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Detection of doors in a voxel model, derived from a point cloud and its 

scanner trajectory, to improve the segmentation of the walkable space 

Generation of indoor networks for navigation will normally be done out of standard 

floor plans that are only 2D and is more often manual than automatic. These floor 

plans are drawn at a specific time and do not correspond to the reality, moreover 

some of those buildings were built already differently than designed. Then in due 

course the building will change both externally and internally. Also objects like 

furniture will be moved around in the building. If these changes are not updated in 

the map of the building, it becomes out of date and cannot be used for the creation 

of indoor navigable models anymore. To enable correct indoor navigation, we will 

need to have the current data of the indoor environment. This article concentrates 

on providing a new approach to generate up to date floor plans by using a mobile 

(and hand held) laser scanner in the fastest way. This device creates a point cloud 

and the corresponding trajectory at the same time. Because the mobile laser scanner 

device is operated by a walking human, the trajectory contains information about 

the surface the person is walking on. In this article, a method is explained for the 

detection of walkable spaces based on the analysis of the point cloud and its 

corresponding trajectory provided by the mobile laser scanner. Three steps will be 

used: voxelization, trajectory analysis and the identification of floor regions. 

Dynamic objects, doors, and furniture objects are also used to identify the surfaces 

which are available for navigation purposes. Three types of surfaces are 

considered: horizontal, slopes, and stairs. 

Keywords: Walkable space; Mobile laser scanner; Indoor geographic; Trajectory; 

Voxel; Dynamic objects  

Introduction 

Seamless indoor-outdoor navigation is in great demand in recent years, but it requires a 

switch between indoor and outdoor environments (Thill, Dao, & Zhou, 2011). While the 

navigation is well implemented and used in all kinds of outdoor applications, navigation 

aids for inside buildings (or both indoor and outdoor) are still in development. The 

complexity of indoor environments is greater, and the indoor aid is specifically 



important for public areas in larger buildings such as hospitals, airports, railway 

stations, conference venues, museums, and shopping malls. Similar to outdoor, an 

indoor navigation system uses an (indoor) positioning system, a navigable map, 

destinations (points of interest) and directions to follow a path (Brown, Nagel, 

Zlatanova, & Kolbe, 2013; Boguslawski, Mahdjoubi, Zverovich, & Fadli, 2016). One of 

the most critical components for this kind of navigation is the indoor map itself, not 

only for visualisation purposes, but also for the connection information it provides, like 

destinations, routes, connections, and obstructions. Normally all buildings have 2D 

floor plans, however many floor plans are outdated since interiors have changed 

because the walls and doors have been modified (Turner, Cheng, & Zakhor, 2015). In a 

shorter timeframe, the furniture might have been changed because of the user’s 

preferences or usage. Moreover, it might happen that buildings have not been built 

according to their blueprints at the first place. Since indoor environments tend to be far 

more complex than the outdoor world, creating up-to-date indoor maps is time 

consuming and not easy (Zlatanova, Liu, & Sithole, 2013). This means that the 

automatic updates of indoor environments are of critical importance.  

Present research being done on automatic generation of indoor maps has a focus 

on 2D floor plans. Only part of this research attempts to consider 3D representations 

(Zlatanova, Liu, Sithole, Zhao, & Mortari, 2014). Floor plans which are in 2D are 

appropriate for many purposes but have their limitations for user-tailored navigation 

(Diakité & Zlatanova, 2016). 2D maps always are a simplification of the complex 3D 

environment. This might lead to wrong representations of the real situation. Also, 

connectivity between different floor plans can raise problems as the stairs/elevators and 

lifts cannot be represented (Zlatanova, Liu, Sithole, Zhao, & Mortari, 2014). Moreover, 

the 2D maps are not suitable to represent furniture and other obstacles that have 



overhanging parts and therefore limit the space for movement (Dı́az Vilariño, 

Boguslawski, Khoshelham, Lorenzo, & Mahdjoubi, 2016). Thus, new 3D methods for 

the efficient registering of indoor environments should be looked for.  

