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Target Selection for Tracking in Multifunction
Radar Networks: Nash and correlated equilibria

Nikola Bogdanović, Hans Driessen, and Alexander Yarovoy

Abstract—We consider a target selection problem for multi-
target tracking in a multifunction radar network from a game-
theoretic perspective. The problem is formulated as a non-
cooperative game. The radars are considered to be players in this
game with utilities modeled using a proper tracking accuracy
criterion and their strategies are the observed targets whose
number is known. Initially, for the problem of coordination,
the Nash equilibria are characterized and, in order to find
equilibria points, a distributed algorithm based on the best-
response dynamics is proposed. Afterwards, the analysis is
extended to the case of partial target observability and radar
connectivity and heterogeneous interests among radars. The
solution concept of correlated equilibria is employed and a
distributed algorithm based on the regret-matching is proposed.
The proposed algorithms are shown to perform well compared
to the centralized approach of significantly higher complexity.

Index Terms—Radar management, multiple target tracking,
track selection, noncooperative games, coordination, Nash equi-
librium, correlated equilibrium, regret-matching.

I. INTRODUCTION

Radar networks that employ multiple, distributed stations
have attracted a lot of attention due to the improvements
in tracking and detection performance they may offer over
conventional, standalone radars. Furthermore, recent advances
in sensor technologies enabled a large number of controllable
degrees of freedom in modern radars. One such system is the
Multifunction Radar (MFR), and it typically employs phased
array antennas that allow the radar beam to be controlled
almost instantaneously [1]-[3]. Thus, the MFR is much more
flexible than conventional, dedicated radars by being capable
of performing multiple functions simultaneously - volume
surveillance, fire control, and multiple target tracking to name
a few. In this paper, we focus on the latter function [4]-[8];
specifically, each MFR radar performs the track filtering of
several targets.

The aforementioned flexibility introduces a need to ef-
fectively manage available radar resources to achieve speci-
fied objectives while conforming to operational and technical
constraints [9], [10]. Even for a standalone MFR, the radar
resource management plays a crucial role. Most of the existing
approaches to MFR radar resource management roughly fit
into the following two categories [11]-[13]. The first category
consists of the rule-based techniques [14]-[16], which control
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the resource allocation parameters indirectly, under low com-
putational burden. The main drawback of these techniques is
that it is hard to say what performance can be achieved since it
highly depends on the application scenario and on the sensors
being deployed. The other category is related to the methods
that formulate the problem as an optimization one; and thus,
they may achieve the optimal performance, see [1], [8], [17]-
[19] and the references therein. In the network setting, which
is the focus of this paper, the first category of approaches is
difficult to be extended, while the second one may involve
excessive complexity due to the network dimension [20]-[21].
Thus, to reduce such complexity, one may aim to find, in either
centralized or distributed way, a close-optimal solution to the
radar management problem that is considered, see e.g., [21]-
[23]. In this work, we propose a distributed approach based
on game theory so as to model target selection for multi-target
track filtering in an MFR network.

Game theory is the mathematical study of conflict and
cooperation between intelligent rational decision-makers [24].
Apart from economics and political sciences, over the last
decade game theory (GT) is being applied to control, signal
processing and wireless communications, mainly due to the
issues dealing with networking [25]-[32]. More recently, GT
has been applied to solve certain radar problems, mostly
related to the multiple input multiple output (MIMO) radar
networks. For instance, the problem of waveform design
has been investigated [33]-[36]; in [33] by formulating a
two player zero-sum (TPZS) game between the radar design
engineer and an opponent, in [35] by a potential game in which
the radars choose among the pre-fixed transmit codes, and a
proof of the uniqueness of the Nash equilibrium of a potential
game waveform design problem was presented in [36]. Next,
the interaction between a jammer and a radar has also been
modeled as a TPZS game [37], [38]. Furthermore, the problem
of transmission power control was addressed by using non-
cooperative GT in [39], [40], [41], and by employing a
coalitional game theoretic solution concept called the Shapley
value in [42]. Although not dealing with radar management, a
useful work in [43] related to the multi-target tracking appli-
cation uses correlated equilibrium to solve the data association
problem at a single radar, and, by introducing an exponential
forgetting factor, it has been extended in [44] to deal with
a varying number of targets. Finally, the works in [11], [45]-
[46] utilize a market mechanism, called the continuous double
auction, in order to choose the global optimum parameters
for each individual task given the global (finite) resource
constraint. The method provided a superior performance over
its competing heuristic-based algorithms; however, its main
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Fig. 1. A track selection problem in multi-target tracking.

drawback is in the implementation complexity [21].
In this paper we apply game theory to multi-target track

filtering in an MFR network and extend the initial results
from [47]. The main contributions of this article are the
following ones:
• A new formulation of the track selection problem for a

multi-target tracking scenario in a resource-limited MFR
network using the non-cooperative games is proposed.

• The track selection problem is analyzed using the Nash
equilibria of the underlying coordination game for the set-
ting with full target observability and radar connectivity
as well as the homogeneous interests (target priorities) of
radars. Also, to solve the problem in a distributed manner,
a low-complexity algorithm based on the best-response
dynamics is proposed.

• The track selection problem is extended to the case of
partial target observability and radar connectivity and
heterogeneous interests among radars. Due to the par-
ticularities of this case, the solution concept of correlated
equilibria is employed and a distributed algorithm based
on the regret-matching is proposed.

The structure of the paper is as follows. Section II provides
some background on game theory and the solution concepts
employed in this paper. The problem formulation is given in
Sec. III. Next, Sections IV-V deal with the analyses of the
scenarios where the observability and connectivity conditions
as well as radar interests are being equal and heterogeneous,
respectively. Specifically, in Sec. IV the former scenario is
modeled as a coordination game, its Nash equilibria are
characterized in terms of their existence conditions and effi-
ciency, and a distributed algorithm based on the best-response
dynamics is proposed. On the other hand, Section V provides
a distributed algorithm which tracks the set of correlated equi-
libria points. In Section VI, the effectiveness of the proposed
algorithms is demonstrated via computer simulations. Finally,
Section VII summarizes the work.

II. BRIEF PRELIMINARIES ON GAME THEORY

In this section, we provide notation and recall some formal
definitions and solution concepts related to game theory that
will be used throughout the paper. The focus is put on
noncooperative game theory, the dominant branch of game
theory, and specifically on so-called normal-form games [24].

