197 3197 43 | 2022-11-25 01:04:22 UTC 23871778 97
tracing-opentelemetry https://github.com/tokio-rs/tracing 459 3197 3197 43 | 2022-11-25 01:04:22 UTC 6313462 52
tracing-subscriber https://github.com/tokio-rs/tracing 459 3197 3197 43 | 2022-11-25 01:04:22 UTC 29705595 1282
tungstenite https://github.com/snapview/tungstenite-rs 148 1204 1204 16 | 2022-11-25 09:32:02 UTC 14067322 150
typed-arena https://github.com/SimonSapin/rust-typed-arena 52 381 381 12 | 2022-08-02 11:53:04 UTC 7363654 72
uint https://github.com/paritytech/parity-common 179 21 21 41 | 2022-11-24 10:34:19 UTC 6447374 85
unicode-xid https://github.com/unicode-rs/unicode-xid 23 31 31 8 | 2022-09-15 17:15:11 UTC 125059819 92

Table A.1: Projects selected for this experiment along with the metadata they have been selected on.

o

1s17108l0id "V

Code Snippets

B.1. rdmsr performance tests

perf stat -e duration time -r 1000 rdmsr 0xc00102%9a -p 1 >/dev/null

> Performance counter stats for 'rdmsr 0xc00102%a -p 1' (1000 runs):

>

> 346864 ns duration time (+- 0.16%)
>

> 0.000348978 +- 0.000000569 seconds time elapsed (+- 0.16%)

B.2. Setting MSR read permissions
addgroup msr

usermod -aG msr <USER>

chgrp -R msr /dev/cpu/*/msr

chmod g+r /dev/cpu/*/msr

B.3. Baseline benchmarks

47

48 B. Code Snippets

use std::arch::asm;

use criterion::{criterion group, criterion main, Criterion};
use criterion energy::msr::measurement: :Energy;

macro_rules! nop {
(Sgroup:expr, Snumber:literal) => {
sgroup.bench function (snumber.to_string(), |bencher| ({
bencher.iter (|| {
for in 0..$number {
unsafe {
asm! {

” ”

nop

fn simple(c: &mut Criterion::<Energy>) {

{
let mut group = c.benchmark group (”“nops”);
group.sampling mode (criterion::SamplingMode: :Flat);

nop! (group, 100);

nop! (group, 1000);
nop! (group, 10000);
nop! (group, 100000);
nop! (group, 1000000);

criterion group! (name=benches;
config = Criterion::default() .with measurement (Energy); targets = simple);
criterion main! (benches);

Listing B.1: Criterion and benchmark setup for our custom benchmarks to measure baseline consumption.

49

C

Full plots

50 C. Full plots

1 iterations 2 iterations 3 iterations 4 iterations 5 iterations

20
=111 1™
0
2{15 iterations 7 iteratiol::s 8 iterations 9 iteratior’:s 10 iterations
e
0
11 iterations12 iterations13 iterations14 iterations15 iterations

ol e e

16 iterations17 iterations18 iterations19 iterations?0 iterations

=ISI=1=1=

21 iterations2?2 iterations?3 iterations?4 iteration<25 iterations

o i B A b

26 iterations27 iterations?8 iterations?9 iterations30 iterations

"o b el e b

100200300 100200300 100200300 100200300 100200300
samples samples samples samplesSampels per iteratic

rciw

rciw

rciw

rciw

rciw

rciw

Figure C.1: All thirty iterations of RCIW vs sample per iteration plots

Bibliography

Abedi, A., & Brecht, T. (2017). Conducting repeatable experiments in highly variable cloud computing
environments. Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering, 287-292. https://doi.org/10.1145/3030207.3030229

Advanced Micro Devices. (2019). Processor programming reference (ppr) for amd family 17h model
71h, revision b0 processors (Rev 3.06). Advanced Micro Devices, Inc.

Bourdon, A., Noureddine, A., Rouvoy, R., & Seinturier, L. (2013). Powerapi: A software library to monitor
the energy consumed at the process-level. ERCIM News, 2013(92). http://ercim-news.ercim.
eu/en92/special/ powerapi- a- software - library - to - monitor - the - energy - consumed - at- the -
process-level

Chawla, N., Liu, C., Chakraborty, A., Chervatyuk, I., Sun, K., Hamasaki, T. M., & Kawakami, H. (2023).
The power of telemetry: Uncovering software-based side-channel attacks on apple m1/m2 sys-
tems. arXiv preprint arXiv:2306.16391.