This paper focusses on the automatic detection of the indoor spaces open for 

navigation for pedestrians based on the data of a mobile laser scanner. Such a scanner 

will scan the environment while registering the trajectory of movement of the device at 

the same time, which makes it more time efficient than a static terrestrial laser scanner 

(Holenstein, Zlot, & Bosse, 2011; Sirmacek, Shen, Lindenbergh, Zlatanova, & Diakite, 

2016). The obtained point cloud should be processed to further identify static objects 

like floors, stairs, walls, and the more dynamic furniture objects. Many approaches are 

constrained, like with a Manhattan World approach or with a flat/planar/horizontal 

surface limitation (Fichtner, Diakité, Zlatanova, & Voûte, 2018; Macher, Landes, & 

Grussenmeyer, 2016; Khoshelham & Díaz-Vilariño, 2014; Anagnostopoulos, 

Pătrăucean, Brilakis, & Vela, 2016; Budroni & Boehm, 2010). Our research addresses 

more complex environments, which is why we envisage a method with less or without 

any constraints and which is predominantly based on the trajectory of the MLS which is 

created during the scanning procedure. If the MLS will be operated by a human, the 

trajectory contains data which can be used to distinguish between different types of 

surface. The scanned points, which are almost directly below the trajectory, indicate 

walkable areas for pedestrians (Yan, et al., 2016; Li, 2014). The height differences 

between neighbouring trajectory points can be used to indicate a stair or a slope, and so 

also recognizes horizontal surfaces. Apart from this, the trajectory provides connectivity 

information and represents the complexity of the building when the data of the MLS 

will be captured according to certain operational rules. 



This paper presents an improved method for the detection of walkable surfaces 

based on the digital analysis of the point cloud in combination with the trajectory of the 

MLS. It is an extension and improvement of the previously reported work in Staats, 

Diakité, Voûte, & Zlatanova (2017). By combining the scanned point cloud and the 

trajectory, it makes it possible to detect the walkable spaces (WS) thanks to the implicit 

information  of the building (e.g. complexity, slopes and connectivity) is already 

embedded in the trajectory of the MLS. An octree structure is used to organise the point 

cloud and three types of walkable surfaces are detected: flat, sloped and stairs. 

The method is fully detailed and the previous approach is improved by applying 

a new type of detection of the start and endpoints of stairs or slopes. We also implement 

door detection based on two different identification methods. The detected doors are 

used to separate the indoor environment into rooms. Doors (being open, closed or 

locked) are important components of navigation process by providing connectivity 

between spaces.   

The paper is organised as follows; first, related research is discussed. Second, 

the method will be introduced, and the implementation will be discussed. Finally, 

further research will be discussed, and a conclusion will be drawn.      

Related work 

The related work is primarily focussed on the description of the space in general and 

identifies different approaches for door detection based on a scanner trajectory. 

The definition of space 

It is difficult to accurately define the notion of space, as a lot of different definitions 

exist in literature. Ekholm and Fridqvist (2000) describe that people mostly think of a 

space as: '…  an empty volume, enclosed in some respect - materially or experientially.’ 



Materialised enclosed spaces have physical borders like a wall or a door. Experientially 

enclosed spaces have no physical boundaries at all. However, experientially spaces can 

be perceived differently depending on the circumstances. The Industry Foundation 

Classes (IFC) standard describes the following: ’A space represents an area or volume 

bounded actually or theoretically. Spaces are areas or volumes that provide for certain 

functions within a building.’ (SMART). Earlier, Ekholm (1996) described a space from 

a construction sector’s point of view: ’A room in a building is a space with a free void 

that is large enough to accommodate users and equipment; the building parts that make 

up the space are enclosing, e.g., to climate, light, sound, or fire.’ 

A space is described as a result of the enclosing elements in the definitions 

mentioned previously. Zlatanova, Liu, and Sithole (2013) describe indoor navigation – 

focused space as: 'the environment in which humans store resources (items of interest) 

and engage in navigation activities.’ The authors added further that a logical grouping 

of resources and navigation activities requires the creation of sub-spaces. This definition 

of a space does not focus on the building components that form a space but the other 

way around.  

Finding a definition of space where all the different views can be merged is not 

easy. In our case, the best way to define the word space is to rely on a more general 

definition, such as the one proposed by Ekholm and Fridqvist (2000). However, that 

definition still leaves room for different interpretations. Therefore, it is important that 

the definition is clearly specified.  

Regarding the WS, we could not find any formal definition provided to it in the 

existing literature, but it is assumed to be the space where pedestrians can move freely. 

It is generally related to the floor and all surfaces related to it (stairs, slopes, etc). 



Door detection 

The detection of doors is a difficult task and is the subject of lots of researches. 

According to Quintana, Prieto, Adán, & Bosché (2018), this research can be divided in 

two groups based on the type of data capture: 2D approaches which uses colored images 

and 3D approaches which use laser scanners or photographic systems.  

Quintana, Prieto, Adán, & Bosché (2018) are detecting doors based on the 

existence of data holes in wall planes. Closed doors are detected by investigating 

rectangular wall areas that, after subsequent processing, does not belong to that wall. 

Dıáz Vilariño et al. (2016) developed a method to detect windows and doors by finding 

consistent shapes based on the Generalized Hough Transform (GHT) in combination 

with binary images of the point cloud.  

