
Performance of Covariance Neural Networks on Rating Prediction

Timothy Axel

Supervisor(s): Elvin Isufi, Andrea Cavallo, Chengen Liu

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Timothy Axel
Final project course: CSE3000 Research Project
Thesis committee: Elvin Isufi, Andrea Cavallo, Chengen Liu, Klaus Hildebrandt

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Recommender systems help users navigate vast
catalogs of content through recommendations, of
which rating prediction remains an important task.
Traditional methods such as collaborative filtering
often struggle to model higher-order relationships
between users and items, as well as suffer from the
cold start problem when the number of users and
items is still low. Graph Neural Networks (GNNs)
have shown promise in this area, although they are
often limited by their focus on local graph struc-
tures. This study explores the application of Co-
variance Neural Networks (VNNs) for rating pre-
diction, leveraging covariance matrices to leverage
global statistical dependencies and model higher-
order relationships. Using the MovieLens-100k
dataset, we evaluate the performance of VNNs
against baselines and other models, using RMSE as
the metric of evaluation. Our results demonstrate
that VNNs outperform simple matrix completion
techniques, but are limited by their susceptibility to
oversmoothing. This work highlights the potential
of VNNs for recommender systems while under-
scoring the need for careful architectural design to
balance performance and stability.

1 Introduction
Recommender systems play an important role in many on-

line applications, helping users in navigating large catalogs of
items, including movies, books, or other products. One of the
main tasks for these systems is rating prediction, where new,
undiscovered items to the user are assigned ratings based on
predictions of how the user might have rated the item.

Traditional approaches to tackle this task have included
neighborhood-based methods[1], matrix factorization[2], and
other pattern-based methods centered around user-item inter-
action (otherwise known as collaborative filtering). However,
these methods fail when dealing with complex, higher-order
relationships, which are often found in real-world user pref-
erences and item attributes. Moreover, they become subject
to the cold-start and user preference transfer problems, which
happen to new users and users with changing preferences, re-
spectively.

Graph-based approaches have been introduced to address
the cold-start and preference transfer limitations previously
outlined, falling under the moniker of GNN (Graph Neural
Networks) [3]. One promising subspace of GNN are GCNs,
or Graph Convolutional Networks, which models the convo-
lution operations found in convolutional neural networks us-
ing graph collaborative filters. However, these models are
typically limited to capturing local graph structures, as they
often involve aggregation of the attributes and interactions of
neighboring nodes, and thus may not fully utilize the statisti-
cal dependencies present in user-item relationships.

This research aims to explore the application of Covariance
Neural Networks (VNNs) [4] for rating prediction tasks using
the MovieLens-100k dataset[5] as a benchmark, whereupon
the covariance matrix is used as a graph collaborative filter.

While variants of VNNs have been proposed to accomplish
regression tasks, for instance, Spatiotemporal VNNs for time-
series predictions [6], bias-mitigating data processing using
Fair VNNs [7], and a variant compatible with sparse matri-
ces (Sparse VNN) [8], research on VNNs in rating prediction
tasks remains open to exploration, motivating this study.

1.1 Contributions
This study aims to make the following contributions:

1. Performance Evaluation of Covariance Neural Net-
works for Rating Prediction. We propose techniques
to create rating predictions using VNNs, as well as an
evaluation of the performance of such a model. The
model takes, as input, user-item matrices generated from
each set, and makes predictions for each row of users.
Performance is then evaluated using RMSE, as is often
used when benchmarking performance of rating predic-
tion systems.

2. Stability of VNNs for Rating Prediction. We evaluate
the effect of perturbations to see if the stability advan-
tage of VNNs could transfer to rating prediction tasks.

1.2 Background
Collaborative Filtering

Collaborative Filtering (CF) is a widely-popular technique
in building recommender systems that leverages past user-
item interactions to make predictions. Often, CF methods do
not require auxiliary information such as user demographics
or item metadata, making them suitable for large-scale do-
mains where such data may be unavailable or sparse.

Figure 1: An example scenario in collaborative filtering, using user
similarity to create ratings. User A and User B are very similar.
Thus, if User A rates Item 2 with a low rating, User B is likely to do
the same.

