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[1] A comprehensive and efficient approach is presented for the calibration of transient
groundwater models. The approach starts with the time series analysis of the measured
heads in observation wells using all active stresses as input series, which may include
rainfall, evaporation, surface water levels, and pumping. The time series analysis results in
the impulse response function of each stress at the observation well. For each impulse
response function, the temporal moments M0 and M1 may be computed. Both moments
fulfill differential equations that are equivalent to the differential equation for steady
groundwater flow, with known values along physical boundaries. The model ofM0 may be
calibrated for the transmissivity, as it does not depend on the storage coefficient; the
computed values of M0 at the observation wells are used for calibration. The model of
M1 may be calibrated for the storage coefficient, once the transmissivity is known from
the M0 model; the computed values of M1 at the observation wells are used for
calibration. The approach is intended for systems that may be approximated as linear. In
summary, our proposed calibration process for transient models reduces to the
calibration of only two steady models. Several examples are given to demonstrate the
accuracy and efficiency of the proposed approach.
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1. Introduction

[2] Hydraulic head variations, also called ‘‘groundwater
dynamics,’’ are measured in observation wells to study the
general behavior of an aquifer and to monitor the conse-
quences of implemented management plans. Many obser-
vation wells are monitored automatically, for example,
bimonthly or more frequently depending on the specific
circumstances. In addition, stresses on the system are
measured and recorded, including rainfall, evaporation,
pumping, and stream stages. In this paper, we present a
new methodology on how to use this wealth of information
in the calibration of transient groundwater models in a
comprehensive fashion. Our approach is based on the
integration of deterministic groundwater modeling with
the results of time series analysis.
[3] In time series analysis, a series of observations is

simulated with one or more explanatory series through a
mathematical technique. In our case, the observations are
measured heads in an observation well, and the explanatory
series are measured stresses. An important outcome of time
series analysis is the impulse response functions of the
input series or stresses. Once the impulse response function
q(t) of a time-varying stress N(t) is known at a point, the

head h(t) as a function of time may be computed through
convolution [e.g., Bear, 1972; Olsthoorn, 2008]:

h tð Þ ¼
Z t

�1

N tð Þq t � tð Þdt: ð1Þ

Impulse response functions represent the time response of
the head due to an impulse of stress on the aquifer system;
they are also called transfer functions. Conventional time
series analyses, such as the Box-Jenkins method [Box and
Jenkins, 1970], use a discrete approximation of the impulse
response function consisting of a multistep function for
early time followed by an exponentially decreasing function
for later time. Discrete impulse response functions may also
be obtained with nonparametric deconvolution [e.g., Fienen
et al., 2006; Cirpka et al., 2007]. Another recent
development in time series analysis is the predefined
impulse response function in continuous time (PIRFICT)
method, which uses specific parametric impulse response
functions that are continuous functions of time [Von Asmuth
et al., 2002, 2008; Von Asmuth and Bierkens, 2005]. The
continuous impulse response functions used in the PIRFICT
method are less flexible than the discrete functions of the
previous two methods, but appropriate choices for geohy-
drological problems give very accurate results [Von Asmuth
et al., 2008; Von Asmuth and Knotters, 2004], also when
compared to Box-Jenkins results [Von Asmuth et al., 2002];
specific advantages of the PIRFICT method are reviewed in
section 2. Impulse response functions can be interpreted as
scaled probability density functions and may be character-
ized by their temporal moments; the first two or three
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moments are often sufficient. The values of these temporal
moments differ between observation wells and may be
represented by a function of the horizontal coordinates.
Mathematically, the temporal moments fulfill steady state,
Poisson-type differential equations with known values
along physical boundaries and may be modeled with
standard groundwater models. We propose to calibrate
these models against the moments of the response functions
obtained from time series analysis. In this fashion, the
measured groundwater dynamics and the measured stresses
are taken into account in a comprehensive fashion during
the calibration process.
[4] Calibration against moments, or moment matching,

is a common technique in contaminant transport modeling
of breakthrough curves [e.g., Yu et al., 1999; Luo et al.,
2006]. It has sporadically been used for the calibration of
heads in groundwater models. Von Asmuth and Maas
[2001] outlined the approach used in this paper, presented
the differential equations for the moments (also called the
moment-generating functions), and suggested an application
to ecohydrological modeling of vegetation. Lebbink and Rolf
[2003] proposed calibrating steady models against structural
groundwater heads, which they defined as the drainage level
plus the average stress times the zeroth-order moment; they
obtained the zeroth-order moments, or gains, from Box-
Jenkins time series analyses and showed a significant
improvement of their approach over the use of average heads
for an average year. Li et al. [2005] presented an approach to
determine spatially varying transmissivity and storativity
from a pumping test through moment matching and geo-
statistics. They outlined how to obtain moments from draw-
downs for arbitrary pumping regimes and applied their
approach to perform geostatistical inversion of artificially
generated pump test data, resulting in fields of transmissivity
and storativity that agreed fairly well with the true distribu-
tion. Li et al. [2007] applied the approach to field data based
on multiple pumping tests in Germany.
[5] In this paper, we will first briefly review the basics of

time series analysis and some specifics of the method we
employ. Next, we will discuss the differential equations that
govern the moments of the impulse response functions, and
we will describe our proposed calibration approach. Four
applications to synthetic data are given to demonstrate
different aspects of the performance of the approach.

