

Delft University of Technology

Memory-Efficient Modeling and Slicing of Large-Scale Adaptive Lattice Structures

Liu, Shengjun; Liu, Tao; Zou, Qiang; Wang, Weiming; Doubrovski, Eugeni L.; Wang, Charlie C.L.

DOI
10.1115/1.4050290
Publication date
2021
Document Version
Final published version
Published in
Journal of Computing and Information Science in Engineering

Citation (APA)
Liu, S., Liu, T., Zou, Q., Wang, W., Doubrovski, E. L., & Wang, C. C. L. (2021). Memory-Efficient Modeling
and Slicing of Large-Scale Adaptive Lattice Structures. Journal of Computing and Information Science in
Engineering, 21(6), Article 061003. https://doi.org/10.1115/1.4050290

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1115/1.4050290
https://doi.org/10.1115/1.4050290

Shengjun Liu
School of Mathematics and Statistics,

Central South University,
Changsha 410083, China

e-mail: shjliu.cg@csu.edu.cn

Tao Liu
School of Mathematics and Statistics,

Central South University,
Changsha 410083, China
e-mail: ltaocg@csu.edu.cn

Qiang Zou
State Key Laboratory of CAD&CG,

Zhejiang University,
Hangzhou 310058, China;
Department of Mechanical,

Aerospace and Civil Engineering,
University of Manchester,
Manchester M13 9PL, UK

e-mail: qiangzou@cad.zju.edu.cn

Weiming Wang
School of Mathematical Sciences,
Dalian University of Technology,

Dalian 116024, China;
Faculty of Industrial Design Engineering,

Delft University of Technology,
Delft 2628 DS, The Netherlands
e-mail: wwmdlut@dlut.edu.cn

Eugeni L. Doubrovski
Faculty of Industrial Design Engineering,

Delft University of Technology,
Delft 2628 DS, The Netherlands
e-mail: E.L.Doubrovski@tudelft.nl

Charlie C. L. Wang1

Department of Mechanical,
Aerospace and Civil Engineering,

University of Manchester,
Manchester M13 9PL, UK

e-mails: charlie.c.l.wang@manchester.ac.uk;
changling.wang@manchester.ac.uk

Memory-Efficient Modeling and
Slicing of Large-Scale Adaptive
Lattice Structures
Lattice structures have been widely used in various applications of additive manufacturing
due to its superior physical properties. If modeled by triangular meshes, a lattice structure
with huge number of struts would consume massive memory. This hinders the use of lattice
structures in large-scale applications (e.g., to design the interior structure of a solid with
spatially graded material properties). To solve this issue, we propose a memory-efficient
method for the modeling and slicing of adaptive lattice structures. A lattice structure is
represented by a weighted graph where the edge weights store the struts’ radii. When
slicing the structure, its solid model is locally evaluated through convolution surfaces in
a streaming manner. As such, only limited memory is needed to generate the toolpaths of
fabrication. Also, the use of convolution surfaces leads to natural blending at intersections
of struts, which can avoid the stress concentration at these regions. We also present a com-
putational framework for optimizing supporting structures and adapting lattice structures
with prescribed density distributions. The presented methods have been validated by a
series of case studies with large number (up to 100M) of struts to demonstrate its applica-
bility to large-scale lattice structures. [DOI: 10.1115/1.4050290]

Keywords: computational foundations for additive manufacturing, computer aided design,
computer aided manufacturing

1 Introduction
Additive manufacturing has enabled the fabrication of objects

with highly complicated shapes and structures. Recently, increasing
attention has been drawn towards modeling interior structures of 3D
models rather than the exterior appearance [1–3]. One important
type of interior structures is the lattice structure, which consists of
interconnected struts. Such structures are lightweight, yet have
superior mechanical properties [4]. When such lightweight struc-
tures are used in vehicles, less energy will be consumed. Moreover,
with carefully designed density distributions, spatially graded mate-
rial properties can be realized at different regions of a 3D printed
lattice structure, which therefore introduces varied mechanical
properties in the part.
When using lattice structures to realize spatially graded material

properties, the number of struts can be huge. In such a scenario, if
triangular meshes (i.e., the de facto standard representation

format in 3D printing) are to be used to represent lattice structures,
the memory consumption can be extremely high. This poses a sig-
nificant computational challenge in applications of large-scale,
adaptive lattice structures. The previously developed out-of-core
modeling algorithms [5,6] for lattice structures could handle
uniform or periodical lattice structures but becomes difficult for pro-
cessing large-scale adaptive lattice structures. There is also prior
research [7] seeking to reduce the number of facets in triangulating
a lattice structure. However, when a tremendous number of struts
are involved to model lattice structures, the method will generate
too many triangles to run on a general computer.
To address the aforementioned challenge of large-scale lattice

structures in additive manufacturing (AM), we propose a
memory-efficient method for modeling and slicing adaptive lattice
structures in large-scales. A lattice structure is represented by a
weighted graph with edges representing struts, nodes representing
intersections of the struts, and edge weights specifying radii of
the corresponding struts. The corresponding solid of the lattice
structure is locally defined using convolution surfaces with com-
pactly supported kernel functions. In this way, the solid’s boundary
surface will only be locally generated when needed. This yields a

1Corresponding author.
Manuscript received November 21, 2020; final manuscript received February 15,

2021; published online May 13, 2021. Assoc. Editor: Yong Chen.

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-1
Copyright © 2021 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

mailto:shjliu.cg@csu.edu.cn
mailto:ltaocg@csu.edu.cn
mailto:qiangzou@cad.zju.edu.cn
mailto:wwmdlut@dlut.edu.cn
mailto:E.L.Doubrovski@tudelft.nl
mailto:charlie.c.l.wang@manchester.ac.uk
mailto:changling.wang@manchester.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4050290&domain=pdf&date_stamp=2021-05-13

highly scalable representation for adaptive lattice structures. In
addition, solid models based on convolution surfaces have naturally
blended shape at the intersections of struts, which can avoid the
stress concentration at these regions. Based on the above represen-
tation scheme, a streaming-based slicing algorithm for 3D printing
is then developed to demonstrate the scalability of our method—
models with a massive number (up to 100M) of struts can be suc-
cessfully handled.
Based on the scalable modeling method, an algorithm for con-

structing a lattice structure model in accordance with a prescribed
density distribution is also presented in this paper. The lattice struc-
ture is initialized with edges and nodes of a tetrahedral mesh gener-
ated by the method presented in Ref. [8]. Then, the density in the
initial lattice structure is adjusted to match with the prescribed
density in two steps as tetrahedra subdivision and strut radius
adjustment. To facilitate the printing process, the lattice structure
is further optimized to be self-supported for additive manufacturing.
The technical contributions of our work are:

(1) A new memory-efficient representation of lattice structures
that can be employed to solve the large-scale modeling
problem of spatially graded material properties.

(2) A slicing algorithm in streaming mode to realize the fabrica-
tion of lattice structures with a large number of struts.

(3) A computational framework to reversely design a lattice
structure that matches a prescribed density distribution and
achieves the optimal self-supporting. This framework,
when combined with the above two contributions, provides
a comprehensive and practical pipeline for modeling and
slicing lattice structures.

The rest of this paper is organized as follows. After reviewing the
related works in Sec. 2, we present the modeling method of
large-scale lattice structures in Sec. 3, which is followed by intro-
ducing a streaming-based slicing algorithm in Sec. 4. The computa-
tional framework for constructing a lattice structure according to the
required density distribution is then presented in Sec. 5. The effec-
tiveness of our approach is evaluated in Sec. 6 and our paper ends
with the conclusion.

