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A Radar-Oriented Approach to the Normal
Distributions Transform

Abstract — A modification of the scan-matching technique
known as the Normal Distributions Transform to be applicable
to radar data is presented. The proposed modification uses the
measurements of received signal power to account for possible
radar cross-section (RCS) fluctuation of the scene, which is
prone to cause missed detections, undesirable in scan-matching
techniques. It is demonstrated that RCS fluctuations according to
a Swerling III model leads to an increase of the pose estimation
errors, while the proposed approach reduces the errors to values
equivalent to what can be achieved in the abscence of these
fluctuations.

Keywords — Scan-matching, Swerling, Normal Distributions
Transform.

I. INTRODUCTION

In the applications of highly and fully automated driving,
high accuracy estimates of the vehicle’s location are of utmost
importance. The localization problem in unknown environment
using range scanners is addressed in the framework of
Simultaneous Localization and Mapping (SLAM). However,
these techniques require data association and memorization of
individual landmarks. Additionally, position estimates resulting
from the SLAM approaches are known to drift over time due
to increasing uncertainty.

An alternative approach is based on scan-matching
techniques which use the point clouds that result from 2D
or 3D range scans to estimate the relative pose. Range
scans at two different time instances are considered, the
so-called “reference scan” and the “current scan”. The
objective is to find the relative pose of the vehicle between
these two scans that results in their maximum overlap. The
scan-matching techniques can be divided into two main
groups: the feature-based techniques and the distribution-based
approaches.

Due to the popularity of both laser sensors and
scan-matching techniques within the robotics community, the
existing techniques are optimized for LiDAR measurements.
Laser scanners, however, come at a higher cost [1] and
perform poorly in bad weather conditions such as heavy
rain or fog [2]. These shortcomings of laser sensors can be
overcome with a complementary mm-wave radar available
in the majority of cars with a high automation level.
However, the existing scan-matching techniques, especially
the feature-based approaches, perform poorly with radar data
due to lower angular resolution of radar compared to LiDAR

and frame-to-frame fluctuations of the radar response. The
radar cross-section (RCS) of a target is highly dependent on
the observation angle, especially in the case of a complex
shape [3]. This in turn results in inconsistency in the reflected
power of the same target after movement of the vehicle,
which can result in missed detections in one of the scans
used for scan-matching, causing the point clouds to suffer
from “floating points” – the primitive detections which do
not have a counterpart in the other scan. Because of this, the
distribution-based approaches offer a more attractive solution.

Pioneering the distribution-based approaches is the Normal
Distributions Transform (NDT) [4]. The NDT converts the 2D
range scans from the native polar coordinate frame to Cartesian
coordinates after which the reference scan is represented by a
combination of bivariate Gaussian distributions related to the
distribution of the points within the cells of a grid on the xy
plane. In an effort to mitigate the influence of floating points
in the NDT only grid cells that contain 3 or more points are
used to construct the distribution. This, however, only partially
addresses the target fluctuation issue.

In this paper we address the problem of RCS fluctuations
in the application of the conventional NDT to radar data by
incorporating knowledge about scene RCS into the localization
problem. The structure of the paper is as follows: First, the
principles of the NDT are explained in detail in Section II.
Section III elaborates on the incorporation of knowledge about
the RCS into the conventional NDT. Simulation results of this
approach can be found in Section IV and verification using
real data is presented in Section V. Finally, in Section VI
conclusions are drawn.

II. THE NORMAL DISTRIBUTIONS TRANSFORM

The objective of scan-matching techniques is to find the
relative pose p of the vehicle between the two sequential
measurements of the environment, referred to as the “reference
scan” and the “current scan”. For plane geometry, the relative
pose p = [tx, ty, ϕ]

T defines the translation of the vehicle
between two scans along axes x and y (we consider that axis
x aligns with the heading of the vehicle), together with the
change of heading ϕ between the two scans.

