
Effective Approximations for Planning with Spatially
Distributed Tasks

D. Claesa P. Robbelb F. A. Oliehoeka D. Hennesc K. Tuylsa

a Department of Knowledge Engineering, Maastricht University
b Massachusetts Institute of Technology

c European Space Agency, ESTEC

Abstract

Planning in cooperative multiagent systems can be neatly formalized using Multi-Agent MDPs, but solv-
ing these models is computationally costly. This paper introduces a sub-class of problems called spatial
task allocation problems (SPATAPS) that model problems in which a team of agents has to service a
dynamically changing set of tasks that is spatially distributed in the environment. We propose to tackle
SPATAPS using online, distributed planning by combining subjective agent approximations with restric-
tion of attention to current tasks in the world. An empirical evaluation shows that the combination of both
strategies allows to scale to very large problems, while providing near-optimal solutions.

1 Introduction
Sequential decision making in cooperative multiagent systems (MASs) is an active area of research. To deal
with uncertain outcomes of actions (e.g., due to wheel slip), researchers have extended Markov decision
processes (MDP) [12] to the multiagent case resulting in multiagent MDPs (MMDPs) [2]. However, even
though solving an MDP can be done in polynomial time, the MMDP suffers from the fact that its state
and action spaces are huge - the number of joint actions is exponential in the number of agents, and the
number of states is exponential in the number of state variables or factors- rendering classical solution
methods impractical for the most interesting problems. To overcome these barriers, we identify an sub-class
of MMDPs that we refer to as Spatial Task Allocation Problems (SPATAPS), and we develop a number of
on-line planning approximations that are tailored to exploit the characteristics of these problems.

In particular, SPATAPS describe settings in which a team of agents needs to service a set of tasks that
are spatially distributed in an environment. Each task can be performed by one or more agents, and new
tasks can appear in the world due to exogenous events outside of the agents’ control. Since there are nearly
no restrictions on the sort of tasks, SPATAPS provide a very powerful and general model. A direct result is
that, even though SPATAPS are a special case of (factored) MMDPs, they are not a special case that is easier
to solve optimally in general. However, as we demonstrate in this paper, it is possible to exploit the key
characteristics of SPATAPS—independence of agent movement and the locality of tasks—approximately
during online planning. In particular, we propose two approximation strategies that are particularly suitable
for these problems.

First, we introduce phase-myopic approximation, which restrict planning effort to the current ‘task
phase’: the set of currently active tasks. Second, the combination of the high degree of independence of
agents and spatial distribution of agents and tasks make SPATAPS ideal candidates for distributed online
planning via subjective or self-absorbed approximations. We investigate such approximations for settings
with negative interactions in which each task can be serviced by a single agent. In such tasks, it makes sense
to discount the future value achievable from tasks that are likely to be serviced by other agents. Such approx-
imate empathic reasoning was recently exploited in the context of multi-robot exploration [10] by making
use of a modification of distributed value functions [13] henceforth referred to as MDVF. We introduce a
simplification of this algorithm that we refer to as empathy by fixed weight discounting (E-FWD).

1

(a) diamond world (b) corridor world (c) office world

Figure 1: Three SPATAP environments.

While phase-myopic approximations and subjective approximations each bring improvements in plan-
ning efficiency, these are not enough to make the planning problem tractable. A crucial contribution of our
approach is therefore the combination of these techniques, which forms the basis of an approximate online
planning technique without any exponential dependence on the number of agents or number of state factors.
The empirical evaluation shows that these techniques yield near-optimal solutions and is highly scalable,
while outperforming the state-of-the-art.

2 Spatial Task Allocation Problems
The problems we consider in this paper describe a set of spatially distributed tasks that a team of agents
needs to solve. As a running example, we consider a dirt cleaning scenario where cleaning robots cooperate
to address dirt-removal tasks that are spatially distributed in the environment (see Figure 1). A key charac-
teristic of such problems is that the outcome of an action is uncertain (cleaning the dirt may fail with some
probability), and new tasks can appear due to unforeseen exogenous events (e.g., a human spilling some
dirt). As such, SPATAPS can be seen as a special case of MMDP:

Definition 1. A multiagent Markov decision process (MMDP) is defined as a tuple 〈D,S,A,P,R〉, where
D = {1, . . . ,n} is the set of n agents, S a finite set of states s of the environment, A = A1 × · · · × An the
set of joint actions a = 〈a1, . . . ,an〉, T the transition probability function specifying P (s′|s,a), and R(s,a)
the immediate reward function.