There are two main families of CF techniques: memory-
based and model-based methods. Memory-based approaches,
such as user-based or item-based nearest neighbor algorithms,
compute similarities between users or items using a distance
measure, such as cosine similarity or Pearson correlation [9].
For instance, in user-based CF, recommendations are made to
a user based on ratings provided by similar users, pictured in
Figure 1. These approaches have the advantage of being easy



to interpret, but may face scalability issues as the number of
users and items grow.

Despite their success, traditional CF methods often face
limitations when dealing with higher-order interactions, non-
linear relationships, and dynamic user behavior (for exam-
ple, shifting preferences). They assume that preferences can
be modeled using linear combinations and often fail to cap-
ture the context or structure behind interactions. Addition-
ally, they struggle with cold-start problems (when a user or
item has few or no interactions). These shortcomings moti-
vate the exploration of more structure-focused models, such
as Graph Neural Networks, which provide a principled way
to incorporate structure and underlying relationships into the
recommendation process.

Graph Neural Networks in Recommender Systems

Graph Neural Networks (GNNs) have emerged as a pow-
erful framework for learning from graph-structured data. In
recommender systems, GNNs enable the modeling of com-
plex user-item relationships by treating interactions as edges
in a graph, with users and items as nodes. This graph struc-
ture allows models to capture relational information across
nodes, paving the way for better collaborative-filtering tech-
niques. One key technique utilized by GNNs is message
passing, which aggregates information across nodes that are
within a set distance from a source node in order to update its
representation.

Covariance Neural Networks (VNNs)

Covariance Neural Networks (VNNs) [4] were initially in-
troduced as a more stable alternative to Principal Compo-
nent Analysis (PCA), capable of achieving similar perfor-
mance whilst being stable to perturbations in the input. This
is achieved through the architecture’s unique way of model-
ing relationships. Instead of capturing local, first-order in-
teractions, VNNs utilize second-order relationships, particu-
larly the covariance, via their graph collaborative filters. This
helps the model learn larger, underlying trends that span ei-
ther the entire data (global) or across a wide area (for instance,
a neighborhood of features). This difference in paradigm like-
wise contributes to the VNN’s stability to perturbation, as it
no longer needs to rely on local relationships that could be ab-
sent from its input. This advantage is what we hope to extract
from the use of VNNs in rating prediction tasks. In a space
where user preferences constantly shift and missing interac-
tions are often the norm, stability to perturbation translates to
better generalizability of the model’s performance.

VNNs can be seen as performing a two-stage transforma-
tion on its input. First, they construct a covariance repre-
sentation of node features, before applying learnable trans-
formations to the aforementioned representation facilitated
through multilayer perceptrons (MLPs). This design en-
ables for learning covariance-aware embeddings, which can
be used for rating prediction tasks. A diagram of this can be
seen in Figure 2.

Figure 2: Diagram of the VNN architecture

The use of covariance matrices also make VNNs inher-
ently more robust towards sparse or incomplete data, a com-
mon scenario in recommender systems. In traditional collab-
orative filtering approaches, missing entries pose a challenge
for prediction tasks, especially for new users or less popular
items. VNNs are able to mitigate this problem by abstracting
learning away from individual entries, and instead leveraging
global (or neighborhood) structures and their characteristics,
possibly leading to improved generalization.

In the context of rating prediction, the ability to model
complex statistical dependencies presents an advantage. User
preferences often hold underlying structures not immediately
obvious through ratings alone, such as preference to certain
genres. This would often not be encoded into the graph of
traiditonal models unless manually and intentionally done so,
even though they are reflected in the relationships between
users and items. By using covariance-based filters, VNNs
can uncover and exploit these patterns to make more accurate
predictions. While the topic of VNNs itself is still an emerg-
ing subject, their theoretical advantages have already inspired
adaptaions, as mentioned in section 1. Much like these adap-
tations, we expect to harness some of the advantages born of
VNNs in our rating prediction model.

Covariance for Collaborative Filtering
Although previous work on rating prediction tasks using

VNNs remains scarce, there have been attempts to utilize the
covariance matrix for collaborative filtering. Xiao, et. al [10]
demonstrated that the covariance between items or users can
be used as a similarity measure to accomplish rating predic-
tion tasks using a memory-based approach. Thus, we hope
to create a model that provides the best of both worlds by
combining the advantage of stability native to VNNs with the
ability to capture more complex relations through covariance
distance measures.