Besides these two approaches there are many more to discuss but most 

approaches don’t use the trajectory of a mobile laser scanner. The trajectory is used to 

detect doors and subdivide spaces by Zheng, Peter, Zhong, Oude Elberink, & Zhou 

(2018). Their method analyses the different scan lines of a mobile laser scanner. If a gap 

in a scanline is detected, a possible door of window could be found. Opening candidates 

are defined by combining multiple scanline analysis. An opening is classified as a door 

if an opening candidate is crossed by the trajectory because the data collector has 

walked there. This method doesn’t reconstruct a whole building to detect doors but uses 

only the original point cloud and the trajectory. Díaz-Vilariño, Verbree, Zlatanova, & 

Diakité (2017) also don’t make a model of the indoor environment. They detect doors 

by extracting a vertical profile along the trajectory. By analysing the height changes at a 

specific level, doors can be detected. The detection of doors works well if the height 

difference between the ceiling and the door are large enough. If the distance between 

the ceiling and the trajectory is smaller, the detection of doors will be harder if not 



possible at all. After the doors are identified the trajectory is split and the point cloud is 

divided into rooms based on the scan time of the point cloud and the trajectory using a 

ray tracing method. The ray tracing is also used by the approach of Nikoohemat, Peter, 

Elberink, & Vosselman (2017). They first construct surfaces by growing segments. 

After this, they create a voxel space and use ray tracing between the time of the point in 

the trajectory and the corresponding time in the point cloud. By checking the 

intersection of a ray with the identified surfaces, the voxels are marked as occluded, 

opened and occupied. In this step some doors are detected. The real door identification 

detects the centre of doors if: 

(1) There are some voxels above the door centre 

(2) There are within 15 cm other trajectory points 

(3) There are within 50 cm of a door voxels empty voxels and occupied voxels. 

Unlike most of the approaches that have been previously discussed, our focus is 

exclusively on features critical to pedestrian navigation. Our approach structures the 

point cloud into a voxel space, performs filtering operations to identify moving and 

static obstacles, and relies directly on the information embedded in the trajectory to 

identify walkable surfaces and categorize them into flat areas, sloped ones or stairs. 

Furthermore, we propose door identification methods that also take advantage of the 

trajectory and the voxel structure. Our approach to detect doors relies on the 

combination of a horizontal and vertical checks of the voxel structures and the 

trajectory, which allows to detect them more precisely. 

Method 

As discussed in the related work section, the definition of a space can be perceived in 

different ways. In this research we want to identify the WS for pedestrians with a 



specific height. Therefore, the definition of WS can be defined as follows; a space is the 

free space that is used for human navigation inside a building without colliding with any 

obstacles considering the actors height and size. A section of the free space is the indoor 

environment, which can be accessed through an entryway and is enclosed by walls, 

entryways, windows, ceilings or the actors height, see Figure 1.  

To be able to plan a path through a building for different types of actors like 

pedestrians, people in a wheelchair or people with a walker, it is important to classify 

stairs and slopes which then can or cannot be used in the path planning algorithm. In 

this method horizontal, stair, and sloped surfaces will be identified. 

         

Figure 1: Indoor space with objects (left), three walkable spaces (right) 

 

 As explained in Staats, Diakité, Voûte, & Zlatanova (2017), the method 

rely on the two datasets produced by the MLS device during data acquisition, which are 

the point cloud on one hand, and the trajectory of the MLS on the other hand. The 

method is divided in different steps to derive the WS, see figure 2. 



 

Figure 2: Steps of the proposed method 

 

The first step of the approach consists in voxelizing of the point cloud. As 

described in Vo, Truong-Hong, Laefer, & Bertolotto (2015), this process has two 

advantages. It first introduces a spatial structure to the data, and secondly it reduces its 

amount, which improves the processing time. The size of the voxel has a large impact 

on the representation of the point cloud, but also on the final WS, and therefore needs to 

be chosen with care. 

The step following the voxelization is dedicated to the detection and removal of 

dynamic objects present during the data capture, on the basis of their capturing time 

which is stored in the point cloud. This time component is added by the Simultaneous 

Localization And Mapping (SLAM) algorithm, which stitches all the different scans 

along the trajectory together. As the amount of time spent by a dynamic object at a 

specific position is short, the points that represent, for example, a walking pedestrian 

form a long-drawn shadow and not a dense representation of a human shape (Józsa, 

2012). By calculating the unique scanning seconds of the points contained in a given 



voxel, dynamic objects can be detected and then will be removed. If a pedestrian stands 

still during the data capturing, a human will be visible as a recognizable shape, see 

figure 3. In this case, a pedestrian was scanned during the red and the blue time slot.  

Figure 3: Dynamic objects staying at a specific location during the data capture (one 

colour per scanning time). 