An MMDP is called factored if its state space is spanned by a set of state variables. Note that an MMDP
is significantly different from a Dec-MDP [1], since agents in an MMDP can observe the (global) state. A
(joint) policy in an MMDP π : S → A maps states s to joint actions a, and is equivalent to a tuple of
individual policies πi : S → Ai. The Q-value of (s,a) under policy π is defined as the expected sum of
rewards when executing a in s and following π afterwards. In this paper we will consider (undiscounted)
h-stage look-ahead planning, i.e., constructing a plan that specifies actions from ‘now’, t = 0, to stage
t = h− 1. For this setting, the value function for each stage t equals V t(s) = maxaQ

t(s,a), where

Qt(s,a) = R(s,a) +
∑
s′

Pr(s′|s,a)V t+1(s′). (2.1)

The optimal policy π∗ and corresponding optimal value functions Qt, maximize the expected reward for
every (s,a). Solving MMDPs can be done in a similar fashion as (single-agent) MDPs [12]. However, since
the number of joint actions is exponential in the number of agents and the number of states is exponential in
the number of factors (itself usually dependent on the number of agents), this is intractable in practice.

SPATAPS are sub-class of MMDPs with some additional structure. Underlying a SPATAP is a map
that specifies the potential task locations L and that defines AM , the set of movement actions. E.g.,
for the “dirt cleaning” example, all agents are homogeneous and share a common (movement) action
space AM = {N,E,S,W,Stay}. There further exists a task structure, defined by a set of task types
T =

{
T0,T1, . . . ,T|T |

}
. Each type Tk has an associated set of task states Tk that indicate the status of

the task. In our running example, T1 could have states T1 = {very dirty, dirty, nearly clean}. T0 refers to
a special type indicating there is no task and only has one state T0 = {CLEAR}. We use T =

⋃
k Tk to

Table 1: Sizes of the state and actions spaces of the considered models. A∗ denotes the largest individual
action set. Planning times are a polynomial function of these quantities.

state space action space

MMDP |L||D| · |T||L| |A∗||D|

S-MDP |L| · |T||L| |A∗|
Phase-MMDP |L||D| · |T||pL| |A∗||D|

SP-MDP |L| · |T||pL| |A∗|
k-SP-MDP |L| · |T|k |A∗|

denote the set of all task states. Each task type Tk may optionally be associated with one (or more) particular
action aTk to perform that task.1 Each agent i can perform movement and task actions.

These SPATAP-specific components can now be used to define the induced MMDP. Agents and their
actions are unchanged. A state is a tuple s = 〈λ,τ〉, where λ is the vector of locations (λi denotes the
location of agent i), and τ is the task status vector (τx denotes the task status at location x). The transition
function can be factored as

P (λ′,τ ′|λ,τ,a) =

[∏
x∈L

pTx (τ
′
x|τx,λ,a)

][∏
i∈D

pMi (λ′i|λi,ai)

]
(2.2)

where pT are task transition probabilities and pM are agent movement probabilities.2 The task transition
probabilities pT are assumed to be conditionally independent given the locations and actions of the agents
and encode the probability of progressing toward finishing the tasks, as well as exogenous events that spawn
new tasks (e.g., somebody spilling dirt).

The reward function is additively factored and is the sum of task rewards RT and movement costs RM :

R(s,a) =

[∑
x∈L

RT
x (τx,λ,a)

]
+

[∑
i

RM
i (λi,ai)

]
. (2.3)

While the above lays out the general form of SPATAPS, such problems are, in general still very difficult
since the terms pTx andRT

x are non-local, i.e., they depend on all the agents, also those far away from location
x. In order to gain more traction on the problem, we will assume that a task at a particular location x will
only be influenced by a subset of agents. This subset we call the locality scope L(x,τx,λ,a) and depends on
the location x, the task type and state encoded by τx, and λ,a. For instance, in our example L(x,τx,λ,a) for
a dirty location x, it will only contain those agents at x that perform the ‘clean’ action. In the remainder of
this paper, we will simply write aL for the action profile of agents in the locality scope. As such, we will
consider task transitions of the form pTx (τ

′
x|τx,λL,aL). Similarly, we will assume that the task rewards can

be expressed as RT
x (τx,λL,aL).