2. Time Series Analysis

[6] In a time series analysis, an output series is modeled
with a number of input series. For this paper, the output
series is a measured series of heads at an observation well,
and the input series are stresses on the aquifer, including
rainfall, evaporation, pumping, and changes in surface water
levels. The measured heads at an observation well p(t) are
written as the sum [e.g., Von Asmuth et al., 2008]

p tð Þ ¼ d þ f tð Þ þ r tð Þ; ð2Þ

where d is a parameter that represents the head at the
observation well if all stresses are zero, f is the head
variation caused by the transient stresses, and r(t) is the
residual series. The head variation f consists of the sum of
the contributions of all transient stresses that are used as
input series. The effect of each stress on the head may be

characterized with an impulse response function, the effect
of a unit impulse of the stress. The effect of a time series of
stress on the head may be computed through convolution
of the stress with its corresponding impulse response
function (1). This approach is suited for systems that are
sufficiently linear. The residual series r(t) may be
interpreted as the result of a white noise process, which
facilitates the computation of confidence intervals of the
simulations [Von Asmuth and Bierkens, 2005].
[7] Heads are measured at intervals, for example, daily,

weekly, or monthly. Many stresses are not measured con-
tinuously either, but cumulative values are measured for
periods of a day, week, or month; average values may be
obtained from the cumulative values. For many practical
cases it is convenient to replace the convolution integral (1)
by the following summation:

h tið Þ ¼
Xi

j¼1

NjQj tið Þ; ð3Þ

where Nj is the average stress from tj�1 to tj and Qj(ti) is the
block response at time ti due to a unit stress from tj�1 to tj.
[8] In this paper, we will use the PIRFICT method [Von

Asmuth et al., 2002] for time series analysis, but other
methods, such as Box-Jenkins, may be applied in a similar
fashion. In the PIRFICT method, specific parametric func-
tions are selected to represent the impulse response func-
tions of each stress [Von Asmuth et al., 2008]. Use of
continuous functions with few parameters (up to four in
the current implementation) facilitates batch processing and
the handling of irregular or high-frequency data and avoids
overfitting [Von Asmuth et al., 2002]. In this paper, we
approximate the impulse response function with the follow-
ing function with four parameters:

q tð Þ ¼ 0 t < 0

q tð Þ ¼ Atne�at�b=t t � 0; ð4Þ

where q(t) is the impulse response function, t is time, and A,
n, a, and b are parameters; the three-parameter functions
used by Von Asmuth et al. [2002, 2008] are all special cases
of this function. Integration of the impulse response
function (4) to obtain the block response was carried out
using the algorithms of Chaudhry et al. [1996], but
numerical integration gives accurate results as well.
[9] The objective of a time series analysis is to find values

for the parameters in the impulse response functions such that
the measured series of heads are explained by the measured
stresses in an optimum fashion. The parameter values of the
impulse response functions are, of course, unique for each
observation well. We will compute the parameters through
minimization of an objective function F:

F ¼
XN
i¼1

pi � hið Þ2; ð5Þ

where N is the number of observations, pi is the observation
at time ti, and hi = d + f(ti) is the head value of the time
series model at ti; examples of this standard least squares
approach are given in sections 5–8. Alternatively, optimal
parameters may be found through minimization of the
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variance of the noise model [Von Asmuth and Bierkens,
2005].
[10] In sections 3 and 4 we will discuss how we can use

characteristics of the impulse response function directly in
the calibration of transient groundwater models, without
ever having to perform a transient simulation.

3. Groundwater Modeling

[11] Dupuit-Forchheimer flow in an aquifer is governed
by [e.g., Bear, 1972]

r 	 Trhð Þ ¼ S
@h

@t
� N ; ð6Þ

where r[L�1] is the gradient vector, S [dimensionless] is
the storativity of the aquifer, T [L2 T�1] is the transmissiv-
ity, and N is the areal recharge. We consider four types of
transient stresses: transient areal recharge Nt, boundaries
with a specified transient head ht, a specified transient
normal flux qt, or a transient mixed boundary condition of
the form @h/@n = ah + bt, where n is the direction normal to
the boundary, a is a constant, and bt varies with time. In
addition, there may be a fixed areal recharge Nf and
boundaries with a fixed head hf, a fixed normal flux qf, or a
fixed mixed boundary condition @h/@n = ah + bf.
[12] The aquifer is approximated as a linear system, such

that the head in the aquifer may be written as a steady
component plus a transient component, similar to time
series analysis (2)