 

The following step of the approach consists in classifying the trajectory into: 

stairs, flat, and sloped regions. This is done based on angular parameters analysis 

between the successive trajectory points. There are different angle parameters for each 

structural component (stairs, slopes, etc.), and for each of them, there are several 

successive points that need to have the same characteristics before they can be classified 

into one or another. The output of this classification is therefore sensitive to the changes 

in height of the MLS device during the data capture.  

Similarly to the point cloud, the trajectory is also voxelized using the same 

spatial structure. As described in the introduction, the point cloud is captured by an 

operator. Therefore, the trajectory is only present in places where the operator has 



walked and the voxels below the trajectory represent walkable voxels or seed voxels. 

This is done by projecting the trajectory’s voxels on top of the point cloud’s ones.  

The next step consists of the identification of doors. This is an improved method 

in comparison with the previous paper. These latter divide the indoor space in confined 

smaller spaces; this information will be used as one of the two stopping criteria of the 

region growing process. The identification of these smaller spaces is important because 

the user navigates to a specific location in the building rather than an entire floor. The 

detection of doors is based on two processes. First, a vertical-check is performed where 

the variation of height change between the seed voxels and the ceiling is identified. This 

approach was also used by Díaz-Vilariño, Verbree, Zlatanova, & Diakité (2017), as 

illustrated in the left part of figure 4. This process works when the difference in height 

between the top of an entryway and the ceiling is large enough. When this is too small, 

using this approach during the detection of doors is very difficult. Second, the 

horizontal-check which looks at specific fluctuations in the horizontal plane, see figure 

4. This check is implemented at a height of 1,60 meters, because there are less furniture 

objects at that height. 

Figure 4: Vertical check (left and middle). The height is first large (A), then small (B), 

and then large again (C). Horizontal check (right). The free distance is first large (A), 

then small (B), and then large again (C). 

 



To find the WS, a region growing algorithm is used to further process the seed 

voxels and identified doors; the ST_ClusterDBSCAN algorithm in a PostgreSQL 

database (PostgresSQL, 2017). Because the algorithm only processes 2D clusters, the 

voxels are region grown per height level. Only the regions containing seed voxels are 

saved. 

The type of floor regions is based on the seed voxels it contains. Because the 

MLS is held in front of the operator, it can already be above the second riser of a stair 

before the operator even enters the stair. The produced effect is visible in figure 5 (see 

the green box), where the trajectory (red) is increasing in height after the geometry 

model (blue) has increased in height. At this moment, the geometry indicates a riser of a 

stair, but the trajectory is not ascending the stair at all. Therefore, the riser in the 

beginning or end of a stair cannot be detected correctly, which is also the case for 

sloped surfaces.  

Figure 5: Difference in change in height between the trajectory and the geometry model 

when a stair is entered. Trajectory voxels (red), seed voxels (Blue), box (green) 

 



This results in the wrong classifications of the regions at the beginning of stairs 

or slopes. In this step, the beginning and end of a stair or slope are detected based on the 

ordered seed voxels, the geometry, and the size of the classified regions. Compared to 

the work of Staats, Diakité, Voûte, & Zlatanova (2017), the new algorithm is more 

specific at detecting these features. Besides this, it is also possible that the scanner gets 

held above furnishing elements. If the voxels of the trajectory are projected down, these 

furniture objects will be classified as a certain type or surface; a stair, slope or a 

horizontal surface. These errors will be corrected during this step. 

The next step consists of filling small gaps in the regions. The MLS scans even 

below furniture. As previously discussed, a WS is supposed to be free of obstacle for a 

pedestrian. The remaining voxels above the regions after the cleaning and the analysis 

are assumed to be furniture objects. For each surface region, the voxels up until the 

actors’ height are retrieved and removed from the identified surfaces. This results in the 

final WS. 

Implementation  

The developed algorithms have been tested on a point cloud of a university building. 

This indoor environment contains stairs, slopes, furniture, and a large  theatre-like 

structure with rooms inside of it, see figure 6 

Figure .  

 

 

 

 

 



 

Figure 6: Image of the testing location 

 

This space is scanned during opening hours, which resulted in a point cloud 

which includes dynamic objects, see figure 7. 

 

Figure 7: Image of the point cloud of the MLS device with dynamic objects. 

 

The data capture (including the point cloud and trajectory) was done using the 

Zeb Revo laser scanner. This scanner has a maximum range of 30 meter, 43.200 

points/sec, scanning resolution of 0.625° horizontal and 1.8° vertical, angular field of 

view 270° x 360°, absolute position Accuracy 3 – 30cm and a relative accuracy of 1 – 



3cm. The algorithms of the approach were implemented using Python 2.7 and 

PostgreSQL 9.5. The overall was tested on an Intel(R) Core i7-7820HQ CPU at 2.90 

GHz, 32.00 GB RAM laptop, running Windows 10 on a 500 GB SSD. The point cloud 

exists of around 14 million points and is based on a local coordinate grid. 