We would hope that the special structure of SPATAPS might make them easier to solve. Unfortunately,
this is in general not the case:

Theorem 1. Optimally solving a SPATAP is MMDP-hard.

Proof Sketch. We reduce from the problem of solving an MMDP by creating a SPATAP with a single loca-
tion and a single task. The task states correspond to the states of the MMDP and similarly can we derive pTx
and RT

x from the transitions and reward of the MMDP. The optimal solution of this SPATAP is the optimal
solution of the MMDP.

This theorem illustrates that while the concept of tasks is very general and powerful, this comes at a
worst-case computational cost. Nevertheless, SPATAPS offer ample opportunities to exploit their specific
characteristics. In particular, in the following sections, we propose two types of approximation techniques
that each directly exploit problem structure.

1For some tasks it may not be necessary to explicitly perform a task action, e.g., in exploration just reaching a location is sufficient.
2Movements are independent, effectively assuming that lower-level path-planning will avoid collisions within the same location.

3 Subjective Approximations
The first set of techniques by which we bring computational leverage to the (online) planning process are
subjective approximations, which aim to address the complexity that is introduced by the presence of multi-
ple agents. They increase planning efficiency by distributed approximation: decomposing the larger problem
into a set of approximate smaller planning problems, one for each agent.

Self-absorbed Agent Approximation. The extreme case of subjective approximation is to plan for each
agent independently, assuming that it is the only agent present in the problem. We refer to this type of
approach as the ‘self-absorbed agent’ approximation. A self-absorbed agent i only models its own location
and thus has individual states si = 〈λi,τ〉. It also assumes that the transitions only depend on its own actions

pSA
i (s′i|si,ai) =

[∏
x∈L

pT,SA
x (τ ′x|τx,λi,ai)

]
pMi (λ′i|λi,ai)

RSA
i (si,ai) =

[∑
x∈L

RT,SA
x (τx,λi,ai)

]
+RM

i (λi,ai). (3.1)

It may be difficult to map pTx (τ
′
x|τx,λL,aL), RT

x (τx,λL,aL) to pT,SA
x (τ ′x|τx,λi,ai) and RT,SA

x (τx,λi,ai) re-
spectively. However, in many cases, it is possible to assume a default effect or default action for the other
agent (e.g., we can assume that there will be no other agent cleaning the same spot). Another approach is to
treat the agents as noise [6], e.g., by assuming some (e.g. uniform) distribution over λ−i,a−i.

Formally, we define a subjective MDP (S-MDP) for agent i as a tuple
〈
Ss,Ai, p

SA
i , RSA

i

〉
, where Ss is

the subjective state space of states si = 〈λi,τ〉. Solving a S-MDP can be done with standard techniques,
yielding value functions V SA,t

i (si) and QSA,t
i (si,ai), which directly follow from (2.1).

The S-MDP improves significantly over the MMDP formulation in terms of complexity (see Table 1). As
shown, there is no longer any exponential dependence on the number of agents in an S-MDP, which directly
means that it admits more efficient solutions. However, we expect that self-absorbed agent approximations
are insufficient in domains where agents need to perform a fair amount of coordination. Next, we propose a
number of approaches that do account for interactions between agents.

Empathy by Predicting other Agents’ Locations. The key idea that allows us to take into account in-
teractions without falling back in the complexity of exponentially many joint actions is that, from the per-
spective of one agent, in order to compute a best-response it only needs to predict what tasks will be tackled
by the other agents. That is, it only cares about the aggregate effect of the actions of the rest of the team,
but not about which team member addresses which task in particular. In order to predict what tasks will be
addressed by the rest of the team, we use the predicted probability for agents being at a location as a proxy
for them addressing the task at that location.