h x; y; tð Þ ¼ d x; yð Þ þ f x; y; tð Þ: ð7Þ

The steady component d fulfills the steady portion of (6)

r 	 Trdð Þ ¼ �Nf ; ð8Þ

and f fulfills (6)

r 	 Trfð Þ ¼ S
@f
@t

� Nt: ð9Þ

The boundary conditions are divided correspondingly, as
summarized in Table 1. As a result, the steady component d
represents the head in the aquifer when all the transient
stresses are set to zero. Note that summation of the second
and third columns in Table 1 results in the first column, and
thus summation of the models of d and f result in the model
of h.
[13] The transient part f is divided further into separate

components for each transient stress. First, consider a

transient recharge Nt. The differential equation for this
component of f is given by (9). Boundary conditions are
given in Table 1 with ht = qt = bt = 0. The solution for this
component of f is obtained by determining the solution for
a unit impulse of recharge (the impulse response function),
after which f(x, y, t) may be obtained for an arbitrary
recharge through convolution of the impulse response
function with the recharge (Duhamel’s principle [Bear,
1972; Zwillinger, 1997]). The impulse response function q
for an impulse of recharge fulfills (9) where the recharge is
replaced by the Dirac delta function d(t):

r 	 Trqð Þ ¼ S
@q
@t

� d tð Þ: ð10Þ

Boundary conditions for q are identical to boundary
conditions for this component of f, as stated above.
[14] Treatment of other transient stresses is similar. The

component of f for any of the other transient stresses fulfills
(9) with Nt = 0. For each component, one of the transient
stresses ht, qt, or bt is specified, while the others are zero.
The impulse response function for each component also
fulfills (9) with Nt = 0, while the nonzero transient stress is
replaced by the Dirac delta function. Once the impulse
response function for a stress has been determined, the
response for an arbitrarily varying stress may be obtained
through convolution.
[15] In summary, we have defined a differential equation

with boundary conditions for the impulse response function
of each transient stress. In addition, we can determine the
impulse response function of each transient stress at obser-
vation wells by using time series analysis. Our objective is
to calibrate the models of the impulse response functions
against the impulse response functions obtained with time
series analysis. One possible way to compute the impulse
response function is to solve a transient groundwater model
for an impulse of the stress, using a small enough time step
[e.g., Olsthoorn, 2008]. Calibration of such a model against
the impulse response function obtained from time series
analysis at observation wells can be achieved by computing
head values at the observation wells at a number of times and
minimizing the sum of squares of the residuals (e.g., by using
a parameter estimation package such as PEST (J. Doherty,
Manual for PEST, 5th edition, available at www.sspa.com/
pest)). Head values at early timesmay beweighted differently
to emphasize a good fit of the early or late response. We will
present an alternative approach that only requires the solution
of steady models and allows for the incorporation of the
measured time series at observation wells in a comprehensive
fashion.

4. Moment Matching

[16] As stated in section 1, impulse response functions
may be viewed as scaled probability density functions and
may be characterized by their temporal moments. The kth
moment (sometimes called the kth raw moment) of an
impulse response function is defined as

Mk ¼
Z1

�1

tkqdt: ð11Þ

Table 1. Splitting the Differential Equationa

BC for h BC for d BC for f

Steady h = hf d = hf f = 0
Transient h = ht d = 0 f = ht
Steady @h/@n = qf @d/@n = qf @f/@n = 0
Transient @h/@n = qt @d/@n = 0 @f/@n = qt
Steady @h/@n = ah + bf @d/@n = ad + bf @f/@n = af
Transient @h/@n = ah + bt @d/@n = ad @f/@n = af +bt

aBC is boundary condition.
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Temporal moments are related to common statistical terms.
M0 represents the area under the impulse response function,
m = M1/M0 is the mean of the impulse response function,
and s2 = M2/M0 � m2 is the variance. From a hydrological
perspective, M0 is the latetime response to a unit step input.
Hence, if M0 is multiplied with the mean value of the stress,
the mean effect on the head is obtained (recall that we have
restricted ourselves to linear systems here).
[17] Temporal moments fulfill differential equations that

are equivalent to differential equations for steady ground-
water flow. The differential equation of the zeroth-order
moment of the impulse response function for areal recharge
is obtained through integration of both sides of (10) from
time is minus to plus infinity, which gives [e.g., Von Asmuth
and Maas, 2001; Li et al., 2005; Bakker et al., 2007]

r 	 TrM0ð Þ ¼ �1: ð12Þ

Equation (12) is identical to the differential equation for
steady groundwater flow with a unit areal recharge.
Similarly, the differential equation for the zeroth-order
moment of the impulse response functions of the other
transient stresses is

r 	 TrM0ð Þ ¼ 0 ð13Þ

which is identical to the differential equation for steady flow
with zero areal recharge. Boundaries along which q = d, @q/
@n = d, or @q/@n = aq + d may be integrated as well, which
results in M0 = 1, @M0/@n = 1, or @M0/@n = aM0 + 1,
respectively.
[18] The differential equations for moments of order k