Implementation results 

The first step of the process exists of the voxelization of the point cloud. If a voxel 

contains a point, the voxel is saved. Otherwise the voxel will be removed. The voxel 

size is based on the smallest element that needs to be identified. In this approach, the 

smallest element is a riser of a stair. The risers of a stair’s step should be less or equal to 

15 cm, according to the ISO (2011) standard. Thus, if the voxel size is 15 cm, a riser is 

represented by one voxel. However, the correct form of the riser can hardly be detected 

if data is noisy. Therefore, a smaller voxel size of around 5-7 cm is used (Staats, 

Diakité, Voûte, & Zlatanova, 2017). 

The dynamic objects detection relies on the number of unique scanning 

timeframes contained inside a voxel. Different tests showed that the best results are 

achieved when voxels with less than two scanning seconds are filtered out. Increasing 

the threshold resulted in the loss of parts of the model that were not or could not be 

scanned thoroughly. To minimize such loss, the threshold needs to be as low as 

possible. Most of the dynamic objects cloud be removed from the voxel model with the 

cleaning process, see figure 8. The remaining dynamic objects are objects that were at 

the same place for a longer period of time or parts that overlap in different scanning 

rounds. These objects are not filtered in the proposed method.  

The objects that were scanned for a longer period of time are scanned more 

thoroughly and have a better voxel representation, see figure 3. One possible way to 

detect these dynamic objects is by detecting their shape. 



The SLAM algorithm gives better results if the data is captured while ensuring a 

loop closure (GeoSLAM, 2016). This results in multiple scans of the same part of a 

building which increases the change of overlap in different scanning rounds. These parts 

are not represented by a human shape but form smaller residual noise objects. To detect 

these residual noise objects, the scanning times could be divided into separated data 

frames, as suggested by Litomisky & Bhanu (2013). By analysing these data frames, the 

residual noise objects can probably be detected, which should be addressed in further 

research.  

 

Figure 8: Voxel model before cleaning (left), voxel model after cleaning (right) 

 

After the cleaning of the voxel model, the trajectory is analysed into three types: 

stair, slope or horizontal. The type classification is based on angles between successive 

trajectory points. There are three parameters necessary for this process; a minimal 

angle, a maximal angle, and several connected elements as illustrated in table 1. If a 

point is within these parameters, it is classified as a stair or slope element. The resulting 

unclassified points will be marked as horizontal elements, see figure 9. 

 

Type Minimal angle 

In degree 

Maximal angle 

in degree 

Connecting 

elements 



Stair 7,1 60 4 

Slope 2,3 18,4 2 

Table 1: Trajectory classification parameters 

 

Figure 9: Analysed trajectory. Horizontal (green), stair (red) 

 

After the classification of the individual trajectory points, the same spatial 

structure of the voxel model is used to voxelize the trajectory. After this, the trajectory 

is projected down on the model. These seed voxels are the input for the region growing 

step and therefore referred to as seed voxels, see figure 10. 

 

 

  



Figure 10: Seed voxels (blue) in the voxel model (white) 

 

As described above, the detection of doors is based on a vertical-check and a 

horizontal-check. With the vertical-check, the distance between a seed voxel and the 

ceiling is calculated. If the ceiling is high enough, the doors can be detected when a 

specific pattern appears, see figure 11. This way, doors can be detected by the height 

alone.  

Figure 11: Identified doors along the voxel trajectory (horizontal), distance between 

ceiling and floor (vertical). 

 

Doors cannot be detected based on the height check if the difference in height 

between the ceiling and the doorframe in not high enough or if the ceiling consists of 

pipes and air vents. This can be seen in the irregularity of the second part of the blue 
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line in figure 12. At this position, the ceiling contains a lot of pipes which resulted in the 

identification of many false positive doors. Therefore, the side horizontal-check is 

implemented as extra verification.  

The horizontal-check is implemented at a height of 1.60 meters above the seed 

voxels. At this height, there are less furniture objects. For each seed voxel, the number 

of neighbouring voxels within a radius of 50 cm, which is the size of a doorway, are 

added which results in the orange line. A door is only identified as a door if there is 

peak in the vertical-check and a peak in the horizontal-check, see figure 12. The green 

boxes represent doors, as can be seen in figure 13. The data in the red box has a spike in 

the horizontal-check but has no spike in the vertical-check and will therefore not be 

classified as a  door. 

Figure 12: Height change between the seed voxels and the ceiling (blue, in meters). 