2 Methodology
This section describes the approach taken to design a rating

prediction model using VNNs, and the subsequent evaluation
of its performance.

2.1 Pipeline
To leverage VNNs in rating prediction tasks, we propose

the following steps: preprocessing, model training, and eval-
uation. In the initial preprocessing step, we split the dataset
into train, test, and validation sets. The training set is then



used for two purposes: the computation of the covariance ma-
trix for our VNN’s graph shift operator (GSO) in order to per-
form convolutions, and the creation of input and output sets
for model training. Model training then begins with the cre-
ation of a VNN using our computed covariance matrix. Us-
ing the LocalGNN [11] architecture, we create a model that is
fed interaction matrices created in the preprocessing step, and
evaluate its predictions on their respective masked truths. The
best model according to validation loss is then fed the test set
to obtain the model’s generalization performance. Finally, we
introduce perturbations in the graph structure to evaluate the
model’s stability. The following subsections delve into more
detail regarding key steps in this pipeline.

2.2 Covariance Matrix Computation
The covariance matrix is calculated in the preprocessing

step, using only data from the training set to prevent data leak-
age. The covariance matrix is at the core of any VNN, acting
as the graph by which connections between different users
or items are modeled. The covariance itself measures how
two random variables change together. A positive covariance
implies the variables tend to increase or decrease together,
while negative covariance signal that the variables tend to
move in opposite directions. Subsequently, a covariance close
to zero indicates that two variables are independent, uninflu-
enced by changes in the other variable. A covariance matrix
may be constructed by computing covariances between each
user-user pair in the standardized interaction matrix, using the
formula:

Cov(x, y) =

∑
i (xi − x̄)(yi − ȳ)

N
(1)

Here x and y represent the rating sets of two users, with x̄
and ȳ representing their respective means. N is the number
of ratings per user. As the interaction matrix between users
and items are often sparse, NaN (”Not a Number”) values
populate much of the matrix. In cases where a NaN value
is present, imputation was done using zeroes. An example
covariance matrix’s shape is given in Table 1.

Cov(u1, u1) Cov(u1, u2) Cov(u1, u3) Cov(u1, u4)
Cov(u2, u1) Cov(u2, u2) Cov(u2, u3) Cov(u2, u4)
Cov(u3, u1) Cov(u3, u2) Cov(u3, u3) Cov(u3, u4)
Cov(u4, u1) Cov(u4, u2) Cov(u4, u3) Cov(u4, u4)

Table 1: The covariance matrix for a dataset with 4 users. Note that
the diagonals are simply the variance of the users and that the matrix
is symmetric.

2.3 VNN Model Architecture
As previously mentioned in subsection 2.1, our approach

uses the LocalGNN architecture to create a VNN. The archi-
tecture consists of two types of layers: The Graph Filtering
Layers (GFLs) and the readout layer. The GFL layers per-
form graph convolutions on the input matrix, applying mes-
sage passing from each node to nodes within a set number
of hops. The model performs graph convolutions using the

covariance matrix as its graph shift operator, represented as
[4]:

H(Ĉn)x (2)

Here, x represents the input, Ĉn the covariance matrix, and

H(Ĉn) =
∑m

k=0 hkĈ
k

n , the covariance filter of the graph.
This results in node embeddings for each user, which is fed
into a multilayer perceptron in the readout layer to generate
predictions. A diagram of the architecture can be found in
Figure 3

Figure 3: The architecture of a 2-layer VNN. x refers to the input in-
teraction matrix. At each layer, a non-linearity activation function σ
is used on the convolution output. The final layer, the readout layer,
has a multi-layer perceptron that has been abstracted for brevity.

2.4 Evaluation Metrics
The model’s performance is evaluated using Root Mean

Squared Error (RMSE). This is a standard metric used in most
learning applications, and the better a model performs, the
lower its RMSE will be. RMSE is given as:

RMSE =

√∑N
i=1 (xi − x̄i)2

N
(3)

Here, x stands for the set of true values, and x̄ the set of
predictions. N is the number of predictions. This metric was



chosen over another popular alternative, Mean Absolute Error
(MAE), as RMSE punishes large outliers more strictly, thanks
to the squaring operation it uses.