Definition 1. A finite, N -person normal-form game is a tuple
Γ = (N ,S, u), where:
• N is a finite set of N players.
• S = S1 × · · · × SN , where Si is a finite set of actions

(strategies) available to player i, ∀i ∈ N . Each vector s =
(s1, . . . , sN ) ∈ S is called an action (strategy) profile.

• u = (u1, . . . , uN ) where ui : S → R is a real-valued
utility (or payoff) function for player i, ∀i ∈ N .

To reason about multiplayer games, one can rely on so-
lution concepts, i.e., principles according to which interesting
outcomes of a game can be identified. Some fundamental con-
cepts, which will be used throughout this paper, are described
in the sequel. A basic and the most widely accepted one
is the celebrated Nash equilibrium. Formally, in case where
players make deterministic choices (pure strategies) the Nash
equilibrium is defined as follows [24].

Definition 2. A strategy profile s = (s1, . . . , sN ) is a pure-
strategy Nash equilibrium if, for all players i and for all
strategies s′i 6= si, it holds that

ui(si, s−i) ≥ ui(s′i, s−i),

where s−i = (s1, . . . , si−1, si+1, . . . , sN ) is defined as a
strategy profile s without player i’s strategy.

Otherwise stated, a Nash equilibrium (NE) is a state of
a non-cooperative game where no player can unilaterally
improve its utility by taking a different strategy, if the other
players remain constant in their strategies.

Next, we define the concepts of Pareto domination and
Pareto optimality.

Definition 3. Strategy profile s Pareto dominates strategy
profile s′ if ∀i ∈ N , ui(s) ≥ ui(s

′), and there exists some
j ∈ N for which uj(s) > uj(s

′). Also, strategy profile s is
Pareto optimal if there does not exist another strategy profile
s′ ∈ S that Pareto dominates s.

To evaluate the (in)efficiency of NE there is a notion called
the price of anarchy, which is defined as the ratio of a
centralized solution to the worst-case equilibrium in terms of
the utility sum that is in economics literature known as ”social
welfare”.

Definition 4. The price of anarchy (PoA) is given as

PoA =
max
s∈S

∑
i∈N ui(s)

min
s∈SNE

∑
i∈N ui(s)

,

where SNE is the set of Nash equilibria of the game.

Note that in case where the equilibria are fully efficient, the
PoA is equal to 1.

Finally, we define the notion of correlated equilibrium,
which is a generalization of Nash equilibrium [48], [49].

Definition 5. A correlated equilibrium consists of a probabil-
ity vector1 π on S such that the following is satisfied, ∀i ∈ N

1A probability vector is a vector whose coordinates are all nonnegative and
sum up to 1.
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and ∀si, s′i ∈ Si:∑
s−i∈S−i

π(si, s−i)[ui(si, s−i)− ui(s′i, s−i)] ≥ 0.

To interpret the inequality above, let us first divide it by the
marginal probability π(si), which yields:∑

s−i∈S−i

π(s−i|si)[ui(si, s−i)− ui(s′i, s−i)] ≥ 0.

Thus, an intuitive interpretation of correlated equilibrium is as
follows: Suppose that a strategy profile s ∈ S is chosen at
random, e.g., by some virtual referee, according to the joint
distribution π. Each player i is then given, by the ”referee”,
its own recommendation si. The inequality above means that
player i cannot obtain a higher expected utility by selecting
strategy s′i instead of the ”recommended” one, i.e., si. Also, in
every finite game, the set of correlated equilibria is nonempty,
closed and convex.

III. PROBLEM FORMULATION SECTION

Let us consider a network of MFR radars which aims at
tracking several targets, e.g., see Fig. 1. Let N denote the set
of N radars and T denote the set of T targets. We consider that
the position of each radar node2 i ∈ N is known. Although
there are works in the tracking literature that consider unknown
number of targets, e.g., [6], [7], in this work we focus on
the case where the number of targets at each time instant is
known. The current positions of targets are assumed to be
known approximately. Also, the targets are assumed to be
well-separated; thus the data association problem is trivial and
different transmission beams are required so as to illuminate
distinct targets. Furthermore, assume that there is no central
processing node to perform track filtering; in other words,
fusion is done at each radar node.

Next, the dynamics of each target j ∈ T , at each discrete
time k, are represented using the so-called white noise constant
velocity model [4], [17] given by

xj,k = F · xj,k−1 + wj,k−1 (1)

z
(i)
j,k = h

(i)
j (xj,k) + ν

(i)
j,k (2)

where

- the state vector x for each target j is comprised of
the two dimensional coordinates (xj , yj) and velocity3

(vj,x, vj,y), i.e., xj = [xj , yj , vj,x, vj,y]> where [·]>
stands for the transposition of the argument,

- F is a 4 × 4 matrix corresponding to the deterministic
target dynamics given as

F =
[
1 tu
0 1

]
⊗ I2 (3)

with ⊗ being the Kronecker product, I2 stands for a 2×2
identity matrix and tu is the update time that is fixed,

- the process noise w is Gaussian with zero mean and

2In this paper, we use the terms radar and node interchangeably.
3Although here we assume a two-dimensional case, the extension to a three-

dimensional case is straightforward.

covariance

Q = σ2
w ·
[
t3u/3 t

2
u/2

t2u/2 tu

]
⊗ I2 (4)

where σ2
w models maneuverability,

- the measurement vector z
(i)
j,k, at each radar i ∈ N ,

consists of range and azimuth, i.e., z(i)j,k =
[
r
(i)
j,k, a

(i)
j,k

]>
,

- the nonlinear transformation h(i)j (xj) is given by

h
(i)
j (xj) =

[ √
(xj − xi)2 + (yj − yi)2

arctan((yj − yi)/(xj − xi))

]
, (5)

- the measurement noise ν(i)j is zero-mean Gaussian with

covariance Rj,i = diag
{

[σ
(i)
rj ]2, [σ

(i)
aj ]2

}
, where σ(i)

rj and

σ
(i)
aj stand for the standard deviation in range and azimuth,

respectively.
The radars have limited time budget in the sense that they

cannot take measurements of all targets during the same time
slot. Thus, the number of measurements per scan that each
radar can make is given by m < |T |. Since there is no central
entity that may coordinate actions of the radars, a distributed
approach is needed. Therefore, the main aim of this paper is to
propose distributed solutions to the problem of target selection
in order to perform multi-target track filtering.