Number of voxels around the seed voxels at a height of 1.60 meters (orange, in number 

of voxels * voxel size). Green and red boxes from left to right: box1, box2, box3, box4. 

 

 

 

 

  



         

Figure 13: Image of the boxes in figure 13. From left to right: box1 entryway, box2 no 

entryway, box3 entryway, box4 entryway. 

 

The used point for this research contains nine doors. Each time the trajectory 

crosses a door it can be detected therefore, nineteen detectable passages were present, 

see table 2. The implemented method detected twenty-two possible passages. From 

these passages, six false positives were present. These false positives were places where 

a height check peak appeared due to the piping in the ceiling and the seed voxel were 

close to a wall. In this way, a peak appeared in the horizontal-check. As visually 

inspection showed, these walls were always at one side of the seed voxel. The total 

amount of correctly detected passages is 84,2 percent where each of the nine doors was 

detected once.  

Total amount 

of doors 

Detectable 

passages 

Detected 

passages 

False 

positives 

Percentage 

detected 

passages in % 

Percentage correctly 

detected passages in 

% 

9 19 22 6 115,79 84,21 

Table 2: Total amount of identified doors 

 

Further research is needed to improve the door detection method. First, the 

algorithm should be automated to detect the peaks. The detection is now based on visual 

inspection of the vertical and horizontal-check, see figure 12. Second, it is also 



interesting to further improve the horizontal-check. The current horizontal-check counts 

all the voxels around the seed voxel at a specific height. If an entryway is passed there 

is, in most cases, a door frame which results in objects on the left side and right side of 

the seed voxel. If the algorithm is improved to only check the left and right side at a 

specific part, a lot of falls positives can be removed from the result. Third, the voxels 

that form the doorway need to be identified and removed. In that way, the region 

growing process can split each different room. 

As discussed earlier, the ST_ClusterDBSCAN algorithm only processes 2D 

clusters (PostgresSQL, 2017). Therefore, the whole voxel model is region grown into 

horizontal regions. Only regions containing seed voxels are kept. The region growing 

process is designed to account for the horizontal eight neighbour adjacency of each 

processed voxel. Because the voxel space subdivides the original point cloud to its 

smallest extend, a neighbour voxel has a distance of the value 1. This value represents 

the actual voxel size of around 5-7 cm. According to Pythagoras, the four corner voxels 

have a distance of √2, which is the distance parameter for the region growing process.  

Two stopping criteria are used during the region growing process: the first one 

occurs when a door voxel is reached, and the second one occurs when a voxel is found 

to have at least 2 voxels above itself. The space above these voxels is occupied and is 

not representing WS. The door voxels are currently not identified and are currently not 

used as a stopping criterion but will be in future research. The result of this process can 

be see figure 14. 

 

 

 

  



 

Figure 11: Region growing of the seed voxels. Slope (green), horizontal (blue) and 

stairs (red). 

 

The next step consists of the classification-check. This is an improved method 

compared to Staats, Diakité, Voûte, & Zlatanova (2017). The classification-check is 

needed because not all risers and not all slope parts can be detected based on the height 

change of the trajectory. Therefore, this check is based on the geometry of the model. 

The classification check proposed in Staats, Diakité, Voûte, & Zlatanova (2017) 

was based on the closeness of stair or slope seed voxels. If a seed voxel is within a 

certain threshold and not classified as a stair or slope, it was classified as a stair or 

slope. This approach is not very specific and results in overshoot or undershoot of the 

stair parts, which looks like the left image of figure 15.  

The proposed improved classification-check is more specific and is also based 

on the size of the risers or slope parts and their change in height. The process starts by 

analysing the different types of seed voxels in a region. For each region, the number of 

seed voxels per type are calculated. All the voxels of each region are updated to the type 

with the most seed voxels for that region, see the right part of figure 15.  



For now, the type of a floor region is based on the type with the most seed 

voxels. It is interesting to further investigate what happens when more cases are 

introduced. A different decision could be made when there are two types with almost 

the same amount of seed voxels in a region. Future testing and research is needed to 

verify if this approach can be of use for the classification of stair or sloped surfaces. 

           

Figure 15: Seed voxels in regions of different types (left) and seed voxels in regions of 

one type (right) 

 

The next step consists of the retrieval of the largest and smallest riser region of a 

stair or a slope. This is done by visiting all the seed voxel in the order they were 

captured with the laser scanner. If a stair seed voxel is reached, the size of that regions 

is added to a list. This goes on until the last seed voxel of that stair is reached. The 

resulting stair floor regions are ordered by size and the smallest and the fourth largest 

riser regions are saved. The fourth largest region is chosen instead of the largest region 

because a stair can contain horizontal parts. These have larger areas than regular risers 

and should therefore not be added to the list largest or smallest list.  