During training, the model uses Mean Squared Error
(MSE) loss, due to its differentiable properties useful in back-
propagation. MSE is given as:

MSE = RMSE2 =

∑N
i=1 (xi − x̄i)

2

N
(4)

x represents the set of true values, and x̄ the set of predic-
tions. N is, once again, the number of predictions. Much like
RMSE, the lower the MSE is, the better the model performs.

2.5 Algorithm to Introduce Edge Removal
Perturbations

To investigate the stability property of VNNs, we utilize
the following algorithm to introduce perturbations:

1. Train the model on the dataset.

2. Create a new covariance matrix, using a reduced sample
from the training data.

3. Change the graph structure of the trained model by
changing its GSO and replacing it with the newly-
computed covariance matrix

4. Use the modified model to predict the test set again and
log its performance.

This algorithm simulates missing data–as is often present in
real-world data, allowing us to observe how performance de-
grades when less data is available for the VNN to learn.

2.6 Algorithm to Introduce Perturbations for
Robustness Analysis

To investigate the effect of the covariance matrix collabo-
rative filter, we propose the following algorithm to introduce
perturbations:

1. Create a covariance matrix using a sample taken from
the training data.

2. Train the model, using the perturbed covariance matrix
as the GSO.

3. Evaluate the model as usual on the test set.

3 Experimental Setup
3.1 Dataset Selection

We conduct our experiments on the MovieLens-100k
dataset [5], which consists of 100,000 ratings made by 943
users towards 1682 movies. This choice was motivated by
the dataset’s widespread use in rating prediction tasks, allow-
ing for easier comparability with other related works. Ratings
are extracted from the dataset into an interaction matrix, each
cell representing a rating for a given user-movie pair.

3.2 Preprocessing Methods
In this subsection, we outline our approach for splitting

data and shaping input and outputs for model training.

Splitting
The dataset is first split into training, validation, and test

sets randomly, with an 8:1:1 split among each set, respec-
tively. This training set will serve two purposes: to be used to
create covariance matrices, acting as the graph shift operator
of our VNN architecture, and to create input (X) and output
(y) matrices for each epoch of model training. Meanwhile,
the validation set helps select the best model to evaluate on
the test set, yielding a final, comparable score. For our sets,
we utilize the ’u1’ split of the MovieLens-100k dataset to pro-
vide better comparability with other methods.

Masking
To create input and ground truth for model training, an in-

teraction matrix is first created using ratings from the training
set. Some values are then masked from this interaction matrix
to be used as the true values for evaluation and backpropaga-
tion. The remainder of the interaction matrix is used as the
input matrix for forward passes. The shape of each model in-
put is the same, at n movies * m users. An example of this
masking operation can be found in Figure 4

Figure 4: An example masking operation for an interaction matrix of
4 items and 7 users. The empty cells in the matrix represent missing
data. The red cells represent masked values, each connecting to a
corresponding true value, which is used for evaluating predictions

3.3 Hyperparameter Search
Model tuning and hyperparameter search is done using the

Optuna library [12]. Given the large search space, we utilize
random search over other, more exhaustive methods, such as
grid search, in hyperparameter optimization. To increase ro-
bustness of the results, we perform 3 runs using each combi-



nation of hyperparameters during the search, across 50 total
combinations randomly sampled from the space. For the sake
of reproducibility, the hyperparameters, along with their final
values are:

1. [1, 64, 64] for the size of the node embeddings of each
layer of the GNN. This means the final VNN has 2 layers
with signals of size 64 for each node.

2. [64, 32, 1] for the number of nodes per each layer of the
MLP at the readout layer of the model.

3. [4, 4] as k for each layer’s (k− 1)-hop neighbors to con-
sider. This means nodes within 3 hops are considered
for message passing.

4. LeakyReLu as the non-linearity function used during
training.

5. Adam optimizer with a weight decay of 0.0001 and a
learning rate of 0.01.

6. 100 as the number of epochs.

7. 0.9 as the evaluation ratio, which means 0.9 of the train-
ing data is used as the input interaction matrix in model
training, and 0.1 for ground truth used in evaluation.

3.4 Baseline Selection

To verify that the model is properly learning the dataset,
we create the following baselines, keeping in mind the unique
properties of the dataset.

1. Mean Prediction. All predictions are the global mean.
This is useful given the distribution of the dataset, as
seen in Figure 5, where most of the ratings are centered
around 3 and 4.