2 Related Works
In the literature, there are numerous techniques of modeling com-

plicated geometry for additive manufacturing applications. Here we
only study the most relevant works. More comprehensive surveys
can be found in Refs. [9–11].
Different from conventional methods [12–14] that generate a full

infill inside a part, more and more research studies are being con-
ducted to design distributed infill structures for functionally tailored
3D printing. Examples include fractal-like space filling curves/sur-
faces [3,15], adaptive rhombic grid [16,17], Voronoi diagram-based
structure [1,18–20], beam-like structure [21,22], periodic tiles
[23,24], procedural periodic tiles [2,25], and voxel-based structure
[26]. Among these approaches, only the approaches presented in
Refs. [1,3] provide a method to construct an infill-structure match-
ing the given density field. However, the demand of self-supporting
is not considered in Ref. [1], and thin-shell structures are employed
in Ref. [3] which is not able to achieve high sparsity as the lattice
structures studied in this work.
In general, the inner surfaces of a model are represented by two-

manifold triangular meshes, which can be obtained from different
representations, such as voxels in Ref. [26], tetrahedral meshes in
Ref. [27], rhombic cells in Refs. [16,17], elliptic cylinders in
Ref. [19], and extended distance fields in Refs. [1,2]. In this
paper, we introduce a skeletonal representation of lattice structures
by only storing the set of nodes and the edge-connectivity of a graph
as skeletons. The solid can be efficiently and effectively evaluated
from these skeletons by convolution surface with compactly sup-
ported kernel functions. Different from distance fields, the formula-
tion of convolution surface provides highly smooth surfaces at the

intersected regions of struts. This can avoid the stress concentration
at those regions with sharp creases. In addition, due to local kernel
functions used in the convolution surface, the computation in
slicing algorithm can be evaluated in a streaming manner—i.e.,
with high scalability.
When additive manufacturing is applied to fabricate models with

complicated geometry, supporting structures need to be added
below the part with large overhang [28,29]. In general, the addi-
tional support will lead to the problems of hard-to-remove,
surface damage, and additional cost of material and fabrication
time. For the 3D printed models of spatially graded density, the
additional support may change the designed density distribution.
In literature, many approaches have been developed to reduce the
usage of supporting structures. For example, some methods tried
to compute an optimal printing direction to reduce the influence
of the supporting structure [30,31]. Different supporting structures
are designed to reduce the volume of material usage, such as the
tree-structures proposed in Ref. [30] and the bridge structures
proposed in Ref. [32]. Moreover, approaches have also been devel-
oped to generate completely self-supported infill structures
[3,16,17,19,26]. As a design tool, we propose to conduct the strat-
egy employed in Ref. [33] to deform a model to reduce the demand
of support.

3 Modeling of the Lattice Structure
In this section, we will first present the representation of lattice

structures and then formulate its implicit solid by the convolution
surface with compactly supported kernel functions. After that, we
study shape error at the joint regions which may have over-blending
problems.

3.1 Implicit Solid Representation. A lattice structure is repre-
sented as a graph of interconnected skeletonsΩ, which is stored as a
complex-based data structure Ω = (V, E) with a set of nodes and a
set of edges being a simplified version of the data structure for
general non-manifold objects [34]. For each vi ∈ V, it defines the
position of a node as vi ∈ R3. For an edge ej ∈ E, it is represented
as a pair of vertices associated with the radius of the edge’s corre-
sponding strut as ej= (vs, ve, rj). The solid of a lattice structure is
formulated as an implicit surface defined around the skeletons.
Given the skeleton representation Ω of a lattice structure, its cor-

responding solid is formulated as

S(Ω) = {p | F(p) ≤ 0 (∀p ∈ R3)} (1)

where F(·) is an implicit function returning the value proportional to
the distance between p and Ω. A straightforward solution is to use
an offset distance function as

F(p) = −D + min
∀q∈Ω

q − p
∥∥ ∥∥ (2)

with D being assigned as D= rj when the closest point of p is
located on the edge ej. This definition based on the distance function
has two problems:

(1) The closest point of a query p is not unique—there may be
multiple closest points. As a consequence, the value of D
(i.e., the function value of F(p)) is not well-defined when dif-
ferent radii rjs are assigned to different edges in Ω.

(2) Sharp creases are formed at the boundary surface of solid due
to the discontinuity of the distance function (see Figs. 1(b)
and 1(d)). Concentrated stresses can be easily generated in
these regions.

A formulation of F(·) based on the convolution surface is employed
in our framework, which can essentially solve these two problems.

F(p) = −C +
∫
V
h(x)f (p − x) dV = −C + (f ⊗ h)(p) (3)

061003-2 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

where h:R3 7! R is a geometric function representing the
skeleton Ω

h(x) =
1, x ∈ Ω
0 otherwise

{
(4)

and C is a constant isovalue defined according to the radii defined
on the skeleton edges.

3.2 Representation With Compactly Supported Kernels.
To enable the modeling of lattice structures in large-scale, com-
pactly supported kernels are employed in our method. The local
support leads to local modification property, which is important
for the fast computation of slicing in Sec. 4 and also the later
density control in Sec. 5. Specifically, a quartic polynomial kernel
function

f (p − x) = 1 − ‖p − x‖2/R2
()2

, ‖p − x‖ < R
0 otherwise

{
(5)

with R being the support size is adopted and its evaluation is very
simple and efficient, as already noted in Ref. [35]. Moreover, a
local weight is assigned to each edge to specify the radius of its cor-
responding strut, as discussed in Ref. [36]. Therefore, the convolu-
tion surface can be defined as

F(p) = −C +
∑
ei∈Ω

ri

∫
x∈ei

f (p − x)dei (6)

which can be efficiently evaluated. Specifically, for a query point p,
nonzero terms in Eq. (6) only contain the edges with distance to p
less than R. Moreover, the convolution integral along an edge can
be computed by an analytical close-from. Details are given below.
Without loss of generality, it is assumed that the line of ei inter-

sects with the sphere (centered at p and radius R) at two points p1
and p2 (see Fig. 2(a)).The valid segment of ei inside the sphere
can be defined in a parametric form as

x(s) = (1 − s)p1 + sp2 (∀ s ∈ [s1, s2])

with

s1 =max{0, (vs − p1) · (p2 − p1)/‖p2 − p1‖2}
s2 =min{1, (ve − p1) · (p2 − p1)/‖p2 − p1‖2}

As a result, the field value at point p contributed by ei can be com-
puted as

Fei (p) = ri

∫
ei

f (p − x)dei

= ri

∫s2
s1

1 − ‖p − x(s)‖2/R2()2
ds

=
ri

15R4
3l4s5 − 15al2s4 + 20a2s3
()∣∣∣s2

s1

(7)

with l= ‖p2− p1‖ and a= (p− p1) · (p2−p1).
When the isovalue C in Eq. (6) is fixed, we can adjust the value of

ri to change the radius of strut generated from each skeleton edge ei.
While decreasing the value of ri, a point with the same isovalue will
be closer to ei thus reducing the strut radius. As illustrated in

Fig. 1 For a given skeleton model as shown in (a), the solid models generated by distance field have sharp creases—see (b)
using uniform radius and (d) using different radii for different edges of the skeleton. Differently, solids with smooth surfaces
can be constructed by our approach in (c) and (e).

Fig. 2 Illustrations for computing the field value of Fi(p):
(a) along an edge and (b) adaptive strut radius by changing ri

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

Fig. 2(b), we can reduce the radius of strut along the direction of the
blue arrow using smaller value of ri for each kernel function Fei (p).
An example is given in Fig. 1(e) that represents a solid having the
same skeleton as the one shown in Fig. 1(c) but using different radii
for struts.
In our formulation, the support size of each kernel function is not

changed even when using different values of ris for different struts.
The support size R for all kernel functions serves as the upper bound
for the radii that can be realized by convolution. As a consequence,
users can select the value of R by the range of strut radii that they
wish to obtain (e.g., 1.5 × the maximal radius used in our
implementation).
Comparing to the convolution solid generated by globally

defined kernels such as Gaussian [37,38] or by fast Fourier trans-
form [39], the benefit of convolution by compactly supported
kernel functions is twofold.

(1) The evaluation of implicit solid can be conducted in an
out-of-core manner. For evaluating the function value at a
point p ∈ R3, only those kernel functions with the distance
between p and their centers less than R will involve. There-
fore, large-scale lattice structures can be efficiently modeled
and sliced in our approach (see the streaming mode slicing
algorithm presented in Sec. 4).

(2) A convolution surface constructed by compactly supported
kernels will generate less over-blending artifacts in the
region with many overlapped kernels, as demonstrated by
the comparison in Figs. 3 and 4. The reason for this advan-
tage is that overblending is often caused by including
unwanted contribution from nearby kernels when computing
convolutions, and the limited range of compactly supported
kernels can prevent such unwanted contribution to some
degree.

Both advantages are very important for efficiently and effectively
modeling large-scale adaptive lattice structures.