Furthermore, radars may experience different target ob-
servability conditions; thus, the set of the targets that are
observable at each radar i is denoted by Ti, and it satisfies
Ti ⊆ T . The interaction among the radars is existing but
limited to sharing the measurements {z(i)j,k} related to the
selected targets. The communication neighborhood of any
particular radar i, together with radar i, is denoted as Ni,
where Ni ⊆ N . The total number of transmissions each radar
i collects from its neighborhood Ni, and which are related to
some target j ∈

⋃
i∈Ni

Ti, is denoted as mt
j(i). For notational

simplicity, in the rest of this section we drop the index j for
targets where no confusion is possible.

At each radar i and for each target j, the tracking process is
performed by an Extended-Kalman Filter (EKF). Firstly, the
prediction step occurs, i.e.,

xk|k−1 = F · xk−1|k−1 (6)

Pk|k−1 = FPk−1|k−1F
> +Q (7)

where xk|k−1 and Pk|k−1 are the state estimate and the error
covariance matrix for time step k given all measurements till
time step k − 1. Then, the updating step takes place where
each available measurement for target j of some radar n ∈
N is used in a cyclic manner. In particular, for each p ∈
{1, . . . ,mt

j(n)},

K
(p)
k = P

(p−1)
k|k [H

(p)
k,n]>

(
H

(p)
k,nP

(p−1)
k|k [H

(p)
k,n]> +Rn

)−1
(8)

x
(p)
k|k = x

(p−1)
k|k +K

(p)
k

(
z
(n)
k − h(n)

(
x
(p−1)
k|k

))
(9)

P
(p)
k|k =

(
I −K(p)

k H
(p)
k,n

)
P

(p−1)
k|k (10)

where P (p)
k|k denotes the error covariance matrix after p incre-

mental updates at the same time step k, with P (0)
k|k = Pk|k−1
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and x
(0)
k|k = xk|k−1. The linearized measurement matrix of

radar n at time k is H(p)
k,n = ∂h(n)/∂x evaluated at x

(p−1)
k|k .

Note that, due to the fact that the coordinates (xn, yn) of each
radar n ∈ N are known, the radars do not need to exchange
{Hk,n} matrices in order to implement the algorithm above.

In the following, we study a natural game theoretic variant
of this problem. Specifically, we assume that the radars are
autonomous decision-makers interested in optimizing their
own tracking performance. In other words, the selections of
each radar are autonomous in the sense that there is no entity
to tell radars what to do in a hierarchical type of structure,
nor is there any negotiation among radars. We analyze two in-
dicative scenarios with respect to the observability conditions,
communication topology as well as the radars’ interests:

i) Scenario 1: a scenario where each radar i observes all
targets, i.e.,

⋂
i∈N Ti = T , communicates with all neigh-

bors (all radars communicate through the full graph), i.e.,
Ni = N , and is interested in tracking all targets in T (all
targets have the same importance).

ii) Scenario 2: a more general scenario where the radars
do not necessarily have the same target interests and
where the observability and communication equalities
above (full observability and full connectivity conditions)
do not need to hold, i.e., ∃i ∈ N | Ni ⊂ N ∨ Ti ⊂ T .

For both scenarios, the fact that each radar (or the radar
operator) autonomously and rationally decides to track the
targets that increase its utility can be modeled as a one-
stage non-cooperative game in normal form, which is the
most fundamental representation type in game theory [24]. In
following two sections, we analyze the track selection problem
in each scenario separately.

IV. SCENARIO 1: THE PROBLEM OF COORDINATION

Firstly, note that there are many classes of normal-form
games; however, due to the particularities of the scenario con-
sidered, in this section we focus on coordination games, which
do not rest solely upon conflict among players. Instead, as their
name suggests, more emphasis is put on the coordination issue
where players may have an incentive to conform with or to
differ from what others do. In the latter case, this kind of
games are usually called anti-coordination games [24], [50]-
[51].

A. Game-theoretic model
We assume that the players are rational and their objective

is to maximize their payoff, i.e., the tracking accuracy of all
targets. Formally, the track selection game Γ(1) = (N ,S, u)
has the subsequent components:
• The players are the radars represented by the set N .
• The strategy of each radar i is represented by a T -tuple
si = (si,1, si,2, . . . , si,T ) where si,j = a if radar i
devotes a transmission beams to a target j, with a ≤ m.
Each strategy-tuple has at most m transmissions, i.e.,∑T
j=1 si,j ≤ m. Also, note that

mt
j(i) = mt

j =
N∑
i=1

si,j . (11)

a b c d e 

0 

targets 

gains 

r1 r2 r1 r3 r3 

r2 

r2 

r3 

r1 

1 0 1 1 

0 3 0 0 0 

1 0 2 0 0 r1 

r2 

r3 

a b c d e 
targets 

ra
da

rs
 

Fig. 2. An example strategy profile displayed as a matrix, for T =
{a, . . . , e}, and |N | = m = 3.

targets 

gains 

 a          b          c           d          e 

∆𝑔𝑔4 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(1)  } 

(a)

targets 

gains 

 a          b          c           d          e 

(b)

Fig. 3. An example of a track allocation in terms of gains per target where
T = {a, . . . , e}, and |N | = m = 3. Each box represents a gain increment
due to a measurement, and the number of measurements per target, mt

j , varies
between 1 and 4 across targets in T . In case (a), the gains are equal for the
same number of measurements, while in case (b) they differ.

• The utility for each radar i is given by

ui(si, s−i) =
T∑
j=1

gainj(m
t
j) , (12)

where the term gainj(m
t
j) represents the tracking accu-

racy gain for target j ∈ T and it is defined by

gainj(m
t
j) = Tr

{
Pj,k|k−1 − P

(mt
j)

j,k|k

}
(13)

where Tr{·} stands for the trace operator and all radars
are assumed to have the same initial guesses xj,0|0 and
Pj,0|0.

In other words, the strategy of radar i defines the number of
transmissions per each target, at a given time slot, see Fig. 2.
Due to the fact that radars share their measurements, their
tracking accuracy gains for a specific target are dependent on
all radars’ measurements related to that target.

Note that the gain in (13) can be expressed as

gainj
(
mt
j

)
=

{∑mt
j

p=1 ∆g
(j)
p , if mt

j ≥ 1

0, if mt
j = 0

(14)
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where

∆g(j)p = Tr{P (p−1)
j,k|k − P

(p)
j,k|k} (15)

and ∆g
(j)
1 = gainj(1). To analyze the proposed game, we

proceed by adopting the following practical assumptions, for
all j ∈ T and p ∈ {1, . . . ,mt

j} with mt
j ≥ 1 :

• Assumption 1: the gain function in (13) is increasing in
the number of measurements mt

j , i.e., ∆g
(j)
p > 0,

• Assumption 2: estimation accuracy gain increment ∆g
(j)
p

decreases as the order of measurements p grows, i.e.,
∆g

(j)
p > ∆g

(j)
p+1.