(k > 0) are obtained through multiplication of both sides
of the differential equation (10) with tk and integration
from minus to plus infinity, which gives

r 	 TrMkð Þ ¼ �kSMk�1 k ¼ 1; 2; . . . : ð14Þ

These differential equations (14) are also equivalent to the
differential equation for steady groundwater flow but with a
spatially varying recharge of the form kSMk�1. Boundaries
along which q = d, @q/@n = d, or @q/@n = aq + d may also

be multiplied with tk and integrated, which gives Mk = 0,
@Mk/@n = 0, or @Mk/@n = aMk, respectively.
[19] The differential equations for the moments of the

impulse response functions are exact. The only approxima-
tions that have been made are the common approximations
of Dupuit-Forchheimer flow (although the analysis can be
repeated for 3-D flow) and a linear aquifer system of the
form (7). Differential equations (12), (13), and (14) may be
solved with any standard groundwater model. Li et al.
[2005] solved similar equations for M0 and M1 for a
pumping well without areal recharge using a finite element
code. Bakker et al. [2007] solved for M0 and M1 with areal
recharge using analytic elements.
[20] We propose to calibrate transient groundwater mod-

els by constructing models of M0 and M1 and to calibrate
against the values of M0 and M1 obtained at observation
wells with time series analysis. Moment n of the impulse
response function (4) used in the time series analysis is

Mn ¼ 2A
b

a

� �nþnþ1
2

Knþnþ1 2
ffiffiffiffiffi
ab

p� �
; ð15Þ

where Kn+n+1 is the modified Bessel function of the second
kind and order n + n + 1. The models of M0 and M1 are
steady models. The model of M0 is used to calibrate for the
transmissivity as it does not depend on the storage
coefficient (equations (12) and (13)). The model of M1 is
used to calibrate for the storage coefficient, using the
calibrated transmissivity from the M0 model and using M0

itself in the recharge term (see equation (14)). In the
remainder of this paper, we will evaluate different aspects of
the performance of the proposed procedure by solving a
number of hypothetical cases with combinations of different
stresses. We consider flow in an unconfined aquifer, and we
approximate the transmissivity as uniform, which is
reasonable when fluctuations of the saturated thickness are
relatively small. It is important to note, however, that the
approach is applicable to fields with continuously varying
transmissivities.

5. Varying Recharge

[21] We first consider a case where the head varies
because of temporal variations in rainfall and reference
evaporation. Consider a hypothetical case of a square
agricultural plot with sides of 2L, surrounded by drainage
canals with a head fixed to 0.35 m (Figure 1). The aquifer is
unconfined. For simplicity, the transmissivity is approxi-
mated as uniform, and the storage coefficient is homoge-
neous. The response of the hydraulic head may be
characterized by the characteristic time t:

t ¼ L2S

T
: ð16Þ

Initially, the head in the model area is equal everywhere to
the constant water level in the drainage canals. The response
due to a constant and uniform recharge, called the step
response, may be computed with a numerical model. A
block response, the response due to a unit recharge for a
period of 1 d, is obtained through superposition of the step
response starting at time t = 0 minus the step response

Figure 1. Square model area with canals on all four sides.
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starting at time t = 1 d. We used a finite difference (FD)
model with a uniform grid of 201 by 201 cells and a time
step of 0.005t (a further reduction of time step and cell size
did not give a significant change in the outcome); use was
made of MODFLOW2000 [Harbaugh et al., 2000]. The
cells along the edge of the model are specified as zero (see
boundary conditions in Table 1). The time it takes for the
head to rise to a% of its final position is called ta and may
be expressed in terms of the characteristic time t. For
example, at the center of the model area, t50 = 0.16t, t90 =
0.49t, t95 = 0.64t, and t99 = 0.97t.
[22] Measured time series of daily rainfall and reference

evaporation are used from the weather station De Bilt in the
Netherlands for the period 1988–2000. In the absence of a
measured time series of daily heads for our hypothetical
study area, a head series is generated at the center of the
domain for the period 1990–2000 through convolution of
the daily recharge data with the block response obtained
with the FD model described above (Figure 2); only one
head series is considered. Two additional years of recharge
data are used to obtain accurate results starting on the first
day of 1990. The recharge is computed as rainfall minus
80% of the reference evaporation; half the length of a side is

set to L = 100 m. Three cases are considered with a memory
varying from short (t = 20 d) to intermediate (t = 50 d) to
long (t = 200 d). The aquifer properties for all three cases
are given in Table 2. It is emphasized that we will pretend
that we do not know these aquifer parameters but only know
the head, rainfall, and reference evaporation series shown in
Figure 2. Note that the head variation is smoother and the
range (maximum to minimum) is larger when the memory
of the system is longer. Systems with a longer memory have
a larger storage coefficient, a smaller transmissivity, longer
sides, or a combination thereof (see equation (16)).
[23] We will illustrate the calibration process outlined in

section 4 by using the rainfall and reference evaporation
series as input and the head series as output. First, we

Figure 2. (top to bottom) Rainfall, reference evaporation, heads for short memory, heads for
intermediate memory, and heads for long memory.

