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Abstract

Model Order Reduction is an important tool to solve dynamical problems in a short amount of time,
which would otherwise seem computationally infeasible. General reduction techniques for nonlinear
systems require a full solution run in order to construct a reduced order model. Such models are optimal
only for the given input (load). This makes such techniques computationally expensive on their own. In
the context of thin-walled structural dynamics based on finite elements and characterized by geometric
nonlinearities, this work has studied and developed techniques for effective reduction without the need
of a full solution run. By taking into account the nature of nonlinearities, the work progressed in two
different directions. In the first case, a new nonlinear mapping (quadratic manifold) based reduction
technique is proposed. This uses tensors to make the reduced order model thus produced, highly compact
and effective - both in terms of accuracy and speed. The speed-ups in this case are shown to increase
exponentially with the full system size. The other case addresses the field of hyper-reduction. Novel
ways to construct training vectors required for ECSW (a recently introduced method in the field) are
proposed here. These training vectors generally come from a full solution run but the new method
proposes the use of quadratic manifold for training set generation. This leads to negligible offline costs
and is shown to be very effective. All techniques have been tested on a range of examples, and the
results support consistent and desirable conlusions - in terms of both speed and accuracy.
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Preface

Mathematical and computational modelling plays a pivotal role in modern engineering research - whether
in making predictions better, faster and/or optimizing existing designs. I envision myself working at
this boundary between engineering and mathematics and thus opted to pursue education in both the
disciplines. This work is a part of a double degree in Mechanical Engineering and Applied Mathematics.
It addresses an issue of practical and engineering significance at heart. At mechanical engineering, novel
techniques were proposed to address the issue by extension of existing techniques in a mathematically
intuitive manner. After considerable efforts in implementation of these ideas, the results thus obtained
showed great potential. But in order to take further steps, one needs to know the limits of applicability
of these new ideas, how they would compare to the existing state of the art methods which are well-
established in the mathematical community, and finally how effective these techniques would be in
achieving their goal if they’re tested on problems of general size. This is where mathematics came into
the picture, helped in addressing these questions, and resulted in some even newer ideas (which proved
to be even better than the original ones in some sense). The work had to be limited at some point but
the scope could not be.

Both departments have made their distinct contributions in shaping this work and it is formally given
the weightage of 60 ECTS. However, it should still be seen as a whole since the ideas from both the
sides produced a much amalgamated outcome. It is for this reason that the work was not split into two
separate reports, and efforts have been made to report the findings in the most coherent way possible.
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1
Introduction

Background
The size of finite element (FE ) models used in industrial and research applications is steadily growing over
the past decades. Although Moore’s law shows the trends of increasing ability of computer architecture
for handling problems of larger size more efficiently, still the stringent requirements of a more detailed
and complex analysis surpass these trends. Nonetheless, this increase in computational power and
maturity of the commercial FEM packages has also led to an increased interest in non-linear behaviour
of structures even during the early stages of design. This leads to FE models repeatedly being solved to
optimize or test various load cases. However, the repeated solution in time of large non-linear systems of
equations to obtain the static and dynamic behaviour of a general structure, is still a computationally
heavy task. The need of reducing the number degrees of freedom of a given model (Model Order
Reduction) is thus of great importance. Efficient reduced order models are very much in need during
the early design phase when the designer is typically faced with “what if” questions during analysis or
when, in some cases, optimization routines are used to generate the best design.

1.1. General summary of existing methods
Model Order reduction (MOR) refers to reduction in the number of unknowns in a large model to
facilitate faster solution. MOR for large nonlinear structural dynamic systems is a topic of ongoing
research. Literature is replete with techniques for MOR. One particular class of structures which are very
attractive for use in the aircraft/ defence industry,especially due to their load carrying mechanism, is the
thin-walled structures . These are characterized by the so called geometric nonlinearities (Section 2.2)
which are triggered by even small out of plane displacements of the structure and is of much practical
importance. The material however, tends to remain in the linear range (where by Hooke’s law is
still applicable). Many approximation theories have been developed to efficiently model kinematics
causing the geometric nonlinearities in thin walled structures [1]. One of such models is used in the
Finite-Elements context.

MOR for linear systems is well established. Techniques such as modal superposition, modal acceleration,
Guyan reduction, dynamic substructuring, component mode synthesis such as Craig-Bamption method,
Rubin’s method etc. are all very successful methods for linear structural dynamics [2]. Reduced Order
Models (ROMs) are generally characterized by projecting the large system of equations onto a smaller
subspace (constant or variable) along with a mapping (which could be nonlinear) from a high dimensional
space of solution to a lower dimensional space of reduced unknowns.

For nonlinear systems, there are largely two class of reduction techniques: the ones that require the
full solution in order to generate a ROM and the others which exploit the nature of nonlinearities to
quickly predict the solution, without the knowledge of the full solution. Techniques such as Proper
Orthogonal Decomposition (POD) come under the first category. Though the ROMs produced using
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2 1. Introduction

such methods are generally applicable for a particular loading case in the given time span, they are very
versatile with respect to nonlinearities and find use especially in running optimization routines on large
systems. Projection of the equations can be done onto a Reduced Order Basis (ROB) carefully chosen
offline by taking into account the nature of nonlinearities and type of loading (without the knowledge of
solution), a ROB iteratively updated by monitoring the residual, or a ROB whose variation is known
a priori. All these techniques fall under latter of the categories. Here the ROB is typically formed to
capture the nonlinear behaviour by looking into the structure of nonlinearities, and is problem dependent.
An example would be, augmenting the linear vibration mode basis with modal derivatives to capture
nonlinearities. Such methods are very problem specific but can be used for a variety of load cases (in
the right range) and don’t require the calculation of the full solution beforehand.

The evaluation of nonlinearity at each time step and projection thereafter is a costly affair. Discrete
Empirical Interpolation Method (DEIM)[3], its variant UDEIM [4] and ECSW [5] attempt to alleviate
these problems by evaluating and interpolating the nonlinearity (or projected nonlinearity in case
of ECSW) on a carefully chosen set of nodes (or elements) . They fall under the class of so-called
Hyper-reduction [6] techniques. Typically these methods require training vectors which come from the
full solution and might be thought of as methods in the first category, but these training sets could also
come from a reduced solution using a second category method, in which case hyper-reduction can result
in huge speed up factors.

1.2. Research Outline
This research mainly focusses on the finite element based Model Order Reduction of thin-walled structures
under certain kinematic assumptions (Section 2.2). Most of the existing reduction techniques for nonlinear
dynamical systems involve the solution of full systems first. This requirement of a full solution run can
be computationally expensive, or even unaffordable at a preliminary design stage when a variety of load
scenarios, geometric layouts, material choices need to be explored. Each of these cases would need a
time integration of its own, which is undesirable. Thus, the research attempts to find answer to the
following basic research question:

What are suitable techniques for Model Order Reduction of Dynamics of thin-walled structures character-
ized by geometrical nonlinearities without the need of a full solution run ?

This work starts with the review of Galerkin projection and the use of Vibration Modes (VMs) and
Modal Derivatives (MDs) to compose a constant reduction basis which is shown to be effective [7, 8]
for reduction of nonlinear systems excited by narrow spectrum loading (Section 3.3). Then it moves
towards formulation of new techniques for Optimal selection of Modal Derivatives cheaply (Section 3.3.2)
which finds use in reducing the basis size. This size tends to increase quadratically with the number of
vibration modes used for calculating the modal derivatives.

Traditional methods in MOR (like POD, MDs) suffer from being based on linear models. In the more
recent past, many new methods have been developed in the field of nonlinear dimensionality reduction,
also called manifold learning, which has become a hot topic of research [9, 10]. In the context of using
VMs in reduced order modelling and augmenting the basis with MDs to capture nonlinear response, a
Taylor expansion based nonlinear mapping is proposed here which inherently reduces the number of
unknowns for reduced modelling.

As mentioned earlier, reduction methods mainly aim to reduce time integration cost of large nonlinear
systems. This is generally done by avoiding large linear system solves which need to be performed
during iterative solution of nonlinear algebraic equations during each time step. These large systems are
avoided done by introduction of a mapping onto a smaller subspace and then projecting onto a suitable
subspace to obtain a smaller set of equations. But the linear system solve is not the only expensive task
duing nonlinear time integration. Evaluation of nonlinearity and projection are also heavy tasks. The
geometric nonlinearities studied in the current context are polynomial (up to cubic) in nature and in
such a case the linear as well nonlinear projection based techniques can be implemented using tensors.
The reduced system of nonlinear equations, corresponding residual and its Jacobian can be directly
reproduced using tensors, without the need of first evaluation of their full counterparts though mapping
and then projection onto the reduction basis. This makes the system highly compact by eliminating the
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need to touch the physical space for evaluation of nonlinearity during time integration. Hence it can
lead to huge speed-up factors but this comes with an extra cost of evaluation of these tensors offline.
This work involves such tensor implementations as well (Sections 3.3.3 and 3.4.1). This leads to the
following research sub-question

How effective is the tensor framework in case of polynomial nonlinearities for model order reduction of
nonlinear structural dynamics ?

In a more general setting (when nonlinearities may not be polynomial), tensors would not be of much
help. Then the hyper-reduction class of techniques, which try to approximate the role of tensors in
some sense by cheap evaluation of the nonlinearities at only selected locations in physical domain, find
use. Traditionally, these methods require a full solution run to generate training sets. This leads to
huge speed-up factors during time integration but they disguise enormous offline costs. Along with
implementation of such hyper-reduction techniques, this work proposes new methods for very cheap
construction of training vectors for use in a finite element based hyper-reduction technique (ECSW)
(Section 4.3). This aims to provide the answer to the following research sub-question.

Can the hyper-reduction techniques be effectively used for model order reduction of nonlinear structural
dynamical systems without the need of a full solution run ?

Finally, all the proposed reduction techniques are applied on thin walled structure examples and results
are compared (Chapter 5). Three structures are considered with different types of excitation to invoke
the nonlinearities under consideration. The first two structures (Sections 5.1 and 5.2) are simple,
characterized by a small number of Degrees of Freedom (DOFs) and of academic interest. The final
example is that of a more industrial and relatively complex structure characterized by realistically large
number of DOFs. This example provides a platform for fair comparison of the reduction techniques
where the merits and demerits of each can be debated. Chapter 6 discusses the complexity of operations
and savings in computational time that can be expected from a system of general size when a given
technique for reduction is used on it. It is remarkable that this leads to more qualitative conclusions
which would be completely missed if results from merely a few applications are studied.

1.3. Notation
A major part of this work involves the use of tensors which is relevant due to the polynomial nature of
nonlinearities. Tensors are multidimensional array objects. Apart from the famous Einstein summation
convention which is very handy for compact notation of tensors and addresses elements of tensors using
indices, another notation is proposed. This (bold) notation addresses the tensor as a whole instead of a
particular of its elements using too many indices which can sometimes be confusing for an inexperienced
user of Einstein convention. It also tends to be more compact as the order of tensors increases.

Bold Notation

� In quite the usual manner, the bold alphabets in lower case represent a vector (a first order tensor)
and those in upper case represent a Matrix (a second order tensor).

� This notation is extended to higher order tensors by introducing a left subscript which denotes
the order of the tensor for the tensors having order higher than 2. Scalars are represented in a
non-bold font.

� Example : a ∈ R is a scalar, a ∈ Rm represents a vector, A ∈ Rm×n represents a second order
tensors and 3A ∈ Rm×n×p represents a third order tensor.

� Note that a similar notation is used in literature whereby the order of the tensors is indicated by
the number of wiggles

Indicial Notation

� In the Indicial notation, an element of a tensor is addressed using indices which are placed on
the right subscript e.g. ai refers to the ith element of a, Aij represents the element in the ith
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component of first dimension and jth component of the second dimension of A, Aijk represents
the corresponding element of 3A.

� Note that the number of indices in the right subscript indicates the order of the tensor in the
indicial notation. Hence the number in the left subscript of the Bold notation is not necessary in
the Indicial notation.

Apart from that, the superscripts (both left and right) are used either to differentiate two symbols or as
an exponent (only right).The left superscript is generally used only when it is numerical so as to avoid
confusion of it being an exponent.

Dot Product / Contraction

� For vectors the usual notion of dot product holds whereby a · b = aTb. More generally, a dot
product leads to contraction (reduction of dimensions in the resulting tensor). This is extended
to tensors to allow for a contraction of mth dimension of a tensor(say pA) with nth dimension of
another tensor (say qB) using operation (•) ·mn (•) as follows

(p−1)+(q−1)C = pA ·mn qB (1.1)

This notation is also compatible with the tool [11] used for implementation of tensors in this work.
It can be noticed that this operation takes away one dimension each from pA and qB resulting
in a tensor of order (p− 1) + (q − 1). Also, for this operation, pA and qB should have the same
number of elements in the mth and nth dimension respectively (just like a usual dot product can
be performed on vectors of same length). In the indicial notation Equation (1.1) is

3P = 3Q ·21 4R (1.2)

⇐⇒ PIJKLM =
∑
i

QIiJRiKLM (1.3)

In the Einstein summation convention, the summation is implied over repeated indices in a term1.
So Equation (1.3) becomes

PIJKLM = QIiJRiKLM (1.4)

Einstein summation convention is always assumed hereafter unless explicitly specified.

� (•) ·n (•) would mean that one of the operating tensors is first order (i.e a vector) which is being
contracted with the nth dimension of the other tensor e.g.

3D = 3E ·2 b (1.5)
⇐⇒ DIJ = EIiJbi (1.6)

� (•) · (•) for tensors simply represents the contraction of the last dimension of first tensor with the
first dimension of the second tensor. Then c = A · b for a matrix A and a vector b of suitable
dimensions, is nothing but the matrix-vector product Ab (or cI = AIibi using Einstein convention)

5F = 3G · 4H (1.7)
⇐⇒ FIJKLM = GIJiHiKLM (1.8)

c = a · b (1.9)

⇐⇒ c =
∑
i

aibi = aibi (1.10)

� The (•) : (•) operation represents contraction over two dimensions i.e. summation over two indices.
By default, the last two dimensions of the first tensor are contracted with the first two dimensions

1Further details about tensors and Einstein convention can be found in for e.g. [12]
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of the second tensor. If A ∈ Rm×m and B ∈ Rm×m are second order tensors and 3C ∈ Rn×m×m
is a third order tensor, then A : B returns a scalar and 3C : B returns a vector:

c = A : B =
m∑
i=1

m∑
j=1

AijBij ⇐⇒ AijBij , (1.11)

a = 3C : B, (1.12)

⇐⇒ aI = (3C : B)I =
m∑
i=1

m∑
j=1

CIijBij = CIijBij (1.13)

� The (•) : (•) operation can also be escalated to (•)...(•) and so on in case of higher order tensors.

d = 3K...3L = KijkLijk, (1.14)
3M = 4N ... 5S, (1.15)

⇐⇒ MIJK = NIijkBijkJK (1.16)

� In this work, a free index is denoted by alphabet in upper case and a summation (or dummy)
index is denoted in lower case.

Dyadic product/Tensor Product

� The kronecker or dyadic product is denoted by the operation (•) ⊗ (•). (q ⊗ q) signifies the
matrix(second order tensor) qqT .

(q ⊗ q)IJ = qIqJ ∀I, J ∈ {1, . . . ,m} (1.17)

� Not just vectors but the Kronecker product is applicable for tensors as well and the dyadic product
of two tensors of orders p and q respectively, results in a tensor of order p+ q. For, e.g.

9T = 4U⊗ 3V⊗W (1.18)
⇐⇒ TIJKLMNPQR = UIJKLVMNPWQR (1.19)

Note that both tensor and dot products are not commutative in general since the resulting tensors
can have dimensions which are permuted with respect to each other, thereby making them different.
Special cases which make them commutative are when the result of such operations is a scalar and/or
symmetries are involved in the arguments. These concepts and notations have been used primarily in
Sections 3.3.3 and 3.4.1, and expressions have been written in both notations for clarity.





2
Nonlinear Finite Element

formulation

This chapter considers the formulation of the finite element method in the context of thin walled
structures. These structures are characterized by the so called ’shell’ elements. Thin shells as structural
elements occupy a leadership position in engineering and, in particular, in civil, mechanical, architectural,
aeronautical, and marine engineering due to various mechanical advantages [1]. As possible for any
general structure (continuum), here the continuous momentum balance partial differential equations
(PDEs) are discretized using finite elements. The result is a large system of nonlinear equations for
simulating system response to loading. First the governing equations are presented, then the finite
elements are formulated for thin walled structures.

2.1. Equilibrium and Weak Form
The balance of momentum for a body V with surface boundary S being acted upon by body forces b
(such as gravity) and surface traction t, is given by (See for e.g. [12])∫

V

ρü dV =
∫
V

ρb dV +
∫
S

t dS (2.1)

ρ being the mass density and ˙(•) denoting time derivative. Using the stress tensor σ, Equation (2.1)
can be written as ∫

V

ρü dV =
∫
V

ρb dV +
∫
S

σ · n dS (2.2)

Applying Gauß’ divergence1 theorem,∫
V

(∇ · σ + ρb− ρü) dV = 0 (2.3)

Since this balance should be applicable for any arbitrary V , the following strong form of governing
equations can be obtained.

∇ · σ + ρb− ρü = 0 (2.4)

Due to the symmetry of the stress tensor σ [12], only 6 components are needed and the Voigt notation
can be used to represent the tensor as a vector [13]. Then the strong form in Equation (2.4) can be
rewritten as

LTσ + ρb = ρü, (2.5)
1A generalised notion of divergence has been used here (∇ ·σ), which is extended to tensor fields from the well known case
of vector fields. See e.g. [12].

7
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where

σ =


σxx
σyy
σzz
σxy
σyz
σzx

 LT =


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x .



The weak form can be obtained by projecting Equation (2.5) to an admissible virtual displacement field
δu and integrating over the domain V , resulting in the principle of virtual work as follows∫

V

δuT
(
LTσ + ρb− ρü

)
dV = 0. (2.6)

With prescribed boundary conditions

σn = t on Snatural

u = up, δu = 0 on Sessential

such that Snatural ∪ Sessential = S and Snatural ∩ Sessential = ∅, and the initial conditions

u(t0) = u0 in V

u̇(t0) = u̇0 in V,

and using integration by parts on the first term of Equation (2.6) and subsequently applying Gauß’
divergence theorem yields the weak form∫

V

(
δuT ρü + (Lδu)Tσ

)
dV =

∫
V

δuT ρb dV +
∫
S

δuT t dS, (2.7)

where Lδu represents the gradient : ∇δu 2. Equation (2.7) is also known as the principle of virtual work
in literature, with LHS representing the virtual work done by inertial and internal forces, and the RHS
representing the virtual work by the external forces. In a quasi-static case, the time derivatives (inertial
effects) disappear and the principle of virtual work is written as

δWint = δWext, (2.8)

with δWint =
∫
V

(Lδu)Tσ dV, and (2.9)

δWext =
∫
V

δuT ρb dV +
∫
S

δuT t dS. (2.10)

Note that the strain tensor ε is energetically conjugate to the Cauchy stress σ and must satisfy

δWint =
∫
V

δεTσ dV, (2.11)

and thus it follows that δu = δε. The weak form can then also be written as∫
V

(
δuT ρü + δεTσ

)
dV =

∫
V

δuT ρb dV +
∫
S

δuT t dS. (2.12)

Up to this point, the formulation is completely general. In a displacement based formulation, we use
the nodal displacements as fundamental unknowns, and approximate the displacement field inside an
element as follows

ue = H(ξ)ae (2.13)
2A generalised notion of gradient (∇δu) has been used here. The operation is extented to vector fields from the well
known case of scalars. See e.g. [12]
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where H(ξ) are the interpolation (shape) functions, Ne is the number of elemental DOFs, ξ can be the
isoparametric general coordinates and ae are the unknown coefficients for the interpolation functions at
element level. These elemental unknowns are related to the global nodal unknowns as

ae = Zea, (2.14)

where Ze ∈ R3Ne×n is typically known for every element by the topology of the structure (also sometimes
referred to as the assembly operator), n being the number of global degrees of freedom. Then the
following semi discrete equations can be extracted from the weak form Equation (2.7) (taking into
account that it is applicable for any arbitrary admissible displacement δu)

Mä = fext − fint, (2.15)

where

M =
ne∑
e=1

ZTe
∫
Ve

ρHTH dV︸ ︷︷ ︸
Me

Ze, (2.16)

fext =
ne∑
e=1

ZTe
(∫

Ve

ρHTb dV +
∫
Se

HT t dS
)
, and (2.17)

fint =
ne∑
e=1

ZTe
∫
Ve

(LH)T︸ ︷︷ ︸
BT

σ dV. (2.18)

Till this point, no assumption on material behavior has been made. The role of geometrical nonlinearities
shall be shown next.

2.2. Geometric Nonlinearities and Von-Karman kinematics
As stated before, the thin walled structures are characterised by geometric nonlinearities due to finite,
out of plane displacements while the material still stays in the linear range. Then, a linear constitutive
relation exists between the stresses and strains.

σ = Dε (2.19)
(2.20)

For the Green Lagrange strain definition [12], the strain is composed of linear and quadratic components
in ∇u (ε = 1

2 (∇uT +∇u +∇uT · ∇u)). These quadratic components constitute the so called geometric
nonlinearities. Geometric nonlinearities in the most general form make the equations cumbersome to
implement, and may not provide the best results (e.g. in context of postbuckling curvature [14]). In the
context of thin walled structures, scientist have continuously developed approximate theories to capture
nonlinear behavior. In 1850, Kirchhoff developed the linear plate bending theory in which he stated two
basic independent assumptions (commonly referred to as the "Kirchhoff’s hypothesis") where by the the
deflection of the mid-plane is small compared with the thickness of the plate (w ≤ 0.2t) and sections
which are straight and normal to mid-plane before bending remain so after bending also.This resulted in
reduction of 3D plate problem into 2D one (See for e.g. [1]).

The Kirchhoff’s linear theory ignores strains in the mid-surface of the plate and corresponding in-plane
stresses are neglected. However, if the magnitude of out of plane displacement increases beyond a certain
level (w ≥ 0.3t), the mid-surface starts stretching and producing in-plane stresses (membrane forces). As
the |w/t| ratio increases, the membrane action increases and as |w/t| ≈ 1, the membrane action becomes
comparable to that of bending beyond which it predominates bending. Thus, while constructing large
deflection plate theory, the assumption of absence of membrane deformations is dropped [1].

Different kinematic models result in shell theories of varying degrees of accuracy to capture nonlinear
behavior of plates. Generally, large deflection theories assume that deflections can be comparable to the
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plate thickness but still relatively smaller than other dimensions. Large displacement theory of thin
plates and shells is based on the Von-Karman kinematic model in which terms u,2x, v,2y are assumed to
be negligible. This completely neglects the nonlinear in-plane rotation terms which could be important
for assembly of flat plates or curved shells if not flat plates. Tiso [14] showed a way to simplify the
Green-Lagrange strain tensor which captures the in-plane nonlinear effects for plates effectively (in the
context of perturbation expansion for post buckling analysis)

εx = u,x +1
2(v,2x +w,2x ),

εy = v,y +1
2(u,2y +w,2y ),

εxy = 1
2(v,x +u,y ) + 1

2(w,x w,y ).

(2.21)

2.3. Shell Finite Elements
For thin plates/arches, shell elements are used to model the structure. Considerable savings in computer
time can be gained by resorting to shell elements because a depth (thickness) integration is done
directly instead of numerical integration in 3D, thereby reducing the degrees of freedom. The resulting
formulation employs the membrane strain (εl) and the curvature (χ) along with the corresponding stress
resultants, N and M as shown in [13].

Tiso [14] implemented a triangular 3-noded flat shell element based on the material stiffness matrix for
the membrane and bending element, formulated by Allman in [15] and [16] respectively. This formulation
shall be used in this work. The element degrees of freedom (or generalized displacements) are defined as

ae = [ae1 ae2 ae3], with (2.22)
aei = [ui vi wi θxi

θyi
θzi

] ∀i ∈ {1, 2, 3}, (2.23)

where θ represents the rotational degree of freedom about the subscripted axis at node i of the element
e. The nonlinear strain displacement relation within an element is written as

εe = BLae + 1
2BNL(ae)ae, (2.24)

such that BL is nothing but LH and BNL(u) is linear in u. Following the details given in [14], the
element level internal force as given in Appendix A.1 can be obtained. It can be seen that this force has
upto third order contribution of displacement unknowns.