After the smallest and largest regions of a stair or slope are known, the seed 

voxels are once again visited in order they were captured. A seed voxel belongs to a 

stair or a slope, if the following three rules apply:  

(1) There is a specific height change in the ordered seed voxels 



(2) There is a classified voxel of the stair or slope type within a specific distance to 

the current voxel 

(3) The size of the regions is between the largest and the smallest regions closest to 

the stair 

These rules can be translated to different parameters for stairs and slopes, see 

table 2. The detection of wrongly classified furniture objects will be discussed later on. 

 Height change 

(in voxels) 

Voxel of same class 

within 

Size of the regions 

Slope Change = 1 40 voxels 0.5 x small size < size < 1.5 x large size 

Stair 1 < Change < 5  10 voxels 0.5 x small size < size < 1.5 x large size 

Furniture Change > 10 - - 

Table 3: Parameters of the classification check. 

 

The parameters of table 3 are the result of different tests on different datasets. 

What can be noticed, is that the number of voxel of same class within is much higher 

for a slope than for a stair. Tests showed that in some cases the first two parts of the 

slope are not classified as such. Because the height change over a certain distance is 

much smaller for a slope than for a stair, the voxel distance of a slope riser is much 

larger. If these rules are applied the beginning of stairs and slopes can be identified 

correctly, see figure 16. 

 

 

 

 

 

  



       

Figure 16: Seed voxels before the classification check (left) and seed voxels after the 

classification check (right) 

 

Because the size of regions can be 1.5 times larger than the largest region or 0.5 

times smaller than the smaller region, it is possible that some horizontal floors have 

voxel regions at different heights. These regions are within the range of the largest stair 

riser and are therefore classified as stairs, see figure 17. These kinds of exceptions need 

to be taken into account in further research.  

Figure 17: Horizontal floor classified as stair 

 

The discussed improvements are tested on two different point clouds. The 

results of the previous method and improved method can be seen in table 4 and 5. The 



percentage of detected risers is higher, and the percentage correctly detected risers has 

also increased. The percentage of point cloud 2 is a little bit lower because there was a 

part of a stair where the laser scanner was not held above the stair. The false positives 

only increased with one. The falls positives that are present are mostly created by the 

trajectory classification.   

Point cloud Total amount 

of risers 

Detected 

risers 

Falls 

positives 

Percentage 

detected risers 

Percentage correctly 

detected risers 

1: figure 14 68 64 1 94,11 92,65 

2: figure 17 206 175 7 84,95 81,55 

Table 4: Results of the previous method 

Point cloud Total amount 

of risers 

Detected 

risers 

Falls 

positives 

Percentage 

detected risers 

Percentage correctly 

detected risers 

1: figure 14 68 70 2 102,94 100,00 

2: figure 17 206 207 7 100,49 97,09 

Table 5: Results of the improved method 

 

These tests are also implemented for the checking of the slope. Since there was 

only one slope present in the first point cloud, this is the only reference data. As can be 

seen in table 6 and 7, there were no falls positives and the percentage of correctly 

detected slope parts is increased with around 12%.  

Project Total amount 

of slope parts 

Detected 

slope parts 

Falls 

positives 

Percentage 

detected slope parts 

Percentage correctly 

detected slope parts 

1: figure 14 34 30 0 88,24 88,24 

Table 6: Results of the previous slope detection method 

Project Total amount 

of slope parts 

Detected 

slope parts 

Falls 

positives 

Percentage 

detected slope parts 

Percentage correctly 

detected slope parts 

1: figure 14 34 34 0 100,00 100,00 

Table 7: Results of the improved slope detection method 



 

If the laser scanner is held above furnishing elements during the data capture, 

these objects contain seed voxels. Because there was no change in height in the 

trajectory, these elements are mostly classified as horizontal floors. These wrongly 

classified surfaces are detected by a large jump in the height value (the z-axis). If the 

change in height is larger than the threshold classified in table 3, the points are detected 

and removed Furniture objects below this threshold are not detected as such, as can be 

seen in the red boxes, see figure 18. 

Figure 18: Classified furniture objects (white), stair seed voxels (red) and horizontal 

seed voxels (blue). The furniture elements in the red box cannot be detected as furniture 

objects. 

 

The specified parameters are currently based on two datasets. Further testing is 

required to find the ideal values that work in all kind of circumstances. In figure 19, the 

result of the classification check can be compared to the situation after the region 

growing process without the classification check. 

 

 

 

  



 

Figure 19: Result after the region growing (left) and the result after the classification 

check. Stair (red), horizontal (blue) and slope (green) 

 

Small gaps can appear in the floor regions. In this step, these small gaps are 

filled. If the distance separating two voxels is below two, this is identified as a gap and 

will be filled with new voxels. 