The Normal Distributions Transform (NDT) is a
scan-matching technique, which utilizes a combination of
scaled Normal (Gaussian) distributions defined on a regular
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subdivision of the plane to represent a scan. This piece-wise
continuous and twice differentiable description of the map
allows for formulation of the objective function over the
relative pose p and minimizing it using Newton’s method. The
NDT algorithm is shortly described below; for more details the
reader is referred to [4].

A. Scan Representation

The conventional implementation of NDT assumes that in
each frame the sensor provides a point cloud in 2D Cartesian
coordinates corresponding to the detector output. The sensors
installed on a car – lidar, camera and radar – perceive the
environment in polar coordinates; therefore polar to Cartesian
coordinate transform is applied to the data first.

Then, the observed space around the vehicle is divided
into equal cells on a regular grid in x and y coordinates. For
each cell Ck in the grid containing a minimum of three points,
the parameters of the bi-dimensional normal distribution – the
mean vector qk ∈ R2×1 and the covariance matrix Σk ∈ R2×2

– are calculated. The NDT representation of the reference scan
therefore can be seen as a scaled PDF (or likelihood) of the
Normal distribution in the grid cell k:

L(x, y) ∝ N
(
[x, y]T ;qk,Σk

)
. (1)

To minimize the effect of discretization, four overlapping
grids are defined by shifting the original grid by half a cell in x
coordinate, y coordinate and both respectively. The parameters
qk and Σk are estimated for each of them.

B. The Point Cloud Mapping Equations

The point cloud of the current scan can be mapped to the
coordinates of the reference scan by applying a rotation and
translation coordinate transform. The position of a point m
after applying the pose change p = [tx, ty, ϕ]

T can be found
through the mapping equations [4]:

x′
m = xm cos(ϕ)− ym sin(ϕ) + tx;

y′m = xm sin(ϕ) + ym cos(ϕ) + ty,
(2)

where [xm, ym] are the coordinates of point m in the current
scan, and [x′

m, y′m] are the coordinates of point m in the
reference scan according to the pose change p.

For each mapped point m the corresponding cell in the grid
of the reference scan is found and a score is calculated as the
value of the Normal probability density function at this point,
the objective function of NDT optimization is then defined as
a negative sum of the scores for each point in the current scan:

min
p

−
M∑

m=1

exp

[
−
(x′

m − qk)
TΣ−1

k (x′
m − qk)

2

]
, (3)

for x′
m = [x′

m, y′m]T ∈ Ck. The negative sign is added to
formulate a minimization problem to be solved for p, which
is involved in (3) through the coordinates mapping (2) of each
point x′

m.

C. The Optimization

The NDT optimization problem (3) is solved using the
Newton’s method. It requires the definition of the gradient
and the Hessian of the objective function with respect to p.
Data representation via a combination of Normal distributions
ensures that both gradient and Hessian of the objective function
exist at any location within the scan. They are defined from
the score per data point m as calculated through the expression
inside the summation of (3) and can be found in [4]. The
increment step is calculated by averaging gradient and Hessian
matrices over the measured point cloud in the current scan and
the four overlapping grids to obtain g and H. At each iteration,
the current scan point cloud is first transformed according
to the mapping equations (2), then a single Newton step is
taken to calculate the increment ∆p by solving the following
equation:

H∆p = −g (4)

∆p is added to the previous estimate of p to obtain a new
pose estimate, to be used in the next iteration for mapping the
point cloud. This process repeats until convergence.

III. INCORPORATION OF KNOWLEDGE ABOUT THE RCS
The 3-point rule that is present in the calculation of the

distribution guards the influence of floating points in LiDAR,
however this is not sufficient for radar measurements. In radar
measurements the received signal power is related to the
radar cross section (RCS) of a target via the radar equation.
Especially for complex targets, the RCS can fluctuate with
a changing angle of incidence [3]. Because of the change
of position of the radar scanner between the scans used for
scan-matching, this RCS fluctuation can result in the reduction
of the received power from an entire extended target below the
detection threshold, causing a missed detection. This in turn
causes floating points which are undesirable in scan-matching
techniques. Such a problem is more prominent for targets
whose received power is close to the detection threshold,
i.e. weaker targets. By performing the scan-matching while
putting more emphasis on stronger targets, this problem can
be reduced.