3
Model Order Reduction

After the spatial discretization of the governing PDEs using finite elements as shown in the previous
chapter, a system of second order ODEs is obtained which can be written in the form of following IVP

Mü(t) + Cu̇(t) + f(u(t)) = g(t)
u(t0) = u0

u̇(t0) = v0,

(3.1)

where the solution u(t) ∈ Rn is a high dimensional generalised displacement vector, M ∈ Rn×n is the
mass matrix, C ∈ Rn×n is the damping matrix, f(u) : Rn 7→ Rn is the nonlinear internal force and
g(t) ∈ Rn is the time dependent external load vector. Note that the damping term Cu̇ was not shown
while describing the finite element formulation. Only the nonlinear elastic internal forces were considered
there. In general, structural damping is characterized by such a linear damping term. These equations
are time discretized using suitable time integration scheme (to be explained later) resulting in high
dimensional fully discrete equations which are very expensive to solve. Model order reduction aims to
reduce dimension of the model to reduce solution time.

3.1. Galerkin Projection
In structural dynamics especially for narrow spectrum loading, the response of high dimensional system
is (approximately) contained in a low dimensional subspace (say V). The solution can be written as
a linear combination of vectors spanning the subspace which reduces the number of unknowns to the
number of vectors in subspace. These vectors form a basis (ROB) for V. In projection based MOR,
displacement field u is projected onto a suitable ROB V of time independent vectors as:

V = [v1 v2 . . .vm], vi ∈ Rn ∀ i ∈ {1, 2, . . . ,m}
u(t) ≈ Vq(t) V ∈ Rn×m, q(t) ∈ Rm

where q(t) is the new time dependent vector of unknowns which has sizem� n. Introducing this mapping
creates an approximation to the exact solution and when substituted in the governing Equation (3.1)
results in a residual error r

MVq̈(t) + CVq̇(t) + f(Vq(t)) + r(t) = g(t) (3.2)

The residual is then constrained to be orthogonal to a subspace (T ) spanned by the basis T ∈ Rn×m :

TT r(t) = 0 (3.3)

Such a projection of the equations where T 6= V leads the so called Petrov-Galerkin projection where
one obtains the reduced set of equations

TTMVq̈(t) + TTCVq̇(t) + TT f(Vq(t)) = TTg(t) (3.4)

11
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But if the projection basis is taken to be the same as the mapping basis i.e. T = V, it leads to the
Bubnov-Galerkin or simply the Galerkin Projection.

VTMV︸ ︷︷ ︸
M̃

q̈(t) + VTCV︸ ︷︷ ︸
C̃

q̇(t) + VT f(Vq(t))︸ ︷︷ ︸
f̃(q(t))

= VTg(t), (3.5)

where M̃, C̃ ∈ Rm×m are the reduced mass and damping matrices respectively. Sometimes the nonlinear
internal force f(u) is explicitly broken in linear and nonlinear contributions, to obtain a reduced stiffness
matrix as well.

VTMV︸ ︷︷ ︸
M̃

q̈(t) + VTCV︸ ︷︷ ︸
C̃

q̇(t) + VTKV︸ ︷︷ ︸
K̃(q(t))

q(t) + VT fnl(Vq(t)) = VTg(t), (3.6)

It is easy to see that the nonlinearity evaluation fnl(Vq(t) and the tangent stiffness K assembly need
to be performed at each iteration during time integration of these equations. The sparse assembly of
these matrices (or vectors) is a significant cost and redundant especially when all that is needed is the
reduced version of these matrices (or vectors). This can be done in an efficient manner as follows and is
referred to as the regular approach in this work.

f̃(q) = VT f(Vq) =
ne∑
e=1

VT
e fe(Veq), (3.7)

K̃(q) = VTK(Vq)V =
ne∑
e=1

VT
e Ke(Veq)Ve, (3.8)

where fe(ue) ∈ RNe and Ke(ue)RNe×Ne are the contributions of the element e towards the vector
f(u) and the matrix K(u) respectively, and Ve is the restriction of V to the rows indexed by DOFs
corresponding to element e which contains Ne DOFs.

The choice of projection basis V is very critical in determining the accuracy of the reduced solution.
The size of the basis is important in determining the speed-up in computation time.

3.2. POD
Proper Orthogonal Decomposition(POD) is a very effective method to construct a low dimensional
subspace. The method is known by many names such as Karhunen Loeve Transform (KLT) in digital
signal processing, Principal Component Analysis (PCA) in statistics or the more familiar linear algebra
term - Singular Value Decomposition (SVD). Essentially, if the full nonlinear response of a system
is known for a given timespan, then a low dimensional subspace in which the solution lies, can be
constructed by taking an ensemble of solution vectors at different time instants and choosing the most
significant singular vectors of the ensemble after doing an SVD.

Let U = [u1 u2 . . .uns
] ∈ Rn×ns be the ensemble of snapshots of rank r(< n) which is obtained from

the full solution. A lower dimensional basis V = [v1 v2 . . .vm] ∈ Rn×m containing m� ns orthogonal
vectors which ’best’ span the vectors in this ensemble can be obtained by the solution to the following
minimization problem.

min
vi∈Rn

ns∑
j=1

∥∥∥∥∥uj −
m∑
i=1

(uTj vi)vi

∥∥∥∥∥
2

2

(3.9)

This is a least squares problem and the vectors in V are nothing but the left singular vectors of U
(eigenvectors of UUT ). The following SVD problem can be solved.

U = AΣBT A = [a1 a2 . . .an] ∈ Rn×n, B ∈ Rns×ns

Σ =


σ2

1 ∅
. . .

σ2
r

∅ ∅

 ∈ Rn×ns , σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r > 0

(3.10)
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The vectors in the reduction basis of V can be obtained by the selection of first m < r column vectors
from A. The singular values (σ2

1 , . . . ,σ
2
r) of U give represent the relative importance of corresponding

vectors of A in forming the ROB V. It can be shown that

ns∑
j=1

∥∥∥∥∥uj −
m∑
i=1

(uTj ai)ai

∥∥∥∥∥
2

2

=
r∑

i=m+1
σ2
i (3.11)

Thus POD gives an important tool to select the most significant vectors for construction of ROB to
be used during Galerkin projection. POD is a very versatile method applicable applicable for general
nonlinear problems. However, one of the disadvantages of such a ROB is that it is applicable only for a
solution which is characteristic of the applied loading and a new basis would be required to take into
account other types of loading.
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3.3. Linear Manifold
Versatility of POD or hyper-reduction (DEIM/ECSW) kind methods (as would be discussed in Chapter 4)
is quite large since they’re independent of the nature of non-linearities involved in the system. However,
one of the disadvantages of these methods (at least when applied in the conventional way) is the need
for training snapshots of solution vectors which are obtained from a full non-linear run. One could argue
that it is pointless to form a ROM for a system whose full solution is available. Nonetheless, such ROMs
are still useful for running optimization routines for a given load (or similar) load case.

One of the question that arises then is that if it’s possible to exploit the structure of nonlinearities
underlying in the governing equations to obtain a ROM without the need of a full nonlinear run. It
would be interesting if such a ROM could accurately provide response for different load cases which are
in the range of applicability of the underlying theory (Von-Karman Kinematics in this case).

Vibration Modes: It is well known that for a linear system, such as,

Mÿ(t) + Ky(t) = g(t), (3.12)
y(0) = y0 (3.13)
ẏ(0) = v0 (3.14)

the system response can be written as a linear combination of constant eigenvectors(also referred to as
the eigenmodes or Vibration modes in the structural dynamics context ) which form a basis of Rn as
follows.

y(t) =
n∑
i=1

φiqi(t) (3.15)

where the eigenmodes φi ∈ Rn are found by solution to the generalized eigenvalue problem

(K− ω2
iM)φi = 0, (3.16)

and ω2
i is the eigenvalue (or eigenfrequency squared). This concept of expressing the solution y(t) in

terms of a basis of eigenvectors is referred to as the principle of linear modal superposition. However, if
one is considering the slowly varying dynamics of the system, then it can be shown that the response
can be very accurately approximated by a few low frequency modes and a modal truncation can be
obtained [2].

y(t) ≈
m∑
i=1

φiqi(t) = Φq(t), (3.17)

where Φ ∈ Rn×m, q(t) = [q1(t) q2(t) · · · qm(t)]T ∈ Rm,m � n. Thus in doing so, we introduce a
mapping y : Rn 7−→ Rm such that y = y(q) =Φq. Since m� n, this reduces the number of unknowns
in the system and an effective ROM is obtained for linear systems. The time dependency in variables
omitted for clarity reasons from here onwards.

Modal Derivatives: When nonlinearities are present such as in

Mü + Cu̇ + f(u) = g(t) (3.18)

then a linearized system might me constructed around the equilibrium position (u = ueq := 0) to obtain,

Mü + Cu̇ + ∂f(u)
∂u

∣∣∣∣
u=0︸ ︷︷ ︸

Tangent Stiffness K(u=0)

u = g(t). (3.19)

This linearised system can be a good approximation to the original system in Equation (3.18) for small
displacements from the linearisation point. The deviation from linearisation point can then be expressed
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using a modal superposition 1

u(q) : Rn 7→ Rm (3.20)
u ≈ ueq + Φ|eqq, (3.21)

where Φeq is the matrix containing the relevant eigenmodes evaluated at the equilibrium/linearisation
point 2. However, when nonlinear effects start increasing, the corresponding basis of eigenmodes is not
effective any more due to departure from linear behaviour. Equation (3.21) can be assumed to address
only first order effects in the nonlinear regime such that ∂u

∂q

∣∣∣
eq

= Φ|eq. Higher order effects can then be
considered as shown in [7] and [8] and the lower frequency modes (or the basis Φ) can be assumed to be
dependent on displacement along other modes also and

u ≈ ueq + Φ(q)q (3.22)

such that
∂u(q)
∂q = Φ(q) (3.23)

Assuming such an implicit dependence on modal amplitudes q, a Taylor expansion around equilibrium
position i.e. q = 0 can be applied,

u(q) =��
�*

ueq
u(0) + ∂u

∂q

∣∣∣∣
q=0
· q + 1

2!
∂2u
∂q∂q

∣∣∣∣
q=0

: (q ⊗ q) + . . . (3.24)

The partial derivatives of u(q) can be computed from Equation (3.23).

∂u
∂qj

= φj (3.25)

=⇒ ∂2u
∂qi∂qj

= ∂φj
∂qi

=: θij (3.26)

where θij ∈ Rn, and evaluating these at equilibrium position means

∂u
∂qj

∣∣∣∣
q=0

= φj |eq (3.27)

∂2u
∂qi∂qj

∣∣∣∣
q=0

= ∂φj
∂qi

∣∣∣∣
eq

= θij |eq (3.28)

Then from Equations (3.24) and (3.27) , its easy to see that the Vibration Modes (VMs) contribute
towards the linear part of solution (u) and Equations (3.24) and (3.28) imply that the Modal Derivatives
(MDs) (i.e. ∂φi

∂qj
) capture the second order non-linear effects in q . Physically, the MD ∂φi

∂qj
represent the

change in the VM φi corresponding to a displacement given in the direction of VM φj (i.e. u = qjφj).
Thus as suggested in [7], the MDs form a nice augmentation of the reduction basis and the augmented
basis can be formed as

Ψ = [φ1|eq φ2|eq . . . φm|eq ... θij |eq . . . ] (3.29)

It is easy to see from Equation (3.26) that θij = θji. Thus only unique components of θij should be
used in augmenting the basis of VMs and a basis Ψ ∈ Rn×M can be obtained, where M = m+ m(m+1)

2 .

1Note that for damped linear systems with low damping or modal/Rayleigh damping as explained in [2], the eigenvectors
for an undamped system still form a good basis for linear modal superposition. Such damping is very popular in structural
dynamics and shall be used here.

2eigenmodes become configuration dependent for a nonlinear system since the elastic stiffness matrix (K) which is the
Jacobian of the nonlinear internal force, becomes configuration dependent in general
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3.3.1. Calculation of Modal Derivatives
The calculation of MDs is not trivial and is done by differentiating Equation (3.16) w.r.t. modal
amplitude qj (assuming M to be a constant mass matrix)

(K− ω2
iM)∂φi

∂qj
+
(
∂K
∂qj
− ∂ω2

i

∂qj
M
)
φi = 0 (3.30)

This equation is then evaluated at equilibrium (i.e. q = 0).

(K|eq − ω2
i |eqM) ∂φi

∂qj

∣∣∣∣
eq

+
(
∂K
∂qj

∣∣∣∣
eq

− ∂ω2
i

∂qj

∣∣∣∣
eq

M
)
φi|eq = 0 (3.31)

Here the tangent stiffness matrix derivative w.r.t. qj is obtained by giving the structure a displacement
in the direction of φj i.e.

∂K
∂qj

∣∣∣∣
eq

= ∂K(u = qjφj))
∂qj

∣∣∣∣
qj=0

(3.32)

It is easy to see that ∂φi

∂qj

∣∣∣
eq

cannot be trivially obtained from Equation (3.31) since the coefficient matrix
is singular by definition (Equation (3.16)) . This singularity can be dealt by imposing a normalization
condition for the eigenmodes. [17] covers an extensive account of different solution techniques and
introduces a generalised approach to find eigenvector derivatives for different kinds of normalizations.
The popular mass normalization has been adopted here i.e.

φTi Mφi = 1 ∀i ∈ {1, 2, . . . ,m}. (3.33)

Differentiating the above equation w.r.t. the modal amplitude results in

φTi M∂φi
∂qj

+ φTi MT ∂φi
∂qj

= 0 ∀i, j ∈ {1, 2, . . . ,m}. (3.34)

Exploiting the symmetry of M and subsequent evaluation at the equilibrium position results in the
following relation

φTi |eqM
∂φi
∂qj

∣∣∣∣
eq

= 0 ∀i, j ∈ {1, 2, . . . ,m}. (3.35)

The following direct approach to calculate the MDs can then be formulated using Equations (3.31)
and (3.35) [K|eq − ω2

i |eqM]n×n − [Mφi|eq]n×1

− [Mφi|eq]T1×n 01×1


 ∂φi

∂qj

∣∣∣
eq

∂ω2
i

∂qj

∣∣∣
eq

 =

− ∂K
∂qj

∣∣∣∣
eq

φi|eq

0


The above non-singular system can be used to solve for modal derivatives. This approach is not very
attractive since it destroys the band structure of the original system. Nonetheless, it is rigorous and
accurate and has been used here. Apart from this direct approach, the Nelson’s method [18] is also
popular in literature which preserves the band structure of the matrices.
Though the above mentioned techniques are exact ways to calculate the modal derivatives, they’re
costly since a high dimensional matrix needs to be factorized. [8] discusses a way to approximate these
derivatives by neglecting the inertial contribution simply as

K|eq
∂φi
∂qj

∣∣∣∣
eq

= − ∂K
∂qj

∣∣∣∣
eq

φi|eq (3.36)
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(c) φ1, ω1 = 29815.1 rad/sec

Figure 3.1: The first three vibration modes (VMs) for a rectangular plate simply supported on two opposite sides.

20

15

10

dφ / dq
11

 calculated using Nelson method

5

00

5

10

15

20

25

30

35

40

(a) ∂φ1
∂q1

20

15

10

5

dφ / dq
12

 calculated using Nelson method

0
0

5

10

15

20

25

30

35

40

(b) ∂φ1
∂q2

20

15

10

dφ / dq
13

 calculated using Nelson method

5

00

5

10

15

20

25

30

35

40

(c) ∂φ1
∂q3

20

15

10

5

dφ / dq
21

 calculated using Nelson method

0
0

5

10

15

20

25

30

35

40

(d) ∂φ2
∂q1

20

15

10

dφ / dq
22

 calculated using Nelson method

5

00

5

10

15

20

25

30

35

40

(e) ∂φ2
∂q2

20

15

10

dφ / dq
23

 calculated using Nelson method

5

0
0

5

10

15

20

25

30

35

40

(f) ∂φ2
∂q3

20

15

10

dφ / dq
31

 calculated using Nelson method

5

00

5

10

15

20

25

30

35

40

(g) ∂φ3
∂q1

20

15

10

dφ / dq
32

 calculated using Nelson method

5

0
0

5

10

15

20

25

30

35

40

(h) ∂φ3
∂q2

20

15

10

dφ / dq
33

 calculated using Nelson method

5

00

5

10

15

20

25

30

35

40

(i) ∂φ3
∂q3

Figure 3.2: The modal derivatives (MDs) for the plate example calculated using the Nelson’s method [18]. The VMs are
out-of-plane modes, featuring bending and torsion. For this flat plate application, the MDs are in-plane only. Note the
symmetry of the MDs, i.e ∂φi

∂qj
= ∂φj

∂qi
.
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Figure 3.3: The modal derivatives (MDs) for the plate example calculated using the Direct approach. The VMs are
out-of-plane modes, featuring bending and torsion. For this flat plate application, the MDs are in-plane only. Note the
symmetry of the MDs, i.e ∂φi

∂qj
= ∂φj

∂qi
.



3.3. Linear Manifold 19

20

15

10

dφ / dq
11

 calculated using Finite Differences

5

00

5

10

15

20

25

30

35

40

(a) ∂φ1
∂q1

20

15

10

dφ / dq
12

 calculated using Finite Differences

5

0
0

5

10

15

20

25

30

35

40

(b) ∂φ1
∂q2

20

15

10

dφ / dq
13

 calculated using Finite Differences

5

00

5

10

15

20

25

30

35

40

(c) ∂φ1
∂q3

20

15

10

dφ / dq
21

 calculated using Finite Differences

5

0
0

5

10

15

20

25

30

35

40

(d) ∂φ2
∂q1

20

15

10

dφ / dq
22

 calculated using Finite Differences

5

00

5

10

15

20

25

30

35

40

(e) ∂φ2
∂q2

20

15

10

dφ / dq
23

 calculated using Finite Differences

5

0
0

5

10

15

20

25

30

35

40

(f) ∂φ2
∂q3

20

15

10

dφ / dq
31

 calculated using Finite Differences

5

00

5

10

15

20

25

30

35

40

(g) ∂φ3
∂q1

20

15

10

dφ / dq
32

 calculated using Finite Differences

5

0
0

5

10

15

20

25

30

35

40

(h) ∂φ3
∂q2

20

15

10

dφ / dq
33

 calculated using Finite Differences

5

00

5

10

15

20

25

30

35

40

(i) ∂φ3
∂q3

Figure 3.4: The modal derivatives (MDs) for the plate example calculated using the Finite differences. The VMs are
out-of-plane modes, featuring bending and torsion. For this flat plate application, the MDs are in-plane only. Note the
symmetry of the MDs, i.e ∂φi

∂qj
= ∂φj

∂qi
.
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3.3.2. Optimal MDs basis selection
As seen above, the MDs capture the essential second order non-linearities of the system. But if all the
MDs corresponding to a given set of VMs, are used in order to augment the basis, then the size of the
basis increases with O(m2). This is undesirable and in practise only a few MDs could be selected to
capture the nonlinear response of the system. Apart from already existing ones, different methods of
basis selection are proposed here.

Maximum Modal Interaction (MMI)

Drawn from [19], the basic idea of this method is to calculate the modal interaction between different
modes during a linear run and use the MDs corresponding to the maximum interaction in augmenting
the basis. A weightage matrix W can be made to, rank the MDs in order of preference

Wij = |max
t∈T

ηi(t)ηj(t)|, (3.37)

where Wij represents the weightage of the MD θij and ηi(t) represents the time varying amplitude of
the ith mode in linear modal superposition run in time span T . This weightage matrix is obviously
cheap to obtain. By looking at the maximum of the product of two modal amplitudes, one obtains the
interaction between the two modes in the sense that if the relevant weightage becomes high, then the
corresponding nonlinearity may get triggered and that MD becomes important.

Modal Virtual Work (MVW)

The basic idea is to compute the Virtual work done by the nonlinear elastic forces from one mode upon
another mode. The maximum amplitudes generated by Linear modal superposition are multiplied by
the corresponding modes while calculating the internal forces. These projection are collected in the
matrix P ∈ RM×M . Then the MD weightage is collected in the matrix W,

tmax = arg max
t∈T
|ηj(t))|, (3.38)

Pij = |φTi Fint(ηj(tmax)φj)|, (3.39)

W = 1
2(P + PT ), (3.40)

where W is made symmetric using the projection matrix P. Physically, this also represents the interaction
between two modes, thereby establishing importance of the corresponding MD.

3.3.3. An Approach using Tensors
The benefit of solving a reduced set of nonlinear equations (Equation (3.4)) obtained after Galerkin
projection of the full system on to a ROB generally lies only in the time saved in the solution of a
much smaller linearised system at every NR iteration during time integration at each step. However, as
remarked earlier the evaluation of nonlinearity and subsequent projection onto a ROB is also a very
expensive task. The hyper-reduction methods which cheaply approximate this step as discussed in
the previous sections, indeed are very useful in this regard. Exact evaluation of nonlinearity and the
tangent stiffness (Jacobian) at every NR iteration is done by the assembly of element level contributions
in the physical domain which is a costly procedure. Hyper-reduction tries to minimize this cost by
evaluation of the nonlinearity (or the projected nonlinearity) at a few elements(or points). But in case
of a polynomial nonlinearity, the projection can be evaluated cheaply and exactly using tensors which
can be precomputed offline.

Using tensors, the computation of projected residual doesn’t involve evaluation of nonlinearity in the
physical domain. In this manner, the online time for time integration is independent of the size of model
and depends only on the size of the ROB V. While the ROM obtained using hyper-reduction requires
an offline cost for every load case, the offline cost related to the Tensorial approach is one time and only
dependent on the ROB and the physical model.The use of tensors for offline evaluation of polynomial
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nonlinearity not new [20]. In the present context, the nonlinearity is cubic in displacements and can be
expressed in the form of the following tensor relationship

fI = KIiui + 2KIijuiuj + 3KIijkuiujuk. (3.41)

or
f(u) = K · u + 2

3K : (u⊗ u) + 3
4K...(u⊗ u⊗ u) (3.42)

Upon substitution of this internal force into Equation (3.4), the following can be obtained

M̃q̈ + C̃q̇ + VT (K ·Vq + 2
3K : (Vq ⊗Vq) + 3

4K...(Vq ⊗Vq ⊗Vq)) = VTg(t). (3.43)

Grouping the constant terms, together into tensors, the following system of reduced equations can be
formed.