Finally, the following two cases are analyzed:

a) ∆g
(j)
p = ∆gp, for all j ∈ T and p ∈ {1, . . . ,mt

j}
b) ∆g

(j)
p 6= ∆g

(`)
p , for j 6= `, and minj∈T∆g

(j)
p >

maxj∈T∆g
(j)
p+1.

Case a) represents an idealistic case where all nodes would
have very similar measurements among themselves and re-
lated to all targets, see Fig 3(a). A more realistic scenario,
corresponding to case b), is illustrated in Fig 3(b). In the
next subsection, we characterize the Nash equilibria of the
aforementioned cases.

B. Nash equilibria

Generally, in a coordination game, there are multiple NE.
If the players have the same payoffs, and the equilibria are
equal, the game is a pure coordination one. In fact, in such
a game, all NE are Pareto optimal. On the other hand, in a
ranked one, the NE differ and usually there is only one Pareto
optimal equilibrium [52].

Now, the main findings related to the NE for cases (a) and
(b) are provided.

Proposition 1. The game for case (a) has PoA = 1, and any
track assignment is a Nash equilibrium, if

∑T
j=1 si,j = m,

and if
• mt

j ≤ 1, ∀j ∈ T , for a scenario where N ·m ≤ T
• maxj,`∈T {|mt

j − mt
`|} ≤ 1, ∀j, ` ∈ T , for a scenario

where N ·m > T .

Proof. Firstly, let us assume that there is a radar i such that∑T
j=1 si,j < m and that the corresponding s∗ is an NE.

Then, radar i can change its strategy by taking an additional
measurement. Due to the fact that, for mt

j ≥ 1, the radar’s gain
function in (13) is increasing in the number of measurements,
its utility will be increased. But that contradicts our initial
assumption that s∗ is an NE; thus, as per our intuition,
each radar should make all possible transmissions toward the
target(s) at each time instant. Next, note that if the total number
of measurements is less than or equal to the number of targets,
the radars are worse off if more than one measurement in total
is devoted to the same target. Also, due to the structure of
gain function, NE are precisely T !

(T−N ·m)! outcomes in which
each measurement is devoted to a distinct target. On the other
hand, if N ·m > T , the corresponding condition states that all
targets should be covered as equally as possible. Here, each
NE corresponds to a balanced allocation. For instance, the

allocation in Fig 3(a) is not an NE since the payoffs can be
increased if some player moves its measurement from target
b to any other target. Finally, since the gain of any target is
the same for the same number of measurements, the game
appears to be a pure anti-coordination one. Thus, every NE is
also Pareto optimal, which finally implies that PoA=1.

Proposition 2. The game for case (b) has PoA > 1, and any
track assignment is an NE, if

∑T
j=1 si,j = m, and if,

• for a scenario with N ·m ≤ T , each radar chooses its
most accurate target that has not been selected,

• for N ·m > T , the first
⌈
N ·m
T

⌉
−1 levels are filled in, i.e.,

mt
j ≥

⌈
N ·m
T

⌉
− 1, ∀j ∈ T , and for the

⌈
N ·m
T

⌉
-th level

each radar chooses its most accurate target that has not
been selected by others, where d·e is the ceiling function.

Proof. Similar arguments hold as for Prop. 1. Yet, the game
above seems to be a ranked anti-coordination game. Note that
here there are still multiple NE, but not all NE are necessarily
equal, and hence, not every NE is Pareto optimal (only one
is). So, the conditions above are not sufficient to have also a
Pareto optimal NE, and consequently, PoA is strictly greater
than 1.

C. BRD-based distributed track selection algorithm

In the sequel, we present a simple, low-complexity, dis-
tributed algorithm, based on the best-response dynamics
(BRD) [24], [26], [27] literature, that looks for the NE of
the analyzed game. Toward this goal, let us first define the
notion of radar i’s best response to the vector of strategies
s−i, denoted by BRi(s−i), as the set-valued function

BRi(s−i) = arg max
si∈Si

ui(si, s−i).

Note that there are two versions of BRD that can be used;
namely, the sequential version

si(k + 1) ∈ BRi

(
s1(k + 1), . . .

. . . , si−1(k + 1), si+1(k), . . . , sN (k)
)
,

where si(k + 1) is the action selected by radar i at time step
(k + 1), and the simultaneous one where all players update
their actions synchronously

si(k + 1) ∈ BRi (s−i(k)) .

Although the former one is more frequently used [27], it
requires the definition of a cyclic path that covers all nodes,
which is an NP-hard problem [53], [54], and furthermore it
has limited applicability in large and delay-intolerant networks
if the whole cycle has to be performed at each time instant.
Thus, we focus on the simultaneous BRD implementation
which, on the other hand, may experience the problem of a
coordination failure due to strategic uncertainty (see Fig. 4).
Nevertheless, this problem can be alleviated if radars select
their best responses with some probability α < 1. For instance,
α can be set to be 0.5 and can be kept fixed.

In the games above where N ·m > T , in general, two types
of NE may arise, one where a radar illuminates only different
targets and the other where it chooses the same target more
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Fig. 4. A coordination failure example; (a) initial track allocation; (b) four
radars decide to change their current track choices (gray boxes) and illuminate
target d; (c) the track allocation in the following time instant and possible radar
choices (denoted by the arrows) that may result into the cyclic behavior.

than once. In practice, it is of interest to exploit the radars’
diversity; thus, we focus on the former type. Let T (i)

sel denote
the set of targets selected by radar i.

Then, a summary of the proposed algorithm is provided in
the following.

Algorithm 1: Low-Complexity BRD-based distributed
scheme (LC-BRD) for track selection

• Start with any strategy profile s(0).
• At each time instant k = 1, 2, . . . , each radar i ∈ N

performs the following steps:
s1) Count mt

j , ∀j ∈ T , and reallocate the measurements
for ∀j ∈ T (i)

sel satisfying si,j > 1 to a target
argmin

`∈{T \T (i)
sel }

mt
`.

s2) With some fixed probability α, reallocate the mea-
surement from target j to ` until
∗ ∃j ∈ T (i)

sel such that mt
j >

⌈
N ·m
T

⌉
and the

measurement for ` is the most accurate one of
those satisfying argmin

q∈{T \T (i)
sel }

mt
q , or

∗ mt
j − mt

` = 1, where mt
j = max

q∈T (i)
sel

mt
q and

mt
` = min

q∈{T \T (i)
sel }

mt
q , and if measurement for

` is more accurate than the one for j.
s3) Transmit/receive measurements, and ∀j ∈ T , exe-

cute (6)-(7) and employ all available measurements

in (8)-(10).
s4) (optional) if ui

(
si(k), s−i(k)

)
< ui

(
si(k −

1), s−i(k−1)
)

revert back to the strategy from k−1
and skip the first 2 steps, i.e., si(k+ 1) = si(k− 1).