Knowledge about the received power is available in
radar scans through measurements of the Signal-to-Noise
ratio (SNR). The incorporation of this knowledge can be
implemented in two ways; by considering it in the calculation
of the mean vectors and covariance matrices characterizing the
piece-wise continuous distribution or by using it as a weighing
factor for the score values of each point in calculation of the
objective function (3).

A. Using SNR in the Calculation of the Distribution

In order to account for the SNR in the calculation of the
distribution, the weighted mean and covariance are calculated.
This results in the following relations:

qi
k =

1

Wk

Mk∑
m=1

wmxi
m, (5)
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Generated map

(a)

Euclidean distance to the true position

(b)

Error in the heading estimate

(c)

Fig. 1. Simulation results, (a) Set-up of the simulation, (b) Euclidean distance to the correct position, (c) error in the relative heading

Σi,j
k =

1

Wk

Mk∑
m=1

wm(xi
m − qi

k)(x
j
m − qj

k). (6)

In these definitions, i and j denote the entries of the vector
and matrix, m denotes the measured target whose associated
weight wm is defined as the received power, Mk is the total
number of points inside Ck and Wk =

∑Mk

m=1 wm.

B. Using SNR in Calculation of the Score

The same weight can be used in the calculation of the
score, which results in the following minimization problem:

min
p

−
M∑

m=1

wm exp

[
−
(x′

m − qk)
TΣ−1

k (x′
m − qk)

2

]
, (7)

with the weight factors wm defined in the same way as in (5),
(6). This scaling with wm is a linear operation, it is thus trivial
to include it in the Hessian and gradient for the optimization.

IV. SIMULATIONS

In order to show the influence of the incorporation of
knowledge about the RCS a simulation was set up to generate
measurements of objects in front of an automotive radar.

A. Set-up of the Simulations

The measurements are simulated as if they were received
by a 3 Tx × 4 Rx automotive radar, capable of measuring at
a range resolution of ∆R ≈ 17 cm and a Doppler resolution
∆v ≈ 0.08 m/s. A comparison is made for different levels of
RCS fluctuation corresponding to a Swerling III target model,
simulated by modeling the received signal magnitude as a
Rice(A0, σA) distributed variable [5]. The comparison is made
for values σA

A0
= 0.3 and σA

A0
= 0.6, which puts the KLD

of Swerling III versus Rician below 0.05. As a reference the
results of measurements without RCS fluctuation (σA

A0
= 0)

where the incorporation of knowledge about the RCS is not
included in the algorithm is presented.

Within the map of Figure 1a a starting pose is chosen,
whose scan will be used as the reference scan, and 50 relative
poses are generated that are consistent with linear vehicle
motion with nearly constant velocity at approximately 15 km/h
with random fluctuation in the steering. Both the velocity

and the steering fluctuations are simulated as Gaussian noise,
characterized by a standard deviation σv = 0.1 km/h and
σϕ = 1◦, respectively. From each of the resulting positions
radar scans are generated and used as the current scans in the
scan-matching approach.

B. Results of the Simulations

The root mean square value of the Euclidean distance
between the estimated positions and the actual positions and
the root mean square error (RMSE) of the headings along with
the standard deviation of these errors for each of the RCS
incorporation methods for both of the investigated levels of
RCS fluctuation are shown in Figure 1.The figure additionally
shows the performance of the conventional NDT in abscence
of RCS fluctuation and without incorporation of the RCS
knowledge in the algorithm.

The results show that the position estimate does not
suffer much from the increased level of RCS fluctuation,
whereas the estimate of the relative heading does. Moreover,
the incorporation of knowledge about the RCS reduces the
increased error in the heading estimate to the same level as it
would be without RCS fluctuation.

V. EXPERIMENT

For experimental verification measurements were made
using a commercially available automotive radar attached to
the front of a car. During the experiment, raw radar data with
synchronized GPS locations were recorded, all processing was
performed offline. This section describes the experiment set-up
along with the results.