M̃q̈ + C̃q̇ + K̃ · q + 2
3K̃ : (q ⊗ q) + 3

4K̃...(q ⊗ q ⊗ q)) = VTg(t), (3.44)

where

M̃ = VTMV ∈ Rm×m (3.45)
C̃ = VTCV ∈ Rm×m (3.46)
K̃ = VTKV ∈ Rm×m (3.47)

2
3K̃ = ((VT · 23K) ·21 V) ·21 V ∈ Rm×m×m (3.48)
3
4K̃ = (((VT · 34K) ·21 V) ·21 V) ·21 V ∈ Rm×m×m×m (3.49)

or

M̃IJ = ViIMijVjJ (3.50)
C̃IJ = ViICijVjJ (3.51)
K̃IJ = ViIKijVjJ (3.52)

2K̃IJK = ViI
2KijkVjJVkK (3.53)

3K̃IJKL = ViI
2KijklVjJVkKVlL (3.54)

Jacobian for Time Integration

The reduced set of equations (3.44) is solved using implicit Newmark scheme resulting in a nonlinear
set of algebraic equations which is iteratively solved using NR method. In doing so, the Jacobian can
always be assembled in the reduced space (q) using tensors instead of the physical space as follows.

r(q, q̇, q̈) = M̃q̈ + C̃q̇ + K̃ · q + 2
3K̃ : (q ⊗ q) + 3

4K̃...(q ⊗ q ⊗ q))−VTg(t) = 0 (3.55)

Using Newmark’s scheme, the Jacobian can be calculated as follows:

S(q) = dr
dq = ∂r

∂q︸︷︷︸
Kt

+ γ

βh

∂r
∂q̇︸︷︷︸
Ct

+ 1
βh2

∂r
∂q̈︸︷︷︸
Mt

(3.56)

where,
Mt = M̃,

Ct = C̃,
Kt
IJ = K̃IJ +

(2K̃IJj + 2K̃IjJ

)
qj +

(3K̃IJij + 3K̃IiJj + 3K̃IijJ

)
qiqj

(3.57)
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Implementation of Tensors

Here, the reduced matrices M̃, C̃, K̃, 2
3K̃ and 3

4K̃ can be efficiently computed by summing over the
element level contributions of the full tensors such that

fe(ue) = Ke · ue + 2
3Ke : (ue ⊗ ue) + 3

4Ke...(ue ⊗ ue ⊗ ue) (3.58)

M̃ =
ne∑
e=1

(Ve)TMeVe (3.59)

C̃ =
ne∑
e=1

(Ve)TCeVe (3.60)

K̃ =
ne∑
e=1

(Ve)TKeVe (3.61)

2
3K̃ =

ne∑
e=1

(((Ve)T · 23Ke) ·21 Ve) ·21 Ve (3.62)

3
4K̃ =

ne∑
e=1

((((Ve)T · 34Ke) ·21 Ve) ·21 Ve) ·21 Ve (3.63)

It is worth mentioning that tensors calculated in this manner do not require the full tensors 2
3K ∈ Rn×n×n

and 3
4K ∈ Rn×n×n×n which are sparse but can be huge in size depending upon the system. Due to

element level summation, the amount of offline time required to calculate 2
3K̃ and 3

4K̃ scales linearly
with the total number of elements. See Appendix A.1 for formulation of element tensors 2

3Ke and 3
4Ke.
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3.4. Quadratic Manifold
As explained above, the linear modal superposition is a good technique to obtain the reduced solution
of a linear system. However when the nonlinearities become significant, the modal basis needs to be
updated to capture the nonlinearities. Solution of an eigenvalue problem online can be a very expensive
task, sometimes even leaving the idea of such a reduction redundant. However, second order effects in
nonlinearities can be captured by enriching the basis with MDs as discussed in the previous section.
The idea was based on a truncated Taylor expansion around equilibrium position. Since the size of the
basis can significantly increased upon inclusion of MDs, techniques for selection of a few important MDs
in a cheap manner was studied (MMI) and proposed (MVW) in Section 3.3.2.

During reduction, one essentially introduces a mapping u(q) : Rn 7→ RM , M being the number of free
coordinates in a reduced manifold in an n - dimensional space. So far, this mapping was linear in the
above reduction methods and thus required more degrees of freedom to capture the nonlinear response.
However, a nonlinear (such as quadratic) mapping can also be proposed which has the same no. DOFs
as that in linear modal superposition. A quadratic manifolds can be proposed by including terms up to
second order in the Taylor expansion 3.24.

A quadratic Mapping would then be given by

u = u(q) := Φ · q + 1
2Ω : (q ⊗ q), (3.64)

Notation: Here q ∈ Rm, Φ ∈ Rn×m, Ω ∈ Rn×m×m is a third order tensor and the Kronecker
or dyadic product (q ⊗ q) signifies the matrix(second order tensor) qqT . The (•) : (•) operation
represents contraction i.e. summation over two indices which results in a first order tensor (a vector)
in this case. More clearly, the Equation (3.64) can be written using indices as

uI =
m∑
i=1

ΦIiqi + 1
2

m∑
i=1

m∑
j=1

ΩIijqiqj ∀I ∈ {1, . . . , n} (3.65)

The three indices in Ω are characteristic of a third order tensor, 2 indices in Φ that of a second
order tensor (matrix) and the single index in u of a first order tensor (vector). Zeroth order tensor
are index-less scalars. (See notation in Section 1.3)

and using the indicial notation with Einstein summation convention, the mapping 3.64 can be written as

uI = ΦIiqi + 1
2ΩIijqiqj . (3.66)

The velocity and acceleration are then expressed as functions of the modal coordinates qI as

u̇I = ΦIiq̇i + 1
2ΩIij q̇iqj + 1

2ΩIij q̇jqi (3.67)

= ΦIiq̇i + 1
2(ΩIij + ΩIji)︸ ︷︷ ︸

ΘIij

q̇iqj (3.68)

or
u̇ = Φ · q̇ + Θ : (q̇ ⊗ q), (3.69)

and
üI = ΦIiq̈i + ΘIij q̈iqj + ΘIij q̇iq̇j , (3.70)

or
ü = Φ · q̈ + Θ : (q̈ ⊗ q) + Θ : (q̇ ⊗ q̇). (3.71)
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This mapping is then inserted into the governing Equation (3.1) to obtain

Mü(q, q̇, q̈) + Cu̇(q, q̇) + f(u(q)) = g(t). (3.72)

The set of n equations in 3.72 can then be projected onto a tangent basis to ensure that the error of
mapping is orthogonal to this tangent subspace. The subspace tangent to the quadratic manifold would
be defined as

∂UIJ = ∂uI
∂qJ

= ΦIJ + 1
2ΩIJjqj + 1

2ΩIiJqi (3.73)

= ΦIJ + ΘIJjqj (3.74)

or simply,
∂U(q)︸ ︷︷ ︸
∈Rn×m

= ∂u(q)
∂q = Φ + Θ · q. (3.75)

Then the reduced equations can be obtained as

∂UT (Mü(q, q̇, q̈) + Cu̇(q, q̇) + f(u(q))) = ∂UTg(t). (3.76)

Now Equation (3.76) is a set of m equations in m unknowns i.e. q ∈ Rm. In indicial notation, the Ith
equation can be written as

∂UiI(Mij üj + Cij u̇j + fi) = ∂UiIgi(t). (3.77)

This reduced system of equations can be solved using time integration schemes. Generally implicit
Newmark scheme is used in structural dynamics. This leads to a system of nonlinear algebraic equations
at every time step, which needs to be solved iteratively (usually using Newton-Raphson iterations).

Newmark Scheme for nonlinear systems: Explicit schemes tend to impose a very low CFL
limit for time step size which is necessarily required for numerical stability of the scheme. Even
though the system is simpler in explicit case, it still becomes extremely slow due to the inhibitive
timestep size. An implicit scheme is thus preferred over an explicit one. For a general system of
nonlinear equations of the form

Mä + Cȧ + f(a) = g(t), (3.78)

one can rewrite them in terms of displacements at time level tk+1 with the introduction of a residual
vector

r(a, ȧ, ä) = Mä + Cȧ + f(a)− g = 0. (3.79)

For time step size h (tk+1 = tk + h), accelerations velocities and displacements are related using
Newmark’s method in the following manner (see e.g. [2]).

ȧk+1 = ȧk + (1− γ)häk + γäk+1,

ak+1 = ak + hȧk + h2(1
2 − β)äk + h2βäk+1,

(3.80)

where the γ and β are constant parameters associated with the quadrature scheme. The time
integration relations are then inverted in the following manner.

äk+1 = 1
βh2 (ak+1 − a∗k+1),

ȧk+1 = ȧ∗k+1 + γ

βh
(ak+1 − a∗k+1),

(3.81)
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where the predictors a∗k+1 and ȧ∗k+1 are obtained by setting äk+1 = 0 in Equation (3.80) :

ȧ∗k+1 = ȧk + (1− γ)häk,

a∗k+1 = ak + hȧk + h2(1
2 − β)äk.

(3.82)

Equations (3.81) and (3.82) can be substituted in Equation (3.79) to nonlinear residual equation
only in terms of ak+1

r(ak+1) = 0. (3.83)

The nonlinear algebraic equations is solved using linearisation. If apk+1 as an approximation to
ak+1 resulting from iteration k. Then the following system can be iteratively solved to determine
increment ∆ap at each iteration.

r(ap+1
k+1) ≈ r(apk+1) + dr

da

∣∣∣∣
ap

k+1

∆ap = 0, (3.84)

S(a) = dr
da = ∂r

∂a + ∂r
∂ȧ

∂ȧ
∂a + ∂r

∂ä
∂ä
∂a , (3.85)

where making use of relations 3.81,

∂ä
∂a = 1

βh2 I, ∂ȧ
∂a = γ

βh
I. (3.86)

For a general nonlinear system, the evaluation of the tangent stiffness and internal forces required during
formation of the Jacobian (S) and the residual (r) respectively, is done by element level assembly during
each iteration. As discussed earlier, this is an expensive online cost apart from the linear system solution.
The linear system solution cost is mitigated by projection onto a ROB but then the mapping, nonlinearity
evaluation and projection become dominant in taking the CPU time during the time integration as the
system becomes larger. An effective way to deal with this is the evaluation of nonlinearities offline using
tensors, thereby making time integration independent of the system size.

3.4.1. An Approach using Tensors
The system under consideration employing the Von Karman kinematic model, has up to cubic geometric
nonlinearities which makes the internal force vector a polynomial in terms of physical displacements.
Since the nonlinearities are cubic in nature, tensors up to 4th order are required to express those
nonlinearities as follows

fI = KIiui + 2KIijuiuj + 3KIijkuiujuk, (3.87)
or

f(u) = K · u + 2
3K : (u⊗ u) + 3

4K...(u⊗ u⊗ u), (3.88)
where K ∈ Rn×n, 2

3K ∈ Rn×n×n and 3
4K ∈ Rn×n×n×n. See Appendix A.1 for element level implementa-

tion of 2
3K and 3

4K.

Notation: The left subscript refers to the order of tensor for tensors with order higher than two.
For e.g. 4K is a fourth order tensor.

The projection of the linear, quadratic and cubic term can be considered separately.

The inertial forces f inI = MIiü projected onto the tangential subspace ∂UIJ are written as

f̂ inI = ∂UiIMij üj = (ΦiI + ΘiIjqj)Mik(Φklq̈l + Θklpq̈lqp + Θklpq̇lq̇p). (3.89)
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The forces 3.89 can be simplified as

f̂ inI = q̈I +MΘΘ
Iijk(qiq̈jqk + qiq̇j q̇k) +MΦΘ

Iij (q̈iqj + q̇iq̇j) +MΘΦ
Iij q̈jqi, (3.90)

or

f̂ in = ∂UTMü = q̈+3MMMΦΘ : (q̈⊗q+ q̇⊗ q̇)+3MMMΘΦ : (q⊗ q̈)+4MMMΘΘ...(q⊗ q̈⊗q+q⊗ q̇⊗ q̇), (3.91)

where
MΦΦ

IJ = ΦiIMijΦjJ ,
MΦΘ

IJK = ΦiIMijΘjJK ,
MΘΦ

IJK = ΘiIJMijΦjK ,
MΘΘ

IJKL = ΘiIJMijΘjKL.

(3.92)

A unit modal mass normalization for ΦIJ has been adopted here i.e.MΦΦ
IJ = δIJ , where δIJ is the

Kroncker-delta and represents the Identity matrix. The nonlinear constraint (3.64) between the modal
and the physical coordinates introduce state dependent inertial forces. This is formally analogous to
multi-body dynamics, where the nonlinear constraints introduced by joints give rise to state dependent
inertial forces. Likewise, the reduced damping forces f̂damI ∈ Rm are

f̂damI = ∂UiICij u̇j = (ΦiI + ΘiIjqj)Cik(Φklq̇l + Θklpq̇lqp). (3.93)

and upon simplification, we get:

f̂damI = CΦΦ
Ii q̇i + CΦΘ

Iij q̇iqj + CΘΦ
Iij qiq̇j + CΘΘ

Iijkqiq̇jqk, (3.94)

or
f̂dam = ∂UTCu̇ = CCCΦΦ · q̇ + 3CCCΦΘ : (q̇ ⊗ q) + 3CCCΘΦ(q ⊗ q̇) + 4CCCΘΘ...(q ⊗ q̇ ⊗ q), (3.95)

where
CΦΦ
IJ = ΦiICijΦjJ ,
CΦΘ
IJK = ΦiICijΘjJK ,
CΘΦ
IJK = ΘiIJCijΦjK ,
CΘΘ
IJKL = ΘiIJCijΘjKL.

(3.96)

Analogously, the projected linear elastic forces f̂ linI ∈ Rm are written as

f̂ linI = ∂UiIKijuj = (ΦiI + ΘiIjqj)Kik(Φklql + 1
2Ωklpqlqp), (3.97)

and, collecting the tensorial quantities, we obtain

f̂ linI = ω2
IqI + 1

2K
ΘΩ
Iijkqiqjqk + 1

2K
ΦΩ
Iij qiqj +KΘΦ

Iij qiqj , (3.98)

or

f̂ lin = ∂UTKu = Λ2 · q + 1
2 4KKKΘΩ...(q ⊗ q ⊗ q) + 1

2 3KKKΦΩ : (q ⊗ q) + 3KKKΘΦ : (q ⊗ q), (3.99)

with
KΦΩ
IJK = ΦiIKlin

ij ΩjJK ,
KΘΦ
IJK = ΘiIJK

lin
ij ΦjK ,

KΘΩ
IJKL = ΘiIJK

lin
ij ΩjKL.

(3.100)

The unit mass normalization on the VMs results in the diagonal matrix Λ2, where ω2
i is the ith eigenvalue

of Equation (3.16).

The projected quadratic forces are written as:

2f̂I = (ΦiI + ΘiIjqj)2Kikl(Φkpqp + 1
2Ωkprqpqr)(Φlsqs + 1

2Ωlstqsqt), (3.101)
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or
2f̂ = ∂UT

[2
3K : (u⊗ u)

]
, (3.102)

Likewise, the reduced cubic force term is given by

3f̂I = (ΦiI + ΘiIjqj)3Kiklp(Φkuqu + 1
2Ωkuvquqv)(Φlwqw + 1

2Ωlwzqwqz)(Φpxqx + 1
2Ωpxyqxqy), (3.103)

or
3f̂ = ∂UT

[3
4K : (u⊗ u⊗ u)

]
, (3.104)

The external force g(t) can also be projected to the variable basis as follows:

f̂extI = ∂UiIgi(t) = ΦiIgi + ΘiIjqjpi (3.105)

or
f̂ext = ∂UTg(t) = ΦTg(t) + (Θ · q)T · g(t) (3.106)

Finally, The projected equations of motion can be then rewritten as

q̈I +MΘΘ
Iijk(qiq̈jqk + qiq̇j q̇k) +MΦΘ

Iij (q̈iqj + q̇iq̇j) +MΘΦ
Iij q̈jqi+

CΦΦ
Ii q̇i + CΦΘ

Iij q̇iqj + CΦΘ
Iij qiq̇j + CΘΘ

Iijkqiq̇jqk+
ω2
IqI + 2KIijqiqj + 3KIijkqiqjqk + 4KIijklqiqjqkql+

5KIijklpqiqjqkqlqp + 6KIijklprqiqjqkqlqpqr + 7KIijklprsqiqjqkqlqpqrqs =
ΦiIpi + ΘiIjqjpi,

(3.107)

or using Equations (3.76), (3.88), (3.95), (3.99), (3.99), (3.102), (3.104) and (3.106)

f̂ in + f̂dam + f̂ lin + 2f̂ + 3f̂ = f̂ext (3.108)

inertial→ q̈ + 3MMMΦΘ : (q̈ ⊗ q + q̇ ⊗ q̇) + 3MMMΘΦ : (q ⊗ q̈) + 4MMMΘΘ...(q ⊗ q̈ ⊗ q + q ⊗ q̇ ⊗ q̇)+
damping→ CCCΦΦ · q̇ + 3CCCΦΘ : (q̇ ⊗ q) + 3CCCΘΦ : (q ⊗ q̇) + 4CCCΘΘ...(q ⊗ q̇ ⊗ q)+

elastic→ Λ2 · q + 2
3KKK : (q ⊗ q) + 3

4KKK...(q ⊗ q ⊗ q) + · · ·+ 7
8KKK....

...(q ⊗ q ⊗ q ⊗ q ⊗ q ⊗ q ⊗ q)
external→ = ΦT · g(t) + (Θ · q)T · g(t)

(3.109)
where the operators for the nonlinear elastic terms are all tensorial quantities given in Equation (3.117)
that can be computed offline

Derivation of Tensor Expressions in reduced equations: The expansion of the reduced
quadratic internal forces 3.101: is

2f̂I =ΦiI2KiklΦkpΦlsqpqs+
1
2ΦiI2KiklΦkpΩlstqpqsqt+
1
2ΦiI2KiklΩkprΦlsqpqrqs+
1
4ΦiI2KiklΩkprΩlstqpqrqsqt+

ΘiIj
2KiklΦkpΦlsqjqpqs+

1
2ΘiIj

2KiklΦkpΩlstqjqpqsqt+
1
2ΘiIj

2KiklΩkprΦlsqjqpqrqs+
1
4ΘiIj

2KiklΩkprΩlstqjqpqrqsqt.

(3.110)

The reduced quadratic forces (3.110) can be simplified to the following expression
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2f̂I =2KΦΦΦ
Iij qiqj +

(
1
2

2KΦΩΦ
Iijk + 1

2
2KΦΦΩ

Iijk + 2KΘΦΦ
Iijk

)
qiqjqk+(

1
4

2KΦΩΘ
Iijkl + 1

2
2KΘΩΦ

Iijkl + 1
2

2KΘΦΩ
Iijkl

)
qiqjqkql + 1

4
2KΘΩΩ

Ijprstqjqpqrqsqt,

(3.111)

where
2KΦΦΦ

IJK = ΦiI2KijkΦjJΦkK
2KΦΩΦ

IJKL = ΦiI2KijkΦjJΩkKL
2KΦΦΩ

IJKL = ΦiI2KijkΩjJKΦkK
2KΘΦΦ

IJKL = ΘiIJ
2KijkΦjKΦkL

2KΦΩΩ
IJKLP = ΦiI2KiklΩkJKΩlLP

2KΘΩΩ
IJKLPR = ΘiIJ

2KijkΩjKLΩkPR
2KΘΦΩ

IJKLP = ΘiIJ
2KijkΦjKΩkLP

2KΘΩΦ
IJKLP = ΘiIJ

2KijkΩjKLΦkP .

(3.112)

Likewise, expanding the cubic forces 3.103 results in

3f̂I = ΦiI3KiklpΦkuΦlwΦpxquqwqx+
1
2ΦiIK3

iklpΦkuΩlwzΦpxquqwqzqx+
1
2ΦiI3KiklpΩkuvΦlwΦpxquqvqwqx+
1
4ΦiI3KiklpΩkuvΩlwzΦpxquqvqwqzqx+
ΘiIj

3KiklpΦkuΦlwΦpxqjquqwqx+
1
2ΘiIj

3KiklpΦkuΩlwzΦpxqjquqwqzqx+
1
2ΘiIj

3KiklpΩkuvΦlwΦpxqjquqvqwqx+
1
4ΘiIj

3KiklpΩkuvΩlwzΦpxqjquqvqwqzqx+
1
2ΦiI3KiklpΦkuΦlwΩpxyquqwqxqy+
1
4ΦiI3KiklpΦkuΩlwzΩpxyquqwqzqxqy+
1
4ΦiI3KiklpΩkuvΦlwΩpxyquqvqwqxqy+
1
8ΦiI3KiklpΘkuvΩlwzΩpxyquqvqwqzqxqy+
1
2ΘiIj

3KiklpΦkuΦlwΩpxyqjquqwqxqy+
1
4ΘiIj

3KiklpΦkuΩlwzΩpxyqjquqwqzqxqy+
1
4ΘiIj

3KiklpΩkuvΦlwΩpxyqjquqvqwqxqy+
1
8ΘiIj

3KiklpΩkuvΩlwzΩpxyqjquqvqwqzqxqy.

(3.113)

The reduced cubic forces (3.113) can be simplified to the following expression
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3f̂I = 3KΦΦΦΦ
Iuwx quqwqx +

(
1
2

3KΦΦΩΦ
Iuwxz + 1

2
3KΦΩΦΦ

Iuwxz + 1
2

3KΦΦΦΩ
Iuwxz + 3KΘΦΦΦ

Iuwxz

)
quqwqxqz+(

1
4

3KΦΩΩΦ
Iuvwxz + 1

4
3KΦΩΦΩ

Iuvwxz + 1
4

3KΦΦΩΩ
Iuvwxz + 1

2
3KΘΩΦΦ

Iuvwxz + 1
2

3KΘΦΩΦ
Iuvwxz + 1

2
3KΘΦΩΦ

Iuvwxz+
)
quqvqwqxqz+(

1
4

3KΘΩΩΦ
Iuvwxzp + 1

4
3KΘΩΦΩ

Iuvwxzp + 1
4

3KΘΦΩΩ
Iuvwxzp + 1

8
3KΦΩΩΩ

Iuvwxzp

)
quqvqwqxqzqp+

1
8

3KΘΩΩΩ
Iuvwxzprquqvqwqxqzqpqr

(3.114)
where,

3KΦΦΦΦ
IJKL = ΦiI3KijklΦjJΦkKΦlL

◦ 3KΦΦΩΦ
IJKLM = ΦiI3KijklΦjJΩkKLΦlM

3KΦΩΦΦ
IJKLM = ΦiI3KijklΩjJKΦkLΦlM

◦ 3KΦΦΦΩ
IJKLM = ΦiI3KijklΦjJΦkKΩlLM

3KΘΦΦΦ
IJKLM = ΘiIJ

3KijklΦjKΦkLΦlM
? 3KΦΩΩΦ

IJKLMN = ΦiI3KijklΩjJKΩkLMΦlN
? 3KΦΩΦΩ

IJKLMN = ΦiI3KijklΩjJKΦkLΩlMN

3KΦΦΩΩ
IJKLMN = ΦiI3KijklΦjJΩkKLΩlMN

3KΘΩΦΦ
IJKLMN = ΘiIJ

3KijklΩjKLΦkMΦlN
� 3KΘΦΩΦ

IJKLMN = ΘiIJ
3KijklΦjJΩkKLΦlMN

� 3KΘΦΦΩ
IJKLMN = ΘiIJ

3KijklΦjKΦkLΩlMN

† 3KΘΩΩΦ
IJKLMNP = ΘiIJ

3KijklΩjKLΩkMNΦlP
3KΘΦΩΩ

IJKLMNP = ΘiIJ
3KijklΦjKΩkLMΩlNP

† 3KΘΩΦΩ
IJKLMNP = ΘiIJ

3KijklΩjKLΦkMΩlNP
3KΦΩΩΩ

IJKLMNP = ΦiI3KijklΩjJKΩkLMΩlNP .
3KΘΩΩΩ

IJKLMNPR = ΘiIJ
3KijklΩjKLΩkMNΩlPR.

(3.115)

Since 3KIJKL = 3KIJLK∀L,K, it is easy to see that ◦ 3
5KKKΦΦΩΦ = 3

5KKKΦΦΦΩ, ? 3
6KKKΦΩΩΦ = 3

6KKKΦΩΦΩ,
� 3

6KKKΘΦΩΦ = 3
6KKKΘΦΦΩ, † 3

7KKKΘΩΩΦ = 3
7KKKΘΩΦΩ.