Table 2. Aquifer Properties for Three Cases

Case T, m2/d S t, d

1 100 0.2 20
2 40 0.2 50
3 10 0.2 200

W04420 BAKKER ET AL.: CALIBRATION OF TRANSIENT MODELS
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perform a time series analysis with the PIRFICT method.
The head hi at time ti in equation (5) is written as

hi ¼
Xi

j¼0

Nj � f Ej

� 	
Qj tið Þ þ d; ð17Þ

where Nj and Ej are the average daily rainfall and reference
evaporation from tj�1 to tj, respectively, and d is the steady
component when all transient stresses are zero. The block
response Qj is the same for rainfall and evaporation [Von
Asmuth et al., 2008], and the factor f is used to scale the
potential evaporation to the actual evaporation. There are
six parameters to be determined: the four parameters A, n, a,
and b of the block response, f, and d. The parameters are
obtained using a least squares fit (as explained in section 2).
The resulting zeroth and first moments, calculated using
(15), and the values for f and d are presented in Table 3. The
normalized root mean square error e was computed as the
root mean square error divided by the range of the head
variation (maximum level minus minimum level) and varied
from 0.004 for the case with the longest memory to less than
0.001 for the case with the shortest memory (Table 3).
Another measure for the goodness of fit is the percentage of
variance accounted for R2

adj, defined as

R2
adj ¼

s2
p � s2

r

s2
p

100%; ð18Þ

where s2p and s2r are the variance of the measured head and
of the residual r, respectively. The percentage of variance
accounted for was 100.0% for all three cases. As an
illustration, the block response used to generate the input
series (obtained with the FD model) and the block response
obtained from time series analysis (4) are shown for the case
with intermediate memory as the dots and line, respectively,
in Figure 3.
[24] Next, we construct a model for moments M0 and M1

of the impulse response function for each of the three cases.
The model for M0 fulfills (12) and thus represents a steady
model with a unit recharge over the entire model area and a
fixed value of zero along the boundary; the FD method is
applied to solve the model. We use the value of M0 at the
center of the plot as obtained from time series analysis
(Table 3) to calibrate for the transmissivity. As there is only
one unknown parameter, calibration is straightforward. The
results for all three cases are shown in Table 3. The
difference dT between the calibrated value and the true
value is less than 0.2% for all cases.
[25] Next, we construct a model for M1, which is a steady

model of which the recharge is equal to SM0 (see (14)), and

again there is a fixed value of zero along the boundary. We
calibrate this model for the storage coefficient S by using
the value of M1 at the center of the plot (obtained from time
series analysis). This is again a straightforward calibration.
The difference dS between the true and calibrated values is
less than 1.8% for all cases.
[26] In summary, we solved only two steady models to

calibrate each transient case, and the calibrated values for
the transmissivity and storage coefficient were very close to
the true values for all cases. The next question is how the
calibration approach performs when the head and recharge
series contain errors.

6. Error in Input and Output Series

[27] In section 5, we demonstrated our calibration ap-
proach by using a ‘‘measured’’ head series that was gener-
ated with a high-resolution finite difference model. This
series was the exact response to the recharge series (at least
within the numerical accuracy of the model). Time series
analysis gave an almost perfect fit between the head series
and the recharge series. In reality, a perfect fit will never be
obtained. There are many reasons why a time series model
(or a regular groundwater model for that matter) cannot give
a perfect match. For example, measurements of heads,
meteorological data, and hydrological data contain errors.
Furthermore, weather stations are rarely located at the same
location as the observation well, and thus the weather data
differ from the actual rain and evaporation at the observa-
tion well. In addition, there may be unknown or unmeasured
stresses influencing the head at the well. We will investigate
the performance of our proposed calibration method with
two types of errors: a random error in the head and a
random error in the recharge.

Figure 3. Block response of time series analysis (line) and
finite difference (FD) model used to generate head series
(dots) for case with intermediate memory.