2. Random Prediction. Predictions are made randomly, us-
ing the ratings’ values [1,2,3,4,5] as discrete options.
This serves as our upper bound, as a model that is un-
able to beat this prediction is very likely not learning.

3. Identity GSO. This simulates a situation where no neigh-
borhood information is propagated – effectively, each
node sees only itself. In this case, the GNN essentially
acts like an MLP on isolated features, allowing us to
investigate the effects of the covariance structure when
compared to the final results.

4. All-ones GSO. The graph in this baseline is fully-
connected and uniform, so every node’s features are av-
eraged together during filtering. This global smoothing
adds useful aggregate information, which might improve
prediction (much like the mean prediction baseline),

Figure 5: Distribution of the Ratings in the MovieLens-100k dataset

4 Results and Discussion
4.1 Model Performance

Figure 6: One of the runs with the best-found hyperparameters. ’NS’
shows the dimensions of the node signals for this run, and ’MLP’
the dimensions of the multilayer perceptron. Additionally, the test
RMSE found for this run is printed in the legend.

Model RMSE
VNN (Ours) 0.9682
Random Predictions 1.8762
Global Mean 1.1537
Identity GSO 1.0695
All-ones GSO 0.9823

Table 2: Performance in RMSE compared to baselines



Following 5 runs with the best hyperparameters (an exam-
ple run is shown in Figure 6, we obtain an RMSE of 0.9682
with a standard deviation of 0.00553. This is an improve-
ment over the two rudimentary baselines (shown in Table 2),
implying that the VNN is indeed capable of learning relation-
ships from the dataset. This hypothesis is also supported by
the trends in model loss during training. As the model goes
through more epochs, it is able to reduce the training and val-
idation loss, up to a point where only the training loss keeps
decreasing, at which point overfitting seems to have occurred.
The VNN has also managed to beat the identity and all-ones
baselines, providing evidence that these results cannot be en-
tirely attributed to the readout layer of the VNN.

Model RMSE
VNN (Ours) 0.968
MC [13] 0.973
IMC [14] 1.653
GMC [15] 0.996
GRALS [16] 0.945
sRGCNN [17] 0.929
GC-MC [18] 0.905

Table 3: Comparison of our VNN’s performance with other models,
with respect to RSME performance.

Comparing our VNN’s performance to other models
(shown in Table 3) yields interesting conclusions. The VNN
is able to outperform some models (such as Matrix Comple-
tion [13] and Graph Matrix Completion [15]), but fails to beat
other models (notably Graph Convolutional Matrix Comple-
tion (GC-MC) [18]). This seems to be in line with the com-
plexity of the model architectures. The VNN is essentially
performing matrix completion when it generates its output
matrix, and although it is able to beat simple variants of ma-
trix completion techniques, it struggles to outperform models
utilizing larger, more complex architectures that capture more
relationships. For instance, sRGCNN [17] combines a Multi-
graph Convolutional Neural Network (MGCNN) with a Re-
current Neural Network, while using unweighted 10-nearest
neighbor graphs for training. 10-nearest neighbor graphs
were also used in the Graph Regularized Alternating Least
Squares (GRALS) model, potentially hinting that the VNN is
missing a lot of relationships from this.

Furthermore, although hypothesized as having a contrary
effect, given the high sparsity of the dataset as shown in Fig-
ure 7, modeling first-order relationships (user-item interac-
tions, as is the case with the bipartite graphs in GC-MC) may
be better than second-order relationships for this dataset, as
global trends could be too noisy due to a lack of overlapping
data, reducing the model’s generalizability.

Figure 7: Number of ratings made by each user.

4.2 Robustness Analysis

Figure 9: The performance of the VNN model as more data from the
training set is supplied to create the covariance matrix for its GSO.

We observe a noticeable difference as the covariance ma-
trix becomes less noisy, showing a decrease in RMSE of al-
most 0.1. This further bolsters the statement that the VNN is
leveraging higher-order relationships to make predictions.