Finally, the elastic term operators of Eqn. 3.107 are given by

2KIij = 2KΦΦΦ
Iij +KΘΦ

Iij + 1
2K

ΦΩ
Iij

3KIijk = 1
2K

ΘΩ
Iijk +

(
1
2

2KΦΩΦ
Iijk + 1

2
2KΦΦΩ

Iijk + 2KΘΦΦ
Iijk

)
+ 3KΦΦΦΦ

Iijk

4KIijkl =
(

1
4

2KΦΩΩ
Iijkl + 1

2
2KΘΩΦ

Iijkl + 1
2

2KΘΦΩ
Iijkl

)
+
(

1
2

3KΦΩΦΦ
Iijkl + 3KΦΦΩΦ

Iijkl + 3KΘΦΦΦ
Iijkl

)
5KIijklp = 1

4
2KΘΩΩ

Iijklp + 1
2

(
3KΦΩΩΦ

Iijklp + 1
2

3KΦΦΩΩ
Iijklp + 3KΘΩΦΦ

Iijklp + 23KΘΦΩΦ
Iijklp

)
6KIijklpr =

(
1
2

3KΘΩΩΦ
Iijklpr + 1

4
3KΘΦΩΩ

Iijklpr + 1
8

3KΦΩΩΩ
Iijklpr

)
7KIijklprs = 1

8
3KΘΩΩΩ

Iijklprs

(3.116)
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or,

2
3KKK = 2

3KKKΦΦΦ + 3KKKΘΦ + 1
2 3KKKΦΩ

3
4KKK = 1

2 4KKKΘΩ +
(

1
2

2
4KKKΦΩΦ + 1

2
2
4KKKΦΦΩ + 2

4KKKΘΦΦ
)

+ 3
4KKKΦΦΦΦ

4
5KKK =

(
1
4

2
5KKKΦΩΩ + 1

2
2
5KKKΘΩΦ + 1

2
2
5KKKΘΦΩ

)
+
(

1
2

3
5KKKΦΩΦΦ + 3

5KKKΦΦΩΦ + 3
5KKKΘΦΦΦ

)
5
6KKK = 1

4
2
6KKKΘΩΩ + 1

2

(
3
6KKKΦΩΩΦ + 1

2
3
6KKKΦΦΩΩ + 3

6KKKΘΩΦΦ + 23
6KKKΘΦΩΦ

)
6
7KKK =

(
1
2

3
7KKKΘΩΩΦ + 1

4
3
7KKKΘΦΩΩ + 1

8
3
7KKKΦΩΩΩ

)
7
8KKK = 1

8
3
8KKKΘΩΩΩ

(3.117)

Jacobian for Time Integration

The Newmark time integration can be applied to reduced equations in the tensorial form. In doing so,
the Jacobian can always be assembled in the modal space (q) using tensors instead of the physical space
like in the regular approach.

r(q, q̇, q̈) = f̂ in + f̂dam + f̂ lin + 2f̂ + 3f̂ − f̂ext = 0 (3.118)

Using Newmark’s scheme, the Jacobian can be calculated as follows:

S(q) = dr
dq = ∂r

∂q︸︷︷︸
KKKt

+ γ

βh

∂r
∂q̇︸︷︷︸
CCCt

+ 1
βh2

∂r
∂q̈︸︷︷︸
MMMt

(3.119)

where,

Mt
IJ =δIJ +MΘΘ

IiJkqiqk +MΦΘ
IJkqk +MΘΦ

IiJqi

CtIJ =MΘΘ
IiJkqiq̇k +MΘΘ

IikJqiq̇k +MΦΘ
IJk q̇k +MΦΘ

IkJ q̇k + CΦΦ
IJ + CΦΘ

IJjqj+
CΘΦ
IjJqj + CΘΘ

IjJkqjqk

= 2MΘΘ
IiJkqiq̇k + 2MΦΘ

IJkq̇k︸ ︷︷ ︸
inertial terms

+ CΦΦ
IJ + CΦΘ

IJjqj + CΘΦ
IjJqj + CΘΘ

IjJkqjqk︸ ︷︷ ︸
damping terms

KtIJ =(MΘΘ
IkjJ +MΘΘ

IJjk)q̈jqk +MΘΘ
IJjkq̇j q̇k + (MΦΘ

IiJ +MΘΦ
IJi)q̈i+

(CΦΘ
IiJ + CΘΦ

IJi)q̇i + (CΘΘ
IJjk + CΘΘ

IkjJ)q̇jqk
(δIJ)(ω2

I )︸ ︷︷ ︸
no summation

+
(2KIJj + 2KIjJ

)
qj +

(3KIJjk + 3KIjJk + 3KIjkJ
)
qjqk+

(4KIJjkl + 4KIjJkl + 4KIjkJl + 4KIjklJ
)
qjqkql+(5KIJjklm + 5KIjJklm + 5KIjkJlm + 5KIjklJm + 5KIjklmJ

)
qjqkqlqm+(6KIJjklmn + 6KIjJklmn + 6KIjkJlmn + 6KIjklJmn + 6KIjklmJn+

6KIjklmnJ
)
qjqkqlqmqn+(7KIJjklmnp + 7KIjJklmnp + 7KIjkJlmnp + 7KIjklJmnp + 7KIjklmJnp+

7KIjklmnJp + 7KIjklmnpJ
)
qjqkqlqmqnqp −ΘiIJpi



(3.120)

Implementation of Tensors

The implementation of tensors especially in a finite element setting can be done in an efficient manner
at the element level. The higher order tensors 2

3K and 3
4K (Equation (3.88)) though sparse in nature are
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still huge in size. From Equations (3.112), (3.115) and (3.116), it seems that the higher order tensors
required for the formation of reduced equations 3.107 need the full tensors 2

3K and 3
4K which would be

expensive not only in terms of time, but also memory. But in practice, they can be obtained by just
summing over the element level contributions similar to as explained in Section 3.3.3. For example the
third order tensor 2

3KKKΦΦΦ required for the calculation of 2
3KKK can be calculated at the element level as

follows

2
3KKKΦΦΦ = ((ΦT · 23K) ·Φ) ·Φ =

ne∑
e=1

(((Φe)T · 23Ke) ·21 Φe) ·21 Φe, (3.121)

where Φe ∈ RNe×m represents the restriction of the matrix Φ ∈ Rn×m to the rows indexed by the
DOFs corresponding to element e, Ne being the numbers of DOFs that e shares in the physical domain;
2
3Ke ∈ RNe×Ne×Ne represents the element level contribution of 2

3K towards the internal force such that

fe(ue) = Ke · ue + 2
3Ke : (ue ⊗ ue) + 3

4Ke...(ue ⊗ ue ⊗ ue) (3.122)

See Appendix A.1 for formulation of element tensors 2
3Ke and 3

4Ke.

3.4.2. Difference between Regular & Tensorial Approaches

The reduced equations can be concisely written as follows[
∂u(q)
∂q

]T (
Md2u(q)

dt2
+ f(u(q))

)
=
[
∂u
∂q

]T
g(t)

In the regular approach, the Jacobian for N-R iterations is approximated by projecting the Tangent
stiffness K(u) = ∂f(u)

∂u , on to the tangent subspace of the manifold as follows :

S(q) =
[
∂u(q)
∂q

]T
K(u(q))

[
∂u(q)
∂q

]
(3.123)

=
[
∂u(q)
∂q

]T
∂f(u)
∂u

∣∣∣∣
u=u(q)

[
∂u(q)
∂q

]
(3.124)

=
[
∂u(q)
∂q

]T
∂f(u(q))

∂q (3.125)

But in the tensorial approach, the Jacobian is calculated accurately as :

r(q) =
[
∂u(q)
∂q

]T (
Md2u(q)

dt2
+ f(u(q))

)
−
[
∂u
∂q

]T
g(t) = 0

S(q) = ∂r(q)
∂q

Still, if the convective terms (arising from the inertial terms in Equation (3.18)) and the external load
terms in the Jacobian are neglected, the following approximation to the Jacobian can be obtained:

S(q) = ∂

∂q

([
∂u(q)
∂q

]T
f(u(q))

)
(3.126)

It is easy to see that the two Jacobian approximations in Equations (3.125) and (3.126) are completely
different, the former being far from accurate. Using chain rule, it can be seen that it captures non-
linearities only partially compared to that in Equation (3.126).
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3.4.3. Mapping Error : Linear vs Quadratic
Upon constraining a high dimensional solution to a low dimensional subspace through a mapping (linear
or nonlinear), usually an error is generated in the reduced solution compared to the high dimensional
one. It is easy to see that this error in case of quadratic manifold would be lower bounded (not strictly)
by that in the Linear manifold for the same number of VMs used.

For a linear manifold containing VMs and all the corresponding MDs, the mapping can be written as

u(q,η) = Φq + Πη, (3.127)

where q ∈ Rm is the unknown amplitude for the VMs in Φ ∈ Rn×m, η ∈ Rm(m+1)/2 are the unknown
amplitudes for the MDs contained in the matrix Π ∈ Rn×m(m+1)/2 and for a quadratic manifold, the
mapping can be written as:

u(q) = Φq + Ξ(q)q, (3.128)

where q,Φ have the same definitions as in the linear case, but the second part is nonlinear in q instead
of being independent of it as in the linear case. Here Ξ(q) is nothing but 1

2Ω.q from Equation (3.64).
Note that Ξ(q) contains the same MDs which are present in Π. This implies that the amplitudes for
MDs becomes constrained to the values of q. This has its benefits since this mapping is based on Taylor
expansion and tries to capture the same nonlinear behavior with lesser number of unknowns but in a
more general sense it has limited the freedom to reduce the error in a larger subspace. Thus, it is safe to
say that the error generated by a linear mapping (of VMs enriched with all corresponding MDs) would
act as a lower bound for that by a quadratic mapping with same number of VMs.



4
Hyper-Reduction

Previous chapter discussed the projection based model-order reduction techniques and their implementa-
tion in the "regular" and the "tensorial" sense. One of the reasons why tensorial approach seems useful
is because the evaluation of non-linearity and Jacobian which become inhibitive for regular approach
as system size becomes bigger, can be evaluated offline using tensors and online operations become
independent of model size. The tensorial approaches on the other hand involve significant offline costs
and thus in the case of frequent basis changes (arising due to design/load change) might lose their
importance. They’re also limited in applicability to polynomial non-linearities. In this context, the
hyper-reduction class of techniques seems useful whereby the non-linearity and Jacobian evaluation is
very cheaply approximated by evaluation at only a few nodes and elements. In a broad sense, the offline
costs involved hyper-reduction are affordable except for the evaluation of training sets which might
require a full solution run. Thus, if these training sets can be made available in a cheap manner, then
it would be a very desirable balance between regular and tensorial approaches in terms of offline and
online costs.

Some recent hyper-reduction methods which are relevant in the current (finite element) have been
discussed here. Then some methods for the cheap evaluation of training sets required for these hype-
reduction methods are proposed. Thus, this chapter tries to address the latter of the two sub research
questions i.e.

Can the hyper-reduction techniques be effectively used for model order reduction of nonlinear structural
dynamical system without the need of a full solution run ?

4.1. DEIM
It is to be realised that the Galerkin projection of nonlinear term (f(u)) as in Equation (3.4), introduces
an expensive online cost. It involves two basic steps. One is the evaluation of vector valued nonlinear
function f(u) and the other is projection of the evaluated force on to the reduction basis.

fr︸︷︷︸
∈Rm

= VT︸︷︷︸
∈Rm×n

f(Vq)︸ ︷︷ ︸
∈Rn

(4.1)

The evaluation of nonlinear term doesn’t happen in the reduced space but in the physical space whereby
internal force vector has to be assembled for every element during each iteration online. Same holds
true for the tangent stiffness matrix given by the Jacobian of f(u) which is used during the iterative
solution of reduced equations.

K(u) = ∂f(u)
∂u ∈ Rn×n (4.2)

Kr(q) = VTK(Vq)V ∈ Rm×m (4.3)

33
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The Discrete Empirical Interpolation Method was proposed in [3] as an effective way to approximate the
evaluation of nonlinear vector f(u) in a speedy manner. The method reduces the computational effort
by simply evaluating the internal force at selected points of interest and interpolating the force at other
points.

The essential idea is that the nonlinear function f(u) is first projected onto a subspace spanned by a
basis D of dimension k � n that approximates the space generated by f(u). One of the choices of
the basis can be the POD basis obtained from the SVD of ensemble of nonlinear function snapshots
([f(u(t1)), . . . , f(u(tns

))]) generated from the nonlinear solution of original full system. Then this
approximation can be written as

f(u(t)) ≈ Dc(t) (4.4)

where D = [d1, . . . ,dk] ∈ Rn×k and c(t) ∈ Rk is the coefficient vector. To solve for c(t), k distinct rows
can be chosen from the overdetermined system 4.4. This can be accomplished with a boolean matrix
E = [eρ1 , . . . , eρk

] ∈ Rn×k where eρi
represents the ρthi column of the identity matrix In. If ETV is not

singular, then the system can be solved as

ET f(u(t)) = (ETD)c(t) (4.5)
=⇒ c(t) = (ETD)−1ET f(u(t)) (4.6)

From this solution, the approximation in Equation (4.4) becomes

f(u(t)) ≈ Dc(t) = D(ETD)−1︸ ︷︷ ︸
precomputed

ET f(u(t))︸ ︷︷ ︸
selective evaluation

(4.7)

The term ET f(u(t)) indicates that the nonlinear vector f(u(t)) needs to be evaluated at only a few
locations as specified by the boolean matrix ET and the term D(ETD)−1 can be computed offline
and provides the interpolation to other locations. The two basic requirements for this technique are
the reduction basis for the internal force D (which as explained above can be obtained by POD from
the SVD of nonlinear function snapshots) and the boolean matrix E which gives the sparse selection
points on which the nonlinear function has to be evaluated. This selection of points is obtained from
Algorithm 1.

Algorithm 1 DEIM point selection
Input: {di}ki=1 ⊂ Rn
Output: ρ = [ρ1, . . . , ρk]T ∈ Rk, B ∈ Rn×k

1: [|%|, ρ1] = max |d1| . max: returns maximum value in a vector followed by its location (index)
2: D = [d1], E = [eρ1 ], ρ = [ρ1]
3: for i← 2 to k do
4: Solve ETdi = (ETD)c for c
5: r = di −Dc
6: [|%|, ρi] = max |r|

7: D← [D di], E← [E eρi
], ρ←

[
ρ
ρi

]
8: end for

Inefficiencies in DEIM: DEIM application were shown in [3] for systems discretized using finite
differences and where the nonlinear function f(u) is applied component wise to the argument u i.e.
fi = fi(ui). This results in ET f(u) = f(ETu) and evaluation of f(u) at a few indices requires only as
many evaluations of the nonlinear function. In the finite element context, the DEIM is particularly
inefficient due to the fact that the nonlinear function f(u) evaluation at a few DOFs(nodes) requires it
to be evaluated at all the elements connected to the corresponding nodes. This happens because entries
in the f vector are not component wise related to those in u. In principle if all elements in a model are
connected to a single node (or DOF), then the cost of evaluation of nonlinear function at that particular
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node is the same as that of evaluating it at all the nodes. This is because the boolean matrix cannot be
brought inside the function argument i.e.

ET f(u) 6= f(ETu)︸ ︷︷ ︸
sparse evaluation

(4.8)

As also shown in [4], this can be explained with the help of the Figure 4.1. Alternative formulations for

(a) (b)

Figure 4.1: (a) shows a mapping in which f(u) is a nonlinear function which acts only component-wise on the argument u.
This makes the DEIM efficient since evaluation of f(u) at a few indices requires only as many function evaluations. (b)
shows a general nonlinear mapping where the components of f(u) could be dependent on any of the components of u.
This would make the DEIM inefficient since the evaluation of f(u) at even a few indices might require many function
evaluations.

DEIM such as Unassembled DEIM (UDEIM), Surrogate DEIM (SDEIM) and Surrogate Unassembled
DEIM (SUDEIM) were proposed in [4] which are particularly efficient in the nonlinear finite element
structural dynamics context. Here the authors propose to use the unassembled version of nonlinear
internal forces in constructing the ROB and the Boolean matrix. By using unassembled forces, the sizes
of D and E increases thereby increasing the offline cost, but the nonlinear force needs to be calculated
in only one element per column of E.
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4.2. ECSW
As mentioned earlier, the Galerkin projection of the nonlinear term f(u) as in Equation (3.4) involves
two sources of inefficiency : the evaluation of the of the nonlinear vector function and the projection
onto the subspace. The DEIM [3] (or UDEIM[4] in finite element context) is an efficient hyper-reduction
method to tackle the former of these sources of inefficiencies by cheap evaluation of nonlinearity at
selected points (or elements). However, the latter still provides room for improvement and the Energy
Conserving Sampling and Weighting (ECSW) method recently proposed in [5] is remarkable in this
context.

Unlike the other hyper-reduction techniques, the ECSW method directly approximates the projection
of residuals and/or Jacobians instead of first approximating these vectors and then projecting the
approximated nonlinear function onto the relevant subspace. Furthermore, it has been shown in [21]
that the ECSW distinguished itself through its preservation of the Lagrangian structure which leads to
numerical stability in case of second order dynamical systems. The DEIM and its variants on the other
hand have been shown to be numerically unstable also in [21].

Assuming a precomputed basis (such as a POD basis), the ECSW is applicable in the finite element
context by expressing the projected nonlinear force as sum of contributions at element level as follows.

f̂(q) = VT f(Vq) =
ne∑
e=1

VT
e fe(Veq), (4.9)

where Ve ∈ RNe×m is the restriction of the ROB V ∈ Rn×m to the rows indexed by the DOFs
corresponding to element e, ne being the total number of elements in the model, Ne being the number
of DOFs associated with element e and fe ∈ RNe is the element level internal force vector for that
element. Physically, if each column of V represents a virtual displacement, then corresponding row of
f̂(q) represents the virtual work done by the internal force. The essence of ECSW is to identify a small
set of elements E of size |E| � ne equipped with corresponding positive weights ξ? ∈ R|E| such that

f̂(q) ≈
∑
e∈E

ξeVT
e fe(Veq),

E = {e : e ∈ {1, . . . , ne}, ξ?e > 0}.
(4.10)

Thus, the ECSW aims to preserve the virtual work done by internal force on the set of vectors in
the ROB by sampling and weighting elements. The selected elements and weights are determined to
approximate virtual work over chosen training sets which generally come from full solution run(s). If
there are nt training vectors in the set with u(i) representing the ith vector, then corresponding reduced
unknowns q(i) can be easily calculated using least squares as

q(i) = (VTV)−1VTu(i), (4.11)

and element level contribution of projected internal force for each of the training vectors can be assembled
in a matrix G as follows

G =

 g11 . . . g1ne

... . . . ...
gnt1 . . . gntne

 ∈ Rmnt×ne , b =

 b1
...

bnt

 ∈ Rmnt

gie = VT
e fe(Veq(i)), bi =

ne∑
e=1

gie

(4.12)

Here bi represents the total projected internal force for the ith training vector. The set of elements and
weights can then be chosen by a sparse solution to the following problem

Γ = {ξ ∈ Rne : ‖Gξ − b‖2 ≤ τ‖b‖2, ξ ≥ 0}, (4.13)
where ξ represents a sparse vector containing the non negative weights ξ? at corresponding indices given
by E and zeros elsewhere. τ ∈ (0, 1) is a pre-defined tolerance for controlling accuracy of nonlinear
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approximation. It is easy to see that τ = 0 would result in ξ = ξ? = 1 and E = {1, 2, . . . , ne} whereby
all elements are selected. A more practical range for τ such as [0.01, 0.1] gives a possibility of a sparse
solution for ξ where |E| � ne. The optimum solution would be the one which contains least number of
non-zero elements in the vector ξ. In other words, involves the solution of a non-negative least squares
(NNLS) problem

(P1) min
ξ≥0
‖Gξ − b‖22, (4.14)

but in a sparse manner. A variant of the classical active-set NNLS algorithm [22] called sparse NNLS
(sNNLS) was proposed in [23] and has been used in formulation of ECSW, whereby instead of placing a
limit on sparsity of ξ as in sNNLS, the algorithm is tuned to reach the user defined tolerance (τ). The
algorithm is shown in Algorithm 2, where ζ ∈ Rne and ζE and GE denote respectively, the restriction
of ζ and column-wise restriction of G to the elements in the active subset E. The Z is the disjoint
inactive subset which contains the zero entries of ξ and ζ.

Algorithm 2 Sparse NNLS for ECSW
Input: G,b
Output: ξ ∈ Rne sparse, E ⊂ {1, . . . , ne}

1: E ← ∅, Z ← {1, . . . , ne}, ξ ← 0 ∈ Rne

2: while ‖Gξ − b‖2 > τ‖b‖2 do
3: µ← GT (b−Gξ)
4: [|ν|, e] = maxµ . max: returns maximum value in a vector followed by its location (index)
5: E ← E ∪ {e}, Z ← Z ← Z\{e}
6: while true do
7: ζE ← G†Eb . † represents pseudo-inverse
8: ζZ ← 0
9: if ζE > 0 then
10: ξ ← ζ
11: break
12: end if
13: η = min

k∈E
ξk/(ξk − ζk)

14: ξ ← ξ + η(ζ − ξ)
15: Z ← {i|ξi = 0}
16: E ← {1, . . . , ne}\Z
17: end while
18: end while

During the implicit time integration of reduced equations, the nonlinear set of algebraic equations
is linearised using Newton-Raphson procedure at each time step. This requires the Jacobian of the
projected internal force vector or the reduced tangent stiffness matrix. This matrix which is also a
nonlinear function of unknowns q, needs to be assembled at each element at every iteration and hence
poses high cost. But using the same technique, the reduced tangent stiffness matrix K̂(q) can be
approximated to be evaluated only at the elements in E and weighted by ξ? as follows.

K̂(q) = ∂ f̂(q)
∂q = ∂VT f(Vq)

∂q = VTK(Vq)V =
ne∑
e=1

VT
e Ke(Veq)Ve (4.15)

=⇒ K̂(q) ≈
∑
e∈E

ξ?eVT
e Ke(Veq)Ve, (4.16)

where K(u) = ∂f(u)
∂u is the Jacobian of the full internal force vector and Ke(ue) ∈ RNe×Ne denotes the

element matrix contribution of element e to the Jacobian K(u).
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4.3. Hyper-Reduction using Quadratic Manifold
The Hyper-reduction methods such as DEIM, UDEIM or ECSW are nice when it comes to achieving a
good speed up for fast computations. The only factor which makes them unfavourable is the requirement
of a full solution run which can be computationally expensive, or even unaffordable at a preliminary
design stage when a variety of load scenarios, geometric layouts, material choices need to be explored.
Each of these cases needs a time integration of its own. One of the focus areas of the research is to avoid
such prohibitive offline costs which makes the use of such hyper-reduction techniques unfavourable.

In finite element context, the ECSW has indeed emerged as a leader among the hyper-reduction methods.
ECSW requires training vectors of displacements to solve a sparse non-negative least squares problem
whereby the virtual work done by the nonlinear internal forces on the reduction basis is attempted to be
reproduced by attaching weights to selected few elements. It is desirable to not choose these training
vectors from a full nonlinear/reduced run since they are relatively expensive.

It is well known that the VMs and MDs form a nice basis to represent the nonlinear displacement field
for the range of application. Essentially, if a "smart" combination of VMs and MDs is made to obtain
the training sets so that the displacements are in the right range, then it should be able to capture
the corresponding nonlinear forces. Finally, the sNNLS algorithm (2) can be applied to find out the
elements(in a sparse sense) and corresponding weights such that the virtual work done by the training
forces on the basis is accurately approximated. This sample of elements and weights shall then be valid
for the nonlinear run in consideration and produce the projected internal forces with good accuracy,
hence returning good results.

A variety of ways in which ECSW can be used or hype-reduction are proposed below.

1. ECSW-I: Here, a POD basis(of size k) obtained by SVD of the snapshots of the reference nonlinear
solution is used as the reduction basis. For comparison purposes, the basis size k is taken to be the
same as that of linear manifold. nt training vectors are chosen from Reference nonlinear solution
snapshots at equally spaced time instants. This method would be a typical way in which the
ECSW would be used and requires the full nonlinear run.

2. ECSW-II: For the nonlinearities being considered, the Linear Manifold (LM) basis is a good
basis for reduction. This reduction basis is composed of VMs and all MDs. A reduced solution
run can then be obtained. This reduced solution is expected to be a very good approximation to
the full solution and training sets can be generated by taking nt snapshots of this reduced solution
at equal spaced intervals. The ECSW applied in this manner would attempt to reproduce the LM
reduced solution. This replaces the offline cost of evaluation of the full solution by that of the
reduced solution and should make the hyper-reduction cheaper at the expense of marginal loss of
accuracy.

3. ECSW-III: Though the reduced solution run is cheap compared to a full run, it is still expensive
compared to a hyper-reduced run or a linear run. Choosing the same LM basis as in ECSW-II, it
is proposed to obtain the training forces in the following manner:

• perform a linear modal superposition run with m modes. Generally, the corresponding modal
amplitudes would lack the in-plane components. These components are related to the bending
stretching coupling which is triggered during nonlinear behavior.

• A set of nt equally spaced training modal amplitudes q(i), i ∈ {1, . . . , nt} is chosen from the
Linear modal solution.

• The training modal amplitudes are then substituted into the mapping (3.64) to obtain physical
displacements u(q(i)). This is expected to reproduce in a very broad sense, the coupled
in-plane behavior associated to the bending already captured by modes.

• The obtained set of nt physical displacements are used as training displacements to obtain
the internal force projected onto the LM basis and apply sNNLS for sampling and weighting
of elements.