In particular, from the perspective of an agent i, we want to be able to predict the location λtj of an
agent j, t-stages from now. That is, we want to compute the probability distribution Pr(λtj |s0) where s0 is
the full MMDP state ‘now’ (i.e., when the agent performs this prediction).

To compute these ‘presence mass’ distributions, one needs to assume particular behavior of the other
agents. One possibility, is to assume that other agents perform a random walk [10]. This assumption,
however, leads to uninformative uniform distributions over states when predicting further into the future.
To avoid this problem, we assume that the other agents use a self-absorbed model with quantile response
and take actions according to a Boltzmann policy using the self-absorbed agent approximation VSA, which
prevents this problem, as illustrated in Fig. 2 (middle). When there are multiple agents present, we can
accumulate the presence mass distributions and therefore do not need to take every single agent into account.
We use the accumulated presence mass distribution for the next model.

Empathy by Fixed Weight Discounting. The MDVF [10] approach is inspired by DVFs [13] and allows
agents to share their value function. This is achieved by using a different value function (namely VSA) to
discount the values of future states. In the resulting formulation, however, MDVF agents do not share their
value functions. Instead, each agent computes VSA in parallel and uses it to discount the VMDV F values.

0

244.05

1

248.00
A0

2

246.02

3

246.02

4

248.00

5

249.97

T
6

248.00

7

248.00

8

249.97

T

9

248.00

10

246.02

11

246.02
A1

12

244.05

0

0.00

1

0.01
A0

2

0.00

3

0.00

4

0.01

5

0.21

T
6

0.01

7

0.02

8

0.73

T

9

0.01

10

0.00

11

0.00
A1

12

0.00

0

231.18

1

234.58
A0

2

233.28

3

231.18

4

234.58

5

235.70

T
6

234.58

7

235.85

8

237.36

T

9

234.58

10

233.26

11

229.73
A1

12

230.86

Figure 2: Left: A sample state for a diamond shaped gridworld with two agents (A0, A1) and two active task
locations and VSA for the current state. Middle: The presence mass of A1 from the viewpoint of A0. Right:
The discounted value function VEFWD for A0 resulting for this configuration.

Realizing this, we propose a more straightforward approach: we do not discount using VSA, but just
use the next-stage value function. We refer to this simplification as empathy by fixed-weight discounting
(E-FWD). The resulting value function is given by

QFWD,t
i (si,ai) = RSA(si,ai) +

∑
s′

pSA(s′i|si,ai)

[(
1− fi

∑
j 6=i

Pr(st+1
j = s′i|s0)

)
V FWD,t+1
i (s′i)

]
. (3.2)

where RSA and pSA are the self-absorbed model components. (These are the same for all agents, and hence
we drop the subscript i to simplify notation). The last probability term is just the presence mass of an agent j
being at the location specified by s′i, i.e., Pr(st+1

j = s′i|s0) = Pr(λt+1
j |s0) with λt+1

j the location specified
by s′i. Finally, fi is a fixed weight that determines how much the value of a next state is discounted. We
follow [10] and set fi to maxR(s,a)/maxV (s,a). An example illustrating this discounting is shown in
Fig. 2 (right).

4 Phase-Myopic Approximations
While subjective approximations reduce the complexity due to multiple agents, they do not sufficiently
reduce the complexity of the state space. To overcome the complexity of the state space, we propose a
different way of approaching the problem. Rather than seeing each location x ∈ L as a potential location for
a task that may appear or disappear, we focus only on the current ‘task phase’, i.e., the current set of tasks
(i.e., only on those locations x for which τx 6= CLEAR). By focusing only on these locations, the number
of task states induced is much smaller, allowing for big increases in planning efficiency.

Phase MMDPs. We formalize this idea by means of the so-called phase-MMDP, which, given a global
state s = 〈λ,τ〉, can be defined as follows. A Phase-MMDP for state s, is an MMDP 〈D,Sp,A, P p, Rp〉.
The considered task locations in this MMDP, however, are restricted to the set of pL = {x ∈ L | τx 6= CLEAR}
of phase task locations, i.e., the set of ‘active’ locations where there is a task). Thus, the state space Sp is
spanned by the set of joint locations L|D| and the set T|pL| of all possible task vectors for the active loca-
tions. We write pτ ∈ T|pL| for the restriction of τ to the locations in pL. A phase-MMDP state is a tuple
ps = 〈λ,pτ〉. The transition (and reward) function follow from equation 2.2 (and 2.3) by restricting the
product (summation) to pL.