In the context of general BRD algorithms, players need
to observe the actions played by the others; however, in our
algorithm, it can be verified that the knowledge of the numbers
of transmissions per each target j, i.e.,

{
mt
j

}T
j=1

, is sufficient.

Specifically, note that
{
mt
j

}T
j=1

are aggregate functions of the
radars’ actions and, due to ui(si, s−i) = ui(m

t
1, . . . ,m

t
T ),

observing the actions themselves is not necessary.
Note that there are no convergence results for general games

using BRD, i.e., a BRD-based algorithm may miss an NE [24],
[27]. Fortunately, for some special classes of games there
exist sufficient conditions under which the convergence of
the sequential BRD to a pure NE is always guaranteed. For
instance, one such class is related to the so-called potential
games [55], which we define next.

Definition 6. A finite, N -person normal-form game Γ =
(N ,S, u) is called a potential game4 if there exists a function
Φ: S → R such that ∀i ∈ N and for all (si, s−i), (s

′
i, s−i) ∈

S :

ui(si, s−i)− ui(s′i, s−i) = Φ(si, s−i)− Φ(s′i, s−i),

and such a function Φ is called potential function of the game.

In every finite potential game, every improvement path
is finite. Since a finite game has a finite strategy space,
the potential function takes on finitely many values and the
above sequence must terminate in finitely many steps in an
equilibrium point.

Unlike the sequential BRD, there does not seem to exist
general convergence results for the simultaneous BRD, yet
only a few application-specific proofs[27]. Nevertheless, the
proposed Algorithm 1 does converge to a pure NE.

Theorem 1. The proposed Algorithm 1, with the s4) step, does
converge to a pure Nash equilibrium of the proposed one-shot
track selection game Γ(1) = (N ,S, u), defined in Sec IV-A.

Proof. Let us first analyze a hypothetical, sequential version
of the proposed algorithm. Note that one may construct a
potential function Φ for the analyzed game, i.e., by setting
Φ = ui(s), ∀i ∈ N . Thus, a sequential BRD-based strategy
for the analyzed game would converge. Now, for the proposed
(simultaneous) algorithm, note that in general case Φ is not
non-decreasing as time progresses; however, due to the s4)
step, only the states where Φ is not smaller than the best
previous Φ value are actually kept. Specifically, in case where
the players at time k select a coordination failure profile which
may result in Φ(k) < Φ(k− 1) (such as one given in Fig. 4),

4Strictly speaking, the game defined in the definition above is formally
known as exact potential game. There are other variants of potential games,
where probably the most general one is the so-called ordinal potential game
in which the condition ui(si, s−i) − ui(s

′
i, s−i) > 0 iff Φ(si, s−i) −

Φ(s′i, s−i) > 0 holds. Most importantly, both types of potential games are
still guaranteed to have pure-strategy Nash equilibria.
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this step ensures that Φ(k+1) = Φ(k−1). Then, due to α < 1,
there is a non-negligible probability that only one player will
update (as in the asynchronous version) and Φ will increase;
thus, the algorithm will eventually converge.

Remark 1: Strictly speaking, the proposed algorithm with
the s4) step is not a traditional simultaneous BRD, since it
requires that each player also stores in memory the action and
the utility value from the previous time step. This additional,
yet small memory requirement is sufficient but not necessary
for the algorithm to converge. For properly set α, our simula-
tions have shown that the proposed algorithm, even without the
s4) step, actually converges and performs well (see also [47]).

Dynamic scenario: Note that the tracking accuracy gain
in (13), which constitutes the utility of each radar in (12),
generally depends on measurement noise covariance Rj,i,
deterministic target dynamics F and process noise covariance
Q. To account for time-varying accuracy measures, i.e., range
and azimuth variances, and to deal with possibly high target
dynamics, the proposed algorithm can be modified in one of
the following ways:
• LC-BRD algorithm can be repeated every K time in-

stants, where K is an integer number that can be set by
the radar operator(s), so as to search for other NE during
the tracking process, or

• Each radar running LC-BRD may randomly change its
strategy in step s2 (regardless of the conditions in this
step) with a small ε probability. In other words, step s2
in LC-BRD is run with probability 1− ε.

The modifications above achieve similar performance, as it
will be shown in the simulation section.

V. SCENARIO 2: COORDINATION & CONFLICT

In the previous section, we have analyzed the scenario where
all radars share the same interests; thus, the main challenge has
been to tackle the problem of coordination among radars. In
practice, not all targets are necessary of the same priorities, so
proper weights should be introduced in the radar utilities. To
determine target priorities, one may use the so-called situation
assessment or threat assessment function [4], which is the
highest level of abstraction in the tracking process. In a setting
where there is a single MFR radar, it is clear that the radar
(actually, the radar operator) may have different priorities over
different targets. On the other hand, in a network setting, there
are two cases: (1) that all radars have the same priorities
per target, and (2) that their priorities may differ for specific
target(s). On one hand, the former case is suitable for modeling
situation where there is a homogeneous radar network system,
or simply a single network operator, where the radars are part
of the same mission. Therefore, the target weights are the same
for each radar, which can be seen as the scenario 1, which
was considered in the previous section. On the other hand,
the latter case, in which radar priorities may differ for specific
target(s), may model situations where there are several radar
operators controlling different parts (different radars) of the
radar network. For instance, radar operators can be interested
only in a specific region and/or in a specific type of targets.
Also, radar operators may have different but overlapped areas

Radar 1 (R1): 
(T1,T2), (R2,R3), 
w1 =[w11 w12 w13 0] 
 

? 