ECSW applied in this ways would lead to minimal offline cost.
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4. ECSW-IV: ECSW-III provides a very cheap method to construct training vectors by using
information obtained from a linear modal run and enriching it with the quadratic manifold. Using
the same training vectors, the basis used for reduction can be reduced in size by techniques of MD
selection proposed in Section 3.3.2. With the help of the linear modal solution already performed
for training set construction, the MD selection using MMI technique becomes extremely cheap.
Instead of the m(m+1)

2 MDs originally present in the LM basis, it is proposed to select the m most
significant MDs using MMI technique and use them alongside the m vibration modes to construct
a basis of size 2m. The training internal forces are projected onto this reduced basis at the element
and the element sampling and weighting is done using sNNLS.

The ECSW-III and ECSW-IV of the above methods are expected to be extremely cheap in terms of
offline effort and avoid the calculation of full solution to obtain training sets completely. This cheap
evaluation of training vectors using the quadratic manifold is derived from the nature of underlying
nonlinearities and is novel. It seems to be applicable in the current context. The limits of application
however need to be tested rigorously and would be a topic of further research.





5
Applications and Results

The reduction techniques are tested and compared on examples. Three models are considered, each
being a thin-walled structure with varying complexity. All structures are models using triangular shell
elements featuring 6 degrees of freedom (DOFs) per node or Ne = 18 DOFs per element. Rayleigh
damping is used as structural damping in all models 1. Due to the large size of some of the test cases
and for fair comparison between various techniques, all the run are performed on the TU-Delft Linux
cluster using a single core and 128 Gigabyte RAM.

The accuracy of the results will be compared to this reference nonlinear solutions in each of the models
and the global relative error measure mentioned in [5] shall be used, which is defined as

GRE? =

√∑
t∈S

(u?(t)− ũ?(t))T (u?(t)− ũ?(t))√∑
t∈S

u?(t)T (u?(t)
× 100% (5.1)

where the ? subscript designates the x, y or z the corresponding angles of the global reference frame,
u?(t) ∈ Rnp is the vector of ? displacements at the time t obtained from the reference nonlinear solution,
ũ?(t) ∈ Rnp is the solution based on the hyper-reduced model, and S is the set of time instants at which
error is recorded.

5.1. Flat Structures
A flat plate is simply supported on all sides is considered. The Model (henceforth referred to as Model-I)
sketch and parameters are shown in Figure 5.1.

A uniform pressure distribution is chosen normal to the plate surface as the external load. A time
varying amplitude (load factor) is used given by

g(t) = p(t)l (5.2)
p(t) = p0[sin(ωt) + sin(πωt)] (5.3)

where l is a characteristic load vector corresponding to a uniform pressure distribution which is constant
and calculated offline. Here, p(t) can be termed as the dynamic load factor which determines the time-
dependency of the external load. For a small model(in terms of number of DOFs) such as Model-I, a wide
1A modal damping assumption is used to create a so called diagonal damping matrix using weighted sum of Mass and
stiffness matrices (M and K respectively). A modal damping factor of 0.2% for first two modes is used to determine the
weights. (See [2] for details about this implementation). This low value is realistic and is chosen to make sure the VMs of
undamped system can be used in reduction

41
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Figure 5.1: Model - I: Flat plate example. The plate is L = 40 mm long, H = 20 mm wide, t = 0.8 mm thick.
The Young Modulus is E = 70 GPa, the Poisson’s ratio is ν = 0.33, and the density is ρ = 2700 Kg/mm3. All sides
are simply supported, i.e. u = v = w = 0. A uniform pressure is applied on the plate, according to the time history
p(t) = P [sin(ωt) + sin(πωt)], where P = 50 N/mm2 and ω = 2.097× 104 rad/s.

variety of loads capturing low-frequency dynamics were tested and results were obtained. Here, results
are shown for a choice of p(t) which is a combination of two harmonic signals such that the resulting
signal is not (trivially) periodic. ω is a typical loading frequency chosen as the second eigenfrequency of
the structure (in equilibrium configuration). The amplitude of loading is kept large enough to trigger
nonlinear behaviour. The magnitude of p0 is chosen such that the displacements are in the order of
thickness. This makes VK kinematics applicable and the assumption of linear elasticity of material
realistic.

The full nonlinear solution was computed by updating the Jacobian of the residual at each N-R iteration
(within every time step). No reduction is involved here and thus the linearised system solve of full size is
a costly procedure. This also involves the element level calculation and assembly of tangent-stiffness
matrix at each N-R iteration which further adds to the online cost (at least for large systems). Different
levels of mesh refinement were considered to reach an optimum number of degrees of freedom in terms
of accuracy. The resulting mesh containing 1386 DOFs and ne = 400 elements, is shown in Figure 5.1b.

The response to the dynamic loading with uniform pressure and load factor given by Equation (5.3) is
shown in Figure 5.2. For the shown timespan, the solution is computed over nh = 400 time steps of
equal size for all the techniques. The nonlinear solution was compared to the linear system solution
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Figure 5.2: Dynamic load factor and the corresponding full nonlinear solution for a flat plate simply supported on all sides
(model-I).

with stiffness matrix evaluated at equilibrium (See the comparison in Figure 5.2b). These are clearly
different indicating that the given loading is large enough to introduce nonlinear behaviour. The range
of the displacements is comparable to the thickness of the structure, thereby making the VK kinematics
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assumption applicable. This nonlinear solution is used as a reference for comparing the various reduction
techniques. All comparison plots are shown for the out of plane displacement at centroid of the structure.

5.1.1. Linear Manifold
Model-I (flat plate) is a rather simplistic example and linear modal superposition using m = 5 first VMs
is able to accurately reproduce the linear solution but a basis containing these modes is not good enough
for capturing the nonlinear response. The Linear Manifold (LM) reduction contains the linear VM basis
augmented by all or some of the Modal derivatives (MDs) as explained in Section 3.3. Using 5 VMs, 15
modal derivatives can be obtained which together constitute a basis of 20 vectors. This reduced basis
was used for integration and the results (Figure 5.3) are very accurate.
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Figure 5.3: The Reference nonlinear solution (i) compared to the linear manifold solution containing 5 VMs and All (15)
MDs (ii), selected 5 MDs using MMI method (iii) and selected 5 MDs using MVW method (iv)

.

MD Selection As remarked before that since m VMs correspond to m(m+1)
2 MDs, the reduction basis

size for linear manifold increases quadratically (O(m2)) with the number of VMs m in basis. However,
only a few of these MDs might be important for capturing the nonlinear behaviour. Section 3.3.2
describes 2 techniques to rank the MDs to be considered in the basis. The ranking and the weights
obtained for all MDs using each of the techniques are shown in Figure 5.4. It can be observed that both
the techniques (MMI and MVW) result in ranking which are fairly similar (Top 3 ranks contain same
group of vectors using both techniques). Although only 3 MDs were sufficient to obtain results with
a good accuracy, nMD = 5 best ranked MDs have been chosen to highlight the difference in accuracy
obtained using the two techniques. Also, as a rule of thumb a total of nMD = m MDs has been chosen
in this work for a LM basis containing m VMs, thus making the basis size 2m. This is done for a fair
comparison and keeping the basis size linear with m.

Using a basis of size 8 (5 VMs + 3 selected MDs), both techniques give results with same accuracy.
However, when basis is augmented with 2 more MDs, then the accuracy of MVW method is slighted
degraded as shown in Figure 5.5b. Global relative errors are listed in a comparison in Table 5.1

Note: The linear manifold can be also implemented using tensor as shown in Section 3.3.3. This leads to
offline calculation of tensors and online cost while time integration reduces drastically since the physical
space is not touched for calculating Jacobian of the residual during NR iterations. It can be easily
shown that the Jacobian obtained in this tensorial approach would be exactly the same as that in the
regular approach (unlike the Quadratic Manifold case). Thus, the two approaches are identical as far
as accuracy and convergence is concerned. The tensorial approach was also implemented to monitor
the speed-up of reduction, the plots have not been shown for the clarity reasons. Error statistics and
Speed-up observed can be found in Table 5.1.
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Figure 5.4: The ranking and the weights obtained for all MDs using 5 VMs in Model-I. (a) shows the colour plot for
weights found using Maximum Modal Interaction (MMI) technique. Cell (i,j) contains weight for MDij , (b) shows the
colour plot for ranking found using Modal Virtual Work (MVW) technique. Cell (i,j) contains weight for MDij . (Note :
part above diagonal not shown due to symmetry)
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Figure 5.5: (a) shows the Linear Manifold reduced solution for Model-I using basis containing 5 VMs and (i) 5 se-
lected MDs using MVW, (ii) 5 selected MDs using MMI, and (iii) All 15 MDs. (b) shows the relative error norm(
e(t) = ‖u−uref‖2

maxt ‖uref (t)‖2

)
of the 3 methods. Note that when All MDs are used, error is the least (as expected), MMI gives

similar error and MVW gives error higher than both of them.

5.1.2. Quadratic Manifold
A quadratic manifold is used with m = 5 modes. Thus the size of reduced system is 5 instead of 20 as in
the linear Manifold consisting of all MDs. As mentioned in Chapter 3, the reduced time integration
with the quadratic manifold can be performed in two ways. One solved using the exact Jacobian of the
residual w.r.t. the reduced state in the tensorial approach when the physical space is never touched
upon, and the other solved using an approximation to the Jacobian where by a reduced tangent stiffness
matrix is calculated in the regular approach.

It was observed that both the methods give practically the same results for flat structures(e.g. Table 5.1).
However, sometimes the regular approach took more NR iteration during a time step in order to converge.
This is reasonable since the Jacobian is approximated in this approach, which could cause more iterations
towards convergence. The results are shown in Figure 5.6

It is remarkable that the higher order tensors are expensive to compute ( adding to the offline cost) and
also lead to costly dot products to obtain reduced internal forces at each NR iteration (See Chapter 6).
It is worth investigating the effect of neglecting the higher order tensors on the solution quality. Time
integration were performed by neglecting 7

8KKK, 6
7KKK, 5

6KKK, 4
5KKK, 3

4KKK one by one and the results are shown in
Figure 5.7

Figure 5.7 shows that for flat structures, neglecting the higher order tensors (45KKK onwards) has negligible
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Figure 5.6: The Reference nonlinear solution (i) compared with the Quadratic manifold reduction with size of the reduced
system m = 5. The two techniques for numerical solution regular (ii) and tensorial (iii) are compared.
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Figure 5.7: shows the Full nonlinear solution (i), QM reduced solution using tensorial approach with all tensors (ii),
neglecting 7

8KKK (iii) , neglecting 6
7KKK onwards (iv), neglecting 5

6KKK onwards (v), neglecting 4
5KKK onwards (vi) and finally

neglecting 3
4KKK onwards (vii). Note that (vii) tends towards the linear solution (viii) . This implies 3

4KKK is essential for
capturing nonlinear behaviour and other higher order tensors have negligible effect on the response of (at least) flat
structures.

effect on accuracy. It can also be seen that in the case of VMs being out of plane and MDs being in-plane
and vice versa (as is the case for flat structures), the tensors 4K onwards are zero. These would lead
to huge time savings. However, neglecting 3K also deteriorates the solution to the point of making it
converge towards the linear solution. This can be explained as follows.

It is easy to see that for a flat structure, the quadratic tensor 2
3K of Equation (3.88) would be

identically zero since a flat structure would experience internal forces of equal magnitude for out of plane
displacements in both directions. Force being an odd function would require the quadratic parts to be
zero due to symmetry. Hence, when one neglects all the tensors 3

4KKK onwards in the Equation (3.109), only
the linear parts of the internal force are left behind in the reduced equations. Thus, the corresponding
run return a solution which would be same as the linear modal superposition solution.

5.1.3. ECSW
ECSW requires training vectors of displacements to solve a sparse non-negative least squares problem
whereby the virtual work done by the nonlinear internal forces on the reduction basis is attempted to be
reproduced by attaching weights to selected few elements. It is desirable to not choose these training
vectors from a full nonlinear/reduced run since they are relatively expensive. Some techniques to cheaply
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construct training sets for hyper-reduction were proposed in Section 4.3.

Hyper-reduction is performed in the following ways on Model-I keeping number of training vector
nt = 200, consistent among all the methods:

1. ECSW-I - POD basis obtained by SVD of the snapshots of the reference nonlinear solution. 20
most significant vectors were chosen ( k = 20). Training vectors chosen from Reference nonlinear
solution snapshots at equally spaced time instants.

2. ECSW-II - The reduction basis used in linear manifold (composed of VMs and all MDs) containing
k = 20 vectors. Training vectors were chosen from reduced solution snapshots at 10 equally spaced
time instants.

3. ECSW-III - The reduction basis used in linear manifold (composed of VMs and all MDs)
containing k = 20 vectors. Training vectors were chosen by taking the modal amplitude snapshots
(equally spaced) from the linear modal superposition solution with m = 5 modes and these
amplitudes were fed to the quadratic manifold to obtain training vectors for the ECSW.

4. ECSW-IV - The reduction basis used in linear manifold (composed of VMs and selected MDs
using MMI technique (Section 3.3.2 ) containing k = m+ nMD vectors, where m is the number of
VMs used and nMD = 5 is the number of MDs selected using appropriate technique. Training
vectors were chosen were chosen in the same way as in ECSW-III.

The structure contains 400 elements. Setting a τ value of 0.01 results in the selection of less than 50
elements. Thus, an online speed-up by a factor of at least 400/50 = 8 can be expected. The results are
shown in Figure 5.8 and table 5.1.



5.1. Flat Structures 47

time(s) #10-3

0 0.2 0.4 0.6 0.8 1 1.2

u
z -

 z
 d

ire
ct

io
n 

di
sp

la
ce

m
en

t (
m

m
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Reference Nonlinear Solution
ECSW1, k=20, n

t
 =201, n

e
 = 45, = = 0.01

(a) ECSW-I

ECSW-1: n
e
 = 45 elements selected

0 5 10 15 20 25

(b) ECSW-I Elements

time(s) #10-3

0 0.2 0.4 0.6 0.8 1 1.2

u
z -

 z
 d

ire
ct

io
n 

di
sp

la
ce

m
en

t (
m

m
)

-2

-1

0

1

2

Reference Nonlinear Solution
ECSW2, k=20, n

t
 =201, n

e
 = 37, = = 0.01

(c) ECSW-II

ECSW-2: n
e
 = 37 elements selected

0 10 20 30 40

(d) ECSW-II Elements

time(s) #10-3

0 0.2 0.4 0.6 0.8 1 1.2

u
z -

 z
 d

ire
ct

io
n 

di
sp

la
ce

m
en

t (
m

m
)

-2

-1

0

1

2

Reference Nonlinear Solution
ECSW3, k=20, n

t
 =201, n

e
 = 46, = = 0.01

(e) ECSW-III

ECSW-3: n
e
 = 46 elements selected

0 5 10 15 20 25 30

(f) ECSW-III Elements

time(s) #10-3

0 0.2 0.4 0.6 0.8 1 1.2

u
z -

 z
 d

ire
ct

io
n 

di
sp

la
ce

m
en

t (
m

m
)

-2

-1

0

1

2

Reference Nonlinear Solution
ECSW4, k=10, n

t
 =201, n

e
 = 28, = = 0.01

(g) ECSW-IV

ECSW-4: n
e
 = 28 elements selected

0 10 20 30 40

(h) ECSW-IV Elements

Figure 5.8: Hyper reduction using ECSW for different methods (I-IV), Solution comparison (left) and elements selected
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5.1.4. Error Statistics
The Global Relative Error (See 5.1) statistics are calculated for all reduction techniques in Model-I. The
table also shows an online speed-up defined as follows:

S? = Tfull
T ?

, (5.4)

where Tfull and T ? represent the CPU time taken during the time integration of full and reduced
solution respectively. The ? superscript denotes the reduction technique being used. Note that the
speed-up defined in this manner only takes into account the online costs.

Table 5.1: Global Relative Error in Flat structure model (Model-I) for different reduction techniques. Total time for
a full nonlinear run was 89.7 seconds. The speed is calculated w.r.t. this time.

Reduction Technique GREx (%) GREy (%) GREz (%) Speed-up (S?)
LM Regular (All MDs) 2.43 2.90 0.95 2.16
LM Tensorial (All MDs) 2.43 2.90 0.95 13.01
LM Regular (Selected MDs - MMI) 2.38 2.90 0.95 2.35
LM Tensorial (Selected MDs - MMI) 2.38 2.90 0.95 49.01
LM Regular (Selected MDs - MVW) 2.50 2.89 0.95 2.33
LM Tensorial (Selected MDs - MVW) 2.50 2.89 0.95 50.72
Quadratic Manifold (Regular) 2.34 2.90 0.94 2.08
Quadratic Manifold (Tensorial) 2.37 2.93 0.95 6.94
QMT neglecting 7

8KKK 2.37 2.93 0.95 7.41
QMT neglecting 6

7KKK and 7
8KKK 2.37 2.93 0.95 8.16

QMT neglecting 5
6KKK onwards 2.31 2.93 0.92 8.62

QMT neglecting 4
5KKK onwards 2.31 2.93 0.92 9.15

QMT neglecting 3
4KKK onwards >100 >100 >100 9.68

POD 0.33 0.09 0.02 2.25
ECSW - I 1.10 0.63 0.25 16.68
ECSW - II 2.55 3.26 0.99 19.88
ECSW - III 2.65 3.03 1.13 13.59
ECSW - IV 6.51 6.39 4.36 26.35

For the sake of comparison, a POD basis was created containing same number of vectors (20 in case of
Model-I) as the LM basis (containing all MDs). This basis was used in hyper-reduction using ECSW as
well as in a regular manner using Galerkin projection and it is not surprising from Table 5.1 that it
returns the least amount of error among all selected techniques. The GRE estimates for Linear Manifold
based techniques are very much comparable to the Quadratic manifold based ones. The GRE estimates
for ECSW-IV are the highest but are still acceptable. Moreover, it can be seen that even for such a
small model, a significantly . All the tensorial approaches show a significant speed-up but they disguise
high offline costs as well (See Table 6.3)
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5.2. Slightly curved Structure

To test the techniques on a less trivial structure, a slight curvature was added to the flat structure
(Figure 5.1a), such that Radius of curvature R� L (Figure 5.9). Then the structure becomes a part
of a cylinder with its axis parallel to the x axis. Similar loading as flat case was applied with uniform
pressure on the surface. Here the pressure force being normal to the surface is not identically aligned
with the z direction as in case of the flat structure Model-I. Again different levels of mesh refinement were
considered to reach an optimum number of degrees of freedom in terms of accuracy and computation
time. The resulting mesh for the model (referred Model-II hereafter) containing 1386 DOFs and 400
elements, is shown in Figure 5.1b.

(a) Structure sketch
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(b) mesh containing 1386 DOFs, 400 elements

Figure 5.9: Model - II: Slightly curved plate example. The plate is L = 40 mm long, H = 20 mm wide, t = 0.8 mm
thick and curved with a Radius R = 200.5 mm and w = 1 mm. The Young Modulus is E = 70 GPa, the Poisson’s ratio is
ν = 0.33, and the density is ρ = 2700 Kg/mm3. All sides are simply supported, i.e. u = v = w = 0. A uniform pressure is
applied on the plate, according to the time history p(t) = P [sin(ωt) + sin(πωt)], where P = 20 N/mm2 and ω = 2.965× 104

rad/s.

The time signature for loading in the form of the dynamic load factor p(t) is given by Equation (5.3).
Again the full nonlinear solution is first obtained by iterative solution of the linearised system and
compared with the linear solution. For the shown timespan, the solution is computed over nh = 400
time steps of equal size for all the techniques. The clear difference between linear and nonlinear response
(see Figure 5.10b) suggests the system behaviour is nonlinear and the range of displacement being
comparable to the structure thickness conforms to the kinematic assumptions of the FE simulation.
The structure becomes less stiff in the nonlinear case (when compared to the linear one) because of
the bending stretching coupling. The pressure loading pushes the structure inwards producing axial
effects and making the bending behaviour softer (notice the first negative peaks of linear and nonlinear
solutions in Figure 5.10b).
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Figure 5.10: Dynamic load factor and the corresponding full nonlinear solution for a rectangular plate with slight curvature
simply supported on all sides (Model-II).
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5.2.1. Linear Manifold
For the slightly curved plate, the linear manifold was constructed usingm = 7 first VMs and corresponding
MDs. A total of m(m+1)

2 = 28 MDs can be obtained. If all are included then basis size becomes 35.
However, all the MDs are not significant and once again nMD = m = 7 MDs are chosen using the MMI
and MVW methods (Section 3.3.2). It can be seen in Figure 5.11 that the MD ranking using the two
techniques are quite different. Results are shown in Figure 5.12
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Figure 5.11: The ranking and the weights obtained for all MDs using 7 VMs in Model-II. (a) shows the colour plot for
weights found using Maximum Modal Interaction (MMI) technique,cell (i,j) contains rank(number) and weight(colour)
for MDij . (b) shows the colour plot for ranking found using Modal Virtual Work (MVW) technique, Cell (i,j) contains
rank(number) and weight(colour) for MDij . (Note : part above diagonal not shown due to symmetry)
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.

Taking 7 MDs in the selected basis using MMI and MVW techniques gives good results. However, if
only 5 are chosen then the error comparison in Figure 5.13 shows that MMI is a very good method for
MD selection in this case and the error for MVW increases significantly as time proceeds.
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Figure 5.13: The relative error norm
(
e(t) = ‖u−ufull‖2

maxt ‖ufull(t)‖2

)
of the 3 methods. Note that when All MDs are used, error

is the least (as expected), MMI gives similar error and MVW gives an error higher than both of them.

5.2.2. Quadratic Manifold
A quadratic manifold is used with m = 7 modes reducing the number of unknowns to 7 instead of 35 as
in case of LM. Results for the regular as well as tensorial approach are shown in Figure 5.14. It can
be seen that the reduced solution using quadratic manifold is not as accurate as that using the linear
manifold (Also see Table 5.2).
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Figure 5.14: The Reference nonlinear solution (i) compared with the Quadratic manifold reduction with size of the reduced
system m = 7. The two techniques for numerical solution regular (ii) and tensorial (iii) are compared.

It is interesting again to study the effect of neglecting the higher order tensors. As with the flat structure
case, if all the tensors higher than and including 3

4KKK are neglected, then the nonlinear response is not
captured. However, the behaviour for other tensors is not same. It is observed that the quality of the
solution starts degrading as tensors are neglecting from highest to lowest order. It was observed that
this effect becomes more pronounced as the curvature of the structure increases. As can be seen in
Figure 5.15, the effect of neglecting 6

7KKK and 7
8KKK for e.g is not as high as that of 5

6KKK and 4
5KKK. Still, this

is beneficial since the highest order tensors (which are are most expensive offline as well as online)
are the ones which have least effect on accuracy. Also, upon neglecting the tensors 3

4KKK onwards, the
solution doesn’t tend towards the linear solution as in the flat case of Model-I, and blows up. This
is indeed understandable since this structure is not flat and similar reasoning doesn’t apply here (See
Section 5.1.2).
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Figure 5.15: shows the Full nonlinear solution (i), QM reduced solution (m = 7) using tensorial approach with all tensors
(ii), neglecting 7

8KKK (iii) , neglecting 6
7KKK onwards (iv), neglecting 5

6KKK onwards (v), neglecting 4
5KKK onwards (vi) and finally

neglecting 3
4KKK onwards (vii). The effect of neglecting 6

7KKK and 7
8KKK is negligible compared to that of 5

6KKK and 4
5KKK. Neglecting3

4KKK leads to blow up of solution.

5.2.3. ECSW
As in the case of Model-I, Hyper-reduction of Model-II is done using techniques to cheaply construct
training sets proposed in Section 4.3. Hyper-reduction is performed in the following ways on Model-II
keeping number of training vectors nt = 200, consistent among all the methods:

1. ECSW-I - POD basis obtained by SVD of the snapshots of the reference nonlinear solution. 35
most significant vectors were chosen ( k = 35). Training vectors chosen from Reference nonlinear
solution snapshots at equally spaced time instants.

2. ECSW-II - The reduction basis used in linear manifold (composed of VMs and all MDs) containing
k = 35 vectors. Training vectors were chosen from reduced solution snapshots at 10 equally spaced
time instants.

3. ECSW-III - The reduction basis same as that in ECSW-II. The modal amplitude snapshots
(equally spaced) obtained from the linear modal superposition solution with m = 7 modes were
fed to the quadratic manifold mapping to obtain training vectors for the ECSW.