A phase-MMDP provides leverage by restricting the number of states compared to the regular MMDP
formulation. However, in the worst case, there are active tasks everywhere and there is no reduction. Also,
it does not address the large joint action space (see Table 1).

Subjective Phase MDPs. Realizing that subjective and phase-myopic approximations yield complemen-
tary gains, we propose to combine both approximations in a formalism that we refer to as subjective phase
MDP (SP-MDP). An SP-MDP for agent i is a subjective model, meaning that it includes only the actions
of agent i itself, moreover, it is a phase approximation, meaning that the states only include task states for
active tasks. Specifically, a local state is a tuple si = 〈λi, pτ〉, where λi is the location of agent i and pτ
is the phase task vector. In an SP-MDP, the number of actions is the number of individual actions and the
number of states is potentially much smaller due to the phase-myopic assumption (see Table 1).

world SA MDVF EFWD SPUDD

2x2 93.32% 97.86% 98.41% 100%
3x3 94.73% 96.83% 97.24% 100%

(a)

world |L| n |S| |A|

Line 12 2 5.90e+ 05 25
Diamond 13 3 1.80e+ 07 125
Corridors 18 3 1.53e+ 09 125

4x4 16 4 4.29e+ 09 625
6x6 36 5 4.16e+ 18 3125

Office 66 6 6.10e+ 30 15625

(b)

Table 2: (a) Relative values of the three approaches averaged across a set of randomly drawn starting states
and compared to the SPUDD optimum value function. (b) Larger dirt-world benchmarks.

kSP-MDPs. As mentioned, in the worst case there are many active tasks, which means that the number of
states will still be prohibitive. However, by the combination of subjective and phase-myopic approximations,
it is possible to exploit the problem structure even further. In particular, the subjective model of each agent
may make different approximations by exploiting what parts of the current state are relevant to that agent.

For instance, in the construction of the SP-MDP for an agent i, we can now make use of the location
of that agent, by restricting the state space of the SP-MDP to include only task locations for the k nearest
tasks. We refer to the resulting model as kSP-MDP. The number of states of the kSP-MDP is given by
|Sksp| = |L| · |T|k.

As is clear from Table 1, the kSP-MDP is the only model that is guaranteed not to have any exponential
complexities. Standard dynamic programming for a h-step lookahead MDP takes time O(h|S|2|A|), and
thus is feasible for large problems when using the kSP-MDP model.

5 Experiments
Since, the approximations that we introduced are not bounded, we report the results of an empirical eval-
uation aimed at determining the solution quality afforded by these approximations. For this purpose, we
implemented a dirt-world simulator in Python in which agents plan online, in a distributed fashion, using the
kSP-MDP model. The movement transition probabilities pMi are such that a movement can fail (the agent
remains at its previous location) with 10% probability. The task at location x is deterministically completed
if any agent i performs action STAY at that location A task appears at a location x with probability 0.05
(but an agent staying at a location prevents task appearance). The team of agents receive reward +1 for every
clean location at every time step. We do not consider movement costs. Agents solve their individual kSP-
MDPs for (a maximum of) h = 20 steps lookahead, using regular dynamic programming. Unless reported
differently, we use k = 4.

In order to asses overall solution quality, we compare the approach with the global MMDP solution.
Note that the global MMDP, unlike the phase-MMDP approximation, considers all locations on the board
potential task locations, even currently ‘inactive’ ones. We use SPUDD [7], the state-of-the-art optimal
solver for factored MDPs, to provide the value of the optimal solution for horizon 10, and compare this
to the average value generated by 100 dirt-world simulations with online planning. Table 2a shows the
results for this comparison. SPUDD was only able to scale to 2x2 and 3x3 gridworlds with two and three
agents respectively. For these problems, the approximations perform very well; even the naive self-absorbed
approximation achieves over 93 % of optimal. The proposed simplification E-FWD even yields slightly
higher rewards than the more complex MDVF.