4 Slicing
In this section, we present the method for slicing the solid of a

lattice structure efficiently in both memory and computational
time. Benefiting from the locally supported representation of
solids as formulated in Eq. (6), only the skeleton edges with its

swept sphere bounding volume [40] intersecting the slicing plane
P(z) = {p | pz = z (∀ p ∈ R3)} will contribute to the field value of
F(p). In practice, this can be detected by a simple condition on
the z-value of an edge’s two endpoints. A set of intersected
edges, denoted by Eact, can be obtained as

Eact(P(z)) = {ej = (vs, ve, rj) | (vzs − R ≤ pz) ∩ (vze + R ≥ pz)} (8)

where we have vzs ≤ vze without loss of generality. An algorithm in
the streaming mode can be used to generate slices for 3D printing a
lattice structure represented by our method (as shown Fig. 5), which
is a variant of the scanning line algorithm [41] and the sweeping
plane algorithm [42]. Differently, we are searching for kernels
which contribute to the function value F(p) with p z= z. The sphe-
rical swept volumes of convolution kernels using the support size R
as sphere radius are considered in our algorithm.
Two lists of edges are constructed in our algorithm: (1) a list of all

edges E in Ω sorted by the z-coordinates (in an ascending order) of
their “lower” vertices and (2) a list of active edges Eact according to
a slicing plane P(z). With the help of Eact, the field value for a point
q ∈ P(z) can be computed by only using the edges in Eact and using
Eq. (6). Therefore, a binary image with a user specified resolution
can be generated by efficiently evaluating if F(q)≤ 0 (inside the
solid) or F(q) > 0 (outside the solid). The resultant binary image
can be directly applied to the digital light processing (DLP)-based
3D printer [43]. Resultant binary images of example models can be
found in Fig. 14 in Sec. 6.
When changing the slicing plane from P(z) to P(z + t) with t

being the layer thickness, we need to update the list of active
edges. As all the edges in E have been sorted in an ascending
order by the z-coordinate of their first vertex, the new list of
active edges can be efficiently obtained if we still record the
index of the first remaining edge in E. We search the edges in E
starting from this one until reaching an edge the swept solid of
which is completely above P(z + t). Steps of our slicing algorithm
are given as follows:

Step 1: Initializing k= 1, z= t/2, and Eact =∅.
Step 2: Repeatedly checking edges e j ∈ E with j= k, k+ 1,…, m

until reaching an edge em= (vp, vq, rm) with vzp − R > z (i.e.,
the swept solid of em is completely above P(z)) and adding
all edges ej,j=k,…,m−1 into Eact.

Fig. 3 Comparison of solids generated by (a) our approach and (b) the Gaussian kernel—both for the
skeletons shown in Fig. 1(a). It can clearly be observed that more over-blending artifacts are generated
on the result of Gaussian kernel. The gray level in (c) and (d) are used to visualize the distance between
implicit surfaces and the “ideal” solid as the union of cylinders.

061003-4 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

Step 3: Checking all edges in Eact and removing an edge ei= (vs,
ve) from Eact if vze + R < z (i.e., its swept solid is completely
below P(z)).

Step 4: Evaluating the field value of points on the slicing plane
P(z) using the kernels defined on all edges in Eact .

Step 5: Let z= z+ t and k=m.
Step 6: Go back to Step 2 until all planes have been sliced.

The memory usage of our slicing algorithm is very limited. In
summary, only the edges in Eact and the binary image for a
slicing plane need to be stored in the main memory. The rest skele-
ton edges (i.e., E) for a lattice structure can be processed in an
out-of-core manner. Edges are sorted by external sorting, which

also has a lightweight memory consumption. Detailed statistics of
memory consumption (without counting the external sorting), for
example, lattice structures, will be provided in Sec. 6.
Our slicing algorithm can also be applied to generate G-code of

tool-path for filament-based deposition or laser sintering. First of
all, a marching square algorithm [44] is applied to a binary image
to generate the rough boundary curves of a model. Then, the
intersection-free smoothing and simplification algorithm [45] can
be applied to generate topology-preserved boundary curves of the
model. The combination of the binary image and the marching
square algorithm can guarantee that no degenerated case will be
given in slicing, as long as the resolution of the image is large
enough [45]. The bone model shown in Fig. 16 is fabricated by

Fig. 4 To visualize the surface distance errors, we generate sample points in a spherical region
with radius as 2.83R—the circled region shown in Figs. 3(c) and 3(d). Histogram of distances
between sample points to the “ideal” solid is given. For the result with Gaussian kernel,
around 40% sample points have the distance more than 6%r. Differently, our result has no
sample point with distance more than 6%r.

Fig. 5 The scanning plane algorithm can efficiently generate slides for fabricating the lattice structure represented
by our method in a streaming mode—only the skeleton edges with their swept solids intersecting with the slicing
plane need to be processed

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

tool-paths generated in this method on a selective laser melting
(SLM)-based 3D metal printer.

5 Computation for Spatially Graded Density
This section presents a framework to automatically generate a

lattice structure according to an input distribution of density.
Given the voxel representation V = Vi,j,k of a given mesh model
M, the required density can be specified for each voxel Vi,j,k as
ρi,j,k. The problem to be solved is to construct a lattice structure Ω
inside M so that the density of its corresponding solid S(Ω)
inside Vi,j,k satisfies

ρ(S(Ω) ∩ Vi,j,k) ≈ ρi,j,k (9)

where the density ρ(S(Ω) ∩ Vi,j,k) is evaluated by the Monte-Carlo
integration, whether a sample point inside the solid S(Ω) can be
evaluated by the implicit function defined in Eq. (6) efficiently.

5.1 Overview. Our framework for generating spatially graded
density consists of three major parts, which are explained below
with the help of illustration given in Fig. 6.

(1) Adaptive surface/tetrahedral mesh generation: For a given
mesh model M, we first estimate the target edge-length in
different regions on its surface. An adaptive remeshing
approach akin to Ref. [46] is conducted to generate a
surface adaptive mesh. Specifically, for using a material
with density τ to fabricate a lattice structure with initial
strut radius r for realizing a target density ρ, the target
length �L of a tetrahedron can be roughly estimated as

�L =max 4r, Lini{ } (10)

where Lini is a solution of the density estimate formula
(Eq. (19)) that is closest to the average edge-length of the
initial given mesh. Detailed calculation can be found in
Appendix 1. The target lengths at different surface regions
are computed by the above equation to control the result of
surface remeshing. After that, a tetrahedral mesh generation
method [8] is applied to construct the volumetric mesh adap-
tive to the surface mesh. Note that the step of surface remesh-
ing is very important because it is difficult to generate a
locally coarse tetrahedral mesh if the surface mesh is

dense. After this step, edges of the tetrahedral mesh are
employed to generate the initial lattice structure Ω.

(2) Optimization for self-supporting: When being fabricated by
additive manufacturing, supporting structures need to be
added below the large overhangs in Ω. This will change
density on the finally fabricated models. Therefore, we
develop an algorithm to improve the self-supporting of
edges in Ω, which consists of two steps—the scaling/
re-scaling and the vertex re-positioning. Details are given
in Sec. 5.2.

(3) Density matching: After optimizing the self-supporting of a
lattice structure, its density is further adjusted in the final
phase of our framework to match the required density distri-
bution. This is implemented by applying local subdivision on
tetrahedra and local adjustment for the radii of struts. Details
are given in Sec. 5.3.

With the help of this framework, we enable the inverse design of
spatially graded density using lattice structures.

5.2 Optimization for Self-Supporting. For additive manufac-
turing, supporting structures need to be added below the region with
large overhang, which prolongs the printing process and wastes
more material. More seriously, the supporting structures are
hard-to-remove, and keeping these supporting structures will
change the density distribution of a designed lattice structure.
Therefore, it is important to reduce the demand of support by opti-
mizing a design.
For all edges in a lattice structure Ω = (V, E), we define a metric

of self-supporting based on the projected area of risky regions that
are facing down. For an edge ej = (vs, ve, rj) ∈ E, whether it is fully
self-supported depends on the angle θ(ej) between it and the printing
direction tP as

θ(ej) = arccos
ve − vs
‖ve − vs‖ · tP
∣∣∣∣

∣∣∣∣ (11)

with tP being a unit vector. For an edge satisfying θ(ej)≤ α, the strut
generated by this edge is fully self-supported. Here the angle α is the
self-supporting angle that depends on the type of AM process and
the materials used. In the rest of our paper, we conduct a widely
used parameter α= π/4. The set of fully self-supported edges is
denoted as ES.

Fig. 6 The framework of our method to generate a lattice structure for spatial graded density consists of three major parts:
(1) adaptive surface/tetrahedral mesh generation, (2) optimization for self-supporting, and (3) final density matching. By applying
the slicing algorithm in the streaming mode, the binary images for every slides can be generated for additive manufacturing.