T2 

R2 

T1 

T3 

T4 

R3 : (T2,T3,T4), (R1,R2,R4,R5), 
         w3 =[0 w32 w33 w34] 

R4 

R5 

Fig. 5. A track selection problem in a scenario with partial observability,
limited communication and different interests among radars.

of responsibility, so that tracking an object leaving some area
and entering another one can be of different importance to the
corresponding operators. These situations may arise in military
and safety missions, air-traffic control, space debris tracking,
vehicle-to-vehicle networks, etc. Yet, in such situations it is
still important to exploit the network cooperation, as in the
scenario analyzed in the previous section. Thus, here we
focus on a more demanding scenario where radars may have
different interests and where issues of conflict may also arise.
Specifically, we assume that radars:

i) do not necessarily have the same target interests,
ii) are limited to partial target observability, and

iii) do not communicate with all other radars.

An example of such a scenario is depicted in Fig. 5. For
instance, radar 1 in Fig. 5, denoted as R1, communicates with
only two neighboring radars (R2 and R3), observes only two
targets (T1 and T2), while being interested in tracking three
targets (T1, T2 and T3), i.e., there are three non-zero weights,
which correspond to T1, T2 and T3, in its weight vector w1.
On the other hand, R3 has different yet overlapped interests
and different neighbors and observability conditions.

A. Game-theoretic model

Here, we redefine the track selection game Γ(2) = (N ,S, u)
as:

• The players are the radars represented by the set N .
• The strategy of each radar i is represented by a T -tuple
si = (si,1, si,2, . . . , si,T ) where

si,j =

{
a, if j ∈ Ti
0, otherwise

(16)

where a is the number of transmission beams that radar
i devotes to target j ∈ Ti and it holds that a ≤ m.
Each strategy-tuple has at most m transmissions, i.e.,∑
j∈Ti si,j ≤ m. Now, the number of transmissions

each radar i collects from Ni and related to some target
j ∈

⋃
i∈Ni

Ti is given as mt
j(i) =

∑
i∈Ni

si,j .
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(c) R1, time k + 1
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(d) R3, time k + 1

Fig. 6. Assume a track allocation across the network as in Fig. 3(b). Due to
limited connectivity and different interests, at time k, radar 1 (R1) experiences
the gains given in (a), and those in (b) are for radar 3 (R3) which decides
to change its selection. At time k + 1, R1 has a (great) loss while R3 has a
(relatively small) gain.

• The utility for each radar i is given by

ui(si, s−i) =
T∑
j=1

wi,j · gainj
(
mt
j(i)
)
, (17)

with gainj
(
mt
j(i)
)

= Tr

{
Pj,k|k−1 − P

(mt
j(i))

j,k|k

}
, and

wi,j being the weight that a radar i gives to some target
j. In fact, wi,j can be seen as (i, j)th element of N × T
matrix W which defines the target interests across all
radars. Also, note that ui(si, s−i) = ui ({sl}l∈Ni

).

B. Correlated equilibria and regret-matching

The scenario considered in the previous example resembles
the well-known Battle of the Sexes game [24] where players
have a common interest to coordinate (or in our case to
anti-coordinate), but they have different preferences regarding
the (anti-)coordinated states of the game (which are NE).
However, for a general setting of our game defined above, it is
not easy to characterize possible NE neither in terms of their
efficiency nor even their existence. Furthermore, we cannot
ensure that the game is potential. This is due to the fact that,
in general case, it is difficult to construct a potential function
Φ since an action profile change can influence different players
in an arbitrarily different way (see an example in Fig. 6).

Remark 2: In the extreme case where radars have totally
different interests (with no overlap w.r.t. the interests and
communication topology), then it would be easy to define a
potential function (just the sum of all utilities). However, the
solution (NE) is trivial since the problem is totally decoupled
(there is no inter-dependence); each radar’s utility depends
only on its own strategy selection ui(s) = ui(si),∀i ∈ N .

For the reasons mentioned above, here we focus on the solu-
tion concept of correlated equilibrium (CE). Note first that, as
mentioned in Sec. II, a CE always exists in a finite game [49].
Actually, every NE is a CE and NE correspond to the special

case of a CE for which the joint distribution over the strategy
profiles π(si, s−i) factorizes as the product of its marginals,
i.e., the play of different players is independent [48], [49].
Furthermore, in certain settings the set of CE may include
even the distribution that is not in the convex hull of the NE
distributions.

Next, we will exploit a class of simple, adaptive algorithms,
called regret matching, in order to reach a CE of the analyzed
track selection game. It does not entail any sophisticated
updating, prediction, or fully rational behavior [56]. The
approach can be summarized as follows: At each time instant,
a radar may either continue playing the same target strategy
as in the previous time instant, or switch to other strategies,
with probabilities that are proportional to how much higher
his accumulated accuracy gain would have been had he always
made that change in the past. Specifically, at each time instant
k and for any two distinct strategies s′i 6= si, the regret which
radar i experiences at time k for not playing s′i is given by

Ri,k(si, s
′
i) = max{Di,k(si, s

′
i), 0}, (18)

where the term Di,k(si, s
′
i) represents the average payoff at

time k for not having played, every time that si was played
in the past kp ≤ k, the different strategy s′i:

Di,k(si, s
′
i) =

=
1

k

∑
kp≤k

[ui (s′i(kp), s−i(kp))− ui (si(kp), s−i(kp))] .

(19)

Next, the probability at time k + 1 for radar i to play some
strategy s′i ∈ Si is a linear function of its regret vector, i.e.,{

πk+1
i (s′i) = 1

µRi,k(si, s
′
i), for all s′i 6= si,

πk+1
i (si) = 1−

∑
s′i 6=si

πk+1
i (s′i), otherwise,

(20)

where the fixed constant µ > 0 is selected to be large enough
such that πk+1

i (si) > 0. Finally, for every k, we define the
empirical distribution ηk of the strategy profiles played up to
time k, i.e., for each s ∈ S,

ηk(s) =
1

k
#{kp ≤ k : s(kp) = s}, (21)

with #(·) standing for the number of times the event inside
the brackets occurs while s(kp) is the action profile played at
time kp.

Theorem 2. If every radar i select targets according to the
probability distribution in (20), then the empirical distributions
ηk converge almost surely as k →∞ to the set of correlated
equilibrium distributions of the game Γ(2).

Proof. For the proof, see [56].

Dynamic scenario: Due to possibly time-varying accuracy
measures and high target dynamics, as explained in the end
of Sec. IV-C, as well as time-varying radar interests, the
suggested approach has to be modified so as to take into
account the aforementioned effects. In fact, by incorporating
an adaptive mechanism in the calculation of the average regret,
it can be shown that the resulting algorithm can track the
changes if they are sufficiently small.
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Firstly, note that the average regret in (19) can be computed
recursively, i.e.,

Di,k(si, s
′
i) =

k − 1

k
Di,k−1(si, s

′
i)+

+
1

k
[ui (s′i(k), s−i(k))− ui (si(k), s−i(k))] .