ClimateAction.Tech. (2023). ClimateAction. Tech. Retrieved January 10, 2024, from https://climateaction.
tech/

D’Agostino, R., & Pearson, E. S. (1973). Tests for departure from normality. Biometrika, 60, 613—622.

d’Antras, A. (2024). Minicov: Code coverage for c/c++ projects [Accessed on February 12, 2024]. https:
/[github.com/Amanieu/minicov/tree/v0.3.3

DeVogeleer, K., Memmi, G., Jouvelot, P., & Coelho, F. (2014). Modeling the temperature bias of power
consumption for nanometer-scale cpus in application processors. 2014 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
X1V), 172—-180. https://doi.org/10.1109/SAMOS.2014.6893209

de Winter, J. C. F., Gosling, S. D., & Potter, J. (2016). Comparing the pearson and spearman correlation
coefficients across distributions and sample sizes: A tutorial using simulations and empirical
data. Psychological Methods, 21(3), 273-290. https://doi.org/10.1037/met0000079

Duplyakin, D., Ramesh, N., Imburgia, C., Sheikh, H. F. A., Jain, S., Tekta, P., Maricq, A., Wong, G.,
& Ricci, R. (2023). Avoiding the ordering trap in systems performance measurement. 2023
USENIX Annual Technical Conference (USENIX ATC 23), 373—-386. https://www.usenix.org/
conference/atc23/presentation/duplyakin

European Commission. (2023). Causes of Climate Change. Retrieved January 10, 2024, from https:
/[climate.ec.europa.eu/climate-change/causes-climate-change_en

GNU Compiler Collection. (2024). Gce optimization options [Accessed on February 13, 2024]. https:
/lgcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Green Software Foundation. (2023). Coding for a greener future: Exploring upcoming events in green
software. Retrieved December 15, 2023, from https ://greensoftware . foundation / articles /
coding-for-a-greener-future-exploring-upcoming-events-in-green-software

Heisler, B. (2024). Criterion.rs documentation. https://bheisler.github.io/criterion.rs/book/index.html

Helmes. (2023). Sustainable Software Engineering. Retrieved January 10, 2024, from https://www.
helmes.com/sustainable-software-engineering

IEEE. (2024). IEEE Sustainable ICT Initiative. Retrieved January 10, 2024, from https://sustainableict.
ieee.org/

Intel Corporation. (2016). Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3B:
System Programming Guide, Part 2. Intel Corporation.

Kalibera, T., Bulej, L., & Tuma, P. (2005). Automated detection of performance regressions: The mono
experience. 13th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 183—190. https://doi.org/10.1109/MASCOTS.
2005.18

Kim, H. and Teter, J. (2023). Aviation. International Energy Agency. Retrieved January 10, 2024, from
https://www.iea.org/energy-system/transport/aviation

51

https://doi.org/10.1145/3030207.3030229
http://ercim-news.ercim.eu/en92/special/powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level
http://ercim-news.ercim.eu/en92/special/powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level
http://ercim-news.ercim.eu/en92/special/powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level
https://climateaction.tech/
https://climateaction.tech/
https://github.com/Amanieu/minicov/tree/v0.3.3
https://github.com/Amanieu/minicov/tree/v0.3.3
https://doi.org/10.1109/SAMOS.2014.6893209
https://doi.org/10.1037/met0000079
https://www.usenix.org/conference/atc23/presentation/duplyakin
https://www.usenix.org/conference/atc23/presentation/duplyakin
https://climate.ec.europa.eu/climate-change/causes-climate-change_en
https://climate.ec.europa.eu/climate-change/causes-climate-change_en
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://greensoftware.foundation/articles/coding-for-a-greener-future-exploring-upcoming-events-in-green-software
https://greensoftware.foundation/articles/coding-for-a-greener-future-exploring-upcoming-events-in-green-software
https://bheisler.github.io/criterion.rs/book/index.html
https://www.helmes.com/sustainable-software-engineering
https://www.helmes.com/sustainable-software-engineering
https://sustainableict.ieee.org/
https://sustainableict.ieee.org/
https://doi.org/10.1109/MASCOTS.2005.18
https://doi.org/10.1109/MASCOTS.2005.18
https://www.iea.org/energy-system/transport/aviation

52 Bibliography

Laaber, C., Basmaci, M., & Salza, P. (2021). Predicting unstable software benchmarks using static
source code features. Empirical Software Engineering, 26. https://doi.org/10.1007/s10664-
021-09996-y

Li, C., Ding, C., & Shen, K. (2007). Quantifying the cost of context switch. Proceedings of the 2007
workshop on Experimental computer science, 2—es.

Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella, C., & Gruss, D. (2021). Platypus:
Software-based power side-channel attacks on x86. 2021 IEEE Symposium on Security and
Privacy (SP), 355-371.

Maritz, J. S., & Jarrett, R. G. (1978). A note on estimating the variance of the sample median. Journal
of the American Statistical Association, 73(361), 194—196. https://doi.org/10.1080/01621459.
1978.10480027

Mesa-Martinez, F. J., Brown, M., Nayfach-Battilana, J., & Renau, J. (2008). Measuring power and tem-
perature from real processors. 2008 IEEE International Symposium on Parallel and Distributed
Processing, 1-5. https://doi.org/10.1109/IPDPS.2008.4536423

Noureddine, A., Bourdon, A., Rouvoy, R., & Seinturier, L. (2012). Runtime monitoring of software energy
hotspots. https://doi.org/10.1145/2351676.2351699

Ournani, Z., Rouvoy, R., Rust, P., & Penhoat, J. (2020). On reducing the energy consumption of soft-
ware: From hurdles to requirements. https://doi.org/10.1145/3382494.3410678

Perf(1) - linux manual page. (2022). https://man7.org/linux/man-pages/man1/perf.1.htmi

Randomized block design. (2008). In The concise encyclopedia of statistics (pp. 447—448). Springer
New York. https://doi.org/10.1007/978-0-387-32833-1_344

Rohou, E., & Smith, M. D. (1999). Dynamically managing processor temperature and power. 2nd Work-
shop on Feedback-Directed Optimization (FDO-2).