061003-6 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

When θ(ej) > α, a portion of the facing-down surface on the strut
needs to be fabricated by adding supporting structures. For a cylin-
drical strut with skeleton as ej, the projected facing down area is
A(ej)= 2 rj L(ej) with L(ej) being the length of ej. According to
our analysis on a cylinder, the percentage of projected area that
needs to add support is a function g(θ) in terms of the angle θ
between the cylinder’s axis and the printing direction. Detailed
analysis can be found in Appendix II. For the sake of computational
simplicity, we conduct a polynomial to approximate g(θ). When α=
π/4, it is

g(θ) ≈ Σ5
i=0aiθ

i, (θ > π/4)
0, (θ ≤ π/4)

{
(12)

where ai= [−0.02, −0.31, 1.44, −1.11, 0.58, −0.16].
Based on this analysis, we define a metric of self-supporting for

the lattice model as

Γ(Ω) =
∑

ej∈(E\ES) rjL(ej)g(θj)∑
ej∈E rjL(ej)

(13)

which is the percentage of projected areas that needs additional
support; the smaller the better. Besides of Γ(Ω), we also define a
length percentage of completely self-supported struts as

Ψ(Ω) =

∑
ej∈ES L(ej)∑
ej∈E L(ej)

× 100% (14)

which is higher the better.
We develop two schemes to improve the value of Γ(Ω) on a

lattice structure Ω: scaling operation (SO) and vertex position opti-
mization (PO). As illustrated by the kitten model shown in Fig. 7,
these schemes can effectively reduce the percentage of projected
areas that need to add support in a lattice structure.

5.2.1 Scaling. For a given 3D printing direction tP and an edge
ej= (vs, ve) bounded in a box M as shown in Fig. 8,the angle θ
between tP and vsve will become large when they are not perpendic-
ular. Without loss of generality, we can assume tP= (0, 0, 1), vs=
(x1, y1, z1), ve= (x2, y2, z2), and the scaling factor as k. After

scaling, the new positions of the edge become v′s= (x1, y1, z′1)
and v′e= (x2, y2, z′2) with z′1= z1/k and z′2= z2/k. Then, we get

θ vsve() = π

2
− arctan

z2 − z1| |
l

()

θ v′sv
′
e

()
=
π

2
− arctan

z2 − z1| |
kl

() (15)

where l =
�����������������������
x1 − x2()2+ y1 − y2

()2√
. It is easy to find θ(vsve) < θ(v′sv′e)

when k> 1.
Based on this analysis, we can improve the self-supporting of a

lattice structure during its construction by scaling. Specifically,
we first compress the space for constructing the lattice structure
by a factor 1/k along the printing direction tP. After constructing
the tetrahedral mesh as an initial lattice structure in the compressed
space, we re-scale the mesh back to the original size by a factor k
along the direction tP. Lattice structures constructed with the help
of this scaling step have more self-supported edges (see Figs. 7(a)
and 7(b) for an example). Using k with too large values will lead
to very sparse vertices generated inside a model. Moreover, the
quality of tetrahedra can be very poor when using a large k,
which can be quantitatively evaluated by the aspect ratio on all tet-
rahedra. In short, the aspect ratio of a tetrahedron Ti is calculated by
R(Ti)= hmax/hmin, where hmax and hmin are the maximum and the
minimum distances from a vertex to its opposite face inside Ti.
The ideal value of R(Ti) is 1.0 and the quality of a mesh is consid-
ered as poor when many tetrahedra have the aspect ratio greater than
5.0. The histograms of aspect ratios for tetrahedral meshes gener-
ated using different k are studied to find a good balance between
the quality of mesh and the level of self-supporting (see Fig. 9).
According to this study, we usually employ k∈ [1.5, 1.8] in
practice.

5.2.2 Vertex Re-Positioning. When moving a vertex v, all
edges linked to it (denoted the set as Ev) will be changed. Therefore,
we can potentially move the vertices to generate more fully self-
supported edges. We define an objective function to evaluate the
self-supporting property around a vertex v as

J(v) =

∑
e j∈Ev riL(e j)g(θi)∑

ei∈Ev
riL(ei)

(16)

Fig. 7 An illustration for demonstrating the effectiveness of our algorithm for enlarging the per-
centage of self-supported edges, where edges need to add support are displayed. Two schemes,
the SO and the vertex PO, are applied to the lattice structure Ω for a kitten model. The length per-
centages of completely self-supported edges are (a) Ψ = 27.97%, (b) Ψ = 41.67%, and (c)
Ψ = 49.38%, respectively. When the same radius is employed for all struts, the metric of self-
supporting can be significantly reduced from (a) Γ=0.6275 to (b) Γ = 0.4830, and then to (c) Γ
=0.3726.

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

which need to be minimized. Moreover, in order to prevent intersec-
tions between tetrahedra, the new position of v and �v will be con-
fined in a limited space. The optimization is formulated as

�v = argmin
v

J(v)

s.t. ‖v − o‖ ≤ τ
(17)

where o and τ are the center and the radius of an inscribed sphere of
the polyhedron formed by the vertices incident to the vertex v.
When solving the above optimization problem, the movement of
vertex is conducted along the gradient direction. Together with
the step length in every iteration, it determines how the vertices
should be moved to improve the self-supporting property of the
lattice.
The optimization is randomly applied to all the interior vertices

one by one. The iteration stops when (1) no more vertex can
move, (2) no more vertex’s movement can reduce the value of
Γ(v), or (3) the maximum number of iterations (i.e., 100 used in
our implementation) have been reached. Figure 10(a) gives a histo-
gram chart to show the distribution of angles between edges and the
printing direction tP, where the vertical axis gives the percentage of
edges in terms of length. Moreover, it is interesting to study the
aspect ratios of tetrahedra before and after PO. As shown in
Fig. 10(b), the distributions of aspect ratios do not change too
much, which is benefited by constraining the magnitude of move-
ment in Eq. (17).

5.3 Density Matching. To explore the porosity of lattice struc-
ture, we initially define the radius ri= 2rmin on all edges {ei} with
rmin being the smallest feature size that can be reliably fabricated
on a 3D printer. The radii will be adjusted for density matching
below.
To satisfy the density distribution that is already defined as input

of voxel-based function values (i.e., Eq. (9)), two operators are
developed to adjust the density given on a lattice structure.

(1) Subdivision: When the density of material inside a tetrahe-
dron (formed by the struts on its six edges) is not large
enough, we would subdivide a tetrahedron Ti into eight tetra-
hedra by splitting in the middle of each edge (as illustrated in
Fig. 11). From the geometry of tetrahedra obtained after sub-
division, it can be observed that the newly created edges
(except the unparallel one in Fig. 11) are always parallel to
one of the six edges on Ti. As a result, the responding
edges will be self-supported if the original edges of Ti are.
The total length of edges is increased from

∑6
i=1 li (with lis

being the length of a tetrahedron’s six edges) to lr +
2
∑6

i=1 li with lr being length of the unparallel edge as
shown in Fig. 11. Therefore, the density in the volume of
the original tetrahedron is more than doubled when using
the same radii for the struts of newly generated edges.

(2) Radii-tuning: When the density of material inside a tetrahe-
dron Ti is larger than a target value, we match the designed
density by reducing the value of rk on every edge ek∈ Ti.
Note that, when changing rk, the radius of strut on ek is

Fig. 8 The edges with large overhang generated in a scaledmodel (with height collapsed along the printing direc-
tion tP—as shown in the middle) have good chance to become self-supported after being scaled back to the
model’s original height

Fig. 9 A study to find the balance between the level of self-supporting (can be enhanced using large k) and the quality of con-
structed tetrahedral mesh (will be reduced using large k). From left to right, the length percentage of completely self-supported
edgesΨ are 27.97%, 41.67%, 52.38%, and 79.28%, respectively (from left to right). When the same radius is used for all struts, the
metric of self-supporting Γ gives the values of 0.6275, 0.4230, 0.3316, and 0.1271 (from left to right).

061003-8 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

changed monotonically but not linearly (see Fig. 2(b) for an
illustration). Note that the minimal radii of edges should be
bounded by the smallest feature size that can be fabricated
by 3D printing.

These two operators are applied in our algorithm to generate a
lattice structure matching the desired density distribution.
Our algorithm generates the density distribution of a lattice struc-

ture according to the input in four steps:

(1) First, we assign the desired density �ρT to every tetrahedron T
by the target density given to voxels in T—the maximal one
is employed when Ti contains more than one voxels. Here, Vi,

j,k is considered as being contained by T when its center is
inside T.