4. ECSW-IV - The reduction basis used in linear manifold (composed of VMs and selected MDs
using MMI technique (Section 3.3.2 ) containing k = m+nMD vectors, where m = 7 is the number
of VMs used and nMD = m = 7 is the number of MDs selected using appropriate technique.
Training vectors were chosen were chosen in the same way as in ECSW-III.

The structure contains 400 elements. Setting a τ value of 0.01 doesn’t result in a solution with good
accuracy (GRE > 10% in some cases). Apparently, by setting a lower tolerance of τ = 0.003 on the
sNNLS solution leads to much more accurate results (See Table 5.2 also) by addition of only a few
elements into the selection set E. The results are portrayed in Figure 5.16. It is interesting to see that
the sNNLS algorithm returns a much higher sample of elements for ECSW-I compared to the other three
alternatives. It results in a more accurate solution indeed but the others are also of acceptable accuracy.
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Figure 5.16: showing Hyper reduction using ECSW for different methods (I-IV) for two values of the tolerance factor
τ = 0.01, 0.003. Solution comparison (left) and elements selected during sNNLS along with corresponding weights (right)
using τ = 0.003.
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5.2.4. Error Statistics
The results summary for all the reduction techniques performed on Model-II is shown in Table 5.2. For
this small model, the speed-ups are not spectacular. It is also interesting to note that the full system
size for this model was same as that of Model-I and the speed-ups factors have reduced significantly
especially for the Linear manifold and Quadratic manifold based approaches . This is reasonable since
the basis size for these techniques has increased due to an increase in m from 5 to 7.

Table 5.2: Global Relative Error in Slightly Curved structure model (Model-II) for different reduction techniques.
The solution time for a full nonlinear run was 91.3 seconds. The speed-up factor is calculated w.r.t. this time.

Reduction Technique GREx (%) GREy (%) GREz (%) Speed-up (S?)
LM Regular (All MDs) 0.62 0.90 0.24 1.79
LM Tensorial (All MDs) 0.62 0.90 0.24 4.09
LM Regular (Selected MDs - MMI) 1.67 1.14 0.29 1.84
LM Tensorial (Selected MDs - MMI) 1.67 1.14 0.29 9.26
LM Regular (Selected MDs - MVW) 3.69 6.42 1.72 1.89
LM Tensorial (Selected MDs - MVW) 3.69 6.42 1.72 8.37
Quadratic Manifold (Regular) 6.08 4.46 1.70 1.34
Quadratic Manifold (Tensorial) 6.77 4.44 1.81 2.08
QMT neglecting 7

8KKK 6.77 4.43 1.80 3.03
QMT neglecting 6

7KKK and 7
8KKK 6.77 4.42 1.80 4.24

QMT neglecting 5
6KKK onwards 7.37 16.62 3.03 4.59

QMT neglecting 4
5KKK onwards 19.34 28.04 7.47 4.93

QMT neglecting 3
4KKK onwards >100 >100 >100 4.37

POD 0.14 0.03 0.01 2.20
ECSW - I 0.26 0.12 0.06 2.61
ECSW - II 5.54 1.12 0.49 3.41
ECSW - III 2.03 3.41 0.71 3.62
ECSW - IV 2.69 2.16 0.86 16.31

A structure which is not as academically simple and has realistically high number of DOFs is required to
check the robustness and speed gains of these reduction techniques. Such a structure is developed for
testing in the next section.
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5.3. Doubly Curved Stiffened Panel
In context of a more realistic application, a thin-walled structure with curvature and stiffeners was
considered. The mesh for this structural model (referred to as Model-III hereafter) contains realistically
high number of DOFs so that the accuracy and speed up factors of reduction methods can be compared
and appreciated. The structure is curved in both directions (can be considered to be a part of a large
sphere), with stiffeners present along the length and width. A pressure load is applied locally on the
structure at an area shown in Figure 5.17
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Figure 5.17: Model - III: A doubly curved multi-bay stiffened panel structure ( length(L) = 40 mm and width (H) =
20 mm) which is a part of a large sphere with radius 200.5 mm and is stiffened with strips of the same material. The
highlight area shows the pressure application region.The Young Modulus is E = 70 GPa, the Poisson’s ratio is ν = 0.33,
and the density is ρ = 2700 Kg/mm3. All sides are supported with u = v = w = 0 conditions. Pressure is applied on the
highlighted area uniformly according to different load cases. Mesh contains n = 235170 DOFs, nel = 77712 elements.

Different levels of refinement result in a mesh with n = 235170 DOFs and ne = 77712 elements such
that further refinement doesn’t practically change the solution. Due to the small size of the previous
models, the speed up observed during reduction seemed redundant (at least when offline costs are also
taken into account) but such an application shows the importance of the reduction techniques proposed.

To check robustness of the reduction techniques proposed, three different types of excitation are used.
Keeping the spatial component of the load vector same, the time signature is varied according to
biharmonic aperiodic excitation with two different amplitudes, and a low frequency pulse. Response to
an impulse (in broad spectrum) is not considered here. For reduction of linear systems in realistic load
scenarios, only the first few VMs are generally considered and thus the corresponding modal derivatives
would be helpful only in capturing slowly varying dynamics for the nonlinear systems in the current
context. For all three cases, the responses are graphically shown for a randomly selected node in the
middle near the middle-bays with approximate coordinates as [−1.67, 1.34, 200.49] (in mm).
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5.3.1. Load-1a
Here the dynamic load factor is given as in Equation (5.3) with ω chosen as the second natural frequency
of vibration (≈ 9.702× 104 rad/s). The applied load and response are shown in 5.18. For the shown
timespan, the solution is computed over nh = 800 time steps of equal size for all the techniques. This
case shall be referred to as Model-III L1a from here onwards. The full nonlinear solution is computed
using implicit Newmark time integration such that each full linearized system is solved at each N-R
iteration making the time integration extremely expensive. The linear response is close to the nonlinear
response in the beginning and becomes significantly different towards the end of time span shown. The
system could be called mildly nonlinear for this loading.
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(b) Reference nonlinear and linear solution (out of plane
displacement (in mm) ) at a randomly selected location near

the middle bays of the structure (coordinates in mm
≈ [−1.67, 1.34, 200.49, ]) . Note the difference in linear

solution.

Figure 5.18: Model-III L1a : Dynamic load factor and the corresponding full nonlinear solution for Model-III L1a.

Linear Manifold

A linear manifold is constructed with m = 10 first VMs and the corresponding MDs. A total of
m(m+1)

2 = 55 MDs can be obtained from 10 VMs, which would make the ROB size 65 if all the MDs are
considered. However, as discussed in 3.3.2, the MD selection techniques (MMI & MVW) are also tested
to include only nMD = m = 10 MDs in the basis instead of all. The results are shown in Figure 5.20. It
can be seen that all the 3 methods are able to reproduce the nonlinear response with very good accuracy.
Unlike the previous models, the MVW technique produces results with almost the same error estimates
as the MMI technique (See Table 5.3). Also it can be seen from Figure 5.19 that though the ranking
generated for the MDs using the two techniques are different, 9 out of the selected top 10 MDs are
common between them.
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Figure 5.19: The ranking and the weights obtained for all (55) MDs using 10 VMs in Model-II. (a) shows the colour plot
for weights found using Maximum Modal Interaction (MMI) technique,cell (i,j) contains rank(number) and weight(colour)
for MDij . (b) shows the colour plot for ranking found using Modal Virtual Work (MVW) technique, Cell (i,j) contains
rank(number) and weight(colour) for MDij . (Note : part above diagonal not shown due to symmetry)
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Figure 5.20: The Reference nonlinear solution (i) compared to the linear manifold solution containing 10 VMs and All (55)
MDs (ii), selected 10 MDs using MMI method (iii) and selected 10 MDs using MVW method (iv)

.

Quadratic Manifold

A quadratic manifold is used with m = 10 first VMs, reducing the number of unknowns to 10 instead of
65 as in case of LM with all corresponding MDs. Results for the regular as well as tensorial approach
are shown in Figure 5.21. It can be seen that the reduced solution using quadratic manifold is not as
accurate as that using the linear manifold (Also see Table 5.3).
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Figure 5.21: The Reference nonlinear solution (i) compared with the Quadratic manifold reduction with size of the reduced
system m = 7. The two techniques for numerical solution regular (ii) and tensorial (iii) are compared.

It is interesting again to study the effect of neglecting the higher order tensors. As with the previous
cases, if all the tensors higher than and including 3

4KKK are neglected, then the nonlinear response is not
captured. It can be seen (in Figure 5.22 and Table 5.3) that the quality of the solution starts degrading
as tensors are neglecting from highest to lowest order. The effect of neglecting 6

7KKK, 5
6KKK and 7

8KKK for e.g is
not as high as that of neglecting 4

5KKK. Again, this is good since the higher order tensors are the ones
which are most expensive to calculate and if these are not calculated, then there can be huge savings in
offline cost. The online costs for calculation of projected residual and Jacobian of reduced equations also
involved many dot products(contractions) which can be avoided to a large extent if higher order tensors
are neglected.
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Figure 5.22: shows the Full nonlinear solution for Model-III-L1a (i), QM reduced solution (m = 10) using tensorial
approach with all tensors (ii), neglecting 7

8KKK (iii) , neglecting 6
7KKK onwards (iv), neglecting 5

6KKK onwards (v), neglecting 4
5KKK

onwards (vi) and finally neglecting 3
4KKK onwards (vii). The effect of neglecting 6

7KKK and 7
8KKK is negligible compared to that of

5
6KKK and 4

5KKK. Neglecting 3
4KKK leads to an irrelevant solution.

ECSW

As in the case of Model-I and II, Hyper-reduction of Model-III is done using techniques to cheaply
construct training sets proposed in Section 4.3. Hyper-reduction is performed in the following ways on
Model-III keeping number of training vectors nt = 100 chosen from equally space snapshots, consistent
among all the methods:

1. ECSW-I - POD basis obtained by SVD of the snapshots of the reference nonlinear solution. 65
most significant vectors were chosen ( k = 65). Training vectors taken from full nonlinear solution.

2. ECSW-II - The reduction basis used in linear manifold (composed of VMs and all MDs) containing
k = 65 vectors. Training vectors taken from LM reduced solution snapshots.

3. ECSW-III - The reduction basis same as ECSW-II. The modal amplitude snapshots (equally
spaced) obtained from the linear modal superposition solution with m = 10 modes were fed to the
quadratic manifold mapping to obtain training vectors for the ECSW.

4. ECSW-IV - The reduction basis used in linear manifold (composed of VMs and selected MDs
using MMI technique (Section 3.3.2 ) containing k = m + nMD vectors, where m = 10 is the
number of VMs used and nMD = m = 10 is the number of MDs selected using appropriate
technique. Training vectors same as that in ECSW-III.

As can be seen in Figure 5.23, the sNNLS returns an element sample set of a very small size (less than
500 elements). The complete structure contains 77712 elements and this would imply that nonlinearity
is evaluated in less than 1% of the structure. It is interesting to see that the hyper-reduction techniques
with minimal offline cost (i.e. ECSW-III and IV) generate a smaller element sample and produce results
with similar accuracy. These properties make the proposed hyper-reduction techniques highly favourable
and result in spectacular speed-ups. (See Table 5.3).
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Figure 5.23: showing Hyper reduction using ECSW for different methods (I-IV). The full system contain 77712 elements,
where sNNLS returns less than 500 elements to be sampled and weighted for evaluation and projection of nonlinearity.
This gives huge speed-ups.

Error Statistics

The GRE (Equation (5.1)) and Speed-up (Equation (5.4)) statistics for all the techniques tried on
Model-III L1a are shown in Table 5.3. The following observations can be made for Model-I-L1a:

• Projection based techniques implemented in regular manner return Speed-ups greater than 1
but still less than 2 even on a realistically large model. This confirms the need for tensor based
techniques and hyper-reduction.

• The error computed using all th techniques seem acceptable (especially considering the fact that
most of the techniques result in a phase error and are able to qualitatively follow the reference
solution) except for the ’QM Tensorial neglecting 3

4KKK onwards’. As, also mentioned before, this is
expected since it leads to ignoring the cubic part of the nonlinearities (Equation (3.88)) completely.

• The speed-ups obtained in the tensorial techniques seems spectacular (≈ 5000 for LM Tensorial
with selected MDs!). This is expected since the reduced order model is independent of full systems
size and even higher speed-ups can be expected for larger system provided m is kept the same.
However, it should be realised that these high speed-ups disguise significant offline costs (further
discussion in Chapter 6).

• The speed-ups for quadratic manifold based tensor approaches is high but still lower than that for
LM based ones, even after higher order tensors are neglected. This is contrary to the expected
behaviour and is studied further in Chapter 6.

• The hyper-reduction techniques based on ECSW result in high speed-ups. It can be seen that
ECSW-I distinguishes itself from the others (II, III & IV) in terms of error but hides expensive
full solution run in terms of offline cost. In this context, ECSW-II and III prove useful since the
error estimated seem acceptable, they result in much higher speed-ups and carry minimal offline
costs(Table 6.3).

• It is interesting that ECSW-IV reaches much higher speed-ups than ECSW-III with very similar
error margins. One of the reasons for higher speed is the smaller size of reduction basis. But a
second and more interesting reason is that it has a much smaller elements sample for evaluation
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of nonlinearity than ECSW-III, even though both have the same training vectors. It is worth
investigating if this is a pattern more general than this example.

Table 5.3: Global Relative Error in Model-III-L1a for different reduction techniques.The solution time for a full
nonlinear run was ≈ 3.767× 104 seconds. The speed-up factor is calculated w.r.t. this time.

Reduction Technique GREx (%) GREy (%) GREz (%) Speed-up (S?)
LM Regular (All MDs) 1.66 0.63 2.34 1.44
LM Tensorial (All MDs) 1.66 0.63 2.34 601.90
LM Regular (Selected MDs - MMI) 1.91 0.72 2.57 2.09
LM Tensorial (Selected MDs - MMI) 1.91 0.72 2.57 4966.00
LM Regular (Selected MDs - MVW) 1.89 0.71 2.58 2.11
LM Tensorial (Selected MDs - MVW) 1.89 0.71 2.58 5039.00
Quadratic Manifold (Regular) 3.07 1.53 3.91 1.39
Quadratic Manifold (Tensorial) 3.05 1.51 3.92 99.46
QMT neglecting 7

8KKK 3.05 1.51 3.92 169.46
QMT neglecting 6

7KKK and 7
8KKK 3.04 1.48 3.92 251.64

QMT neglecting 5
6KKK onwards 2.90 1.21 4.54 254.70

QMT neglecting 4
5KKK onwards 5.48 4.70 8.29 265.66

QMT neglecting 3
4KKK onwards 76.32 76.13 74.10 268.50

POD 0.01 0.00 0.02 1.77
ECSW - I 0.55 0.51 0.82 180.20
ECSW - II 4.00 1.49 6.63 262.40
ECSW - III 4.99 2.58 8.01 261.90
ECSW - IV 4.01 2.56 8.51 923.80
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5.3.2. Load-1b
This case varies from Model-III L1a only in terms of amplitude of loading. The loading is 40% higher
than that in previous case (Model-II-L1a). As can be seen from the load response in Figure 5.29, the
nonlinear response is significantly different from the linear ones (at least when compared to Figure 5.29
). For the shown timespan, the solution is computed over nh = 800 time steps of equal size for all the
techniques. This case is referred to as Model-III L1b hereafter.
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(a) dynamic load factor p(t) variation with time
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(b) Reference nonlinear and linear solution (out of plane
displacement (in mm) ) at a randomly selected location near

the middle bays of the structure (coordinates in mm
≈ [−1.67, 1.34, 200.49, ]) . Note the difference in linear

solution.

Figure 5.24: Model-III L1b : Dynamic load factor and the corresponding full nonlinear solution for Model-III L1b.

Linear Manifold

A linear manifold is constructed with 10 VMs and corresponding MDs. A total of 55 MDs can be
obtained from 10 VMs which makes the ROB size 65 if all the MDs are considered. However, as
discussed in 3.3.2, the MD selection techniques (MMI & MVW) are also tested. The results are shown
in Figure 5.25. It can be seen that all the 3 methods are able to reproduce the nonlinear response with
very good accuracy.
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Figure 5.25: The Reference nonlinear solution (i) compared to the linear manifold solution containing 10 VMs and All (55)
MDs (ii), selected 10 MDs using MMI method (iii) and selected 10 MDs using MVW method (iv)

.

Quadratic Manifold

A quadratic manifold is used with m = 10 modes reducing the number of unknowns to 10 instead of 65
as in case of LM. Results for the regular as well as tensorial approach are shown in Figure 5.26. It can
be again seen that the reduced solution using quadratic manifold is not as accurate as that using the
linear manifold (Also see Table 5.4).

It is interesting again to study the effect of neglecting the higher order tensors. As with the previous
cases, if all the tensors higher than and including 3

4KKK are neglected, then the nonlinear response is not
captured. It can be seen (in Figure 5.27 and Table 5.4) that the quality of the solution starts degrading
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Figure 5.26: The Reference nonlinear solution (i) compared with the Quadratic manifold reduction with size of the reduced
system m = 7. The two techniques for numerical solution regular (ii) and tensorial (iii) are compared.

as tensors are neglecting from highest to lowest order. The effect of neglecting 6
7KKK and 7

8KKK for e.g is not
as high as that of 5

6KKK and 4
5KKK. This is good since the higher order tensors are the ones which are most

expensive to calculate and if higher order tensors are not calculated, then there can be huge savings in
offline as well as online operations. But compared to Model-III L1a, the results seem to be significantly
deteriorated on neglecting 5

6KKK and 4
5KKK. This could be linked to the fact that this model shows a more

nonlinear behaviour when compared to Model-III L1a.
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Figure 5.27: shows the Full nonlinear solution (i), QM reduced solution (m = 10) using tensorial approach with all tensors
(ii), neglecting 7

8KKK (iii) , neglecting 6
7KKK onwards (iv), neglecting 5

6KKK onwards (v), neglecting 4
5KKK onwards (vi) and finally

neglecting 3
4KKK onwards (vii). The effect of neglecting 6

7KKK and 7
8KKK is negligible compared to that of 5

6KKK and 4
5KKK.

ECSW

As in case of Model-III L1a, hyper-reduction on Model-III L1b is performed in the following ways keeping
number of training vectors nt = 200 , consistent among all the methods:

1. ECSW-I - POD basis obtained by SVD of the snapshots of the reference nonlinear solution. 65
most significant vectors were chosen ( k = 65). Training vectors taken from full nonlinear solution.

2. ECSW-II - The reduction basis used in linear manifold (composed of VMs and all MDs) containing
k = 65 vectors. Training vectors taken from LM reduced solution snapshots.
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3. ECSW-III - The reduction basis same as ECSW-II. The modal amplitude snapshots (equally
spaced) obtained from the linear modal superposition solution with m = 10 modes were fed to the
quadratic manifold mapping to obtain training vectors for the ECSW.

4. ECSW-IV - The reduction basis used in linear manifold (composed of VMs and selected MDs
using MMI technique (Section 3.3.2 ) containing k = m + nMD vectors, where m = 10 is the
number of VMs used and nMD = m = 10 is the number of MDs selected using appropriate
technique. Training vectors same as that in ECSW-III.
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Figure 5.28: showing Hyper reduction using ECSW for different methods (I-IV). The full system contain 77712 elements,
where sNNLS returns a sample of ≈ 500 or less elements to be weighted for evaluation and projection of nonlinearity. This
gives huge speed up.

This model shows similar sampling of elements as in case of Model-III L1a, with nonlinearity being
evaluated on less than 1 % of the mesh leading to high speed-ups as shown in Table 5.4.

Error Statistics

The GRE (Equation (5.1)) and Speed-up (Equation (5.4)) statistics for all the techniques tried on
Model-III L1b are shown in Table 5.3. Apart from the general observations made for error statistics of
Model-III L1a in Section 5.3.1, a few more observations can be made:

• As the nonlinearity in the solution has increased, the Linear Manifold based techniques perform
better than QM based techniques in terms of GRE. This might be because the nonlinearities
cannot be as accurately captured by the second order effects described in nonlinear mapping
Equation (3.64). It is also known that LM in general provides a lower bound for error committed
during QM based techniques (Section 3.4.3).

• The solution deteriorates much more significantly upon neglecting the tensors 4
5KKK and 5

6KKK as
compared to that in Model-III L1a. Unacceptable errors are produced.

• It is intriguing that the proposed hyper-reduction techniques show the same interesting trends of
producing smaller element sampling (resulting in speed-ups without compromising on error) as in
case of Model-III L1a.
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Table 5.4: Global Relative Error in Model-III-L1b for different reduction techniques.The solution time for a full
nonlinear run was ≈ 3.895× 104 seconds. The speed-up factor is calculated w.r.t. this time.

Reduction Technique GREx (%) GREy (%) GREz (%) Speed-up (S?)
LM Regular (All MDs) 2.67 1.35 3.49 1.81
LM Tensorial (All MDs) 2.67 1.35 3.49 1145.00
LM Regular (Selected MDs - MMI) 2.93 1.51 3.58 2.22
LM Tensorial (Selected MDs - MMI) 2.93 1.51 3.58 6931.00
LM Regular (Selected MDs - MVW) 2.90 1.49 3.54 2.27
LM Tensorial (Selected MDs - MVW) 2.90 1.49 3.54 4472.00
Quadratic Manifold (Regular) 7.59 4.52 8.27 1.69
Quadratic Manifold (Tensorial) 7.58 4.50 8.27 159.00
QMT neglecting 7

8KKK 7.57 4.49 8.27 211.00
QMT neglecting 6

7KKK and 7
8KKK 7.52 4.44 8.22 239.40

QMT neglecting 5
6KKK onwards 41.92 39.08 74.39 239.69

QMT neglecting 4
5KKK onwards 24.91 22.49 43.91 243.59

QMT neglecting 3
4KKK onwards >100 >100 >100 304.10

POD 0.01 0.00 0.05 1.28
ECSW - I 1.15 1.04 1.69 105.90
ECSW - II 4.56 1.38 6.55 283.30
ECSW - III 7.18 4.71 10.44 305.90
ECSW - IV 4.71 3.65 12.64 800.80
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5.3.3. Load-2
A more simplistic but an important kind of load is a pulse load. The pulse load is applied as a pressure
uniformly on the area highlighted in Figure 5.17. The dynamic load factor is given as

p(t) = A sin2(ωt)
[
H(t)−H

(π
ω
− t
)]
, (5.5)

where H(t) is the heaviside function and ω chosen as the second natural frequency of vibration
(≈ 9.702× 104 rad/s). The load response is shown in Figure 5.24 and it can be seen that the nonlinear
response is significantly different from the linear counterpart. For the shown timespan, the solution is
computed over nh = 800 time steps of equal size for all the techniques.
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(a) dynamic load factor p(t) variation with time
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(b) Reference nonlinear and linear solution (out of plane
displacement (in mm) ) at a randomly selected location near

the middle bays of the structure (coordinates in mm
≈ [−1.67, 1.34, 200.49, ]) . Note the difference in linear

solution.

Figure 5.29: Model-III L2 : Dynamic load factor for pulse loading and the corresponding full nonlinear solution for a flat
plate simply supported on all sides.

Linear Manifold

A linear manifold is constructed with 10 VMs and corresponding MDs. A total of 55 MDs can be
obtained from 10 VMs which makes the ROB size 65 if all the MDs are considered. However, as
discussed in 3.3.2, the MD selection techniques (MMI & MVW) are also tested. The results are shown
in Figure 5.30. It can be seen that all the 3 methods are able to reproduce the nonlinear response with
very good accuracy. MD selection results in 9 out top 10 MDs common between the two techniques
(Figure 5.19).
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Figure 5.30: The Reference nonlinear solution (i) compared to the linear manifold solution containing 10 VMs and All (55)
MDs (ii), selected 10 MDs using MMI method (iii) and selected 10 MDs using MVW method (iv)

.

Quadratic Manifold

A quadratic manifold is used with m = 10 modes reducing the number of unknowns to 10 instead of 65
as in case of LM. Results for the regular as well as tensorial approach are shown in Figure 5.14. It can
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be seen that the reduced solution using quadratic manifold is not as accurate as that using the linear
manifold (Also see Table 5.5).
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Figure 5.31: The Reference nonlinear solution (i) compared with the Quadratic manifold reduction with size of the reduced
system m = 7. The two techniques for numerical solution regular (ii) and tensorial (iii) are compared.