Table 3. Recharge Case

t, d

Time Series Analysis Calibration

M0, d M1, d
2 d, m f e T, m2/d dT, % S dS, %

20 29.43 130.57 0.350 0.80 0.001 100.1 0.1 0.2013 0.7
50 73.76 823.67 0.350 0.80 0.002 39.95 0.1 0.2023 1.2
200 294.8 13222 0.350 0.80 0.004 9.996 0.04 0.2033 1.7
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[28] We will continue our investigation for only one
system with an intermediate memory (t = 50 d); the aquifer
parameters are T = 40 m2/d and S = 0.2. A random error in
the head is created by adding a random error to our head
series. The random error has a uniform distribution from
�5% to +5% of the head range. Time series analysis on this
modified head series gives a good match: the root mean
square error is 2.7% of the total variation in head, and the
percentage of variance accounted for is 95.9% (row labeled
‘‘Head’’ in Table 4). The fit is illustrated for one of the
10 years of data in Figure 4 (middle); Figure 4 (top) shows
the fit when no error is introduced. Our calibration approach
still gives accurate results for the transmissivity and storage
coefficient (Table 4).
[29] Next, we modify the recharge series by adding a

random error with a uniform distribution from �5% to +5%
of the recharge range. We pretend that this modified
recharge series is the true recharge series at the observation
well, while the rainfall and reference evaporation series are
the true input series measured at the weather station. The
modified recharge series is used to generate a head series at
the observation well. Time series is performed on this head
series, using the unmodified series of the weather station as

the input series; the goodness of fit is illustrated in Figure 4
(bottom). The root mean square error and the explained
variance are better than the previous case, but the zeroth and
first moments have a larger error. Results of the calibration
process are still good, with deviations in the transmissivity
of 0.93% and storage coefficients of 4.6% (Table 4).
[30] The third case is the same as the second case, except

that we added an additional random error to the head series.
As expected, time series analysis on this head series gives
the largest root mean square error (still only 3.5% of the
total head range), but the fit remains good, and the calibra-
tion process gives accurate results for the transmissivity
(deviation of 0.075%) and storage coefficient (deviation of
2.4%) (Table 4).
[31] Time series analysis also provides a confidence

interval for the computed moments. The computed standard
deviations of M0 and M1 are presented in Table 4 as s0 and
s1, respectively. The standard deviation of M0 is on the
order of 1%, while the standard deviation of M1 is on the
order of 2.5%. These standard deviations may be used to
compute standard deviations of the aquifer parameters T and
S. Alternatively, when a model is calibrated using multiple

Figure 4. Fit of time series model (line) to head series (dots) for 1996 for (top) no error, (middle) error
in head, and (bottom) error in recharge.

Table 4. Case of Recharge With Errors in Series

Time Series Analysis Calibration

M0, d s0, d M1, d
2 s1, d

2 e R2
adj, % T, m2/d dT, % S dS, %

Head 73.25 0.675 796.3 16.6 0.027 95.9 40.22 0.55 0.1982 0.9
Recharge 74.35 0.534 865.5 14.3 0.022 97.6 39.63 0.93 0.2091 4.6
Both 73.72 0.875 832.8 22.4 0.035 93.5 39.97 0.075 0.2047 2.4
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observation wells, the inverse of the standard deviation may
be used to weigh the moments in the objective function.
[32] It is noted that the result of the calibration approach

is not very sensitive to the location of the observation well.
In the current example the observation well is located at the
center of the agricultural plot (x, y) = (0,0). The procedure
may be repeated for an observation well at (x, y) = (50, 50),
which results in deviations of 2.4% for T and 1.7% for S for
the case with errors introduced in both the recharge and
head. We even moved the observation well to 1 m from the
canal along the edge, (x, y) = (0, 99). Even though this is an
extremely poor location for measuring groundwater dynam-
ics, the aquifer parameters T and S were still obtained with
deviations of only 0.35% for T and 9.7% for S for the case
with errors introduced in both the recharge and head.

7. Varying Recharge and Canal Stage

[33] We will expand the example of sections 5 and 6 to
three stresses. In addition to the rainfall and evaporation, the
canals along the four sides of the model area have a seasonal
value of 0.5 m from April through September and 0.2 m from
October through March. We will use the aquifer parameters
for a system with an intermediate memory used in section 6;
random errors are not introduced. A head series at the center
of the model area is again generated with an FD model;
fluctuation of the recharge, canal stage, and head at the
center of the model area are shown in Figure 5. As before,
we will pretend that we do not know the aquifer parameters
but only the time series of rainfall, reference evaporation,
canal levels, and heads at the observation well.
[34] Following our calibration approach, we first perform

a time series analysis, where hi in equation (5) is now

hi ¼
Xi

j¼0

Nj � f Ej

� 	
Qj tið Þ þ PjQ̂j tið Þ

h i
þ d; ð19Þ

where Pj is the average canal stage between time tj�1 and tj
and Q̂j is the block response function for the varying canal
stage. The time series analysis gives a good fit with a root
mean square error of only 0.2 cm. The two impulse
response functions each have their own moments. For the
recharge series, the moments obtained from time series
analysis are labeled with an index r, Mr0 = 73.91 d and
Mr1 = 824.99 d2; the evaporation factor is f = 0.80. For the
canal stage, the moments obtained from time series analysis
are labeled with an index c, Mc0 = 1.0 and Mc1 = 14.44 d
(dimensions of moments vary between stresses). Note that
for this case Mc0 is one. After all, the zeroth moment is the
late time result of a unit step response, and a unit increase in
the canal level will eventually result in a unit increase in the
head.
[35] To calibrate for the transmissivity, we may construct

a model for Mr0 and calibrate against the value obtained
from time series analysis, like we did in sections 5 and 6.
This results in a transmissivity of T = 39.87 m2/d, 0.32%
different from the true value. It is also possible to construct
a model of Mc0, but we cannot use it to calibrate for the
transmissivity. After all, the model of Mc0 fulfills (13), with
fixed values of one along the boundaries. The solution of
this model is a uniform value of one everywhere, indepen-
dent of the choice of the transmissivity.
[36] Next, we want to calibrate for the storage coefficient.