4.3 Stability Analysis
We observe vastly different outcomes based on the k-hop

constraints. While the 1-hop VNNs present relatively stable
outcomes irregardless of the number of graph filtering layers,
the 2- and 3-hop-neighbor VNNs exhibit interesting patterns.
While RMSE generally trends downwards for 1-hop neigh-
bors as the training data becomes less perturbed, 2- and 3-
hop-neighbor VNNs have interesting peaks that rise and fall
as less perturbation is introduced. This is most likely caused



Figure 8: Effect of Perturbation on VNNs of different numbers of layers and k-hop constraints. For instance, each VNN in the 1-hop
Neighbors graph only has layers that consider each node’s surrounding 1-hop neighbors for message passing.

by oversmoothing [19], where node features converge as net-
work depth is increased. This is supported by the fact that
this behaviour is hardly seen in any of the 1-layer instead be-
coming generally more pronounced when more hops are in-
troduced. Additionally, incorporating a larger k-hop seems
to have a positive effect towards the final RMSE, signifying
a tradeoff between stabililty and performance. Overall, the
findings suggest a sensitivity in the VNN’s structure, where
extra care needs to be observed such that the model does not
oversmooth. As was hypothesized earlier in subsection 4.1,
this seems to support the idea that very sparse data leads to
poorer performance for the VNN, due to its reliance on well-
formed covariance matrices, which is difficult when data does
not overlap or is missing a lot of values.

5 Conclusions and Future Work
5.1 Conclusions

This study investigated the use of Covariance Neural Net-
works in rating prediction tasks, particularly on movie ratings
from the MovieLens-100k dataset, demonstrating their ability
to capture higher-order relationships present in user-item in-
teractions. Our experiments showed that VNNs achieve com-
petitive performance in this area, outperforming basic matrix
completion methods, but falling behind complex, sophisti-
cated models such as GC-MC. Additionally, stability analysis
on VNNs suggest a susceptibility to oversmoothing, particu-
larly in deeper architectures.

5.2 Limitations
One limitation is the reliance on transductive learning

methods [20] in the pipeline. Transductive methods require
retraining to perform predictions on unseen items or users,
resulting in poor scalability. Additionally, the sparse na-
ture of real-world interaction matrices poses a challenge for
covariance-based approaches, as imputation techniques can
introduce bias.

5.3 Future Work

Future work could explore inductive methods in lieu of
the transductive method explained in this study, in order to
increase robustness and scalability. Inductive methods also
tend to outperform transductive methods [21], which opens
an interesting avenue for further research. Additionally, com-
bining the VNN architecture with other GNN variants could
enhance performance, as seen from the models that beat the
VNN’s performance. Testing on other datasets of varying
sparsity could prove interesting as well, potentially provid-
ing deeper insights into the model’s generalizability. On the
matter of imputation, better techniques to reduce bias could
be considered, including Expectation-Maximization [22]. Fi-
nally, regularization techniques to overcome the oversmooth-
ing problem could be investigated to improve stability.

6 Responsible Research

Reproducibility and repeatability are at the forefront of
considerations on the topic of ”Responsible Research”. In
this study, several steps have been taken to promote this as
much as possible. One of the ways this has been done is
through a nigh-exhaustive description of every step taken in
creating rating prediction models using VNNs, including de-
tailing splits and masking procedures in great detail. A repos-
itory of the main pipeline can also be found at https://github.
com/TimothyAxel/Rating Prediction with VNNs. Results
are kept as robust as possible through repeated, random ini-
tializations, allowing other researchers to obtain similar re-
sults provided they run the model enough times to minimize
bias and variance. While the dataset used in this study con-
sists of user ids and their preference of movies, the dataset
has been scrubbed and anonymized before publication, miti-
gating the risk of data risks and leaks. Moreover, the dataset
has proven reliable in the past, being used in many different
studies prior to this one.

https://github.com/TimothyAxel/Rating_Prediction_with_VNNs
https://github.com/TimothyAxel/Rating_Prediction_with_VNNs


References
[1] A. N. Nikolakopoulos, X. Ning, C. Desrosiers, and

G. Karypis, “Trust your neighbors: A comprehen-
sive survey of neighborhood-based methods for recom-
mender systems,” 2021.

[2] D. Bokde, S. Girase, and D. Mukhopadhyay, “Ma-
trix factorization model in collaborative filtering algo-
rithms: A survey,” Procedia Computer Science, vol. 49,
pp. 136–146, 2015. Proceedings of 4th International
Conference on Advances in Computing, Communica-
tion and Control (ICAC3’15).