(22)

Also, the average regret in (19) and (22) exploits the history
of all past selections. This is not desirable due to the fact that
the tracking accuracy gains slightly change in time due to the
aforementioned effects. Thus, to compute the average regret,
each radar should exponentially discount the influence of its
past selections. Specifically, similarly to [57], we rewrite the
average regret recursion as:

Di,k(si, s
′
i) =Di,k−1(si, s

′
i)

+ θk

[
ui (s′i(k), s−i(k))− ui (si(k), s−i(k))

−Di,k−1(si, s
′
i)
]
.

(23)

where θk is a positive step-size. In case where the step-size
θk is decreasing with time, the algorithm will converge with
probability 1 to the correlated equilibria of a static game. In
fact, if θk = 1

k , then the recursions in (22) and (23) are identi-
cal; thus, the convergence arguments from [56] directly apply.
However, for the decreasing step-size, the algorithm may not
adapt to the changes caused by the target dynamics. On the
other hand, with the fixed step-size θk = θ, the algorithm is
able to adapt to the changes and can be proved to converge to
the set of CE by using the arguments from stochastic averaging
theory [58]. For a more detailed discussion, see [57].

Finally, we provide the algorithm based on regret-matching.

Algorithm 2: Regret-matching distributed scheme (RM)
for track selection

• Start with some initial probability vector π1(s)
• At each time instant k = 1, 2, . . . , each radar i ∈ N

performs the following steps:
s1) Select target(s) according to probabilities πki (s′i) and

πki (si) ∀s′i 6= si, and denote the selection by si.
s2) Calculate Di,k(si, s

′
i) using (23).

s3) Calculate regret Ri,k(si, s
′
i) using (18).

s4) Find probabilities for the following time instant, i.e.,
πk+1
i (s′i) and πk+1

i (si) using (20).

Computational complexity: It is of interest to comment on
the computational complexity of the distributed algorithms
proposed in this paper. For illustration only, let us consider
that the number of observed targets is the same for all radars,
i.e., |Ti| = |Tn|,∀i, n ∈ N , and that the radars are interested
in all targets that are observable to them. Then, the RM-based
algorithm has the complexity that is linear in the number of
radars but exponential in m, i.e., O(N · |Ti|m). This is in
contrast to the centralized approach that can be realized by an
exhaustive search and which has the exponential complexity
also in the number of radars, i.e., O(|Ti|N ·m). On the other
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Fig. 7. The coordinates of radars and targets.

TABLE I
RADAR POSITIONS

x [km] y [km]
radar 1 -10 0
radar 2 3 0
radar 3 10 0

TABLE II
TARGET PARAMETERS

x [km] y [km] vx [km/s] vy [km/s]
Target 1 1 6 0.5 0.1
Target 2 0.5 7 0.35 -0.1
Target 3 1.5 3 -0.3 0
Target 4 2 4 -0.2 0.1
Target 5 2.5 5 0.3 0.2

hand, note that the LC-BRD proposed in Sec. IV is the most
efficient from the computational perspective; its complexity is
in the order of O(N ·m · |Ti|).

VI. SIMULATIONS

In this section, we provide some computer simulations that
verify the main findings and demonstrate the effectiveness of
the proposed algorithms.

Firstly, we consider an MFR network of N = 3 radars,
each of them making m = 2 measurements per scan and
aiming at tracking T = 5 targets, see Fig. 7. Specifically, the
coordinates of radars are given in Table I. The targets follow
white noise constant velocity trajectories with initial x, y-
coordinates and velocities provided in Table II. Initial guesses
xj,0|0 are noisy versions of the initial states xj,0 and initial
covariances are equal to Pj,0|0 = P0|0 = diag

{
(0.1 km)2,

(0.1 km)2, (0.1 km/s)2, (0.1 km/s)2
}

. The update time is
tu = 0.25 s, and in order to model moderate maneuverability,
σ2
w is set to 2.5 · 10−5 km2/s3. Also, the standard deviation

in azimuth is σ(i)
aj = σa = 2mrad, while the range accuracy

varies among the radars and targets as σ(i)
rj = bi,j · σr, where

σr = 15m and coefficient bi,j is taken from the interval
[1, 4.5].

Most figures present the weighted sum of Tr{P (mt
j(i))

j,k|k } over
all targets and over all radars, i.e.,

N∑
i=1

T∑
j=1

wi,j · Tr

{
P

(mt
j(i))

j,k|k

}
, (24)
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Fig. 8. Sum of traces of error covariance matrices for all targets during time
in the setting with T = 5 targets, N = 3 radars, m = 2 measurements per
scan and update time tu = 0.25 s.

as a function of time k. Initially, we focus on the case analyzed
in Sec. IV and compare the following strategies:

a) Standalone – The standalone radar that does not
send/receive measurements. It sequentially chooses m =
2 different targets each time instant.

b) Distributed random with K = 10 – Distributed strategy
where the radars exchange the measurements while each
of them randomly selects targets each K = 10 time
instants.

c) Distributed random with K = 1 – Same as in (b),
except that targets are being randomly chosen at each
time instant, i.e., K = 1.

d) Proposed LC-BRD distributed with K = 10 – The pro-
posed low-complexity BRD-based distributed algorithm
seeking NE while being reinitialized every K = 10 time
instants. The probability α is set to the value of 0.5.

e) Approximated centralized with K = 10 – The ap-
proximated centralized approach based on analytically
resolved measurements-to-target allocation every K = 10
time instants. Due to its exponential search complexity
in the total number of measurements, i.e., O(TN ·m),
the centralized exhaustive search is computationally chal-
lenging even for the considered scenario of T = 5, N = 3
and m = 2. For this reason, the coefficients in noise
variances σ(i)

rj , which are in the interval [1, 4.5], are set
in such a way that the best centralized measurements-to-
target allocations can be easily analytically determined
and changed every K = 10 time instants.5

Figure 8 compares the above strategies. The results are
averaged over 100 realizations. Not surprisingly, due to the
high process’ dynamics, a standalone, non-cooperative radar
experiences weak performance since it utilizes only its own
measurements which are not sufficient to cover all targets.
Although approach in (b) uses N · m = 6 measurements,

5This is only done for the purpose of a comparison. In the scenarios with
limited observability, and thus less computational complexity, we will provide
the exhaustive search results as a benchmark.
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Fig. 9. A setting with T = 15 targets, N = 3 radars, m = 6 measurements
per scan and update time tu = 0.25 s.

due to the lack of coordination it performs poorly. However,
the distributed random strategy can be significantly improved
if strategies are constantly being changed, given that there
are no track migration costs involved. Note that the proposed
LC-BRD distributed algorithm, which learns underlying NE
allocations, outperforms the aforementioned strategies. On the
other hand, it closely approaches the performance of the
approximated centralized one while mitigating its inherent
complexity.