Effect of neglecting the higher order tensors: As with the previous cases, if all the elastic tensors
with order higher than and including 3

4KKK are neglected, then the nonlinear response is not captured.
The structure loses stiffness in this particular example as seen by the higher amplitudes. It can also
be seen (in Figure 5.32 and Table 5.5) that the quality of the solution starts degrading as tensors are
neglecting from highest to lowest order. As observed in Model-III L1b, the effect of neglecting 6

7KKK and
7
8KKK negligible compared to that of neglecting 5

6KKK and 4
5KKK. Since the operations involving higher order

tensors are expensive online as well as offline, it is of interest that neglecting them has consistently not
hampered the accuracy of results.
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Figure 5.32: shows the Full nonlinear solution (i), QM reduced solution (m = 10) using tensorial approach with all tensors
(ii), neglecting 7

8KKK (iii) , neglecting 6
7KKK onwards (iv), neglecting 5

6KKK onwards (v), neglecting 4
5KKK onwards (vi) and finally

neglecting 3
4KKK onwards (vii). The effect of neglecting 6

7KKK and 7
8KKK is negligible compared to that of 5

6KKK and 4
5KKK. Neglecting3

4KKK leads to blow up of solution.



5.3. Doubly Curved Stiffened Panel 67

ECSW

Hyper-reduction is performed in the following ways on Model-III L2 keeping number of training vectors
nt = 100, consistent among all the methods:

1. ECSW-I - POD basis obtained by SVD of the snapshots of the reference nonlinear solution. 65
most significant vectors were chosen ( k = 65). Training vectors taken from full nonlinear solution.

2. ECSW-II - The reduction basis used in linear manifold (composed of VMs and all MDs) containing
k = 65 vectors. Training vectors taken from LM reduced solution snapshots.

3. ECSW-III - The reduction basis same as ECSW-II. The modal amplitude snapshots (equally
spaced) obtained from the linear modal superposition solution with m = 10 modes were fed to the
quadratic manifold mapping to obtain training vectors for the ECSW.

4. ECSW-IV - The reduction basis used in linear manifold (composed of VMs and selected MDs
using MMI technique (Section 3.3.2 ) containing k = m + nMD vectors, where m = 10 is the
number of VMs used and nMD = m = 10 is the number of MDs selected using appropriate
technique. Training vectors same as that in ECSW-III.
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Figure 5.33: showing Hyper reduction using ECSW for different methods (I-IV). The full system contain 77712 elements,
where sNNLS returns less than 500 elements to be sampled and weighted for evaluation and projection of nonlinearity.
This gives huge speed up.

It is interesting to see that the proposed ECSW based hyper-reduction techniques have shown consistent
results among all the tested examples.

Error Statistics

The GRE (Equation (5.1)) and Speed-up (Equation (5.4)) statistics for all the techniques tried on
Model-III L2 are shown in Table 5.3. It is interesting to see that the general observations made for
error statistics of Model-III L1a and Model-III L1b in Section 5.3.1 and Section 5.3.2 respectively are
applicable for a different type of loading in Model-III L2 as well.
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Table 5.5: Global Relative Error in Model-III-L2 for different reduction techniques.The solution time for a full
nonlinear run was ≈ 3.743× 104 seconds. The speed-up factor is calculated w.r.t. this time.

Reduction Technique GREx (%) GREy (%) GREz (%) Speed-up (S?)
LM Regular (All MDs) 1.20 0.53 1.39 1.40
LM Tensorial (All MDs) 1.20 0.53 1.39 884.00
LM Regular (Selected MDs - MMI) 1.46 0.68 1.62 2.04
LM Tensorial (Selected MDs - MMI) 1.46 0.68 1.62 4790.00
LM Regular (Selected MDs - MVW) 1.45 0.67 1.62 2.04
LM Tensorial (Selected MDs - MVW) 1.45 0.67 1.62 4784.00
Quadratic Manifold (Regular) 3.40 2.37 5.68 1.44
Quadratic Manifold (Tensorial) 3.39 2.36 5.71 118.00
QMT neglecting 7

8KKK 3.38 2.33 5.68 148.20
QMT neglecting 6

7KKK and 7
8KKK 3.45 2.44 5.79 249.90

QMT neglecting 5
6KKK onwards 3.93 2.84 6.90 268.10

QMT neglecting 4
5KKK onwards 6.28 5.47 9.99 275.22

QMT neglecting 3
4KKK onwards >100 >100 >100 278.29

POD 0.004 0.001 0.01 1.69
ECSW - I 0.64 0.31 0.98 163.70
ECSW - II 5.00 2.32 5.36 255.20
ECSW - III 5.13 2.39 7.01 265.60
ECSW - IV 4.05 2.49 6.58 883.00

All the reduction techniques which have been considered in this work were applied and tested in this
chapter on examples which varied from being academically simple to realistically complex. These
application have given a good overview of the relative behaviour and accuracy of the results. General
claims about accuracy of these techniques require more in-depth research by taking an abstract and
analytical approach. This is left for future work. General claims about speed and computational
complexity however, are fairly straight forward to make. This shall be addressed in the next chapter.



6
Computational Complexity

The accuracy of the methods and respective savings in computational time have been established with
the few applications discussed in the previous chapter. However, this doesn’t give a clear overview as to
what kind of speed-ups shall be expected in general models of arbitrary size using a given reduction
method and in a more qualitative sense which method should be applied given the fact that some of
the reduction techniques require significant offline effort (so much so, that the benefits of time savings
during the online time integration becomes questionable). To address this, it is needed to know how the
operations performed during these techniques qualitatively scale when the system size increases and
larger bases are used for reduction, both offline as well as online. The complexity comparisons would be
split into the operations which are done offline and those done during the time integration online.

6.1. Online Costs
Here, it is attempted to evaluate the complexity of operations performed during the time integration of
reduced order models obtained using different reduction techniques. The Newmark time integration
scheme is used for this purpose. The system of nonlinear equations (whether reduced or full) can be
generalized in the following manner

r(q, q̇, q̈, t) = 0
q(t0) = q0

q̇(t0) = q̇0

The Newmark time iteration scheme can be coarsely summarized by the following basic steps

1. INITIALIZATION
Given q0, q̇0, Solve for q̈0

r(q0, q̇0, q̈0, t0) = 0

2. TIME STEP INCREMENT (up to final time)

tp+1 = tp + hp

3. PREDICTION

q̇p+1 ← q̇p + (1− γ)hpq̈p
qp+1 ← qp + hpq̇p + (0.5− β)h2

pq̈p
q̈p+1 ← 0

69
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4. (REDUCED)RESIDUAL EVALUATION

rp+1 = r(qp+1, q̇p+1, q̈p+1, tp+1)

5. CONVERGENCE CHECK

if SOLUTION CONVERGED (e.g. ‖rp+1‖ < ε‖lp+1‖)
goto step 2
endif

6. CALCULATE (REDUCED)JACOBIAN

S(qp+1) = ∂rp+1

∂qp+1
+ γ

βh

∂rp+1

∂q̇p+1
+ 1
βh2

∂rp+1

∂q̈p+1

7. INCREMENT EVALUATION
Solve for ∆q,

S(qp+1)∆q = −rp+1

8. CORRECTION

qp+1 ← qp+1 + ∆q

q̇p+1 ← q̇p+1 + γ

βhp
∆q

q̈p+1 ← q̈p+1 + 1
βh2

p

∆q

9. LOOP, GOTO step 4

Out of these steps, 4,5,6,7 and 8 are repeated in every N-R iteration. In particular, steps 4,6 and 7
are the most significant(bottleneck) in determining the complexity of the time integration. In case of
reduced equations, some reduction techniques require the evaluation of Jacobian and residual in the
physical domain. In that case, the mapping of reduced coordinates to full system, calculation of full
residual/Jacobian in physical domain, and thereafter projection onto appropriate subspace are the steps
involved. This cost shall be included in step 4 and 5 itself, in which case the reduced residual/Jacobian
are evaluated.

This complexity of the factorization of a dense n× n system has been optimized over the past decades
to the fastest of O(n2.38) operations (flops) by the famous algorithm in [24]. Nonetheless, the naïve
factorization estimates of O(n3) operations (flops) have been used here for complexity estimation. In
case of sparse systems, the solution depends a lot on the nature of sparseness. In the current context
sparse matrices are generated for equations in 2 dimensions and its upper and lower bandwidth can be
expected to be ≈

√
n, and for such a matrix linear solve using LU decomposition would require only

O(n2) flops [25]. In a general way, we represent the complexity of solution of a sparse n× n system by
O(s(n)). Similarly the cost of a matrix vector multiplication which is O(n2) for a dense matrix becomes
O(an) for a sparse one, where a is a constant dependent on the bandwidth of the matrix. Therefore, in
the current context the this cost would take O(n3/2) flops.

In case of the (reduced)residual and/or the (reduced)Jacobian computation, the techniques which don’t
use tensors (such as LM Regular, QM Regular, ECSW, LM with selected MDs) require a mapping from
reduced coordinates to full coordinates. Then the reduced residual/Jacobian is evaluated without the
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need for sparse assembly of the full tangent stiffness matrix (which can be expensive) as follows

r(q) = VT rfull(u(q)) =
ne∑
e=1

VT
e rfulle (ue(q)), (6.1)

S(q) = dr(q)
dq u VTSfull(u(q))V =

ne∑
e=1

VT
e Sfulle (ue(q))Ve, (6.2)

where V represents the tangent subspace ∂u(q)
∂q which can be constant or variable depending on the

mapping u(q) being linear or nonlinear (QM) respectively, rfull(u) ∈ Rn is the full residual, Sfull ∈ Rn×n

is the Jacobian drfull

du rfulle (ue) ∈ RNe is the contribution of element e towards rfull, ue is the restriction
of u to the rows indexed by DOFs corresponding to element e which contains Ne DOFs, Sfulle (ue)RNe×Ne

is contribution of the element e towards the matrix Sfull. Note that the Jacobian S(q) is treated as
VTSfull(u(q))V which can be exact or an approximation depending on the mapping u(q) being linear
or nonlinear as shown in Section 3.4.2. The number of flops in these operations scales linearly with the
total number of elements ne (or |E| in case of ECSW). Though the number of elements can be related
to the number of DOFs n depending on the topology of the domain, for sake of generality and ease of
understanding the ne has been used anyway in the estimation of the complexity of such operations. The
complexity is estimated for some crucial operations in Table 6.1.

Table 6.1: Cost estimation for the Newmark implicit time integration during various full nonlinear time integration
reduction schemes. ne = total number of elements, n = total number of DOFs in full system, m = number of
VMs used in mapping (Note the size of LM basis containing m VMs and all corresponding MDs would be O(m2)),
ms = m+ nMD is the total number of vectors in basis containing selected MDs, k number of vectors in reduction
basis of ECSW, E subset containing the elements sampled by ECSW

Operation Mapping (Reduced) residual (Reduced) Increment
Jacobian Evaluation

Full NL - O(an)a +O(ne) b O(ne)b O(s(n))c

LM Regular (All MDs) O(nm2)d O(m4)e +O(nem2) f O(nem4)g O(m6)
LM Tensorial (All MDs) - O(m8)h O(m6) i O(m6)
LM Regular (Selected MDs) O(nms)d O(m2

s)e +O(nems)f neO(nem2
s)g O(m3

s)
LM Tensorial (Selected MDs) - O(m4

s) h O(m3
s) i O(m3

s)
QM Regular O(nm2) j O(anm) k +O(nem)f O(nem2)g O(m3)
QM Tensorial - O(m8) O(m7) O(m3)
QMT neglecting 7

8KKK - O(m7) O(m6) O(m3)
QMT neglecting 6

7KKK and 7
8KKK - O(m6) O(m5) O(m3)

QMT neglecting 5
6KKK onwards - O(m5) O(m4) O(m3)

QMT neglecting 4
5KKK onwards - O(m4) O(m3) O(m3)

QMT neglecting 3
4KKK onwards - O(m3) O(m2) O(m3)

ECSW O(nk)d O(k2)e+O(|E|k)l neO(|E|k2)m O(k3)
a sparse Matrix-vector multiplication Mü. O(n3/2) in current contest of sparsity.
b element Internal force / tangent stiffness calculation for all elements
c sparse linear solve. O(n2) in current context of sparsity
d matrix multiplication u = Vq
e projected Inertial force calculation M̂q̈ ( M̂ = VT MV is dense calculated offline)
f projected internal force calculated for all elements

∑ne

e=1 VT
e fe(ue(q))

g reduced Jacobian
∑ne

e=1 VT
e Se(ue(q))Ve

h bottleneck : tensor product 3
4K̂

...(q ⊗ q ⊗ q)
i tangent cost is included in residual cost
j bottle neck tensor product Θ : (q ⊗ q), tangent subspace automatically evaluated in this process
k cost of multiplication ∂UT Mü(q, q̇, q̈)
l projected internal force calculated for sampled elements

∑
e∈E

VT
e fe(ue(q))

m reduced Jacobian
∑

e∈E
VT

e Se(ue(q))Ve
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Following important remarks can be made after performing numerical experiments on meshes of different
sizes and using different number of modes in projection. (See Figures 6.1 to 6.4)

• Among the regular approaches ( such as Linear Manifold Regular, Quadratic Manifold Regular,
Linear Manifold with selected MDs, POD) which involve the computation of residual in the
physical domain (by mapping, assembly and projection) the online effort keeps increasing with the
increase in system size (ne). As the basis (or mapping) size (m) increases, there comes a point
where the reduced time integration becomes more expensive (due to extra projection and mapping
operations) than solving the model in its full form.

• Among the tensorial approaches, where the reduced nonlinearlity is evaluated offline in the form of
tensors, the online computational effort becomes independent of the full system size and order of
magnitudes cheaper than the regular approaches (for "small" m). However, this computational
effort increases exponentially with the increase in m to the point when its becomes redundant to
use it. This limit for m is system dependent. A larger system would lead to larger limit.

• The Linear Manifold Tensorial(LMT) approach with all MDs, scales as fast withm as the Ouadratic
Manifold Tensorial (QMT). This can be concluded from Table 6.1 and is also supported by the
numerical experiment results in Figures 6.1 to 6.4. It is reasonable that the LMT is cheaper than
QMT by a constant factor since it exploits the symmetry of the MDs in the current implementation.

• All of the test examples showed that the Linear manifold tensorial approach was faster than
the Quadratic Manifold tensorial even after neglecting the higher order tensors. However, the
complexity analysis in Table 6.1 shows that the LMT loses to the QM Tensorial if even just 7

8KKK is
neglected. Same is supported by numerical experiment results e.g. in Figure 6.1 whereby this is
true for m ≥ 13.

• Linear Manifold Tensorial with selected MDs remains cheap since the basis size has been chosen as
ms = 2m, and thus increases only scaled linearly m instead of quadratically in case when all MDs
are selected. However, it should be noted that this MD selection is load dependent and would
require separate computation of corresponding tensors once other MDs are triggered by the load
and selection basis needs to be updated.

• All the computations for tensorial operations are inhibitive in terms of memory usage. Although
m is a small number but the memory required for tensor storage increases exponentially with m.
And thus tensor manipulations become impossible due to memory shortage after a certain m. It is
easy to see that the storage space for a rth order tensor with m elements in each dimension scales
with O(mr). Thus, similar trends for memory usage can be expected as those for computational
complexity in the tensorial cases. The limits of m for which the storage becomes impossible with
the available resources for tensors in a particular tensorial technique are as follows:
Tensorial technique Limiting value of m for available memory
LM Tensorial - All MDs 24
LM Tensorial - m Selected MDs (MMI or MVW) >30
QM Tensorial 17
QM Tensorial neglecting 7

8KKK 25
QM Tensorial neglecting 6

7KKK >30

• The online costs during the time integration using the ECSW are sensitive to the training vectors
& reduction basis used, and the set of elements thus sampled. Thus, numerical experiments which
generalize its behaviour cannot be conducted. However, it is easy to see that the online costs
would be would be a fraction |E|/ne of the online costs involved in a regular projection based
MOR technique with a ROB of the same size. The sparser the solution of the sNNLS problem
4.14, the lesser the online costs.
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Figure 6.1: Complexity Comparisons-I: A small model with n = 3276 DOFs is tested for average cost(time) of a N-R
iteration performed while implicit Newmark time integration. m (x axis) represents the number of modes which govern
the reduction techniques. It can seen that for such small models as m increases, most of the reduction techniques seem
redundant.
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Figure 6.2: Complexity Comparisons-II: A medium sized model with n = 23970 DOFs is tested for average cost(time)
of a N-R iteration performed while implicit Newmark time integration. m (x axis) represents the number of modes which
govern the reduction techniques. The regular techniques take higher time and the tensorial techniques become more
feasible compared to the smaller model of Figure 6.1
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Figure 6.3: Complexity Comparison-III: A slightly large model with n = 235170 DOFs is tested for average cost(time)
of a N-R iteration performed while implicit Newmark time integration. m (x axis) represents the number of modes which
govern the reduction techniques. (viii) showing the QM Tensorial approach with all tensors becomes infeasible due to
constraints of available memory resources for m ≥ 18.
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Figure 6.4: Complexity Comparison-IV: A realistically large model with almost a million DOFs is tested for average
cost(time) of a N-R iteration performed while implicit Newmark time integration. m (x axis) represents the number of
modes which govern the reduction techniques. The tensorial techniques (though constrained by available memory) are very
beneficial in this case.
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6.2. Offline Costs
The evaluation of offline costs for different methods is also important for fair comparison of the reduction
techniques. The offline cost of a full nonlinear solution is considered zero. Thus, the time required to
build the model from scratch is considered zero for all the reduction techniques since it is something
common to all. Apart from that, any other offline cost which is not a part of the offline cost for full
solution is treated as an offline cost for the any reduction technique. Note that the term cost is used in
the context of CPU time / number of floating point operations here.

These offline costs depend on the techniques being used. Among all the offline costs, the solution of the
generalized eigenvalue problem Equation (3.16) for the eigenmodes and eigenvalues is the most important
and common. For a dense system, eigenvalue problem solution takes O(n3) flops using methods such
as QR and QZ (See for example [26]). These methods compute all the eigenvectors and require the
matrices to be specified in explicit form which can require a large amount of memory O(n2). However,
in practise only a few eigenmodes are needed and the matrices K & M are sparse. Eigensolvers for large
sparse systems which compute m eigenmodes are denoted here to require O(p(m,n)) flops (could be
Krylov subspace based methods, power iteration, orthogonal deflation etc.).

The majority of the methods also requires the computation of Modal Derivatives. These are obtained
from the solution of the sensitivity problem Equation (3.31). Neglecting symmetry of MDs, m modes
require the solution of the derivative problem m2 times. However, the coefficient matrix (K−ω2

iM) needs
to be factorized only m times. The RHS however needs to be evaluated m2 times which involves sparse
matrix vector products ( ∂K

∂qj
φi) between the stiffness sensitivity and the eigenmode. The computation

of the stiffness sensitivity ∂K
∂qj

has to be performed in total m times (1 for each mode), each of which
take time similar to the assembly of a tangent stiffness matrix and is relatively cheap in comparison to
factorization cost.

The proposed techniques which involve selection of MDs to reduce basis size, require the computation
of linear system using modal superposition. The time step size h for all the schemes has been kept
constant here for easier comparison. The total number of time steps is denoted as nh. The linear modal
superposition based time integration for an undamped system can be performed using a recurrent matrix
formulation as explained in [2]. This leads to m uncoupled second order ODEs which can be easily
solved in O(mnh) flops for a constant time step. Damped time integration can be performed using
Galerkin projection of the linear system onto a ROB composed of VMs. This leads to requirement of
O(m2nh) flops which is still cheap for an offline cost.

The MD weightage cost for MMI selection technique is O(mnh) + O(m2) and sorting the weights
would cost O(m2 logm2) flops in general (see e.g. [27]). The MVW technique, however involves
O(mnh) + m2O(nne) flops for weightage (when calculating the nonlinear internal force projected on
the VMs) and same O(m2 logm2) flops for sorting the weights and is thus expected to be expensive
compared to MMI.

The tensor based methods also involve computation of higher order tensors and the complexity depends
on the number of unknowns in the mapping (whether linear or nonlinear), and the total number of
elements in the structure ne. The complexity varies linearly with ne. It is remarkable that the offline
cost for tensor calculation is highly parallelizable. Tensors can be computed for different parts of a mesh
on different processors and then simply added to obtain the tensors for the complete structure.

Some of the methods like POD, ECSW-I (which is POD based) also require the computation of the full
nonlinear solution for generation of training sets. In such a case, the reference nonlinear solution time
cost becomes an offline cost. The ECSW involves 3 basic offline costs :

1. Generating Training vectors.

2. Construction of G matrix

3. Solving sNNLS problem to obtain element sampling and weighting.

Generation of training vectors is largely dependent on the method used. On each of the training vectors,
the element wise contribution of the nonlinear internal force is evaluated and then projected onto
the element-wise contribution of the reduction basis. This results in the G matrix and would require
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ntO(nem) flops. Finally, the computational complexity of the sNNLS algorithm is bounded from above
by that of the active set NNLS complexity [22], which is shown to converge but can be slow for large
systems. This is due to the solution of a linear least squares problem in each iteration of the algorithm
which is generally done via QR decomposition and carries O(rs2) time-complexity for a r × s matrix
(r > s). Thus, if it takes l iterations to converge the sNNLS algorithm 2 can be crudely estimated to
be of O(lne(knt)2) complexity. It is worth mentioning that a more efficient method to solve the NNLS
problem using parallel computing is developed in [28].

Keeping all these factors in mind, similar qualitative estimations for offline operations for various
reduction techniques can be made as that for the computations done online. These are shown in
Table 6.2.

Table 6.2: Estimation for the offline costs required before beginning the Newmark implicit time integration. ne =
total number of elements, n = total number of DOFs in full system, m = number of VMs used in mapping (Note
the size of LM basis containing m VMs and all corresponding MDs would be O(m2)), ms = m+ nMD is the total
number of vectors in basis containing selected MDs, k number of vectors in reduction basis of ECSW, E subset
containing the elements sampled by ECSW, nt = number of training vectors used in ECSW, nh = number of time
steps during time integration.

Operation Offline Cost Complexity
Full NL 0
LM Regular (All MDs) (C1) O(p(m,n))a + mO(s(n))b + m2O(an)c + mO(ne)d

LM Tensorial (All MDs) C1 + O(nem8)e

LM Regular (Selected MDs) (C2) C1 + O(nhm2)f + O(m2)g + O(m2 logm2) h

LM Tensorial (Selected MDs) C2 + O(nem4
s)

QM Regular C1
QM Tensorial C1 + O(nem8)i

QMT neglecting 7
8KKK C1 + O(nem7) j

QMT neglecting 6
7KKK and 7

8KKK C1 + O(nem6)k

QMT neglecting 5
6KKK onwards C1 + O(nem5)l

QMT neglecting 4
5KKK onwards C1 + O(nem4)m

QMT neglecting 3
4KKK onwards C1 + O(nem4) n

ECSW Cnt
o + nentO(m)p + CSNNLS

q

a Cost of solution of Eigenvalue problem Equation (3.16) for m modes
b Cost of solution of m sparse n× n systems given by Equation (3.31). O(n2) in current context of sparsity.
c Cost of m2 sparse matrix vector multiplications ∂K

∂qj
φi

d Cost of Stiffness sensitivity ∂K
∂qj

assembly w.r.t. to m modes. Each cost same as tangent stiffness assembly.
e Cost of tensor assembly Equations (3.62) and (3.63)
f Cost of linear modal damped time integration
g Cost of finding the weightage Equation (3.37)
h Cost of sorting weights
i cost of element wise assembly of all tensors in Equation (3.109)
j cost of element wise assembly of all tensors in Equation (3.109) except 7

8KKK
k cost of element wise assembly of all tensors in Equation (3.109) except 7

8KKK,
6
7KKK

l cost of element wise assembly of all tensors in Equation (3.109) except 7
8KKK,

6
7KKK,

5
6KKKm cost of element wise assembly of all tensors in Equation (3.109) except 7

8KKK,
6
7KKK,

5
6KKK,

4
5KKKn cost of element wise assembly of all tensors in Equation (3.109) except 7

8KKK,
6
7KKK,

5
6KKK,

4
5KKK,

3
4KKK (There still exist fourth

order tensor computations from damping and inertia.)
o Cost of generation of training vectors for ECSW
pCost of construction of G and b (Equation (4.12))
q Cost of solution of sNNLS problem (Algorithm 2)
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The following general remarks/observations can be made after studying complexity of offline operations
involved in various reduction techniques.