A. Set-up of the Experiment

For collection of the data the automotive radar operated at
a center frequency of 77 GHz. The radar system contains a 3
Tx × 4 Rx MIMO array operating at a bandwidth of 860 MHz.
The angular resolution is approximately ∆θ = 8◦, the range
resolution is ∆R = 0.1738 m and the Doppler resolution is
∆v ≈ 0.04 m/s. The maximum measurable range is Rmax =
94 m and the field of view of the radar is ±60◦. During the
experiment, the car was driving at approximately vcar = 15
km/h on a quiet piece of road on the TU Delft campus. The
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collected data was pre-processed into a range-angle-Doppler
data cube after which median detection was performed. In
order to filter out any non-stationary targets, the vehicle
velocity was estimated for each detected target m within a scan
by rewriting the relation between a stationary target’s measured
relative Doppler velocity and its angle: v̂car,m = vm/cos(θm),
after which the median value was taken over these calculated
values. Using this estimate of the velocity, non-stationary
targets were filtered out by discarding any target m that did
not meet the criterion |vm − v̂car cos(θm)| < 0.5 m/s.

B. Results of the Experiment

Since GPS data does not provide an accurate ground-truth
of the local poses, the estimated poses are used to construct a
global trajectory, which in turn is compared visually to the
trajectory of the GPS. The construction of the trajectories
is performed after crude filtering of outliers, by enforcing a
bound on each of the estimation parameters. In case one of
the parameters of the estimated pose is outside of this bound1,
the estimated pose is replaced with the position estimate of the
previous timeframe along with a change in heading of ϕ = 0.
The resulting trajectories for 150 consecutive matched scans
can be found in Figure 2. The black lines denote the estimated
trajectories for each time frame, the shapes and bars denote the
global pose at intervals of 10 timeframes.

From this figure it is clear that by not taking into account
knowledge of the RCS the trajectory diverges considerably,
whereas this problem is minimized for the other approaches.
Each of the techniques underestimate the traveled distance
compared to the GPS data. This is due to a problem in the
synchronization between radar and GPS during the collection
of the data. When looking at the average velocity needed
to traverse the distance measured by the GPS within any
timeframe it is seen that this value is approximately 0.5−1 m/s
higher than the instructed speed that was driven at during the
experiment. This is further corroborated by the vehicle velocity
estimates via the Doppler measurements. The difference in
traversed distance between the trajectory according to the GPS
and the estimated trajectories is approximately 13 meters. This
is in line with the higher velocity of the GPS data over the
150 frames (15 seconds).

VI. CONCLUSION

A way to incorporate knowledge about the Radar
cross-section (RCS) of a target in the existing scan-matching
approach known as the Normal Distributions Transform
(NDT) is proposed. It is shown that without incorporation
of this knowledge, frame-to-frame RCS fluctuation according
to a Swerling III model causes a considerable reduction in
performance of the NDT as applied to radar measurements,
especially with regards to the estimation of the relative
heading. The RCS fluctuations cause missed detections, which
in turn lead to the introduction of so-called floating points, i.e.
detections in one scan that are not present in the other. With the

1chosen to be tx,max = 75 cm, ty,max = 20 cm and ϕmax = 10◦

Fig. 2. The reconstructed trajectories using the individual pose estimates with
as a reference the trajectory according to GPS

availability of SNR measurements in radar scans, a reference
to a target’s RCS is obtained. This reference can be used to
structure the solution of the NDT in such a manner that more
emphasis is put on stronger targets, whose RCS fluctuations are
less prone to cause floating points. It is shown using simulation
data that by taking into account this knowledge of the RCS the
estimation error resulting from the application of the NDT to
radar scans subject to Swerling III fluctuations is brought back
to a value identical to what can be achieved in the abscence
of RCS fluctuation. Further it is shown through experimental
data that not taking into consideration this knowledge results
in divergence of the trajectory as reconstructed using the
individual pose estimates. This problem is minimized when
taking into account the RCS knowledge.
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