The results related to a setting with more targets and
measurements per scan than in the previous setting are plotted
in Fig. 9. Here, we also include:

f) ε-LC-BRD distributed – The proposed low-complexity
BRD-based distributed algorithm seeking NE and where
each radar may change its strategy (even if in an NE)
with a small ε probability. The probabilities α and ε are
chosen to be 0.5 and 0.02, respectively.

Although without the curve for approximated centralized so-
lution as a benchmark, the results that Figure 9 provides are
similar to those in Fig. 8. Also, note that the two versions
of the proposed LC-BRD algorithm exhibit pretty similar
performance.

For the plots in Figs. 10-11, two additional radars in
the network are considered w.r.t. the setting in Fig. 7, i.e.,
(x4, y4) = [−4 km, 0 km], (x5, y5) = [7 km, 0 km]. This
is probably the least favorable scenario for LC-BRD w.r.t.
the distributed totally random (K = 1) algorithm due to the
fact that now mod(N · m, T ) = 0, i.e., all targets can be
selected with the same number of measurements. In Figs. 10-
11, the update time is set to tu = 0.25 s and tu = 0.025 s,
respectively. Also, in Fig. 11 the following strategy is used in
the comparison:

g) RM distributed – The proposed distributed algorithm
based on Regret-Matching which tracks CE, with θk =
0.5.

It can be noticed that the RM distributed algorithm clearly
outperforms other distributed strategies. This is due to its more
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Fig. 10. A setting with T = 5 targets, N = 5 radars, m = 2 and update
time tu = 0.25 s.
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Fig. 11. Scenario is same as in Fig. 10 except that tu = 0.025 s and the
comparison is made with the proposed distributed algorithm based on Regret-
Matching.

sophisticated learning mechanism, which comes at the expense
of somewhat higher computational complexity than the other
distributed strategies.
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Fig. 12. Performance comparison as a function of the measurements diversity
in terms of the noise variance spread, for the same setting as in Fig. 11.

Regarding the LC-BRD algorithm, it should be mentioned
that its performance difference w.r.t. the centralized approach
mainly depends on the measurement diversity, as suggested
by Props.1-2 in Sec. IV. Specifically, the more similar mea-
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Fig. 13. Scenario with 3 ≤ |Ti| ≤ 5, 5 ≤ |Ni| ≤ 6 and W = 1N · 1>|T |,
where it holds

⋃
i∈Ni

Ti = T , ∀i ∈ N .

surements’ quality is, the gap w.r.t. the centralized approach
is smaller (PoA→ 1). This is illustrated in Fig. 12 by simu-
lating the performance of the LC-BRD and the approximated
centralized solution as a function of the noise variance spread
in the network over all targets, i.e., maxi,j(σ

(i)
rj )/mini,j(σ

(i)
rj ).

So far, the focus has been on the scenarios where all radars
had the same interests, full observability and the radar network
was fully connected. Now, let us remove these restrictions by
firstly analyzing the scenario where the observability of each
radar varies between 3 and 5 and the radar connectivity for
some radars is not full while all radars are still interested in
all targets. We set T = 5 targets, N = 6 radars, m = 1
measurements per scan and update time tu = 0.25 s. Note
that the compared algorithms were modified accordingly in
order to take into account the above constraints. As it can be
seen in Fig. 13, the LC-BRD algorithm clearly outperforms the
distributed random one (K = 1) due to the fact that the equally
balanced target allocations (from a single radar perspective)
are not necessary reasonable, in contrast to the scenario in
Figs. 10-11.

Finally, we compare the proposed strategies with the cen-
tralized solution based on exhaustive search, i.e.,

h) Exhaustive Search - The centralized search is imple-
mented with full knowledge of all radars’ interests,
observability and connectivity conditions and at each
time instant the best allocation optimizing the sum of
all radars’ utilities is selected.

Figure 14 shows that the LC-BRD performs well given its
complexity. Note also that for the case where the interests of
the radars are not necessary the same four targets, there are
no theoretical guarantees that the NE exist(s) nor that a BRD-
based algorithm may achieve an NE point; however, the LC-
BRD still preforms relatively well. On the other hand, the RM-
based algorithm, which is designed for more general scenarios,
performs better than the LC-BRD and it closely approaches
the centralized, exhaustive search solution.

VII. CONCLUSIONS

In this article, we have proposed a new formulation of the
track selection problem for a multi-target tracking scenario in
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(a) Interest: All targets
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Fig. 14. Scenario with |Ti| = 4 and Ni = N , with T = 5, N = 6,
m = 1 and tu = 0.25 s. The case where all radars have the same interests
(all targets) is in (a), and the case where their interests differ in general is
in (b).

an MFR network using the non-cooperative games. The target
selections of each radar are considered to be autonomous; there
is no central entity to tell radars what to do nor is there any
negotiation process among the radars. We have analyzed two
indicative scenarios with equal and heterogeneous conditions
of observability and connectivity as well as radar interests.
In the former scenario, the Nash equilibria of the underlying
anti-coordination games have been analyzed and a simple
yet effective distributed algorithm that introduces a balancing
effect in track selections has been proposed. Afterwards, for
a more demanding scenario, the solution concept of corre-
lated equilibria has been employed and a more sophisticated,
distributed algorithm based on the regret-matching has been
proposed. Finally, computer simulations have verified that
both proposed algorithms closely approximate the centralized
solution while mitigating its inherent complexity.
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[54] N. Bogdanović, J. Plata-Chaves, and K. Berberidis, “Distributed
incremental-based LMS for node-specific adaptive parameter estima-
tion,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp.
5382–5397, Oct 2014.

[55] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

[56] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to
correlated equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127–1150,
2000.

[57] M. Maskery, V. Krishnamurthy, and Q. Zhao, “Decentralized dynamic
spectrum access for cognitive radios: cooperative design of a non-
cooperative game,” IEEE Transactions on Communications, vol. 57,
no. 2, pp. 459–469, February 2009.

[58] H. Kushner and G. G. Yin, Stochastic approximation and recursive
algorithms and applications. Springer Science & Business Media,
2003, vol. 35.
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