(2) For each tetrahedron T, we denote its current density as ρT
and its density after making all edges’ radii doubled as ρ∗T .
When ρ∗T < �ρT , we subdivide this tetrahedron into eight

tetrahedra recursively until this condition is satisfied in
every new tetrahedron. For a small tetrahedron does not
contain the center of any given voxel, the desired density
is evaluated at the center of this tetrahedron by linearly inter-
polating the densities given at the centers of voxels.

(3) For each tetrahedron T, if it satisfies ρT < �ρT < ρ∗T , we
amplify the radii of edges on this tetrahedron using the
binary searching strategy to match the target density �ρT .

(4) Lastly, we check the scaled radii of all edges in every voxel
to generate a more accurate density matching. Specifically,
for every voxel Vi,j,k, we try to determine a common
radii-scaling ratio for all edges intersected with this voxel
so that the density ρi,j,k is matched more accurately. If the
determined scaling ratio is less than the current ratio stored
on an edge, the ratio is updated by the newly determined
one. After checking all voxels, the struts of all edges are
scaled by the most updated ratios.

After applying these four steps of our algorithm, the material
density given on the lattice structure can well match the desired
density distribution.

6 Results and Discussion
The approach described in the previous sections has been imple-

mented using C++ based on a 4.00 GHz Intel Core i7-4790K and
16GB memory. Using this implementation, a variety of case
studies and comparisons will be presented in this section to validate
the approach.

6.1 Memory-Efficient Representation. Traditionally, lattice
structures are represented as triangular meshes to allow easy

Fig. 10 Statistic visualization for (a) the histogram of angles between edges and the printing direction and (b) the aspect ratio
of tetrahedra before versus after PO

Fig. 11 The subdivision operator for density matching—the
density can be increased by more than double after subdivision.
Most of the newly generated edges are support-free, except for
the unparallel one in center (which is kept in the structure).

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

integration into the 3D printing pipeline [9]. To convert an implic-
itly represented lattice structure (e.g., the scheme used in this work)
to a triangular mesh, the marching cubes (MCs) method [47] is
often used. However, for large-scale lattice structures, the MC
method produces a huge number of triangles. As can be found
from Table 1, 226–2359M triangles were generated for the
models tested when setting the approximation error as 5% of the
strut radii during triangulation.
Recently, a new method named lattice structure lightweight tri-

angulation (LSLT) was proposed to triangulate lattice structures
[7]. This method can reduce the number of the generated triangles,

as shown by the statistics in Table 2. Nevertheless, it still generated
too many triangles (26–258M) for the tested models when the
number of struts increases significantly. As a result, the memory
consumption of this method is still too large for slicing and toolpath
planning algorithms to run properly.
By contrast, the proposed method can significantly reduce the

memory consumption (see the file size block given in Table 2).
This is essentially achieved by completely dropping the explicit tri-
angular mesh representation scheme and, instead, by representing
lattice structures implicitly using convolution surfaces with line seg-
ments as skeletons. The corresponding solid models of the lattice

Table 1 Statistic of triangular meshes generated by MC

Models Bunny Bone Finger Kitter-HR
No. of struts 123,610 75,484 359,212 14,063,027
Approx. Err. 5% of strut radius r= 0.5 mm
Box size 0.0847 mm×0.0847 mm×0.0847 mm
Res. of MC 1368 × 1368× 1447 1384 × 1384× 1826 904 × 904 × 1758 2864 × 2864 × 2788
No. of triangles 355.7M 304.9M 226.2M 2359M

Table 2 Comparisons of float numbers (or file sizes) for different algorithms

Models Bunny Bone Finger Kitty-HR
No. of struts 123,610 75,484 359,212 14,063,027

No. of trianglesa (unit: 106)
MC 355.7 304.9 226.2 2358.6
LSLT 26.91 19.69 27.83 258.7

File size (unit: MB)
MC 12,551.2 10,759.1 789.17 83,225.4
LSLT 949.2 695.1 980.9 9128.5
Ours 3.36 0.76 10.7 475.63

aNote that the number of triangles generated by LSLT are estimated according to their ratios to the result of MC,
which are provided by Chougrani et al. [7].

Fig. 12 Three examples to demonstrate the function of our approach in generating lattice structures for density matching: (a) the
input 3D models, (b) the required density, (c) the resultant density, and (d) the resultant lattice structures. Note that the resultant
lattice structures are rendered by directly applying ray-tracing in Persistence of Vision Raytracer (POV-ray) [48] (i.e., no mesh
surface is generated).

061003-10 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

structures are generated on-site in a streaming manner. Table 2
shows the comparison of the file size for storing the same lattice
structures with the MC method, the LSLT method, and our
method. Clearly, the proposed method resulted in files with much
lighter size for representing lattice structures.

6.2 Density Matching. Having shown the memory-efficiency
feature of the proposed approach, we now move to the effectiveness
of our approach: generating lattice structures that match the pre-
scribed density distribution.
Three models were tested, and the results are given in Fig. 12.The

given density distribution took the form of a voxel set, and each
voxel’s density value was evaluated by applying the Monte-Carlo
integration to the implicit solid models generated by our approach.
The corresponding implicit solid models are depicted in Fig. 12(d).
From Fig. 12(c), our method is found to generate lattice structures
that match the prescribed density (Fig. 12(b)) very well.

6.3 Self-Supporting Optimization. This section shows the
effectiveness of the self-supporting optimization module of our
approach. We compared the raw results from the tetrahedral
mesh generation (Tet-Gen) method [8] with those optimized by
ours (i.e., with two additional optimization steps: SO and PO).
The comparison results are shown in Fig. 13,where the first row

gives the results of Tet-Gen, and the second row is our results. We
also report the length percentage of self-supporting edges Ψ (in
Fig. 13) and the values of self-supporting metric Γ (in Table 3).
Our method achieved a 50.8–73.5% improvement to the Tet-Gen
method, as expected. In addition, from the computation time
listed in the last column of Table 3, our method is very fast, with
all optimizations done within 3min.

6.4 Slicing and Fabrication. In this section, we demonstrate
the efficiency feature of our slicing method (Sec. 4). All the
models previously tested have been sliced using this algorithm.
Figure 14 shows the resultant binary images of three of them: the
bunny model, the bone model, and the finger model. Based on
the binary images, we printed out the bunny model to further vali-
date our slicing algorithm, as shown in Fig. 15. A DLP 3D printer
was used, and the method presented in Ref. [43] was chosen to gen-
erate supports wherever necessary.
A result of the bone model is fabricated by a SLM-based metal

3D printer (as shown in Fig. 16)—the dimensions are 19.2 mm×
12.6 mm×26.7 mm. After generating the binary image for each
slice, the contour of boundary is generated by the method of
Huang et al. [45] and the zigzag toolpath is employed to fill the inte-
rior region. The model was fabricated in 9.5 h. The printer has a
500 W IPG fiber laser and a 25 μm beam size.
Table 4 gives the memory consumption and the time usage statis-

tics in slicing those models. As our method works in a streaming

Fig. 13 Lattice structures as infills for four example models—(from left to right) Teddy, Kitten, Camel, and Horse, where the edges
need additional supporting structures in 3D printing are displayed. It is easy to find our results having much less number of addi-
tional supporting edges. The length percentage of completely self-supported strutsΨ (Eq. (14)) are reported as well. The values of
self-supporting metric Γ (Eq. (13)) are reported in Table 3 for each model using the constant radius for all struts. (a) Lattice struc-
tures directly generated by Tet—Gen [8]—the values of Y are 30:4% (Teddy), 28:0% (Kitten), 27:7% (Camel) and 29:9% (Horse) and
(b) lattice structures generated by applying the SO and PO steps for self—supporting optimization in our approach—the values of
Y are 47:3% (Teddy), 48:6% (Kitten), 45:5% (Camel) and 49:7% (Horse) respectively.

Table 3 The statistic for self-supporting optimization by
measuring the values of Γ(Ω) in Eq. (13)

Our self-supporting optimization

Model Fig. Tet-Gen [8] SO SO+ PO Time (s)

Teddy 13 59.7 48.8 30.1 171.3
Kitten 13 63.5 47.9 37.0 120.2
Camel 13 63.1 50.0 37.3 89.3
Horse 13 60.7 54.8 33.8 92.5
Cube 6 60.4 47.3 40.3 22.6

Note: All models are evaluated using the same radius for all struts.