Rozite, V. (2023). Data Centres and Data Transmission Networks. International Energy Agency. Re-
trieved January 10, 2024, from https://www.iea.org/energy-system/buildings/data-centres-
and-data-transmission-networks

Rust Language Team. (n.d.). Rust symbol name mangling. Retrieved February 12, 2024, from https:
[Irust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html

Scheuner, J., & Leitner, P. (2018). Estimating cloud application performance based on micro-benchmark
profiling. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), 90-97.
https://doi.org/10.1109/CLOUD.2018.00019

The Rand Project Developers. (2024). Thread_rng - rust documentation. https://docs.rs/rand/latest/
rand/fn.thread_rng.html

The Rust Project Developers. (2024a). Hashmap - rust standard library documentation. https://doc.rust-
lang.org/std/collections/struct. HashMap.html

The Rust Project Developers. (2024b). The cfg Attribute - Rust Language Reference. https://doc.rust-
lang.org/reference/conditional-compilation.html#the-cfg-attribute

Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the cl common language effect
size statistics of mcgraw and wong. Journal of Educational and Behavioral Statistics, 25(2),
101-132.

Wang, Y., Nortershauser, D., Le Masson, S., et al. (2023). Potential effects on server power metering
and modeling. Wireless Networks, 29, 1077—1084. https://doi.org/10.1007/s11276-018-1882-1

Yuki, T., & Rajopadhye, S. (2014). Folklore confirmed: Compiling for speed = compiling for energy.
Languages and Compilers for Parallel Computing, 169—184. https://doi.org/10.1007/978-3-
319-09967-5_10

https://doi.org/10.1007/s10664-021-09996-y
https://doi.org/10.1007/s10664-021-09996-y
https://doi.org/10.1080/01621459.1978.10480027
https://doi.org/10.1080/01621459.1978.10480027
https://doi.org/10.1109/IPDPS.2008.4536423
https://doi.org/10.1145/2351676.2351699
https://doi.org/10.1145/3382494.3410678
https://man7.org/linux/man-pages/man1/perf.1.html
https://doi.org/10.1007/978-0-387-32833-1_344
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html
https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html
https://doi.org/10.1109/CLOUD.2018.00019
https://docs.rs/rand/latest/rand/fn.thread_rng.html
https://docs.rs/rand/latest/rand/fn.thread_rng.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/reference/conditional-compilation.html#the-cfg-attribute
https://doc.rust-lang.org/reference/conditional-compilation.html#the-cfg-attribute
https://doi.org/10.1007/s11276-018-1882-1
https://doi.org/10.1007/978-3-319-09967-5_10
https://doi.org/10.1007/978-3-319-09967-5_10

	Introduction
	Research Questions
	Stable Software
	What are (likely) characteristics of unstable software?

	Background
	Related works
	Temperature and energy consumption
	Harrell-Davis median
	Language features
	Measuring of energy consumption
	Randomised Multiple Interleaved Trials

	Technical Background
	Rust
	Benchmarking and regression detection
	Model Specific Registers

	Methodology
	Environment
	Criterion Benchmarking Framework
	Project selection
	Experiment control
	Listing benchmarks
	Compiling benchmarks
	Running benchmarks

	Reducing noise
	Randomized Multiple Interleaved Trials
	Fixed frequency
	Limiting used cores

	Measurement methods
	perf
	Criterion Measurement plugin

	Collecting code features
	LLVM Source-based Code Coverage
	Standard Library Coverage
	Source Code Feature Extraction
	Counting Instructions

	Baseline
	Data processing
	Calculating energy per execution
	Sample selection
	Calculating relative variability

	Random Forest Models

	Results
	RQ 1.1 - Is software energy consumption generally stable?
	RQ 1.2 - How long should you measure for a stable result?
	RQ 1.3 - What part of instability can be attributed to noise?
	RQ 2.1 - Does powersaving mode affect energy stability?
	RQ 2.2 - Does the number of instructions correlate with stability?
	RQ 2.3 - What code features could make software unstable?
	Manual investigation
	Feature importance

	Discussion
	RQ 1.1 – Is energy consumption stable between two random independent measurements?
	RQ 1.2 – How long should you measure for a stable result?
	RQ 1.3 – What part of instability can be attributed to noise?
	RQ 2.1 – Does powersaving mode affect energy stability?
	RQ 2.2 - Does the number of instructions correlate with stability?
	 RQ 2.3 - What code features could make software unstable?
	Threats
	Benchmark randomisation order
	Sampling mode
	Measuring accuracy
	Experimental setup vs. code in production
	Security Threats

	Conclusion
	Project List
	Code Snippets
	rdmsr performance tests
	Setting MSR read permissions
	Baseline benchmarks

	Full plots