To examine the impact of restricting planning to only the k nearest tasks, we performed an experiment
in which we vary k, holding other parameters fixed. For this experiment, we used a “full” 4x4 gridworld, i.e.
dirt is present everywhere, with three agents that used the E-FWD algorithm to select their actions. Results
shown in Figure 3a, are averages over 100 runs of horizon 20 with 95% confidence intervals. Additionally
shown are the number of states for each k (the dashed line). The figure clearly shows that, although k = 1,3
perform poorly, there is no significant difference for k ≥ 4, which explains our choice of k = 4 for all the
other experiments.

Finally, we test the performance of our approximations on a number of larger test problems, listed in

1 2 3 4 5 6 7
150

160

170

180

190

200

k

V

1 2 3 4 5 6 7
0

500

1000

1500

m
a
x
.
#
s
t
a
t
e
s

(a) varying k

Line Diamond Corridors

700

800

900

1000

1100

1200

1300

1400

V

PART

SA

MDVF

EFWD

4x4 6x6 Office

1

2

3

V
in

1
0
3

PART

SA

MDVF

EFWD

(b) Different problem sizes

Figure 3: (a) Mean reward and number states for k-nearest task phase MDP with a 4x4 gridworld and three
agents while increasing k. (b) Mean reward for various gridworlds as presented in Table 2b.

Table 2b. The “Line” world is a straight line of 12 states, and the “Corridors” and “Office” world are shown
in Figure 1. These problems are too large to be solved optimally, e.g., office world has 6.10e+30 states and
15625 actions as shown in Table 2b. In fact, few methods can deal with such large problem. The only other
approach that we found to offer the required scalability is the ‘partition organization’ [14]. The problem is
partitioned in (overlapping) regions and each agent is assigned to one region. This approach is well suited
for problems in which there is a straight forward partitioning, i.e. very symmetric worlds.We automatically
calculate the partitions by assigning each location to the closest agent. If there are multiple agents with the
same distances, the location is added to both partitions. We refer to this approach as “PART”. PART still
suffers from the fact that large regions lead to too large local problems, we addressed this by also restricting
to the k nearest tasks in these problems.

Each method is run for 100 steps and repeated 10 times with random initial positions for the agents,
while the world always being “full”. Figure 3b shows the mean total reward including the 95% confidence
intervals, i.e. non-overlapping error-bars mean statistically significant results. The self-absorbed approach
performs the worst for every setting. The simplifications of E-FWD do not lead to a loss: there is no
significant difference with MDVF and both have higher means and smaller variance than PART. Especially
in more complex worlds, i.e. the “Corridors” and the “Office”, the PART approach has a very high variance
due to the different partitioning for each run. E-FWD is more reliable because it does not depend on the
initial partitioning.

Additionally, we computed a theoretical (loose) upper bound, by assuming that at every stage, the ex-
pected number of tasks appears and all agents are able to clean every second time step (i.e., in one step each
agent uses a ‘teleport’ move they can reach the location of a next task, which is then serviced in the other
step). Clearly, this upper bound is a vast overestimation of the optimal value, since each time step new tasks
appear at random locations and agents need more than one step travel times to these tasks. However, the
proposed approximations yield rewards relatively close to this (unrealistic) upper bound. Generally over
90% of the upper bound is achieved in the smaller worlds up to 4x4, and about 75% in the 6x6 world and
about 70% in the “Office” world are achieved.