The last step is dedicated to the removal of furniture objects. At this stage, we 

consider all the remaining voxels above the identified regions as furnishing objects. The 

voxels above each region is retrieved depending on the size of the agent. This allows to 

obtain the final walkable voxel space, see figure 20. 

 

Figure 20: Final walkable voxel space. Stair (red), slope (green), horizontal (blue). 

Comparing of the area (m2) of the floor regions 

After the last processing step, the final navigable space is detected, and the reliability 



can be tested. This is done by comparing the surface area resulting from the proposed 

method to the area found on a CAD model of the same location. Two different spaces 

were selected to perform the comparison: a corridor and a part of the first floor. The 

results are illustrated in table 8. The area difference found between the two types of data 

is around 10%. Visual inspection showed that most voxels are missing in the corner of 

the rooms or at the sides of corridors. Furthermore, there were points missing where 

dynamic objects were still present. As discussed earlier, these objects were on the same 

location during the data capture.  

Checking type Hallway  

in m2 

First floor orange rock 

in m2 

CAD model 74,0 68,0 

7,3 cm voxel model 67,7 61,3 

Difference between CAD 

and voxel model in % 

-8,5 % -9,9 % 

Table 8: Results between the m2 of a specific region measured in the proposed method 

and a CAD model of the same space. 

Conclusion 

With the current approach it is possible to automatically identify structural elements of 

building such as floors, stairs, slopes, doors, and furniture objects, based on the point 

cloud of the building and the trajectory of the MLS device. This method voxelizes the 

data from the MLS and efficiently identifies different kinds of walkable voxel spaces 

using spatial properties based on the trajectory. The method makes it possible to create a 

continuous WS for pedestrians in buildings, including several floors, stairs, and 

elevations. In comparison to the previous method Staats, Diakité, Voûte, & Zlatanova 

(2017) the door detection has been implemented and end points of non-flat surfaces are 

detected better. Because the method can detect and remove dynamic objects at the time 



of scanning, data capture of the environment can be done even during business hours. It 

is suitable for any type of room and is free of any constraints related to the 

configuration (e.g. Manhattan-like oriented) because the internal structure of the 

building is already encapsulated in the trajectory of the MLS. 

This paper proposed an improved method for detection of doors and 

classifications of stairs and slopes. The detection of doors is based on a vertical and 

horizontal-check. Implementation results show high percentage of detected doors (115,8 

percent). 84.2 percent of these are actual doors, while the rest are falls positives. 

Because the trajectory crosses a doorway multiple times, it is also possible to have 

multiple detections. In the examples shown, each of the nine doors were detected at 

least once. Both vertical-check and horizontal-checks make it possible to detect doors 

when there is a small height difference between the ceiling and the doorframe. Besides 

this, the approach requires only two constraints, which is improvement compared to the 

three proposed by Nikoohemat, Peter, Elberink, & Vosselman (2017). 

This paper also presents an improved way of correctly identifying stairs and 

slopes. The detection of risers, including falls positives, is improved from 89.5 to 101.8 

percent. Neglecting the falls positives, the detection of risers is improved from 87.1 to 

98.5 percent. The detection of slopes is improved from 88.2 to 100 percent.  

These improvements ensures features can be identified more accurately. The 

detection of doors is a step forward towards identification of rooms.    

Future work 

Several aspects can be improved and stand as future research. We list some possibilities 

in the following. 



Improving door detection and automating the process 

The door detection algorithm can be further improved by adapting the horizontal-check. 

Currently all the voxels around the current voxel are investigated to specify which give 

falls positives (besides a wall or other objects). Door frames are usually existing at both 

sides. Therefore, the approach can be improved by checking if voxels are present of the 

left and right side of the current voxel. Furthermore, the detection of doors from the 

graph,  now done manually, needs to be automated. To be able to identify the space of 

separate rooms, the door voxels between the doorframe should be identified.  

Identification of dynamic objects, which do not move during the data collection 

As discussed in the implementation, dynamic objects that were at the same place during 

the data capture are not detected with the current method. More research is required to 

identify these objects. A possible way could be to use reference shapes to detect the 

pedestrians, which are still present in the voxel model. Another option would be to 

separate the different time frames.  

Generation of a node network 

Path planning based on the voxel model requires a lot of time, because there are many 

voxels to be visited and a lot of possible paths. In many cases it is better to generate a 

more generic navigable node network. A natural extension of this method could include 

the automatic generation of navigation networks in an open standard like IndoorGML or 

other types of node networks. 

Generate an indoor map 

To view the route through the building from the start point to the endpoint, a map is 

needed. This map should be produced from the captured data because this will be the 



data the node network is generated on. In this way, both datasets are describing the 

same aspects of the indoor space.   
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