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

manner, the consumed memory and time is layer dependent, rather
than model dependent. Specifically, the memory and time have a
positive correlation with the maximal number of struts intersecting
with a specific slicing plane, as confirmed by the statistics in
Table 4. For all the tested models, the slicing algorithm is observed
to generate correct binary images fast and memory-efficiently.
Our approach is very scalable for models even with a huge

number of struts. Although the size of models that can be 3D

printed is currently limited by the hardware made available, we
demonstrate the method’s scalability using a lattice structure with
more than 101M struts (i.e., the Kitten-HR model as shown in
Fig. 17).When generating binary images for 3D printing, the
maximal number of intersected struts is about 1M with the
maximal memory usage at 447MB. This fits quite well in a commer-
cially available computer system.

Fig. 14 The binary images obtained by slicing lattice structures (the ones shown in Fig. 12) represented by our method

Fig. 15 A bunny model with lattice structure generated by our
approach as shown in Fig. 12—the model is fabricated using a
Connex Object350 3D printer

Fig. 16 A bone model with lattice structure generated by our
approach as shown in Fig. 12—the metal model is fabricated
by a SLM 3D printer

061003-12 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

7 Conclusions
An implicit modeling technique is presented in this paper for

large-scale adaptive lattice structures, which have a lot of applica-
tions in additive manufacturing. Starting from the edges of a
graph, the solid of an initial lattice structure is defined using convo-
lution surfaces with edges of the graph as skeletons. Different from
the methods based on distance field, solids defined by convolution
surfaces are highly smooth at the knots with complex topology.
This gives better mechanical strength than the solids with creases.
Benefit from the local support formulation of convolution surface
in our approach, the representation is very memory-efficient as
only skeletons need to be stored and the slicing of solids can be effi-
ciently computed as only limited number of skeletons are involved
in computing the intersection. This results in a highly scalable
approach—lattice structures with more than tens of million struts
can be effectively modeled by our method.
The functionality of our approach has been demonstrated in the

application to generate an adaptive lattice structure matching the
given density distribution. The matched density is achieved by two
operations: structural subdivision and strut radius adaptation. The
results are quite encouraging, where the desired densities are realized
at all places inside a given 3D model. For those regions who need to
add supporting structures, the finally realized density on a physically

fabricated model could be larger than the desired one when using
single-material 3D printing. Although this will not reduce the
mechanical strength in themodel, we plan tomodel supporting struc-
tures by convolutional surface in an unique representation. As a con-
sequence, the lattice structure fabricated by single-martial 3D
printing can also match the desired density precisely.
Moreover, in the future work, we plan to use this method for

designing lattice structures with different spatially graded physical
properties such as a heat exchanger with large surface area within
a small volume, an energy absorber tolerating great deformation
at a low stress level, and an acoustic insulator with its large
number of internal pores. In all these applications, the convolution
surface-based modeling method proposed in our work can show
great advantages in its effectiveness and scalability.

Acknowledgment
This research work is partially supported by the Natural Science

Foundation of China (NSFC) (Project Ref. Nos. 61628211 and
61572527) and the Hunan Science Fund for Distinguished Young
Scholars (Ref. No. 2019JJ20027). The authors would like to
acknowledge the private communication with Jun Wu during the
development of this project.

Table 4 Statistic for our slicing algorithm

Model (no. of struts)
Maximum number of
intersected struts

Used memory
(MB) Resolution of images Time (s)/slice

Teddy (17,462) 1720 22 1536 × 768 0.10
Kitten (122,925) 38,439 88 1489 × 1368 18.82
Camel (12,241) 2642 43 1456 × 728 1.10
Horse (16,301) 1152 35 1592 × 796 0.09
Finger (359,212) 21,490 97 1808 × 904 15.63
Bone (75,484) 17,303 87 2768 × 1384 14.50
Bunny (123,610) 26,069 146 3648 × 1824 26.47
Kitten-HR (101,514,060) 1,061,866 447 5728 × 2864 347.23

Fig. 17 We are able to model and slice a lattice structure with millions of struts
(14,063,027) by the streaming mode. Here, the solid implicit model generated by our
method is rendered by direct ray-tracing [48].

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-13

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The authors attest that all data for this study are included in the

paper.

Appendix 1: Estimate Target Edge-Length
of Tetrahedron
Given the edge-length of a regular tetrahedron as L, the tetrahe-

dron’s volume is

Vtet =

��
2

√

12
L3 (18)

We then calculate the volume of beams inside the tetrahedron,
which consists of two parts—the cylindrical regions and the sphe-
rical regions (see Fig. 18 for an illustration).

(1) The cylinder volume of an edge with length L and radius r is
L r2π, which has the volume

��
3

√
r3π overlapped with two

spheres with radius r centered at the edge’s two endpoints.
The dihedral angle of every two faces of tetrahedron is
Arccos 1/3

()
. A tetrahedron has six edges, thus we have

the volume of the cylindrical part inside the tetrahedron

Vcylinders = 6Arccos
1
3

()
(L − 2

��
3

√
r)r2

(2) The sphere at a vertex has the approximate volume
Vsphere = 4

��
3

√
πr3. A tetrahedron has four vertices, and the

steradian Ω of each vertex could be calculated as

Ω = α + β + γ − π = 3Arccos
1
3

()
− π

where α, β, and γ are dihedral angles of a vertex. We can have
the total volume at all the corners as

Vcorners =
32
3

3Arccos
1
3

()
− π

()
r3

When using material with density τ to realize the target density ρ
inside the tetrahedron, we should have

ρVtet = τ(Vcylinders + Vcorners)

This leads to a density estimating formula as

ρ = 2
��
2

√ 9Arccos 1/3
()

r2

L2
−

96 − 18
��
3

√()
Arccos 1/3

()
− 32π

()
r3

L3

()
τ

Note that the volume of merged struts estimated in the above way has
some errors as the volume in overlapped regions of sphere and cylinders
are double counted (see the dotted portion shown in Fig. 18). However,
as the purpose of this estimation is only to generate a target length for
remeshing, this approximation will not influence the final result of
density matching. The volume of S(Ω) in our density matching frame-
work is computed by Monte-Carlo integral with reference to the implicit
solid.
When the target density ρ is given, the formula can be rewritten

into a cubic polynomial equation to estimate the target edge-length
of the surface mesh

L3 + pL + q = 0 (19)

where

p = −18
��
2

√
Arccos

1
3

()
τr2/ρ

and

q = − 192
��
2

√
− 36

��
6

√()
Arccos

1
3

()
− 64

��
2

√
π

()
τr3/ρ

According to Cardano formula, it is easy to approve the discrimi-
nant for the roots Δ= (q/2)2+ (p/3)3 < 0, so this equation has
three different real solutions:

L1 = h1()1/3 + h2()1/3

L2 = ω h1()1/3 + ω2 h2()1/3

L3 = ω2 h1()1/3 + ω h2()1/3

where h1 = −(q/2) +
�����������������
q/2
()2+ p/3

()3√
, h2 = −(q/2)−�����������������

q/2
()2+ p/3

()3√
, and ω = (−1 +

�
(

√
3)i)/2. Assuming the

average edge-length Lcur of the current mesh, Lini, the one in {L1,
L2, L3} being closest to Lcur will be selected as a possible estimation
of the target edge-length �L. And in order to avoid the vanish of an
edge, the edge-length should be not less than 4r. In short, we can
have the following solution for �L

�L =max 4r, Lini{ }

Appendix 2: Ratio of Risky Projected Area
In this appendix, we derive the formula to calculate the ratio of

risky projected area on a cylinder that needs additional supporting
structure for 3D printing. All the analysis is conducted on a cylinder
with unit radius, unit length, and bottom-circle’s center located at
the origin o. In its initial configuration, the cylinder’s axis is
aligned with the z-axis. Then, the parametric representation for a
point on the bottom-circle is q(ϕ)= (cosϕ, sinϕ, 0).
Without loss of generality, any strut with the angle θ between its

axis and the printing direction tP (see the illustration in Fig. 8) can
be considered as rotating around x- and z-axes and scaling the unit
cylinder. Only rotating around x-axis will change the ratio of pro-
jected area that needs to add supporting structures. Considering
the rotation matrix around x-axis as Rx(θ), a point on the bottom-
circle becomes

p(ϕ) = Rx(θ)q(ϕ) = (cosϕ, sinϕ cos θ, sinϕ sin θ)

Therefore, the surface normal of any point on this circle is n=
p(ϕ) − o= p(ϕ).