• The Eigenvalue problem Equation (3.16) and Modal derivative problem have been an important
part of most of the reduction techniques. These do not pose a very high offline cost (at least when
compared to the their counterparts in POD). Numerical experiments were performed to check the
time spent on solution of these problems for problems of different sizes for first m modes (See
Figure 6.5).

• As explained before, the offline cost for calculation the tensors scales linearly with the number of
elements in the system. Thus, the offline cost involved in calculation of Tensors depends only on
m and can be calculated in a "per element" fashion (at least when all elements in the mesh contain
the same number of DOFs). These results are depicted in Figure 6.6

• As for the online costs, the offline costs for tensor calculation requires additional storage in the
CPU memory. This is space required is independent of the model size and only depends on m. The
limiting values of m above which tensor computation becomes constrained by available memory is
as follows
Tensorial technique Limiting value of m for available memory
LM Tensorial - All MDs 21
LM Tensorial - m Selected MDs (MMI or MVW) >30
QM Tensorial 16
QM Tensorial neglecting 7

8KKK 22
QM Tensorial neglecting 6

7KKK >30
• Due to the element level implementation of tensors, this calculation is massively parallelizable and

tests show that the use of s processors in parallel reduces the offline cost by a factor of ≈ s. Same
holds true for all the tensor based approaches.

• Among other factors, the offline costs involved in ECSW depend on the method used to obtain the
training vectors, which can be as large as the solution time of a full nonlinear solution (ECSW-I)
or as small as that of a linear modal superposition run (ECSW-III & IV).

• After the training sets have been obtained for ECSW, it has been observed that the construction
of G matrix contributing to the ECSW offline costs, is an expensive task both in terms of time
and memory. It should be noted that G is a dense matrix with large dimensions and for large
systems with many training vectors, its storage becomes inhibitive.

• The offline costs involved in solution of sNNLS problem 4.14 are case dependent but it has been
observed that this cost is negligible compared to the other offline costs (even for large systems).
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Figure 6.5: Eigenmode and Modal Derivative computation time: Models containing different number (n) of DOFs
were tested for time required for computation (y axis) of first m eigenmodes (x axis) and all corresponding m2 MDs as
given by Equations (3.16) and (3.31) respectively. It is known that these are very important constituents for Reductions
techniques discussed however, they’re not very expensive to compute (at least when compared to a full solution run)

number of modes (m)
0 5 10 15 20 25 30

O
ffl

in
e 

co
st

 fo
r 

A
ss

em
bl

y 
of

 te
ns

or
s 

pe
r 

el
em

en
t (

se
co

nd
s)

 

10-2

10-1

100

101

102

(i) LM Tensorial - All MDs
(ii) LM Tensorial (MMI)
(ii) LM Tensorial (MVW)
(iv) QM Tensorial
(v) QM Tensorial w/o  K7
(vi) QM Tensorial w/o K6, K7
(vii) QM Tensorial w/o K5 onwards
(viii) QM Tensorial w/o K4 onwards
(ix) QM Tensorial w/o K3 onwards

Figure 6.6: Tensor Computation costs: Time required for computation of higher order tensors depends linearly on the
number of elements of a structure. All meshes contain similar elements with Ne = 18 DOFs per element. This cost is
shown for computation of tensors in different techniques in a "per element" sense (y axis) which makes it independent of
the model size. This cost increases exponentially with the size of tensors which is related to m (x axis). Notice that the
available memory becomes a constraint as the tensor size increases (where data not available for higher values of m)

So far, qualitative and semi-quantitative estimates about the scaling of the important offline costs
involved in various methods have been attempted. To take into account the missing details and put
things into a better perspective, the offline costs involved in all the test examples were computed. These
are reported in Table 6.3.



6.2. Offline Costs 79

Table 6.3: Offline Costs: Results for the offline costs required before beginning the Newmark implicit time
integration for different Models using various reduction methods. Note that for Model-III, MOR was shown for 3
different load cases(L1a, L1b, L2). Some of the techniques have offline costs which are load dependent and others
don’t, in which case a single number is presented instead of three.

Technique Model-I Model-II Model-III
(s) (s) L1a(s) L1b(s) L2(s)

LM Regular (All MDs) 0.70 1.42 360.20
LM Tensorial (All MDs) 60.57 50.42 9230.00
LM Regular (Selected MDs - MMI) 0.85 1.59 386.10 386.40 386.10
LM Tensorial (Selected MDs - MMI) 51.14 101.30 2972.00 2918.00 2972.00
LM Regular (Selected MDs - MVW) 1.31 2.57 617.90 594.20 604.30
LM Tensorial (Selected MDs - MVW) 54.62 103.30 3125.00 3127.00 3111.00
Quadratic Manifold (Regular) 0.70 1.42 360.20
Quadratic Manifold (Tensorial) 258.20 158.70 43430.00
QMT neglecting 7

8KKK 261.70 126.90 21430.00
QMT neglecting 6

7KKK and 7
8KKK 175.30 98.45 11150.00

QMT neglecting 5
6KKK onwards 107.50 66.71 6739.00

QMT neglecting 4
5KKK onwards 60.63 39.50 4449.00

QMT neglecting 3
4KKK onwards 41.82 28.60 3535.00

POD 89.81 91.33 37680.00 39340.00 37440.00
ECSW - I 101.00 134.60 39410.00 43020.00 39450.00
ECSW - II 51.85 72.24 27680.00 29030.00 28160.00
ECSW - III 12.29 23.72 2103.00 2986.00 1815.00
ECSW - IV 10.53 15.38 1174.00 2140.00 1175.00

It can be seen from Table 6.3 that even for large models (Model-III), the offline cost for the Quadratic
Manifold Tensorial approach is almost as high as the cost of a full solution run in this case (at least when
all the tensors are calculated). However, it should be noted that this cost is load independent. Thus
whereas a POD based method or hyper-reduction (such as ECSW-I) uses the full solution snapshots, it
very much load dependent and every case requires a separate run to generate these snapshots.
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6.3. Effective Speed-Up
The regular techniques, whether using a quadratic manifold or a linear manifold have minimal offline
costs. However, as shown in Figures 6.1 to 6.4, the online cost for these techniques become inhibitive
as the basis size increases thereby making them unusable. The tensorial techniques find use in use a
situation where the online cost is independent of model size. But with all the benefits, these techniques
are taxing in terms of memory and offline costs.

The hyper-reduction using ECSW tries to minimize the online cost incurred during the regular linear
projection techniques by sampling elements on which nonlinearity is evaluated and high speed ups have
been observed for it(See Tables 5.3 to 5.5). But conventionally (ECSW-I,II) it involves a full solution
run for training set generation which is highly undesirable in the context of this research and leads to
inhibitive offline costs.

However, the proposed hyper-reduction with cheap generation of training sets (ECSW-III & IV) somehow
finds a balance between the two type of techniques and leads to affordable offline costs with very high
online speed-ups. A crude estimate of an effective speed-up which gives weights to offline and online
efforts can be defined in the following manner

S?effective = conTfull
coffT ?offline + conT ?online

, (6.3)

where Tfull is the computational time for full nonlinear solution run. T ?offline and T ?online represent the
computational time spent offline and online respectively, on the solution of the system using a given
reduction technique, con, coff ∈ [0, 1] represent the user defined relative weights to be given to the online
and offline costs respectively such that con + coff = 1. As mentioned before, the full solution run is
assumed to carry zero offline costs and thus Seffective = 1 for a full nonlinear run. A Seffective < 1
would imply that the reduction technique is not favourable in an overall sense and a Seffective > 1 would
make it favourable with a higher value of Seffective making the technique more desirable.This effective
speed-up can be used to compare various reduction technique in a overall sense by taking into account
the offline as well as online efforts.

The effective speed-up was computed for various reduction techniques by very conservatively giving
equal weightage to offline and online costs i.e. con = coff = 0.5. The results are shown in Table 6.4.
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Table 6.4: Effective speed-up factor obtained after taking into account the offline as well as online cost for computations.

Technique Model-I Model-II Model-III
(s) (s) Load1a Load1b Load2

LM Regular (All MDs) 2.12 1.74 1.42 1.78 1.38
LM Tensorial (All MDs) 1.33 1.25 4.05 4.19 4.04
LM Regular (Selected MDs - MMI) 2.09 1.78 2.05 2.17 2.00
LM Tensorial (Selected MDs - MMI) 1.69 0.82 12.64 12.11 12.56
LM Regular (Selected MDs - MVW) 2.07 1.80 2.04 2.19 1.98
LM Tensorial (Selected MDs - MVW) 1.59 0.80 12.03 11.55 12.00
Quadratic Manifold (Regular) 2.05 1.32 1.37 1.66 1.42
Quadratic Manifold (Tensorial) 0.33 0.45 0.86 0.89 0.86
QMT neglecting 7

8KKK 0.33 0.58 1.68 1.80 1.73
QMT neglecting 6

7KKK and 7
8KKK 0.48 0.76 3.33 3.44 3.31

QMT neglecting 5
6KKK onwards 0.76 1.05 5.47 5.65 5.44

QMT neglecting 4
5KKK onwards 1.27 1.57 8.21 8.45 8.17

QMT neglecting 3
4KKK onwards 1.76 1.84 10.25 10.63 10.20

POD 0.69 0.69 0.64 0.56 0.63
ECSW - I 0.84 0.54 0.95 0.93 0.94
ECSW - II 1.59 0.92 1.35 1.70 1.32
ECSW - III 4.75 1.86 16.77 22.27 19.14
ECSW - IV 6.44 4.35 31.01 32.39 30.75

The effective speed-up obtained using con = coff = 0.5 is on the conservative side because one expects
the offline costs to be useful for many more online runs. Giving equal weightage to them would mean
offline cost are effective being repeated for every response simulation. This weightage chosen to merely
to give an overview of the worst case scenario. Actual weights are a subject of application at hand and
would require user based decisions depending upon the method of reduction, loading etc. Still, Table 6.4
shows that hyper-reduction based on quadratic manifold are leading the chart. It can also be noted that
Linear Manifold Tensorial approaches with selected MDs, also return high effective speed-ups. However,
it should be kept in mind that MD selection is sensitive to applied loading. A change in MD basis would
result in recomputation of the tensors, thus repeating the huge offline costs. Details conlusions about
the comparison of the techniques follow in the next chapter.





7
Conclusions

The field of Model order reduction is one of ongoing research. In this work, the emphasis was laid on a
general class of techniques in MOR namely the projection based reduction techniques. In the context of
thin walled structural dynamics characterized by Von Kármán kinematics, the main focus of the research
was to study/develop/propose and implement methods for Model order reduction which essentially don’t
require a full non-linear solution run. With this focus, the work branched into two sub-focal areas. The
first of these concluded with the proposal of linear and non-linear mapping using Modal derivatives
to reduce the number of unknowns in a reduced model. Due to polynomial nature of non-linearities,
tensor based approaches were also proposed and implemented for these mappings. The second branch
dealt with hyper-reduction using ECSW and in the context of this research, a very cheap and effective
method to produce training vectors for ECSW was proposed. Both these branches have showed their own
advantages, disadvantages and have addressed the two sub-research questions mentioned in Section 1.2
respectively. The conclusions-cum-recommendations have been split accordingly as follows.

I
Linear Manifold vs the Quadratic Manifold : The Linear Manifold consisting of a few vibration
modes and Modal derivatives proved to be an effective basis for reduction in the current context. The
quadratically increasing size of basis led to : 1) a non-linear mapping which inherently reduces the
number of unknowns in the reduced equations by exploiting the relation of modal derivatives to the
Taylor expansion.

• Accuracy: It is easy to see that the amplitudes connected to the MDs in the linear manifold are
unknowns in the corresponding reduced equations and thus are free to choose any value, where as
in the quadratic manifold they are inherently constrained by the amplitudes of VMs. Thus, the
former gives more freedom for reduction and provides a lower bound for error during the latter
(Section 3.4.3). This is also shown by the results in all the examples in the Chapter 5 whereby the
GRE estimates of the approaches using quadratic manifold are always greater than or equal to
that during the (GREQM ≥ GRELM ) .

• Speed: Even after selection of important MDs, it is easy to see that the number of unknowns is
greater in Linear Manifold than the quadratic manifold. Thus the reduced system is smaller in
case of a quadratic manifold. Also, as seen in the regular implementation of these techniques, the
quadratic manifold as always faster than the linear manifold (Figures 6.1 to 6.4 Table 6.1) .

MD Selection: The search for selection criteria of MDs to reduce the Linear manifold basis size,
resulted in two possible candidates (MMI, MVW Section 3.3.2). Both of them give results of comparable
accuracy. However, the MVW technique did not perform better than MMI on any of the examples
in terms accuracy as well as offline costs (Tables 5.1 to 5.5 and 6.3 ). It should be noted that all the
selection techniques provided a way to rank the MDs in the order of relative importance, but these
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techniques did not indicate how many of these ranked MDs should be used to accurately reproduce the
solution obtained using all the MDs. Thus, there is scope for further work along this course. As a rule
of thumb, a total of nMD = m MDs was chosen in this work in a linear manifold basis containing m
VMs. This was done for fair comparison and keeping the basis size linear with m.

Tensorial approaches: Tensor based approaches were implemented for both linear and quadratic
manifold. The main advantages of these approaches was the offline evaluation of nonlinearity resulting
in a reduced model whose online solution time is independent of the size of the full physical system.
Following general conclusions can be made from the work.

• The effect of neglecting higher order tensors (78KKK and 6
7KKK) had a marginal effect on the accuracy of

solution (Tables 5.1 to 5.5). It’s interesting that these tensors are the most expensive in terms of
computation time (both offline and online) as well as memory, and neglecting them makes the QM
tensorial approach even more efficient.

• It was also shown that beyond a certain m, neglecting these tensors significantly boosts the speed
up while plummeting the memory usage to the extent that they become faster and more affordable
for the available memory, than the linear Manifold(including all MDs) (Figures 6.1 to 6.4).

• It was observed that an increase in structure curvature leads to a more pronounced deterioration
of the solution accuracy when higher order tensors are neglected. Since neglecting the higher
order tensors is of so much interest, it is thus recommended to establish analytical bounds for the
structure curvature under which it is safe to neglect the higher order tensors.

• A tensorial approach involves significant offline costs but this cost can be split between a number
of processors working in parallel on different parts of the mesh making the approach very efficient.

• It is expected that high offline costs would be required to construct a tensor based ROM which can
be used for a variety of load scenarios (e.g. QM Tensorial or LM tensorial with all MDs). Thus,
although the Linear manifold tensorial approach with selected few MDs returns extremely large
online speed-ups, the MD selection is sensitive to load cases and a change in basis would involve
re-computation of tensors, which might not be desirable.

Convergence of QM regular approach: For a Linear Manifold, the regular and tensorial approaches
are identical as far as the solution convergence/accuracy is concerned. However in the QM case , the
Jacobian used during time integration of reduced equations differ between the two approaches, with
the former being far from accurate. This leads to convergence issues during the iterative solution of
nonlinear algebraic equations while performing time integration. Sometimes the system takes higher
number of iterations to converge to the required tolerance and sometimes it might not even converge.

Convergence of QM Tensorial approach: Using the tensors, the Jacobian for the N-R iterations
during time integration can be constructed in an accurate manner. This leads to convergence in all the
tested examples. Whether this can be generally claimed is recommended as work for future research.

It was sometimes observed that after following reference solution up to a certain point in time, the
system converged to a different solution using the QM Tensorial approach. It is also remarkable that
the solution using linear manifold (including all MDs) quickly converged to the reference solution in
such cases. This could be linked to the fact that in such cases, some of the MDs don’t end up following
the amplitudes constrained (by the quadratic mapping) to that of the corresponding VMs (as depicted
in Figure 7.1). This shows that sometimes, the quadratic mapping assumption indeed is not able to
capture the nonlinearities as effectively as the Linear manifold containing MDs.

As a further step towards model order reduction in this context, if the MDs which follow the QM
assumption can somehow be distinguished, then a hybrid approach between linear and quadratic manifold
could be established. Such MDs could then be a part of the nonlinear mapping and other important
MDs should then be included in the linear mapping.
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Figure 7.1: shows the how some of the MD amplitudes which are constrained by the quadratic manifold (to the VM
amplitudes) are not able to capture the nonlinear response in a typical run. In all figures, (i) ηjk shows the amplitude of
the MDjk and qj corresponds the amplitude of VMj in a Linear Manifold run. Thus (ii) 1

2 qjqk represents the amplitude
that a quadratic manifold run should return i.e. in an ideal situation where the quadratic mapping is able to capture
the response effectively, ηjk = 1

2 qjqk. The two figures in left show that the quadratic mapping is successful for the
corresponding MDs, whereas the two on the right show that the quadratic mapping has constrained the MD amplitudes to
a much smaller magnitude than desirable.

II

Hyper-Reduction: The ECSW [5] was established as an ideal choice for hyper-reduction of finite
element based applications. It was implemented and tested successfully. The results using snapshots of
reference nonlinear solution as training vectors, and a POD basis for reduction were exceptional but the
need for a full solution run made it an undesirable choice.

Tensors vs. ECSW: Tensorial approaches are limited to systems with polynomial nonlinearities
and as such involve large offline costs. These approaches pre-compute the nonlinearities in the reduced
equations exactly, thereby resulting in huge online speed-ups. The ECSW on the other hand is a generic
tool for MOR of finite element based nonlinear dynamics applications and its structure preserving and
stability properties make it a very attractive choice in the context of this work. Apart from the training
set generation, the offline costs are minimal and the online speed-ups are large since nonlinearity is very
cheaply and effectively approximated by calculating it over a set predetermined elements. The online
speed-up factors though high, were still less than that of the tensorial approaches (Tables 5.3 to 5.5).
However, the ECSW seemed to be a winner when offline costs were taken into account to calculate
an effective speed-up (Table 6.4). Thus, hyper-reduction using ESCW can be seen in some sense as a
balance between the low offline-high online costs of the regular apparoaches and high offline-low online
costs of the tensorial approaches.

To take a step further in that direction, the following work can be recommended. If localised nonlinearities
can be identified in a structure then the nonlinear tensors could be evaluated only for elements
corresponding to such regions. This could drastically reduce the offline cost (since this cost is directly
proportional to the number of elements on which tensors are evaluated) while maintaining the huge
online speed-ups of the tensorial approaches.
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The range of τ : During offline set up of the ECSW, the τ was seen as a tolerance while solving the
sparse NNLS problem 4.14. It was also seen as a tool to control the sparsity of the solution vector ξ.
A range of 0.1-0.01 was recommended for τ in [5]. Though for τ = 0.01, the results were acceptably
accurate in all the tested cases, it was sometimes observed (Figure 5.16) that setting a lower value of τ
resulted in much better results without any significant loss of sparsity.

QM for generation of training sets: One of the primary aim of this work was to avoid a full
solution run for hyper-reduction. ECSW needs training vectors which include the essential features
of nonlinear behavior. As established before, the MDs provide an effective tool to capture the second
order nonlinear behaviour in the current context. The linear behavior is cheaply captured by a modal
superposition run. The use of quadratic mapping in combination with a linear modal superposition run
was proposed in this work (ECSW-III and IV) which turned out to be a very cheap and effective way to
generate training sets. It was found to be successful in all the tested examples (Tables 5.1 to 5.5). The
range of applicability of this proposal is not yet established and should be a subject for future research.

Element sampling for ECSW: It was observed that the number of elements sampled during sNNLS
for ECSW-II,III were much less compared to that in ECSW-I. The reason for this is not clearly
understood, however the clear difference between these approaches is the basis and training vectors.

Technique Training vectors Reduction basis
ECSW-I Full solution snapshots POD

ECSW-II LM (All MDs) reduced solu-
tion snapshots LM Basis(All MDs)

ECSW-III Quadratic mapping of Linear
modal solution snapshots LM Basis(All MDs)

ECSW-IV Quadratic mapping of Linear
modal solution snapshots LM Basis(MMI selected MDs)

While ECSW-I uses full solution snapshots as training vectors and POD basis as a reduction basis, it
ends up constructing an element sampling which produces the least error results among all the reduction
techniques. However, somehow it is also the slowest among them due to higher number of selected
elements. ECSW-II and III use an LM basis with all MDs for reduction and produce a smaller element
sampling. The ECSW-IV on the other hand use a basis of smaller size than all the other three and
somehow produces an element sampling of almost half the size of that in ECSW-III and IV and leads to
spectacular speed-ups with similar (or even better) accuracy. These observations indeed provide insight
for further research to deliver more concrete claims about the applications of ECSW in this context.
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A.1. Element level implementation of 2
3K and 3

4K
The tensors 2

3K and 3
4K used in Equation (3.88) can be assembled from element level contributions as

follows.

The element level nonlinear internal force for element e is developed as shown in [14].

fe = Ae[BL + BNL(ae)]TD[BL + 1
2BNL(ae)]ae (A.1)

= AeBT
LDBL︸ ︷︷ ︸
Ke

L

ae + 1
2AeBLDBNL(ae)ae +AeBNL(ae)DBLae︸ ︷︷ ︸

quadratic terms

+AeBNL(ae)DBNL(ae)ae︸ ︷︷ ︸
cubic term

(A.2)

where,

D = Y t

(1− ν2)

1 ν 0
ν 1 0
0 0 (1− ν)/2

 , (A.3)

is the material stiffness matrix (Y being the Young’s modulus, t the element thickness and ν the poisson’s
ratio ), BL ∈ R3×18 is based on the formulation in [29] and used in [14],

BNL(ae) =

aTe Kxx

aTe Kyy

aTe Kxy

 ∈ R3×18, (A.4)

(Kxx, Kyy, Kxy ∈ R18×18 are constant matrices which the contain shape function derivatives for bending
and membrane degrees of freedoms, refer to [14] for their expressions), and Ae corresponds to the surface
of area of the triangular shell element e.

With these definitions, the element level contribution of the quadratic tensor 2
3K is denoted as 2

3ke ∈
R18×18×18 and can be deduced from Equation (A.2). Its formulation is shown in MATLAB style as
follows.

2
3ke(i, :, :) = 1

2(C(i, 1)Kxx + C(i, 2)Kyy + C(i, 3)Kxy)+

(Kxx(:, i)F(1, :) + Kyy(:, i)F(2, :) + Kxy(:, i)F(3, :)) ∀i ∈ {1, 2, . . . , 18},

where,

C := AeBT
LD,

F := AeDBL = CT .
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On similar lines, the element level contribution of the cubic tensor 3
4K is denoted as 3

4ke ∈ R18×18×18×18

and can also be deduced and its MATLAB style formulation is as follows.

3
4ke(i, j, :, :) = 1

2Ae[(Kxx(i, j)D(1, 1) + Kyy(i, j)D(2, 1) + Kxy(i, j)D(3, 1))Kxx+

(Kxx(i, j)D(1, 2) + Kyy(i, j)D(2, 2) + Kxy(i, j)D(3, 2))Kyy+
(Kxx(i, j)D(1, 3) + Kyy(i, j)D(2, 3) + Kxy(i, j)D(3, 3))Kxy]. ∀i, j ∈ 1, 2, . . . , 18

Rotation to global coordinates: Note that the element level quantities 3
4ke and 3

4ke are in local
isoparametric coordinates and need to be rotated in to the global coordinates to come up with the global
contributions (34Ke and 3

4Ke respectively) of the element level tensors. This is done as follows.

Suppose the transformation matrix Te ∈ R18×18 is used to convert a displacement vector ae ∈
R18 in local isoparametric coordinates of element e to global coordinates such that, K2global =
ttt(ttt(ttt(Q,K2,1,1),Q,2,1),Q,2,1); K3global = ttt(ttt(ttt(ttt(Q,K3,1,1),Q,2,1),Q,2,1),Q,2,1);

ae = TT
e ue (A.5)

(Note that here transformation only means rotation and thus Te is an orthogonal matrix), then it is
easy to see that the rotated version of tensors can be obtained as

2
3Ke = (((TT

e · 23ke) ·21 Te) ·21 Te), (A.6)
3
4Ke = ((((TT

e · 34ke) ·21 Te) ·21 Te) ·21 Te) (A.7)

(See Section 1.3 for "dot" product notation).
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