We can either calibrate a model of Mr1 or we can calibrate a
model of Mc1. The model of Mr1 fulfills (14) where Mr0 is
used in the right-hand side. Calibration of this model gives
S = 0.2018, 0.9% higher than the true value. The model of
Mc1 fulfills (14) as well, where Mr0 = 1 everywhere.
Calibration of this model gives S = 0.1954, 2.3% lower
than the true value.
[37] Alternatively, it is possible to construct a model of a

linear combination Ms0 of Mr0 and Mc0:

Ms0 ¼ aMr0 þ bMc0; ð20Þ

Figure 5. (top to bottom) Rain, evaporation, canal stage, and head.
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where a and b are weighing factors that may be chosen to
emphasize calibration against the moments of the recharge
impulse response or the canal impulse response. The
differential equation of Ms0 is obtained as the same linear
combination of the differential equations for Mr0 (12) and
Mc0 (13):

r 	 TrMs0ð Þ ¼ �a: ð21Þ

The boundary conditions are also obtained as the same
linear combination of the boundary conditions of Mr0 and
Mc0. For this case that means that the value in the canal is
specified as b. The model of Ms0 may be calibrated for the
transmissivity against the value Ms0 = aMr0 + bMc0 at the
center of the model area.
[38] Calibration for S works in a similar fashion. The

linear combination Ms1 is defined as

Ms1 ¼ aMr1 þ bMc1; ð22Þ

were Ms1 fulfills

r 	 TrMs1ð Þ ¼ �SMs0: ð23Þ

The value of Ms1 is zero along the canal. The model of Ms1

may be calibrated against the value Ms1 = aMr1 + bMc1 at
the center of the model area.

8. Variable Aquifer Parameters

[39] The final case concerns the same model area, but
now the transmissivity and storage coefficient in the left
half are different from the values used in the right half
(Figure 6); this case will evaluate whether our calibration
approach can handle systems with variable aquifer prop-
erties. To create a left half with a long memory, the
transmissivity is set to T = 10 m2/d, and the storage
coefficient is raised to S = 0.3; the right half has a short
memory with a higher transmissivity T = 40 m2/d and a
lower storage coefficient S = 0.1. (Since aquifer parame-
ters are specified per cell in the FD model and heads are
computed at cell centers, the left half is 99.5 m wide, and
the right half is 100.5 m wide.) Rainfall and evaporation
are the only transient stresses on the system. The FD
model is used to compute the impulse response for
recharge at two points: (x, y) = (�40, 0) and (x, y) =
(40, 0). A head series for a period of 10 years is computed
using the rainfall and reference evaporation series of
Figure 2 and is shown for 1996 for both wells in Figure 7
(dots). We will again pretend we do not know the aquifer
parameters and perform time series analysis on these two
series with the rainfall and reference evaporation series as
input series.
[40] The time series model is also shown in Figure 7

(lines). A comparison between the block response function
of the FD model used to generate the head series (dots) and
the fitted function of the time series model (lines) is shown
in Figure 8. Note that the shapes of the block response
functions are different from the shape shown in Figure 2.
Reaction in well 1 (long memory system) is much slower

Figure 6. Setup for case with two sets of aquifer
properties.

Figure 7. Head series for 1996 for case with two sets of aquifer properties: (top) well 1 (long memory)
and (bottom) well 2 (short memory). Head series are indicated by dots, and results of time series analysis
are indicated by lines.
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than in well 2 (short memory system). In addition, we see a
distinct effect of the two systems on each other. Well 1 in
the long memory system shows a small second rise in the
head after the initial rise caused by the block input. This
second rise is due to the quick reaction of the short memory
system on the right. The alteration in the shape of the block
response in well 2 is more subtle. Here we see a quick
decrease in head, as is expected for a short memory system,
but then we see a much longer tail, which is caused by the
slow reaction of the long memory system on the left. The
impulse response function in well 1 shows some inaccuracy
at early time, but this does not have a significant effect on
the fluctuations in the well because of the long memory
(Figure 7).
[41] Results of the time series analysis are still good and

are summarized in Table 5. Our new calibration approach is
again applied to find the values of T and S. There are now
two T values and two known values of M0. Similarly, there
are two values of S and two known values of M1. Calibra-
tion is still straightforward and leads to accurate results
(Table 5). The deviation in the calibrated transmissivity is
less than 1%, while the deviation in the calibrated storage
coefficient is 7.4% in the short memory side and 1.3% in the
long memory side.