Fig. 18 The volume of the lattice structure inside a regular tetra-
hedron can be approximately evaluated by the decomposition of
six cylinders (with length L and radius r) and four spheres (with
radius 2r), where the dotted regions are overlapped so that
leads to approximation errors

061003-14 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

Considering the condition to add support as

n · tP < −sin α

we can determine the portion on the circle to add support by deter-
mining the range of ϕ that makes

n · tP = p(ϕ) · tP = sinϕ sin θ < −sin α

Here, we apply tP= (0, 0, 1).
Now we project the circle back onto the xy-plane. For any θ∈ (0,

π/2), projection of the bottom-circle gives an ellipse with width a=
1 and height b= cosθ. The critical point that changes from self-
supporting to support-needed can then be determined by solving

the elliptic equation and the equation embedding n · tP=−sinα,
which can be

p2x + p2y + sin2 α = cos2 ϕ + cos2 θ sin2 ϕ + sin2 θ sin2 ϕ = 1

Therefore, we have

p2x +
p2y

cos2 θ
= 1

p2x + p2y = 1 − sin2 α

⎧⎪⎨
⎪⎩

By elimination, we obtain

cos2 θ − 1
()

p2x = cos2 θ − 1 + sin2 α

1 −
1

cos2 θ

()
p2y = −

sin2 θ
cos2 θ

p2y = −sin2 α

As a result, the solution of ϕ as ϕ0 that satisfies the above two equa-
tions can be obtained when the values of θ and α are given. In short,
we have py= sinαcosθ/sinθ= sinϕ0cosθ, which results in the value
of ϕ0 as

ϕ0 = arcsin
sin α
sin θ

()

Since p2x ≥ 0 and (cos 2θ− 1) < 0, we should let cos 2θ− 1+ sin 2α <
0 to ensure there is a solution for px. This leads to sin 2α≤ 1−
cos 2θ = sin 2θ, which actually requires θ > α for risky area (i.e.,
area needs additional support).
The ratio of risky region for the whole projected area can be eval-

uated as the ratio of arc length in the region ϕ >ϕ0. As illustrated in
Fig. 19, the ratio of the dotted portion curve’s length on the whole
ellipse is the ratio of risky region. As a consequence, we derive the
following general formula for g(θ, α) as

g(θ, α)

=

0, (sin θ ≤ sin α)�ϕ0

0 (sin2 ϕ + sin2 θ cos2 ϕ)1/2dϕ�π/2
0 (sin2 ϕ + sin2 θ cos2 ϕ)1/2dϕ

, (sin θ > sinα)

⎧⎪⎨
⎪⎩ (20)

The corresponding shape of g(θ, α) is given in Fig. 20.

Fig. 19 When α= π/4, this figure shows the projected ellipse of
the bottom-circle of a cylinder with different θ, where the red arcs
indicate the risky regions. The ratio of the risky region is evalu-
ated as the arc length ratio of the red region versus the total ellip-
tic arc.

Fig. 20 The 3D shape of g(θ, α) as a height field of (θ, α)

Journal of Computing and Information Science in Engineering DECEMBER 2021, Vol. 21 / 061003-15

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

To ease the computation of g(· · ·) in optimization, we approximate it by polynomials as follows:

g(θ, α) ≈
0, (sin θ ≤ sin α)
Σ5
i=0Σ

5
j=0ai,jθ

iα j, (sin θ > sinα)

{
(21)

with

ai,j = 10−1 ×

−5.15 31.71 −56.03 34.12 −5.45 0.43
26.36 −127.20 164.41 −67.87 4.99 0
−38.00 134.20 −106.20 25.86 0 0
17.79 −49.65 1.64 0 0 0
0.60 6.60 0 0 0 0
−1.66 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

References
[1] Martínez, J., Dumas, J., and Lefebvre, S., 2016, “Procedural Voronoi Foams for

Additive Manufacturing,” ACM Trans. Graph., 35(4), p. 44.
[2] Martínez, J., Song, H., Dumas, J., and Lefebvre, S., 2017, “Orthotropic K-Nearest

Foams for Additive Manufacturing,” ACM Trans. Graph., 36(4), p. 121.
[3] Kuipers, T., Wu, J., and Wang, C. C., 2019, “CrossFill: Foam Structure With

Graded Density for Continuous Material Extrusion,” Comput. Aided Des., 114,
pp. 37–50.

[4] Qin, Z., Jung, G. S., Kang, M. J., and Buehler, M. J., 2017, “The Mechanics and
Design of a Lightweight Three-Dimensional Graphene Assembly,” Sci. Adv.,
3(1), p. e1601536.

[5] Rosen, D., Johnston, S., Reed, M., and Wang, H., 2006, “Design of General
Lattice Structures for Lightweight and Compliance Applications,” Rapid
Manufacturing Conference, London, UK, July 5–6.

[6] Chen, Y., and Wang, C. C., 2008, “Layered Depth-Normal Images for Complex
Geometries—Part One: Accurate Sampling and Adaptive Modeling,” ASME
IDETC/CIE 2008 Conference, 28th Computers and Information in Engineering
Conference, Brooklyn, NY, Aug. 3–6, pp. 729–739.

[7] Chougrani, L., Pernot, J.-P., Véron, P., and Abed, S., 2017, “Lattice Structure
Lightweight Triangulation for Additive Manufacturing,” Comput. Aided Des.,
90, pp. 95–104.

[8] Si, H., 2015, “Tetgen, a Delaunay-Based Quality Tetrahedral Mesh Generator,”
ACM Trans. Math. Soft., 41(2), p. 11.

[9] Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B.,
Wang, C. C., Shin, Y. C., Zhang, S., and Zavattieri, P. D., 2015, “The Status,
Challenges, and Future of Additive Manufacturing in Engineering,” Comput.
Aided Des., 69, pp. 65–89.

[10] Livesu, M., Ellero, S., Martínez, J., Lefebvre, S., and Attene, M., 2017, “From 3D
Models to 3D Prints: An Overview of the Processing Pipeline,” Comput. Graph.
Forum, 36(2), pp. 537–564.

[11] Leung, Y.-S., Kwok, T.-H., Li, X., Yang, Y., Wang, C. C. L., and Chen, Y., 2019,
“Challenges and Status on Design and Computation for Emerging Additive
Manufacturing Technologies,”ASME J. Comput. Inf. Sci. Eng., 19(2), p. 021013.

[12] Ding, D., Pan, Z. S., Cuiuri, D., and Li, H., 2014, “A Tool-Path Generation
Strategy for Wire and Arc Additive Manufacturing,” Int. J. Adv. Manuf.
Technol., 73(1–4), pp. 173–183.

[13] Zhao, H., Gu, F., Huang, Q.-X., Garcia, J., Chen, Y., Tu, C., Benes, B., Zhang, H.,
Cohen-Or, D., and Chen, B., 2016, “Connected Fermat Spirals for Layered
Fabrication,” ACM Trans. Graph., 35(4), p. 100.

[14] Steuben, J. C., Iliopoulos, A. P., and Michopoulos, J. G., 2016, “Implicit Slicing
for Functionally Tailored Additive Manufacturing,” Comput. Aided Des., 77,
pp. 107–119.

[15] Kumar, G. S., Pandithevan, P., and Ambatti, A. R., 2009, “Fractal Raster Tool
Paths for Layered Manufacturing of Porous Objects,” Virtual Phys. Prototyp.,
4(2), pp. 91–104.

[16] Wu, J., Wang, C. C., Zhang, X., and Westermann, R., 2016, “Self-Supporting
Rhombic Infill Structures for Additive Manufacturing,” Comput. Aided Des.,
80, pp. 32–42.

[17] Lee, J., and Lee, K., 2017, “Block-Based Inner Support Structure Generation
Algorithm for 3d Printing Using Fused Deposition Modeling,” Int. J. Adv.
Manuf. Technol., 89(5–8), pp. 2151–2163.

[18] Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C.,
Cohen-Or, D., and Chen, B., 2014, “Build-to-Last: Strength to Weight 3d
Printed Objects,” ACM Trans. Graph., 33(4), p. 97.

[19] Lee, M., Fang, Q., Cho, Y., Ryu, J., Liu, L., and Kim, D.-S., 2018, “Support-Free
Hollowing for 3d Printing Via Voronoi Diagram of Ellipses,” Comput. Aided
Des., 101, pp. 23–36.

[20] Stanković, T., and Shea, K., 2020, “Investigation of a Voronoi Diagram
Representation for the Computational Design of Additively Manufactured
Discrete Lattice Structures,” ASME J. Mech. Des., 142(11), p. 111704.

[21] Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen,
F., and Liu, X., 2013, “Cost-Effective Printing of 3d Objects With Skin-Frame
Structures,” ACM Trans. Graph., 32(6), p. 177.

[22] Zhang, X., Xia, Y., Wang, J., Yang, Z., Tu, C., and Wang, W., 2015, “Medial
Axis Tree—An Internal Supporting Structure for 3d Printing,” Comput. Aided
Geom. Des., 35, pp. 149–162.