6 Related Work
In this work, we define approximate models which we can solve optimally. This should be contrasted
with efforts to approximately solve exact models (e.g. [8]). Combining such approaches (approximately
solving the approximate models) may lead to even further scalability, required for real-life problems. The
restrictions of the local problem of each agent to a subset of state factors is reminiscent of converting to a
Dec-MDP, but in fact fundamentally different, since the observation of the global state s is used to construct
the agents’ kSP-MDPs. Moreover, despite recent advances, e.g., [4], Dec-MDP solution methods do not
nearly scale to problems of the size considered here. While there have been other approximate methods
for solving MMDPs, these typically depend on pre-specifying the fixed, or context-dependent coordination
structure [9, 15]. For SPATAPS, however, fixed coordination structures are a poor choice and the number
of contexts to be considered is huge. To overcome the problem of pre-specifying interaction structures one
can try to learn them [11, 3], but the premise underlying these methods is that there are only few states in

which the agents need to coordinate. In contrast, in SPATAPS, the agents need to coordinate what tasks they
service at all states. SPATAPS relate to resource allocation [16] (agents can be interpreted as resources that
are assigned to different tasks). We, however, allow reallocation at every time step and consider spatially
distributed tasks and travel times. Finally, the subjective approximations presented in this paper can be
interpreted as online planning for a special instance of a level 1 interactive POMDP [5]. In contrast to
standard interactive POMDP solution methods, however, we propose dedicated approximation algorithms
that exploit the characteristics of SPATAPS.

7 Conclusions & Future Work
This paper introduces SPATAPS, a general sub-class of MMDPs suitable for domains such as multi-robot
exploration. To combat the complexity of general MMDP algorithms, we propose to use phase-myopic and
subjective approximations, and combine both to yield an efficient online planning method for SPATAPS.
Current work investigates a theoretical understanding of these methods including which guarantees, i.e.
bounds, can be given for the proposed approaches. The transition of the dirt-world example to a real-world
application, as well as identifying methods for ‘positive interaction’ settings (e.g., there are joint tasks for
which two agents are required), and mixtures of negative and positive interactions are promising directions
for future work.

References
[1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized

control of Markov decision processes. Mathematics of Operations Research, 27(4):819–840, 2002.
[2] Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In Proc. of the 6th Confer-

ence on Theoretical Aspects of Rationality and Knowledge, pages 195–210, 1996.
[3] Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé. Learning multi-agent state space representations. In

AAMAS, pages 715–722, 2010.
[4] Jilles Steeve Dibangoye, Christopher Amato, and Arnaud Doniec. Scaling up decentralized MDPs through heuris-

tic search. In UAI, pages 217–226, 2012.
[5] Prashant Doshi, Yifeng Zeng, and Qiongyu Chen. Graphical models for interactive POMDPs: representations and

solutions. Autonomous Agents and Multi-Agent Systems, 18(3):376–416, 2008.
[6] Piotr J. Gmytrasiewicz and Prashant Doshi. A framework for sequential planning in multi-agent settings. Journal

of Artificial Intelligence Research, 24:49–79, 2005.
[7] Jesse Hoey, Robert St-Aubin, Alan J. Hu, and Craig Boutilier. SPUDD: Stochastic planning using decision dia-

grams. In UAI, pages 279–288, 1999.
[8] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Machine Learning: ECML 2006,

volume 4212 of Lecture Notes in Computer Science, pages 282–293. Springer Berlin / Heidelberg, 2006.
[9] Jelle R. Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation. Journal

of Machine Learning Research, 7:1789–1828, 2006.
[10] Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated multi-robot exploration under

communication constraints using decentralized markov decision processes. In AAAI, pages 2017–2023, 2012.
[11] Francisco S. Melo and Manuela Veloso. Learning of coordination: exploiting sparse interactions in multiagent

systems. In AAMAS, pages 773–780, 2009.
[12] Martin L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley &

Sons, Inc., 1994.
[13] Jeff G. Schneider, Weng-Keen Wong, Andrew W. Moore, and Martin A. Riedmiller. Distributed value functions.

In Proc. of the International Conference on Machine Learning, pages 371–378, 1999.
[14] Jason Sleight and Edmund H. Durfee. A decision-theoretic characterization of organizational influences. In

AAMAS, pages 323–330, 2012.
[15] Matthijs T. J. Spaan and Francisco S. Melo. Interaction-driven Markov games for decentralized multiagent plan-

ning under uncertainty. In AAMAS, pages 525–532, 2008.
[16] Jianhui Wu and Edmund H. Durfee. Resource-driven mission-phasing techniques for constrained agents in stochas-

tic environments. Journal of Artificial Intelligence Research, 38:415–473, 2010.