[3] B. Khemani, S. Patil, K. Kotecha, and S. Tanwar, “A re-
view of graph neural networks: concepts, architectures,
techniques, challenges, datasets, applications, and fu-
ture directions,” J. Big Data, vol. 11, Jan. 2024.

[4] S. Sihag, G. Mateos, C. McMillan, and A. Ribeiro,
“covariance neural networks,” in Advances in Neural
Information Processing Systems (S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
eds.), vol. 35, pp. 17003–17016, Curran Associates,
Inc., 2022.

[5] F. M. Harper and J. A. Konstan, “The MovieLens
datasets,” ACM Trans. Interact. Intell. Syst., vol. 5,
pp. 1–19, Jan. 2016.

[6] A. Cavallo, M. Sabbaqi, and E. Isufi, “Spatiotemporal
covariance neural networks,” arXiv [cs.LG], 2024.

[7] A. Cavallo, M. Navarro, S. Segarra, and E. Isufi, “Fair
covariance neural networks,” 2025.

[8] A. Cavallo, Z. Gao, and E. Isufi, “Sparse covariance
neural networks,” 2024.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Item-based collaborative filtering recommendation al-
gorithms,” Proceedings of ACM World Wide Web Con-
ference, vol. 1, 08 2001.

[10] Y. Xiao, J. Shi, W. Zheng, H. Wang, and C.-H. Hsu,
“Enhancing collaborative filtering by user-user covari-
ance matrix,” Math. Probl. Eng., vol. 2018, pp. 1–9,
Nov. 2018.

[11] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro,
“Convolutional neural network architectures for signals
supported on graphs,” IEEE Transactions on Signal
Processing, vol. 67, no. 4, pp. 1034–1049, 2019.

[12] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
“Optuna: A next-generation hyperparameter optimiza-
tion framework,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2019.

[13] E. J. Candès and B. Recht, “Exact matrix completion
via convex optimization,” Found. Comut. Math., vol. 9,
pp. 717–772, Dec. 2009.

[14] P. Jain and I. S. Dhillon, “Provable inductive matrix
completion,” 2013.

[15] V. Kalofolias, X. Bresson, M. Bronstein, and P. Van-
dergheynst, “Matrix completion on graphs,” 2014.

[16] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon,
“Collaborative filtering with graph information: Consis-
tency and scalable methods,” in Advances in Neural In-
formation Processing Systems (C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28,
Curran Associates, Inc., 2015.

[17] F. Monti, M. M. Bronstein, and X. Bresson, “Geomet-
ric matrix completion with recurrent multi-graph neural
networks,” 2017.

[18] R. van den Berg, T. N. Kipf, and M. Welling, “Graph
convolutional matrix completion,” 2017.

[19] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey
on oversmoothing in graph neural networks,” 2023.

[20] G. Lachaud, P. Conde-Cespedes, and M. Trocan, “Com-
parison between inductive and transductive learning in
a real citation network using graph neural networks,” in
2022 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM),
pp. 534–540, 2022.

[21] S. S. Ziaee, H. Rahmani, and M. Nazari, “MoRGH:
movie recommender system using GNNs on heteroge-
neous graphs,” Knowl. Inf. Syst., vol. 66, pp. 7419–
7435, Dec. 2024.

[22] Q. Ma and S. K. Ghosh, “Emflow: Data imputation
in latent space via EM and deep flow models,” CoRR,
vol. abs/2106.04804, 2021.


	Introduction
	Contributions
	Background
	Collaborative Filtering
	Graph Neural Networks in Recommender Systems
	Covariance Neural Networks (VNNs)
	Covariance for Collaborative Filtering


	Methodology
	Pipeline
	Covariance Matrix Computation
	VNN Model Architecture
	Evaluation Metrics
	Algorithm to Introduce Edge Removal Perturbations
	Algorithm to Introduce Perturbations for Robustness Analysis

	Experimental Setup
	Dataset Selection
	Preprocessing Methods
	Splitting
	Masking

	Hyperparameter Search
	Baseline Selection

	Results and Discussion
	Model Performance
	Robustness Analysis
	Stability Analysis

	Conclusions and Future Work
	Conclusions
	Limitations
	Future Work

	Responsible Research