[23] Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., and Gross, M.,
2015, “Microstructures to Control Elasticity in 3d Printing,” ACM Trans.
Graph., 34(4), p. 136.

[24] Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P., and Zorin, D., 2015,
“Elastic Textures for Additive Fabrication,” ACM Trans. Graph., 34(4), p. 135.

[25] Fryazinov, O., Vilbrandt, T., and Pasko, A., 2013, “Multi-Scale Space-Variant
Frep Cellular Structures,” Comput. Aided Des., 45(1), pp. 26–34.

[26] Yang, Y., Chai, S., and Fu, X.-M., 2018, “Computing Interior
Support-Free Structure Via Hollow-to-Fill Construction,” Comput. Graph., 70,
pp. 148–156.

[27] Christiansen, A. N., Schmidt, R., and Bærentzen, J. A., 2015, “Automatic
Balancing of 3D Models,” Comput. Aided Des., 58, pp. 236–241.

[28] Stava, O., Vanek, J., Benes, B., Carr, N., Mès, R., Jérémie, and Lefebvre, S.,
2012, “Stress Relief: Improving Structural Strength of 3d Printable Objects,”
ACM Trans. Graph., 31(4), pp. 48:1–48:11.

[29] Ou, J., Dublon, G., Cheng, C.-Y., Heibeck, F., Willis, K., and Ishii, H., 2016,
“Cilllia: 3D Printed Micro-Pillar Structures for Surface Texture, Actuation and
Sensing,” Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, San Jose, CA, May.

[30] Vanek, J., Galicia, J. A. G., and Benes, B., 2014, “Clever Support: Efficient
Support Structure Generation for Digital Fabrication,” Comput. Graph. Forum,
33(5), pp. 117–125.

[31] Zhang, X., Le, X., Panotopoulou, A., Whiting, E., and Wang, C. C., 2015,
“Perceptual Models of Preference in 3D Printing Direction,” ACM Trans.
Graph., 34(6), p. 215.

[32] Dumas, J., Hergel, J., and Lefebvre, S., 2014, “Bridging the Gap: Automated
Steady Scaffoldings for 3d Printing,” ACM Trans. Graph., 33(4), p. 98.

[33] Hu, K., Jin, S., and Wang, C. C., 2015, “Support Slimming for Single Material
Based Additive Manufacturing,” Comput. Aided Des., 65, pp. 1–10.

[34] Wang, C. C., Wang, Y., and Yuen, M. M., 2003, “Feature-Based 3d
Non-Manifold Freeform Object Construction,” Eng. Comput., 19, pp. 174–190.

[35] Sherstyuk, A., 1999, “Kernel Functions in Convolution Surfaces: A Comparative
Analysis,” Vis. Comput., 15, pp. 171–182.

[36] Hubert, E., and Cani, M.-P., 2012, “Convolution Surfaces Based on Polygonal
Curve Skeletons,” J. Symb. Comput., 47(6), pp. 680–699.

[37] Tang, Y., Xiong, Y., Boddeti, G. N., and Rosen, D. W., 2019, “Generation of
Lattice Structures With Convolution Surface,” Proceedings of CAD’19,
Singapore, June 26–29.

[38] Jin, X., and Tai, C.-L., 2002, “Analytical Methods for Polynomial Weighted
Convolution SurfacesWith Various Kernels,”Comput. Graph., 26(3), pp. 437–447.

[39] Nelaturi, S., and Shapiro, V., 2015, “Representation and Analysis of Additively
Manufactured Parts,” Comput. Aided Des., 67, pp. 13–23.

[40] Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D., 1999, “Fast Proximity
Queries With Swept Sphere Volumes,” Technical Report 99-018, Department
of Computer Science, University of North Carolina at Chapel Hill.

[41] Hearn, D., Baker, M. P., and Manocha, D., 2004, Computer Graphics with
OpenGL, Pearson Prentice Hall, Upper Saddle River, NJ.

[42] McMains, S. A., and Carlo, H. S., 2000, “Geometric Algorithms and Data
Representation for Solid Freeform Fabrication,” Ph.D. Dissertation, University
of California, Berkeley, CA.

[43] Huang, P., Wang, C. C., and Chen, Y., 2014, “Algorithms for Layered
Manufacturing in Image Space,” ASME Advances in Computers and
Information in Engineering Research, Hong Kong, Sept. 1.

[44] Maple, C., 2003, “Geometric Design and Space Planning Using the Marching
Squares and Marching Cube Algorithms,” Proceedings of International
Conference on Geometric Modeling and Graphics 2003, London, UK, July 16–18.

[45] Huang, P., Wang, C. C. L., and Chen, Y., 2013, “Intersection-Free and
Topologically Faithful Slicing of Implicit Solid,” ASME J. Comput. Inf. Sci.
Eng., 13(2), p. 021009.

[46] Surazhsky, V., and Gotsman, C., 2003, “Explicit Surface Remeshing,”
Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, Aachen Germany, June, pp. 20–30.

[47] Lorensen, W. E., and Cline, H. E., 1987, “Marching Cubes: A High Resolution 3d
Surface Construction Algorithm,” ACM Trans. Graph., 21(4), pp. 163–169.

[48] Plachetka, T., 1998, “Pov Ray: Persistence of Vision Parallel Raytracer,”
Proceedings of Spring Conference on Computer Graphics, Budmerice,
Slovakia, Apr. 23–25, pp. 123–129.

061003-16 / Vol. 21, DECEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/6/061003/6696935/jcise_21_6_061003.pdf by D
elft U

niversity of Technology, Library user on 03 June 2021

http://dx.doi.org/10.1016/j.cad.2019.05.003
http://dx.doi.org/10.1126/sciadv.1601536
http://dx.doi.org/10.1016/j.cad.2017.05.016
http://dx.doi.org/10.1145/2629697
http://dx.doi.org/10.1016/j.cad.2015.04.001
http://dx.doi.org/10.1016/j.cad.2015.04.001
http://dx.doi.org/10.1111/cgf.13147
http://dx.doi.org/10.1111/cgf.13147
http://dx.doi.org/10.1007/s00170-014-5808-5
http://dx.doi.org/10.1007/s00170-014-5808-5
http://dx.doi.org/10.1016/j.cad.2016.04.003
http://dx.doi.org/10.1080/17452750802688215
http://dx.doi.org/10.1016/j.cad.2016.07.006
http://dx.doi.org/10.1007/s00170-016-9239-3
http://dx.doi.org/10.1007/s00170-016-9239-3
http://dx.doi.org/10.1016/j.cad.2018.03.007
http://dx.doi.org/10.1016/j.cad.2018.03.007
http://dx.doi.org/10.1115/1.4046916
http://dx.doi.org/10.1145/2508363.2508382
http://dx.doi.org/10.1016/j.cagd.2015.03.012
http://dx.doi.org/10.1016/j.cagd.2015.03.012
http://dx.doi.org/10.1145/2766926
http://dx.doi.org/10.1145/2766926
http://dx.doi.org/10.1145/2766937
http://dx.doi.org/10.1016/j.cad.2011.09.007
http://dx.doi.org/10.1016/j.cag.2017.07.005
http://dx.doi.org/10.1016/j.cad.2014.07.009
http://dx.doi.org/10.1145/2185520.2185544
http://dx.doi.org/10.1111/cgf.12437
http://dx.doi.org/10.1145/2601097.2601153
http://dx.doi.org/10.1016/j.cad.2015.03.001
http://dx.doi.org/10.1007/s00366-003-0251-5
http://dx.doi.org/10.1007/s003710050170
http://dx.doi.org/10.1016/j.jsc.2011.12.026
http://dx.doi.org/10.1016/S0097-8493(02)00087-0
http://dx.doi.org/10.1016/j.cad.2015.03.007

	1 Introduction
	2 Related Works
	3 Modeling of the Lattice Structure
	3.1 Implicit Solid Representation
	3.2 Representation With Compactly Supported Kernels

	4 Slicing
	5 Computation for Spatially Graded Density
	5.1 Overview
	5.2 Optimization for Self-Supporting
	5.2.1 Scaling
	5.2.2 Vertex Re-Positioning

	5.3 Density Matching

	6 Results and Discussion
	6.1 Memory-Efficient Representation
	6.2 Density Matching
	6.3 Self-Supporting Optimization
	6.4 Slicing and Fabrication

	7 Conclusions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 Appendix 1: Estimate Target Edge-Length of Tetrahedron
	 Appendix 2: Ratio of Risky Projected Area
	 References