9. Discussion and Conclusions

[42] We presented a new, efficient, and comprehensive
calibration approach for transient groundwater models. The
approach consists of two steps. In the first step, time series
analysis is performed on the measured head series in
observation wells, using measured stresses such as recharge,
surface water levels, and pumping as input series. The time
series analysis results in approximations of the first two
temporal moments of the impulse response function of each

stress at the observation well. In the second step, spatial
models are made of the these two moments. The zeroth
moment M0 fulfills the steady differential equation (12) or
(13); the model of M0 is calibrated against the values of M0

at the observation wells to determine the transmissivity of
the aquifer. The first moment M1 fulfills the steady differ-
ential equation (14) and is calibrated against the values of
M1 at the observation wells to determine the storativity of
the aquifer. The proposed approach performed well for all
presented examples and only requires the calibration of a
couple of steady state models.
[43] In our examples, the recharge was computed as

rainfall minus evaporation and may be adjusted for runoff,
for example, using the curve number method [e.g., McCuen,
2004]. The aquifer parameters may vary spatially. We
presented an example of two zones with different but
homogeneous aquifer parameters, but our approach may
be applied to calibrate continuously varying aquifer param-
eters using, for example, pilot points [Doherty, 2003].
[44] We highly recommend performing time series anal-

ysis as a first step in the calibration process of transient
groundwater models, regardless of which calibration strat-
egy is used. Time series analysis gives an indication of the
best possible fit between the measured stresses and the
measured heads using a linear relationship [Von Asmuth et
al., 2002; Von Asmuth and Knotters, 2004]. If the measured
stresses cannot explain the measured heads, it will be most
unlikely that a linear groundwater model with time-invariant
parameters and with the measured stresses as input can
simulate heads that mimic the observed heads. Time series
models are used to estimate values of the moments of the
impulse response functions but also the standard deviations
of the estimates and thus the confidence intervals. The
inverse of the standard deviation may be used to weigh
moments according to their estimation accuracy during the
calibration process.
[45] Records of both heads and stresses are needed to

perform time series analysis. When one or more stresses are
not recorded, it is impossible to construct an accurate
transient groundwater model, and similarly, it will be
difficult, but not always impossible, to construct an accurate
time series model. It may be possible to obtain an accurate
time series model when the missing stress is uncorrelated to
the measured stresses. In that case there will be significant
differences between the time series model and the measured
heads, but the impulse response functions are expected to be
reasonable. When the missing stress is correlated to one of
the measured stresses, e.g., low values in the summer and
high values in the winter, the impulse response function of
the given stress will be inaccurate as it tries to include the
effect of the missing stress. In areas of groundwater mining
due to pumping, it may not be possible to obtain accurate
impulse response functions for the pumping wells since the

Figure 8. Block response functions for case with two sets
of aquifer properties. Results of FD model are used to
generate head series (dots), and results of time series
analysis (lines) are shown. Well 1 is in long memory side,
and well 2 is in short memory side.

Table 5. Case of Variable Aquifer Properties

Well Location (x, y)

Time Series Analysis Calibration

M0, d M1, d
2 e R2

adj, % T, m2/d dT, % S dS, %

(�40,0) 166.6 5741 0.0043 99.9 9.95 0.5 0.3038 1.3
(40,0) 84.32 1447 0.0048 99.9 40.33 0.8 0.0926 7.4
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period of record is too short (the groundwater heads are still
declining). It is expected, however, that time series analysis
will be able to filter out the effect of groundwater mining
effectively by including a step trend or a linear trend so that
reasonable impulse response functions may be estimated for
the other stresses on the system.
[46] The proposed approach is suited for systems that are

sufficiently linear. The effect of nonlinear features, such as
drains that carry water only part of the year or perennial
streams, form part of current research. Furthermore, the
areal recharge (rainfall minus evaporation) is assumed to
reach the groundwater table instantaneously (this is a
common assumption for groundwater models that do not
include an explicit unsaturated zone). The main effect of the
unsaturated zone is retardation and dispersion of recharge
[Besbes and de Marsily, 1984; Parlange et al., 1992]. This
may be taken into account by adding a transfer model to
represent the transformation of the recharge series through
the unsaturated zone in the time series analysis step [e.g.,
Kruithof, 2001]; further research on this issue is ongoing.
[47] As was demonstrated in section 7, stresses with

different impulse response functions present different
options for calibration. For example, models may be cali-
brated on any linear combination of the moments of the
stresses. Alternatively, different aquifer parameters may be
determined for different stresses; that is, aquifers may have
different transmissivities and storativities depending on the
type of stress. This is a new paradigm that deserves further
attention.

[48] Acknowledgment. This research was funded in part by the Joint
Water Research Program of the Dutch Water Supply Companies.
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